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Abstract

In the case of Lipschitz extremals of vectorial variational problems an important
class of strong variations originates from smooth deformations of the corresponding
non-smooth graphs. These seemingly singular variations, which can be viewed as com-
binations of weak inner and outer variations, produce directions of differentiability of
the functional and lead to singularity-centered necessary conditions on strong local min-
ima: an equality, arising from stationarity, and an inequality, implying configurational
stability of the singularity set. To illustrate the underlying coupling between inner and
outer variations we study in detail the case of smooth surfaces of gradient discontinuity
representing, for instance, martensitic phase boundaries in nonlinear elasticity.

Contents

1 Introduction 2

2 Preliminaries 3

3 General first and second variations 7

3.1 Outer and inner variation operators . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Mixed inner-outer variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Smooth extremals 11

4.1 EL equivalence as a variational symmetry . . . . . . . . . . . . . . . . . . . . 12
4.2 First variation for smooth extremals . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Second variation for smooth extremals . . . . . . . . . . . . . . . . . . . . . . 16

5 Extremals with jump discontinuities 19

5.1 First variation via partial EL equivalence . . . . . . . . . . . . . . . . . . . . . 20
5.2 First variation via full EL equivalence . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Second variation via partial EL equivalence . . . . . . . . . . . . . . . . . . . . 23
5.4 Second variation via full EL equivalence . . . . . . . . . . . . . . . . . . . . . 27

1



6 Global necessary conditions 28

6.1 General conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Local necessary conditions 33

7.1 General conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Localization of the second variation . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 Auxiliary variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4 Algebraic form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A Grinfeld’s expression for second variation 43

1 Introduction

Equilibria in continuum mechanics are usually identified with strong local minima of integral
functionals. Classical Calculus of Variations supplies the well known necessary conditions of
strong local minimum [19] that are basically sufficient in the case of smooth extremals [24, 25].
The smoothness of extremals, however, is not certain when the Lagrangian is smooth. Even if
conditions of convexity and coercivity are added, the Lipschitz continuity of extremals cannot
be guaranteed [54, 59]. In elasticity theory convexity is excluded by frame indifference,
and it is not uncommon to encounter non rank one convex functionals, as in the case of
martensitic materials or in shape optimization problems. Smooth extremals in such theories
are exceptions and the systematic treatment of singularities becomes essential. The most
well-known examples of singular minimizers are elastic equilibria where coexisting phases are
separated by phase boundaries (e.g. [47, 6]). For the general discussion of singular extremals
in the Calculus of Variations we refer to [60, 9, 19], the Continuum Mechanics perspective
can be found in [41, 50, 31, 4, 5].

The C0 topology in the notion of strong minimization is compatible with variations of
the singularity sets. It is therefore necessary to look for additional, singularity centered,
necessary conditions of equilibrium and stability. In connection with this we can mention
partial regularity results for global and strong local minima [14, 36] for uniformly quasiconvex
energies. For Lipschitz extremals of general energies there exist strong variations of special
type, corresponding to weak variations of their graphs. In this paper we show that such
seemingly singular variations produce directions of differentiability of the functional along
which both the first and the second variations can be computed. The resulting necessary
conditions can be used to test the configurational stability of the singularity set.

An important example of Lipschitz singularities is a smooth surface of jump discontinuity
of the gradient ∇y(x). Such singularities are encountered in a variety of applications. For
instance, the optimal Vigdergauz microstructures [56, 57, 58] emerge as minimizers in the
theory of shape optimization [22, 20]. Two phase precipitates in metallurgy and material
science represent stable inclusion-type configurations [33, 16]. In addition, Lipschitz type
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“classical designs” and “finite scale microstructures” are typical features of the regularized
theories.

Engineering studies of mechanical instabilities associated with smooth external and inter-
nal surfaces of discontinuity, initiated in [55, 7], were mostly focused on weak local minimizers
and the corresponding mathematical results can be found in [53, 40, 49, 50, 42]. For strong
local minimization, the study of first order stability conditions on jump discontinuities was
initiated by Weierstrass (see [11, 18]). In the case of phase transitions between nonlinear
elastic phases the first variation was studied by Eshelby [13] (see also [48, 27, 32]) while the
second variation was first computed by Grinfeld [28] (see also [35, 3, 37, 17]).

In this paper we formulate the global necessary conditions of stability and re-examine
Grinfeld’s pioneering results from the general perspective of Calculus of Variations. In partic-
ular, we study in full detail the localized version of the stability conditions and derive explicit
algebraic inequalities generalizing all previously known local conditions of morphological in-
stability for smooth surfaces of gradient discontinuity ( e.g.[28, 53, 37]). For simplicity we
keep the outer domain fixed disabling the corresponding boundary surface instabilities.

The paper is organized as follows. We begin with an heuristic discussion of the main ideas
of the paper in Section 2. In Section 3 we derive the explicit expressions for the first and
second mixed inner-outer variations in a form applicable to general Lipschitz extremals. In
Section 4 we prove that for smooth extremals the mixed inner-outer variations can always be
reduced to outer variations. We then formulate the idea of Euler-Lagrange equivalence (EL
equivalence) representing a weaker version of Noether’s variational symmetry. The extremals
with smooth surfaces of jump discontinuities are considered in Section 5 where we apply
our general results to derive explicit expressions for the first and second variations. The
global necessary conditions are formulated in Section 6 where we also discuss singularities of
higher co-dimension. In an illustrative example we show that the global stability condition
can detect instabilities which would be missed by the corresponding local conditions. The
global conditions are localized and reduced to a set of algebraic inequalities in Section 7. To
illustrate the local necessary conditions we provide another example where the singularity
centered algebraic conditions detect an instability, that the classical second variation misses.

In this paper we use index-free notation, whenever possible. The subscripts like LF denote
the matrices of partial derivatives ∂L/∂Fij . We use the inner product notation (a, b) to denote
the dot product of two vectors or a Frobenius inner product Tr (ABT ) of two matrices. In
most cases we are able to deal with multi-index arrays by using the convention that (∇A)b
denotes (in Einstein’s notation) Aij...k,αb

α.

2 Preliminaries

Let Ω be an open and bounded domain in Rd with Lipschitz boundary. In this paper we
study some of the conditions necessary for a Lipschitz function y : Ω → R

m to be a local
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minimizer of the integral functional

I(y) =

∫

Ω

L(x,y,∇y)dx, (2.1)

subject to specified boundary conditions. A fairly common type of boundary conditions
imposes linear constraints on the boundary values of y(x). In other words, we assume that

y ∈ y + Var, (2.2)

where y is a given Lipschitz function and Var is a subspace of W 1,∞(Ω; Rm), containing
W 1,∞

0 (Ω; Rm). Therefore, the subspace Var is described in terms of linear constraints on the
boundary values only. We assume that the Lagrangian L(x,y,F ) is jointly continuous in its
variables and of class C2 on an open neighborhood U of the set1 R = {(x,y(x),∇y(x)) :
x ∈ Ω}.

Let us recall the classical notions of weak and strong local minima.

Definition 2.1. We call y(x) a strong local minimizer if I(y + φn) ≥ I(y) for all n large
enough and for all sequences {φn} ⊂ Var such that φn → 0 uniformly as n → ∞. We call
y(x) a weak local minimizer if I(y +φn) ≥ I(y) for all n large enough and for all sequences
{φn} ⊂ Var such that φn → 0 in the W 1,∞ norm.

We observe that strong local minimizers are stable with respect to strong and weak vari-
ations, while weak local minimizers are stable with respect to only weak variations.

Definition 2.2. We call a sequence {φn} ⊂ Var a strong variation if φn → 0 uniformly as
n → ∞, while ∇φn does not converge to zero uniformly. A weak variation is a sequences
{φn} ⊂ Var such that φn → 0 in the W 1,∞ norm.

A typical strong variation is the generalized Weierstrass needle

y(x) 7→ y(x) + ǫζ((x− x0)/ǫ), ζ ∈ C1
0(B(0, 1); Rm). (2.3)

In classical elasticity theory the variations (2.3) are often associated with nucleation phenom-
ena (e.g. [2]).

A typical weak variation is the outer variation of the form

y(x) 7→ y(x) + ǫφ(x), φ ∈ Var. (2.4)

The most important difference between the weak and the strong variations is that the func-
tional I(y) is differentiable on weak variations and non-differentiable on strong ones. Indeed,
in the case of weak variations the directional derivative

DφI = lim
ǫ→0

I(y + ǫφ(x)) − I(y)

ǫ

1The set R is compact, when y(x) is of class C
1. In the general case we mean the closure of the set of

Lebesgue points of the measurable set R.
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Figure 1: (a,b) Classical Weierstrass needle variation (nucleation) leading to necessary conditions in the
form of inequalities. (c,d) Weak variation of a Lipschitz graph representing configurational shift in the location
of a defect and leading to necessary conditions in the form of both equalities and inequalities.

is linear in φ. At the same time the appropriate “directional derivative” for the case of strong
variations,

DζI = lim
ǫ→0

I(y + ǫζ((x− x0)/ǫ)) − I(y)

ǫd

is non-linear in ζ. Therefore, the associated local minimization conditions are of two different
types: equalities and inequalities, repsectively.

Below, to illustrate the difference between these two types of variations we first obtain the
conditions of vanishing of the first derivative DφI and non-negativity of the second derivative
DφφI in the differentiable directions φ(x). Then, we obtain the quasiconvexity inequality
DζI ≥ 0 along the non-differentiable “directions” ζ((x− x0)/ǫ) (see Figure 1(b)).

When y(x) is a C1 extremal, the two types of variations are independent [24, 25], while for
Lipschitz local minimizers, the situation is more complex. The weak variations of the graph of
y(x) is a strong variation {φǫ}, for which the functional increment I(y+φǫ)−I(y) exhibits the
differentiability properties characteristic of weak variations (see Figure 1(d)). The existence
of such strong variations suggests that in the Lipschitz case the partition of variations into
the weak and the strong is no longer appropriate and that some strong variations can also
generate necessary conditions in the form of equalities.

The weak variations of Lipschitz graphs are defined as follows. The graph of y(x) is the
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set Γy = {(x,y(x)) : x ∈ Ω} ⊂ Rd × Rm. The weak variation of the graph is the “perturbed
graph”

Γyǫ
= {(x+ ǫθ(x),y(x) + ǫφ(x)) : x ∈ Ω}, (2.5)

where φ ∈ Var ∩ C2(Ω; Rm) and θ ∈ C1(Ω; Rd) ∩ C0(Ω; Rd). Obviously, Γyǫ
is the graph of

yǫ(x) = y(ϑǫ(x)) + ǫφ(ϑǫ(x)), x ∈ Ω, (2.6)

where ϑǫ(x) is the inverse map of x+ ǫθ(x). Hence, weak variations of Lipschitz graphs can
be represented as a combination of inner and outer variations, where the inner variation is
defined by

y(x) 7→ y(ϑǫ(x)). (2.7)

More general classes of variations were considered in [15].
A weak variation of the graph, illustrated schematically in Figure 1(c) shows that the

total outer variation (the Eulerian image of the combined inner-outer variation)

φǫ(x) = y(ϑǫ(x)) + ǫφ(ϑǫ(x)) − y(x). (2.8)

is indistinguishable from the Weierstrass needle shown in the inset of Figure 1(a). More pre-
cisely, ∇φǫ is small everywhere, except on the set of small measure localized near the defects of
∇y(x). In classical elasticity theory such variations are often identified with configurational
displacements of crystal defects (propagation).

We now turn to the question of stability of the functional (2.1) with respect to weak
variations of the graph of the Lipschitz map y(x). The functional increment I(yǫ) − I(y),
corresponding to the weak variation of the graph is, at the first glance, not differentiable,
confirming the strong variation picture. However, the change of variables z = ϑǫ(x) gives

I(yǫ) =

∫

Ω

L
(
z + ǫθ(z),y(z) + ǫφ(z),F (z)(I + ǫ∇θ)−1 + ǫ∇φ

)
det(I + ǫ∇θ)dz, (2.9)

where F (x) is our notation for the gradient ∇y(x). It is now obvious that I(yǫ) depends
in a smooth way on θ and φ, even when F (x) is merely measurable and bounded. Observe
that the inner and outer variations play very different roles. The former affects Lagrangian
variables x and moves singularities, while the latter perturbs the Eulerian variables y and
preserves the locations of singularities. One can see that in the Lipschitz case neither the first
variation nor the the second can be fully understood in terms of the inner or outer variations
alone.

If y(x) is of class C1 then there are no singularities to move and (2.6) is equivalent to the
pure outer variation (2.4). Indeed, using the Taylor expansion

ϑǫ(x) = x− ǫθ(x) + o(ǫ),

we obtain,
yǫ(x) = y(x) − ǫF (x)θ(x) + ǫφ(x) + o(ǫ).
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Hence,
yǫ(x) = y(x) + ǫψ(x) + o(ǫ), (2.10)

where ψ(x) is given by
ψ(x) = φ(x) − F (x)θ(x). (2.11)

This shows that when y ∈ C1(Ω; Rm) the inner-outer variation (2.6) is equivalent to the outer
variation (2.4), with φ replaced by ψ, given by (2.11). This leads us to the notion of the EL
(Euler-Lagrange) equivalence, discussed in detail in Section 4.1, which can also be regarded
as a variational symmetry.

Remark 2.3. There is an important difference between the inner and outer variations. The
inner variations can only produce outer variations of the form

φ(x) = −F (x)θ(x) (2.12)

If F (x) = ∇y(x) is a rectangular matrix, or a singular square matrix, then the equation
(2.12) may not be solvable for θ. In addition, in our setting, the outer variations that are
equivalent to the inner ones must necessarily vanish on ∂Ω.

When singularities of the gradient F (x) are present the symmetry is broken, since in the
space of labels (Lagrangian coordinates) the points on the singular set are distinguished from
all the other points. Nevertheless, we may extend the idea of EL equivalence, to the case
when F (x) is not smooth, if we study the equivalent outer variation (2.8) corresponding to
the inner-outer variation (2.6). The known structure of singularities of F (x) can then be
translated into the understanding of the geometry of the set, where |∇φǫ| is not small.

Our most detailed results are obtained for smooth surfaces of gradient jump discontinuity,
representing, for instance, elastic phase boundaries, where the structure of the singularity is
the simplest. We also show that the defects of co-dimension higher than 1 are “invisible”
to our functional. The physical defects with higher co-dimension, describing for instance
dislocations, crack tips and vacancies, correspond to non-Lipschitz maps which are in prin-
ciple amenable to our general approach while requiring a special treatment of unbounded
deformation gradients.

3 General first and second variations

The inner-outer first and second variations are defined as the derivatives

δIΩ(φ, θ) =
dI(yǫ)

dǫ

∣∣∣∣
ǫ=0

, δ2IΩ(φ, θ) =
d2I(yǫ)

dǫ2

∣∣∣∣
ǫ=0

that can be computed in a straightforward way by differentiating under the integral in (2.9).
Attempting to perform the calculations, one quickly discovers that the direct way is very
tedious, at least as far as the second variation is concerned. The formalism presented below
brings a transparent structure to the results and allows one to accelerate the computations
considerably.
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3.1 Outer and inner variation operators

We define the global outer variation operator by

O[ǫφ]I(y) = I(y + ǫφ) (3.1)

We also define the corresponding infinitesimal outer variation operators

(δo[φ]L)(x,y,F ) = (Ly(x,y,F ),φ(x)) + (P ,∇φ(x))

and

∆o[φ]I(y) =

∫

Ω

(δo[φ]L)(x,y(x),∇y(x))dx, (3.2)

where
P = LF (x,y,F )

is known in the context of elasticity theory as the Piola-Kirchhoff stress tensor.
We can expand the global outer variation operator O[ǫφ] in powers of ǫ, even when y(x)

is merely Lipschitz continuous.

Lemma 3.1. Suppose φ ∈W 1,∞(Ω; Rm). Then

O[ǫφ]I(y) = I(y) + ǫ∆o[φ]I(y) +
ǫ2

2
∆2

o[φ]I(y) + o(ǫ2),

where
∆2

o[φ]I(y) = ∆o[φ](∆o[φ]I(y)).

Proof. One way to prove the lemma is to perform the explicit differentiation in (2.9) and
compare the result with the expansion in the lemma. There is, however, a more enlightening
proof. Let f(ǫ) = O[ǫφ]I(y). Our goal is to derive the formula for f ′′(0) in the Taylor
expansion

f(ǫ) = f(0) + ǫf ′(0) +
ǫ2

2
f ′′(0) + o(ǫ2)

without having to differentiate (2.9) twice. The idea is is to compute the first order expansion

T (ǫ, δ) = f(ǫ) + δf ′(ǫ)

of f(ǫ+ δ), regarding ǫ as fixed. If we then expand T (ǫ, δ) to first order in ǫ, then we obtain

f(ǫ+ δ) ∼ f(0) + (ǫ+ δ)f ′(0) + ǫδf ′′(0). (3.3)

Hence, f ′′(0) can be computed as the coefficient of ǫδ in (3.3). To prove the lemma, it remains
to observe that

f(ǫ+ δ) = O[δφ](O[ǫφ]I(y)).

Therefore,
T (ǫ, δ) = O[ǫφ]I(y) + δ∆o[φ](O[ǫφ]I(y)).

Expanding T (ǫ, δ) to first order in ǫ we obtain f ′′(0) = ∆2
o[φ]I(y).
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Performing explicit calculations, we also obtain

δ2
o [φ]L = (Lyyφ,φ) + (LFF∇φ,∇φ) + 2(LFyφ,∇φ). (3.4)

We define the global inner variation operator by

I[ǫθ]I(y) = I(y(ϑǫ)). (3.5)

We also define the corresponding infinitesimal inner variation operators

(δi[θ]L)(x,y,F ) = (Lx(x,y,F ), θ(x)) + (P ∗(x,y,F ),∇θ(x))

and

∆i[θ]I(y) =

∫

Ω

(δi[θ]L)(x,y(x),∇y)dx, (3.6)

where
P ∗ = LI − F TLF (3.7)

is the energy-momentum tensor known in elasticity theory as the Eshelby tensor. We re-
mark, that even though ∇(y(ϑǫ)) is not uniformly close to ∇y(x), the formula ∇(y(ϑǫ)) =
F (ϑǫ)∇ϑǫ shows that (x,y(ϑǫ),∇(y(ϑǫ)) stays in the set U (the set where the Lagrangian L
is C2) for almost all x ∈ Ω, since ϑǫ(x) and ∇ϑǫ are uniformly close to x and I, respectively.
Hence, there is no problem expanding I[ǫθ]I(y) in powers of ǫ even when y(x) is merely
Lipschitz continuous.

Lemma 3.2. Suppose θ ∈ C2(Ω; Rd)

I[ǫθ]I(y) = I(y) + ǫ∆i[θ]I(y) +
ǫ2

2
(∆2

i [θ] − ∆i[(∇θ)θ])I(y) + o(ǫ2),

where
∆2

i [θ]I(y) = ∆i[θ](∆i[θ]I(y)).

Proof. We follow the same strategy as in the proof of Lemma 3.1. Let f(ǫ) = I[ǫθ]I(y). First
we expand

ϑǫ+δ(x) = ϑǫ(x) − δ(I + ǫ∇θ(ϑǫ(x)))−1θ(ϑǫ(x)) +O(δ2).

Therefore, comparing the first order expansions in δ we conclude that

f(ǫ+ δ) = I[δηǫ](I[ǫθ]I(y)) +O(δ2),

where ηǫ(x) = θ(ϑǫ(x)). Hence,

T (ǫ, δ) = I[ǫθ]I(y) + δ∆i[ηǫ](I[ǫθ]I(y)).

Expanding T (ǫ, δ) to first order in ǫ, using

ηǫ(x) = θ(x) − ǫ(∇θ(x))θ(x) +O(ǫ2),

we obtain the lemma.

Performing explicit calculations, we also obtain

δ2
i [θ]L = L((∇ · θ)2 − Tr (∇θ)2) + (P ∗,∇((∇θ)θ)) + (Lx, (∇θ)θ) + 2(Lx, θ)∇ · θ

+ 2(P ,F∇θ(∇θ − (∇ · θ)I)) + (LFFF∇θ,F∇θ) − 2(LFxθ,F∇θ) + (Lxxθ, θ). (3.8)
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3.2 Mixed inner-outer variations

With the new notation, introduced in Section 3.1, we can write the action of the inner-outer
variation (2.6) on I(y) as

I(yǫ) = I(y(ϑǫ) + ǫφ(ϑǫ)) = O[ǫφ](I[ǫθ]I(y)). (3.9)

From this we easily obtain the expression for the first and second variations, corresponding
to (2.6).

Theorem 3.3.

(a) For any φ ∈ C2(Ω; Rm) and θ ∈ C2(Ω; Rd)

I(yǫ) = I(y) + ǫδI(φ, θ) +
ǫ2

2
δ2IΩ(φ, θ) + o(ǫ2), (3.10)

where
δIΩ(φ, θ) = (∆o[φ] + ∆i[θ])I(y) (3.11)

and
δ2IΩ(φ, θ) = (∆o[φ] + ∆i[θ])

2I(y) − δIΩ((∇φ)θ, (∇θ)θ) (3.12)

(b) If φ ∈ Var ∩ C2(Ω; Rm), θ ∈ C2(Ω; Rd) ∩ C0(Ω; Rd) and δIΩ(φ, θ) = 0 for all φ ∈ Var
and all θ ∈ C1(Ω; Rd) ∩ C0(Ω; Rd), then

∆i[θ]∆o[φ]I(y) = ∆o[φ]∆i[θ]I(y), (3.13)

and
δ2IΩ(φ, θ) = (∆o[φ] + ∆i[θ])

2I(y). (3.14)

Proof. Expand (3.9) up to the second order in ǫ, using Lemmas 3.1 and 3.2.

I(yǫ) = O[ǫφ]

{
I(y) + ǫ∆i[θ]I(y) +

ǫ2

2
(∆2

i [θ] − ∆i[(∇θ)θ])I(y)

}
+ o(ǫ2).

Observe that the operator O[ǫφ] is linear. Therefore,

I(yǫ) = I(y) + ǫ∆i[θ]I(y) + ǫ∆o[φ]I(y)

+
ǫ2

2
(∆2

i [θ] − ∆i[(∇θ)θ] + 2∆o[φ](∆i[θ]) + ∆2
o[φ])I(y) + o(ǫ2). (3.15)

Formula (3.11) follows. To prove (3.13) we compute the commutator of ∆i[θ] and ∆o[φ]
explicitly:

δo[φ](δi[θ]L) = (P ,∇φ((∇ · θ)I −∇θ)) − (LFF∇φ,F∇θ) + (LFxθ,∇φ)

+ (Ly,φ)∇ · θ − (LFyφ,F∇θ) + (Lxyφ, θ) (3.16)

10



and

δi[θ](δo[φ]L) = (P ,∇ · (∇φ⊗ θ)) − (LFF∇φ,F∇θ) + (LFxθ,∇φ)

+ (Ly,∇ · (φ⊗ θ)) − (LFyφ,F∇θ) + (Lxyφ, θ). (3.17)

Here
(∇ · (∇φ⊗ θ))iα = (φi,αθβ),β, (∇ · (φ⊗ θ))i = (φiθβ),β.

Therefore, we obtain
∆i[θ]∆o[φ] − ∆o[φ]∆i[θ] = ∆o[(∇φ)θ]. (3.18)

Recalling that θ = 0 on ∂Ω we conclude that (∇φ)θ ∈ W 1,∞
0 (Ω; Rm) ⊂ Var. Hence (3.13)

follows. Substituting (3.18) into (3.15) we obtain (3.12), since (∇θ)θ ∈ C1(Ω; Rd)∩C0(Ω; Rd).
Finally, applying (3.13) to (3.15) we obtain (3.14).

In addition to the formula (3.12) for the second variation we will also need an explicit
formula for δ2IΩ(φ, θ).

Theorem 3.4.

δ2IΩ(φ, θ) =

∫

Ω

{2J2(∇θ)L+2((Lx, θ)+(Ly,φ))∇·θ+(Lxxθ, θ)+(Lyyφ,φ)+2(Lxyφ, θ)

+ 2(PΘ(∇θ),H) + (LFFH ,H) + 2(LFxθ + LFyφ,H)}dx, (3.19)

where

H = ∇φ− F∇θ, J2(ξ) =
1

2
((Tr ξ)2 − Tr (ξ2)), Θ(ξ) = ∇J2(ξ) = (Tr ξ)I − ξT .

Proof. The result follows if we substitute formulas (3.4), (3.8), (3.16) and (3.17) into (3.12).

4 Smooth extremals

At the first glance, mixed inner-outer variations (2.6) are considerably more general than the
pure outer variations (2.4) and produce conditions δIΩ(φ, θ) = 0 and δ2IΩ(φ, θ) ≥ 0 that
are stronger than the classical conditions δIΩ(φ, 0) = 0 and δ2IΩ(φ, 0) ≥ 0, that follow from
stability with respect to the outer variations alone. However, when y(x) is of class C1 the
inner-outer variation (2.6) is equivalent to the pure outer variation (2.4). In other words, in
the smooth case the weak variation of Lagrangian coordinates can always be represented as
a weak variation of Eulerian coordinates. In what follows we shall refer to this situation as
the Euler-Lagrange (EL) equivalence.

Remark 4.1. The EL equivalence principle for smooth fields can be also used on any subset
of Ω, that is free from singularities, even if F (x) has singularities elsewhere in Ω.
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4.1 EL equivalence as a variational symmetry

Let us recall the notion of variational symmetry [45] (see also [46]). Consider a family of weak
perturbations of the graph Γy:

ΓYǫ
= {(X(x,y; ǫ),Y (x,y; ǫ)) : (x,y) ∈ Γy}, (4.1)

where the functions X and Y are smooth in all of their arguments and have the property
X(x,y; 0) = x and Y (x,y; 0) = y. When ǫ is small enough the set ΓYǫ

is still a graph of
the function Yǫ(X), X ∈ Ωǫ, where Ωǫ = X(Γy; ǫ).

Definition 4.2. The transformation

X = X(x,y; ǫ), Y = Y (x,y; ǫ) (4.2)

is called a variational symmetry at y(x) if

∫

Ωǫ

L(X,Yǫ(X),∇XYǫ(X))dX =

∫

Ω

L(x,y(x),∇y(x))dx. (4.3)

holds for all smooth subsets Ω of Rd.

The existence of the variational symmetry is usually associated with some special prop-
erties of the Lagrangian. The Noether theorem [45] then states that there is a conservation
law corresponding to each variational symmetry. In our case the Lagrangian has no assumed
symmetries of this kind. The EL equivalence is a weaker integral symmetry, when the relation
(4.3) holds only for the given domain Ω. To obtain the corresponding “conservation law”, we
differentiating (4.3) in ǫ at ǫ = 0 to obtain

(∆i[θ] + ∆o[φ])I(y) = 0 (4.4)

at y = y(x), where

θ(x,y) =
∂X(x,y; ǫ)

∂ǫ

∣∣∣∣
ǫ=0

, φ(x,y) =
∂Y (x,y; ǫ)

∂ǫ

∣∣∣∣
ǫ=0

(4.5)

can be regarded as the infinitesimal generators of the integral symmetry. We emphasize that
y(x) is not assumed to be an extremal, and the implication (4.3)⇒(4.4) holds for general
Lipschitz maps y(x).

The EL equivalence principle, relating inner and outer variations for smooth maps y(x)
can be restated as a possibility of making non-trivial inner and outer variations (4.2) whose
effects cancel out producing no net change in the graph of y(x). This can be written in the
form of an integral symmetry at y(x) with

X = Ξ(x,y; ǫ), Y = y + y(Ξ(x,y; ǫ))− y(x), (4.6)

12



where Ξ(x,y; ǫ) is an arbitrary smooth family of diffeomorphisms of Γy onto Ω. It is easy
to verify that in this case the graph ΓYǫ

, given by (4.1) coincides with the graph Γy of y(x).
Hence, Yǫ(X) = y(X) and the equality (4.3) holds. If the map y(x) is Lipschitz, then
no weak outer transformation Y (x,y; ǫ) in (4.1) can cancel out the effect of the weak inner
transformation Ξ(x,y; ǫ). In fact, the function y(Ξ(x,y; ǫ)) will be non-differentiable in ǫ. It
is in this sense that the smoothness of y(x) is required for the integral variational symmetry.

For smooth maps y(x) the infinitesimal generators (4.5) corresponding to (4.6) are

∂Ξ(x,y; ǫ)

∂ǫ

∣∣∣∣
ǫ=0

= η(x,y),
∂y(Ξ(x,y; ǫ))

∂ǫ

∣∣∣∣
ǫ=0

= F (x)η(x,y).

The corresponding identity (4.4) then becomes

0 = (∆i[η] + ∆o[Fη])I(y) =

∫

Ω

(E∗(L) + F TE(L),η)dx+

∫

∂Ω

L(η,n)dS, (4.7)

where
E(L) = Ly −∇ · P , E∗(L) = Lx −∇ ·P ∗. (4.8)

The infinitesimal generator η can be chosen arbitrarily in C1
0 (Ω; Rd), by taking Ξ(x,y; ǫ) =

x+ ǫη(x). Then, the integral relation (4.7) can be rewritten pointwise, giving the Noether’s
identity

Lx −∇ · P ∗ = −F T (Ly −∇ · P ). (4.9)

The surface integral in (4.7) vanishes since (η,n) = 0, as a consequence of invariance of the
domain Ω. Identity (4.9) implies that any C2 extremal is stationary, i.e. E∗(L) = 0. We can
therefore interpret stationarity of smooth extremals as a manifestation of integral symmetry.

The “trivial” graph transformation (4.6) can also be combined with any other transfor-
mation (4.2) without changing its cumulative effect. This allows one to modify the generators
θ and φ of the transformation (4.2) without changing what the transformation does to Γy in
the first order of ǫ.

Our interest in second variation suggests that we should also consider the effect of the EL
equivalence symmetry (4.6) on the second order generators

θ′(x,y) =
∂2X(x,y; ǫ)

∂ǫ2

∣∣∣∣
ǫ=0

, φ′(x,y) =
∂2Y (x,y; ǫ)

∂ǫ2

∣∣∣∣
ǫ=0

. (4.10)

The second order generators of the trivial transformation (4.6) are (η′,ρ′), where

ρ′ = (∇Fη)η + Fη′.

If we compose an arbitrary smooth transformation (4.2) with the trivial transformation (4.6),
we will obtain the new transformation

X = Z(x,y; ǫ), Y = W (x,y; ǫ),
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that is equivalent to the original one. However, its first and second order infinitesimal gener-
ators will differ from (θ,φ) and (θ′,φ′). We compute

∂Z(x,y; ǫ)

∂ǫ

∣∣∣∣
ǫ=0

= θ + η,
∂W (x,y; ǫ)

∂ǫ

∣∣∣∣
ǫ=0

= φ+ Fη.

We conclude that the pairs of first order generators (θ,φ) and (θ+η,φ+Fη) are equivalent.
Computing the second order infinitesimal generators of the combined transformation, we get





∂2Z(x,y; ǫ)

∂ǫ2

∣∣∣∣
ǫ=0

= θ′ + η′ + 2ηxθ + 2ηyφ,

∂2W (x,y; ǫ)

∂ǫ2

∣∣∣∣
ǫ=0

= φ′ + ρ′ + 2(φx + φyF )η + 2F (ηxθ − θxη + ηyφ− θyFη).

We may use the freedom in the choice of generators η and η′ in order to replace the
original inner-outer variation with the pure outer variation (up to the second order in ǫ), if
we choose

η = −θ, η′ = −θ′ + 2θxθ + 2θyφ.

Applying this principle to the variation (2.5) we obtain the equivalent outer variation

y 7→ y + ǫψ +
ǫ2

2
ψ′ + o(ǫ2)

where ψ is given by (2.11) and

ψ′ = 2F (∇θ)θ − 2(∇φ)θ + (∇Fθ)θ = −2(∇ψ)θ − (∇Fθ)θ. (4.11)

One consequence of these calculations is the possibility to simplify the general expansion
(3.10):

I(yǫ) = I(y) + ǫδIΩ(ψ, 0) +
ǫ2

2
(δIΩ(ψ′, 0) + δ2IΩ(ψ, 0)). (4.12)

In particular, when the first variation vanishes, we obtain

δ2IΩ(φ, θ) = δ2IΩ(ψ, 0). (4.13)

In conclusion we mention that the considerations of this section were limited to the case
when the domain Ω was fixed by the transformations (4.2). In order to make the principle of
EL equivalence applicable to variable domains we need to move beyond the present restricted
definition of variational symmetry.
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4.2 First variation for smooth extremals

In this section we assume that y(x) is of class C2 on a subdomain D of Ω and is an extremal,
i.e. satisfies the Euler-Lagrange equation

Ly −∇ · P = 0, (4.14)

in the classical sense on D. The EL equivalence principle implies, via (4.9), that the station-
arity condition

Lx −∇ · P ∗ = 0, (4.15)

also known as the Eshelby equation in elasticity theory is satisfied, when x ∈ D. Then the
first variation on D can be expressed as a surface integral over ∂D.

Theorem 4.3. Let D ⊂ Ω be a subdomain with Lipschitz boundary. Assume that y ∈
C2(D; Rm) then

δID(φ, θ) = δID(ψ, 0) + S1, (4.16)

where δID is the first variation (3.11), in which Ω is replaced with D, and

S1 =

∫

∂D

L(θ,n)dS.

In particular, when y(x) is an extremal on D

δID(φ, θ) =

∫

∂D

{(Pn,ψ) + L(θ,n)}dS.

Proof. Substituting
∇φ = ∇ψ + ∇Fθ + F∇θ

into (3.11) we obtain

δID(φ, θ) =

∫

D

{(Ly,ψ) + (P ,∇ψ) + L∇ · θ + (Lx, θ) + (Ly,Fθ) + (P ,F∇θ)}dx.

Therefore,

δID(φ, θ) = δID(ψ, 0) +

∫

D

{L∇ · θ + (∇L, θ)}dx = δID(ψ, 0) +

∫

D

∇ · (Lθ)dx.

The result follows from the divergence theorem.

Theorem 4.3 will be used in Section 5.1, where we derive the expression for the first
variation δIΩ(φ, θ) for extremals with jump discontinuities.
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4.3 Second variation for smooth extremals

The goal of this section is to prove the analog of Theorem 4.3 and formula (4.16) for second
variation. The analysis here applies not only to the case when the extremal is smooth, but
also to the case when it is piecewise smooth.

Theorem 4.4. Let D ⊂ Ω be a subdomain with Lipschitz boundary. Assume y ∈ C3(D; Rm)
is an extremal. Then

δ2ID(φ, θ) = δ2ID(ψ, 0) + S2, (4.17)

where

S2 =

∫

∂D

{((P ∗)T∇∂Dθ + P T∇∂D(2ψ + Fθ), (θ,n)I − n⊗ θ)+

((Lx, θ) + (Ly, 2ψ + Fθ))(θ,n)}dS.

In particular, δ2ID(φ, θ) = δ2ID(ψ, 0), when θ = 0 on ∂D. Here ψ(x) is given by (2.11)
and

∇∂Df = ∇f − ∂f

∂n
⊗ n = ∇f (I − n⊗ n) (4.18)

is the surface gradient.

Proof. We begin by expressing H in (3.19) in terms of ψ: H = ∇ψ+∇Fθ. We then apply
the chain rule identities

LFF (∇Fθ) = ∇Pθ − LFxθ − LFy(Fθ)

LyF (∇Fθ) = ∇Lyθ − Lyxθ − LyyFθ

(LxF (∇Fθ), θ) = (∇Lxθ, θ) − (Lxxθ, θ) − (LxyFθ, θ).

We obtain

δ2ID(φ, θ) = δ2ID(ψ, 0)+

∫

D

{2J2(∇θ)L+2((Lx, θ)+(Ly,ψ+Fθ))∇·θ+2(PΘ,∇ψ+∇Fθ)

+ 2(∇Pθ,∇ψ) + (∇Pθ,∇Fθ) + (∇Lyθ,Fθ) + 2(∇Lyθ,ψ) + (∇Lxθ, θ)}dx.

We now show that the volume integral on the right-hand side above is equal to the surface
integral in (4.17). To organize the calculations we split the integral above into 6 groups of
terms and proceed to simplify and combine these groups until our goal is reached. We write

δ2ID(φ, θ) = δ2ID(ψ, 0) +
6∑

j=1

Tj .

T1 =

∫

D

{2(∇Pθ,∇ψ) + (∇Pθ,∇Fθ) + (∇Lyθ,Fθ)}dx
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T2 = 2

∫

D

{((Lx, θ) + (Ly,Fθ))∇ · θ + (PΘ(∇θ),∇Fθ)}dx

T3 = 2

∫

D

(PΘ(∇θ),∇ψ)dx, T4 = 2

∫

D

{(Ly,ψ)∇ · θ + (∇Lyθ,ψ)}dx

T5 = 2

∫

D

J2(∇θ)Ldx, T6 =

∫

D

(∇Lxθ, θ)dx

Step 1. We integrate by parts in the first and second terms of T1, using (4.14) in the second
term:

T1 = Y1 +X1 + S1 + S2

where

Y1 = −2

∫

D

(P ,∇∇ψθ + ∇ψ∇ · θ)dx, X1 = −
∫

D

Piα,βFiγ(θβθγ),αdx,

S1 = 2

∫

∂D

(P ,∇ψ)(θ,n)dS, S2 =

∫

∂D

((∇Pθ)n,Fθ)dS

Hence, we obtain

δ2ID(φ, θ) = δ2ID(ψ, 0) +X1 + Y1 + S1 + S2 + T2 + T3 + T4 + T5 + T6.

Step 2. T2 = X2 +X3, where

X2 = 2

∫

D

(∇L, θ)∇ · θdx, X3 = −2

∫

D

(∇Fθ,P (∇θ)T )dx.

We also observe that

X1 +X3 = X4 = −
∫

D

(FiγPiα),β(θβθγ),αdx.

Hence,

δ2ID(φ, θ) = δ2ID(ψ, 0) +X2 +X4 + Y1 + S1 + S2 + T3 + T4 + T5 + T6.

Step 3. We integrate by parts and use (4.14).

Y1 + T3 = −2

∫

D

(P ,∇(∇ψθ))dx = Y2 + S3,

where

Y2 = 2

∫

D

(Ly,∇ψθ)dx, S3 = −2

∫

∂D

(Pn,∇ψθ)dS.

We also have

S1 + S3 = Z1 = 2

∫

∂D

(∇∂Dψ,P ((θ,n)I − n⊗ θ))dS.
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Hence,
δ2ID(φ, θ) = δ2ID(ψ, 0) +X2 +X4 + Y2 + Z1 + S2 + T4 + T5 + T6.

Step 4.

Y2 + T4 = 2

∫

D

∇ · ((Ly,ψ)θ)dx = S4,

where

S4 = 2

∫

∂D

(Ly,ψ)(θ,n)dS.

Hence,
δ2ID(φ, θ) = δ2ID(ψ, 0) +X2 +X4 + Z1 + S2 + S4 + T5 + T6.

Step 5. We represent J2(∇θ) as a divergence, 2J2(∇θ) = ∇ · (ΘT (∇θ)θ), and integrate by
parts

T5 = S5 +X5,

where

X5 = −
∫

D

(∇L,ΘT (∇θ)θ)dx, S5 =

∫

∂D

(θ,Θ(∇θ)n)LdS.

We compute

X5 +X2 = X6 =

∫

D

L,β(θαθβ),αdx =

∫

D

(Lδγα),β(θβθγ),αdx

Observe that

X4 +X6 =

∫

D

{(Lδγα),β(θβθγ),α − (FiγPiα),β(θβθγ),α}dx =

∫

D

P ∗
γα,β(θβθγ),αdx.

Then, integrating by parts and using (4.15), we obtain X4 +X6 = X7 + S6, where

X7 = −
∫

D

(∇Lxθ, θ)dx, S6 =

∫

∂D

((∇P ∗θ)n, θ)dS.

We have

∇P ∗θ = (Lx, θ)I + (Ly,Fθ)I + (P ,∇Fθ)I − (∇Fθ)TP − F T∇Pθ.

Therefore, S2 + S6 = S7 + S8, where

S7 =

∫

∂D

{(Lx, θ)(θ,n) + (Ly,Fθ)(θ,n)}dS.

and

S8 =

∫

∂D

(∇Fθ,P ((θ,n)I − n⊗ θ))dS,
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Next, observe that

∇Fθ = ∇∂D(Fθ) − F∇∂Dθ +
∂F

∂n
θ ⊗ n.

Therefore,

S8 =

∫

∂D

(∇∂D(Fθ) − F∇∂Dθ,P ((θ,n)I − n⊗ θ))dS.

We also have

(ΘT (∇θ)θ,n) = (∇ · θ)(θ,n) − ((∇θ)θ,n) = (∇∂Dθ, (θ,n)I − n⊗ θ).

Hence, S2 + S5 + S6 = S7 + Z2, where

Z2 =

∫

∂D

(P T∇∂D(Fθ) + (P ∗)T∇∂Dθ, (θ,n)I − n⊗ θ)}dS.

Step 6. Finally, observe that X7 + T6 = 0. Hence,

δ2ID(φ, θ) = δ2ID(ψ, 0) + Z1 + Z2 + S4 + S7.

When θ(x) = 0 on ∂D, all surface integrals Z1, Z2, S4 and S7 vanish. The theorem is
proved.

Remark 4.5. If we do not assume that y(x) is an extremal in Theorem 4.4, then

δ2ID(φ, θ) = δ2ID(ψ, 0) + S2 +

∫

D

(E(L),ψ′)dx, (4.19)

where E(L) and ψ′ are given by (4.8) and (4.11), respectively. It follows that Theorem 4.4 is
valid for y ∈ C2(Ω; Rd). Indeed, let yn ∈ C3(Ω; Rd) be such that yn → y in C2(Ω; Rd), as
n → ∞. Passing to the limit, we conclude that (4.19) holds for y ∈ C2(Ω; Rd), since both
sides of (4.19) involve derivatives of y(x) only up to order 2. The formula (4.17) follows, if
y(x) is an extremal.

5 Extremals with jump discontinuities

In this section we focus on the case when F (x) has a jump discontinuity across a smooth
interface Σ. We will derive the formulas for the first and second variation corresponding to
inner-outer variation (2.6) in two ways. One, using the partial EL equivalence principle only
on the smooth part of Ω via Theorems 4.3 and 4.4. The other, using the full EL equivalence
principle extended to strong variations and studying ∆I(φǫ) for the EL equivalent variation
(2.8).

Suppose that we can split Ω into the disjoint union of two domains Ω+, Ω− (i.e. Ω =
Ω+ ∪ Ω−, Ω+ ∩ Ω− = ∅), such that y(x) is of class C2 on both Ω+ and Ω−. We assume that
∇y(x) has a jump discontinuity across a smooth surface Σ ⊂ Ω+ ∩ Ω−. By our convention
the unit normal on Σ always points from Ω− into Ω+.
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5.1 First variation via partial EL equivalence

If y(x) satisfies conditions of equilibrium in the bulk, then the first variation reduces to the
the integral over the surface of discontinuity Σ. The vanishing of that integral results in the
conditions of equilibrium for the surface Σ in the Eulerian and Lagrangian coordinates.

Theorem 5.1. Assume that the Lipschitz map y : Ω → Rm is of class C2 on Ω± and satisfies
the Euler-Lagrange equation (4.14) on Ω±. Then

δIΩ(φ, θ) = −
∫

Σ

{([[P ]]n, {{ψ}}) + p∗ξ(x)}dS, (5.1)

where ξ(x) = (θ,n) and
p∗ = [[L]] − ({{P }}, [[F ]]) (5.2)

is called the Maxwell driving force on Σ. Here {{a}} =
1

2
(a+ + a−) and [[a]] = a+ − a−.

Proof. According to Theorem 4.3

δIΩ(φ, θ) = δIΩ+
(ψ, 0) + δIΩ−

(ψ, 0) −
∫

Σ

[[L]](θ,n)dS. (5.3)

Integrating by parts and using the Euler-Lagrange equation (4.14) on Ω± we obtain

δIΩ(φ, θ) = −
∫

Σ

{[[(Pn,ψ)]] + [[L]](θ,n)}dS.

We note that according to (2.11), ψ(x) has a jump discontinuity across Σ:

[[ψ]] = −[[F ]]θ. (5.4)

Using (5.4) and the product rule

[[ab]] = [[a]]{{b}} + {{a}}[[b]] (5.5)

we obtain

δIΩ(φ, θ) = −
∫

Σ

{([[P ]]n, {{ψ}}) − ({{P }}n, [[F ]]θ) + [[L]](θ,n)}dS.

Now we take into account the continuity of y across the interface Σ in the form of the
kinematic compatibility relation of Hadamard

[[F ]] = a⊗ n, (5.6)

where a : Σ → Rm. Recalling the definition (5.2) of p∗, we obtain (5.1).
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Since the fields {{ψ}} and ξ can be chosen arbitrarily and independently on Σ, the vanishing
of the first variation implies the condition of equilibrium of Σ in Eulerian coordinates:

[[P ]]n = 0, (5.7)

as well as the condition of equilibrium of Σ in Lagrangian coordinates:

p∗ = 0. (5.8)

We have obtained m + 1 interface conditions (5.7–5.8), even though we have started with
m+ d independent variations φ and θ. This is explained by the principle of EL equivalence,
according to which the variation fields φ and θ enter the first variation δIΩ through the total
discontinuous variation ψ. The formula (5.4) combined with (5.6) implies that

[[ψ]] = −a(θ,n) = −ξ(x)[[F ]]n, ξ(x) = (θ,n). (5.9)

Hence the variations θ and φ enter the variation δIΩ through m independent field variations
{{ψ}} and a single scalar surface variation field ξ(x). The new degree of freedom ξ comes from
the necessity to locate the surface of discontinuity in the d-dimensional space of Lagrangian
labels.

5.2 First variation via full EL equivalence

The formula (5.1) can also be derived directly, by investigating the structure of the equivalent
strong outer variation φǫ(x), given by (2.8). Observe that the Taylor expansion (2.10) is still
valid for all x away from a small neighborhood of Σ. Therefore, one can use the equivalent
variation φǫ(x) ∼ ǫψ, given by (2.11), on most of the domain Ω. The Taylor expansion (2.10)
breaks down only in the small set VΣ(ǫ) containing Σ (see Figure 2)

V ±
Σ (ǫ) = {x ∈ Ω± : ϑǫ(x) ∈ Ω∓}. (5.10)

We denote VΣ(ǫ) = V +
Σ (ǫ) ∪ V −

Σ (ǫ) and observe that the estimate (2.10) remains uniform in
x ∈ Ω \ VΣ(ǫ).

For x ∈ VΣ(ǫ) it will be convenient to use the curvilinear orthogonal coordinate system
based on Σ. Let x = p(u), u ∈ U ⊂ Rd−1 be a local parametrization of Σ. When ǫ is small
enough, every x ∈ VΣ(ǫ) has a unique representation

x = p(u) + zn(u), (5.11)
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where n(u) is the unit normal to Σ at x = p(u), pointing from Ω− into Ω+. The standard
Taylor expansion yields

ϑǫ(x) = p(u) + zn(u) − ǫθ(u) +O(ǫ2), (5.12)

where θ(u) is a shorthand for θ(p(u)). If x ∈ V +
Σ (ǫ) then 0 < z < ζ(u; ǫ), while, if x ∈ V −

Σ (ǫ)
then 0 > z > ζ(u; ǫ), where

ζ(u; ǫ) = ǫξ(u) +O(ǫ2), ξ(u) = (θ(u),n). (5.13)

In particular, z = O(ǫ). We are now ready to analyze the equivalent outer variation.
We handle the jump discontinuity of F (x) by using the Taylor expansion around p(u),

instead of the Taylor expansion (2.10) around x. We write

Fǫ(x) = F (ϑǫ(x))∇ϑǫ(x) + ǫ∇φ(ϑǫ(x))∇ϑǫ(x),

where ϑǫ(x) is given by (5.12) and

∇ϑǫ(x) = (I + ǫ∇θ(x) +O(ǫ2))−1 = I − ǫ(∇xθ)(u) +O(ǫ2).

Using these formulas to expand Fǫ(x), we obtain for x ∈ V ±
Σ (ǫ)

Fǫ(x) = F∓ + z
∂F∓

∂n
+ ǫ∇ψ∓ + o(ǫ),

where ψ is the equivalent weak outer variation away from Σ, given by (2.11). Also,

F (x) = F± + z
∂F±

∂n
+ o(ǫ).

The gradient of the equivalent outer variation is then equal to

∇φǫ = Fǫ(x) − F (x) =





∓[[F ]] ∓ z[[
∂F

∂n
]] + ǫ∇ψ∓ + o(ǫ), x ∈ V ±

Σ (ǫ),

ǫ∇ψ(x) + o(ǫ), x 6∈ VΣ(ǫ).

(5.14)

We may now apply the same Taylor expansion to yǫ(x) and y(x) as we have already done
for Fǫ(x) and F (x). We then obtain the structure of the equivalent outer variation φǫ =
yǫ(x) − y(x),

φǫ =




ǫφ±

0

(
u,
z

ǫ

)
+ o(ǫ), x ∈ V ±

Σ (ǫ)

ǫψ(x) + o(ǫ), x 6∈ VΣ(ǫ),

(5.15)

where
φ±

0 (u, τ) = ψ∓ ∓ τ [[F ]]n.
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One can see that the equivalent outer variation is not a weak variation. It is localized in
the normal direction around the surface Σ, while it has the form (2.4) of the weak variation
outside of VΣ(ǫ). In physical terms this variation can be associated with the nucleation of a
new phase at the surface of discontinuity. The nucleation is very special because it can also
be regarded as a displacement of the phase boundary in Lagrangian coordinates.

Observe that the EL equivalent variation gradient ∇φǫ is not small on a small set VΣ(ǫ),
while it is small on a large set Ω \ VΣ(ǫ). In such situations one can use the Taylor expansion
combined with the Euler-Lagrange equations. We start with

I(yǫ) − I(y) =

∫

Ω+

L⋆dx+

∫

Ω−

L⋆dx−
∫

Σ

[[(Pn,φǫ)]]dS,

where
L⋆ = L(x,y(x) + φǫ,∇y + ∇φǫ) − L(x) − (Ly(x),φǫ) − (P (x),∇φǫ),

and L(x), Ly(x) and P (x) denote L, Ly and LF , respectively, evaluated at (x,y(x),∇y(x)).
Obviously, L⋆ = O(ǫ2) on Ω \ VΣ(ǫ). Therefore,

I(yǫ) − I(y) =

∫

V +

Σ
(ǫ)

L⋆dx+

∫

V +

Σ
(ǫ)

L⋆dx−
∫

Σ

([[P ]]n,φǫ)dS +O(ǫ2).

Also, due to (5.13) ∫

V ±

Σ
(ǫ)

L⋆dx = ±
∫

Σ±

∫ ǫξ

0

L⋆dzdS(u) +O(ǫ2),

where Σ± = Σ ∩ V ±
Σ (ǫ). When x ∈ V ±

Σ (ǫ) we have L⋆ = ∓[[L]] ± (P±, [[F ]]) + O(ǫ), while
φǫ = ǫψ∓ + o(ǫ), when x ∈ Σ±. Therefore, expressing

P± = {{P }} ± 1

2
[[P ]], ψ± = {{ψ}} ∓ 1

2
a(u)ξ(u),

we obtain

δIΩ(φ, θ) = lim
ǫ→0

I(y + φǫ) − I(y)

ǫ
= −

∫

Σ

{([[P ]]n, {{ψ}}) + p∗ξ(u)}dS(u),

thereby establishing (5.1) in a direct way.

5.3 Second variation via partial EL equivalence

We now suppose that the map y(x) is Lipschitz continuous on Ω and of class C2 everywhere,
except on the smooth singular surface Σ, where the gradient F (x) = ∇y suffers a jump dis-
continuity. In this case the general second variation (3.19) reduces, according to Theorem 4.4,
to the sum of δ2IΩ\Σ(ψ, 0) and a surface integral over Σ involving the cumulative variation
ψ.
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Theorem 5.2. Assume that the surface Σ of jump discontinuity of F (x) is orientable and
has no boundary in Ω. Then

δ2IΩ(φ, θ) = δ2IΩ\Σ(ψ, 0) − S, (5.16)

where

S =

∫

Σ

[
2([[P ]],∇Σ{{ψ}})ξ +

(
∂p∗

∂n
− ({{Ly}}, [[F ]]n)

)
ξ2 + 2ξ([[Ly]], {{ψ}})

]
dS,

and where we define ∂p∗/∂n as the formal derivative of p∗ in the direction n:

∂p∗

∂n

def
= [[

∂L

∂n
]] − ({{P }}, [[∂F

∂n
]]) − ({{ ∂P

∂n
}}, [[F ]]). (5.17)

Proof. First we choose a smooth unit normal field n(x), x ∈ Σ. It is possible to partition Ω
into two open sets Ω+, Ω− and Σ in such a way that the unit normal n(x) points from Ω−

into Ω+ (see Section 5.1). It follows from Theorem 4.4, applied to Ω+ and Ω− that

δ2IΩ(φ, θ) = δ2IΩ\Σ(ψ, 0) − I1 − I2 − I3,

where

I1 = 2

∫

Σ

([[P T∇Σψ]], (θ,n)I − n⊗ θ)dS,

I2 =

∫

Σ

([[P ∗]]T∇Σθ + [[P T∇Σ(Fθ)]], (θ,n)I − n⊗ θ)dS,

I3 =

∫

Σ

{[[(Ly, 2ψ + Fθ)]] + ([[Lx]], θ)}(θ,n)dS.

Step 1. Let us simplify the first integral I1. The jump of the product formula (5.5) and
continuity of tractions (5.7) give

I1 = 2

∫

Σ

([[P ]], {{∇Σψ}})ξdS + I ′1,

where

I ′1 = 2

∫

Σ

{ξ({{P }},∇Σ[[ψ]]) − (Pn, (∇Σ[[ψ]])θ)}dS.

Step 2. We decompose θ(x) into its tangential and normal components

θ = θτ + ξn, (5.18)

and show that only the normal component ξ of θ contributes to the second variation. In I ′1
we eliminate [[ψ]] by means of (5.9):

∇Σ[[ψ]] = −[[F ]]n⊗∇Σξ − ξ∇Σ([[F ]]n).
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We claim that

∇Σ([[F ]]n) = [[
∂F

∂n
]](I − n⊗ n). (5.19)

Indeed, using (4.18) we obtain

∇Σ([[F ]]n)iβ = [[(Fiα,β − Fiα,γnγnβ)nα]] + ([[F ]]∇Σn)iβ.

The second term vanishes because the matrix ∇Σn is symmetric and, by (5.6),

[[F ]]∇Σn = a⊗ (∇Σn)Tn = a⊗ (∇Σn)n = 0.

Recalling that Fiα = yi,α we conclude that

∇Σ([[F ]]n)iβ = [[Fiβ,αnα − Fiα,γnγnβnα]].

This formula is just (5.19) written out in components. We can now write

I ′1 = 2

∫

Σ

{(Pn, [[F ]]n)(∇Σξ, θτ) + ξ(Pn, [[
∂F

∂n
]]θτ ) − ξ({{P }}∇Σξ, [[F ]]n)

− ξ2({{P }}, [[∂F
∂n

]]) + ξ2(Pn, [[
∂F

∂n
]]n)}dS.

Step 3. Consider now the integral I2. In order to simplify it we need to use a well-known
relation

[[P ∗]]n = p∗n, (5.20)

which is a consequence of the application of the jump of the product formula (5.5) and
kinematic compatibility relation (5.6) to the definition (3.7) of P ∗. Using (5.5), (5.7), (5.8)
and (5.20) we can write I2 = I21 + I22, where

I21 =

∫

Σ

({{P }}(ξI − n⊗ θ),∇Σ([[F ]]θ))dS,

I22 =

∫

Σ

(
ξ([[P∗]],∇Σθ) + ξ([[P ]],∇Σ({{F }}θ))

)
dS.

Simplifying the integral I21 using (5.6) and (5.19) and expanding, we obtain

I21 =

∫

Σ

(
ξ2({{P }}, [[∂F

∂n
]]) − ξ2(Pn, [[

∂F

∂n
]]n)

− ξ(Pn, [[
∂F

∂n
]]θτ ) − ([[F ]]n,Pn)(∇Σξ, θτ) + ξ([[F ]]n, {{P }}∇Σξ)

)
dS.

Next, we integrate by parts in I22. We use the following integration by parts formula

∫

Σ

(f ,∇Σφ)dS(x) =

∫

Σ

{φ(f ,n)∇Σ ·n− φ∇Σ · f}dS, (5.21)
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which holds provided, either f or φ vanishes at every point on the boundary of Σ (which is
on ∂Ω by assumption). We obtain

I22 =

∫

Σ

(
ξ2[[

∂L

∂n
]] − ξ2(Pn, [[

∂F

∂n
]]n) − ξ2([[F ]]n, {{ ∂P

∂n
}}n) − ξ(Pn, [[

∂F

∂n
]]θτ )−

[[L]](∇Σξ, θτ ) + ξ([[F ]]n, {{P }}∇Σξ) − ξ([[Lx]], θ) − ξ([[Ly]], {{F }}θ)
)
dS,

where we have also used (5.7), (5.20), and the following equations

∇Σ · P = ∇ · P − ∂P

∂n
n = Ly − ∂P

∂n
n, (5.22)

∇Σ · P∗ = ∇ ·P∗ −
∂P∗

∂n
n = Lx − ∂P∗

∂n
n = Lx − ∂L

∂n
n+

∂F T

∂n
Pn+ F T ∂P

∂n
n.

Adding the integrals I21 and I22, taking into account that [[L]] = ([[F ]]n,Pn), we obtain

I2 =

∫

Σ

(
ξ2[[

∂L

∂n
]]+ξ2({{P }}, [[∂F

∂n
]])−2ξ2(Pn, [[

∂F

∂n
]]n)−ξ2([[F ]]n, {{ ∂P

∂n
}}n)−2ξ(Pn, [[

∂F

∂n
]]θτ )

− 2([[F ]]n,Pn)(∇Σξ, θτ) + 2ξ([[F ]]n, {{P }}∇Σξ) − ξ([[Lx]], θ) − ξ([[Ly]], {{F }}θ)
)
dS.

Adding I ′1 and I2 we get, by virtue of

([[F ]]n, {{ ∂P
∂n

}}n) = ([[F ]], {{ ∂P
∂n

}}),

that, due to (5.6),

I ′1 + I2 =

∫

Σ

{
ξ2∂p

∗

∂n
− ξ([[Lx]], θ) − ξ([[Ly]], {{F }}θ)

}
dS,

where we have used the definition (5.17) of ∂p∗/∂n.
Step 4. Using the product rule formula (5.5) we obtain

I3 =

∫

Σ

{ξ([[Lx]], θ) + 2ξ([[Ly]], {{ψ}}) + ξ([[Ly]], {{F }}θ) + 2ξ({{Ly}}, [[ψ]]) + ξ({{Ly}}, [[F ]]θ)}dS.

Recalling the formulas (5.6) and (5.9), we finally obtain

I ′1 + I2 + I3 =

∫

Σ

{
ξ2

(
∂p∗

∂n
− ({{Ly}}, [[F ]]n)

)
+ 2ξ([[Ly]], {{ψ}})

}
dS.

Theorem 5.2 is now proved.

It appears, as though the contribution of the surface Σ to the second variation depends
on the extension of F (x) into Ω \ Σ via the term ξ2∂p∗/∂n. This is not so because ∂p∗/∂n
depends only on the traces F± of F (x) on Σ and their tangential derivatives ∇ΣF±:

∂p∗

∂n
= ([[P ]],∇Σ({{F }}n) − {{F }}∇Σn) + (∇Σ · {{P }}, [[F ]]n) + ([[Lx]],n) + ([[Ly]], {{F }}n).

In particular, if L(x,y,F ) = W (F ), the surface Σ is planar and F (x) is constant along Σ,

then
∂p∗

∂n
= 0.
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5.4 Second variation via full EL equivalence

We now derive the formula (5.16) directly by using the explicit structure (5.14) of the EL
equivalent strong outer variation φǫ introduced in (2.8).

Here we assume that the first variation δIΩ(φ, θ) vanishes. In order to derive the for-
mula for the second variation we simply use the technique of Section 5.2, while carrying the
expansion of the energy increment to the second order in ǫ. We have

I(yǫ) − I(y) =

∫

VΣ(ǫ)

L⋆dx+

∫

Ω\VΣ(ǫ)

L⋆dx, (5.23)

On Ω \ VΣ(ǫ) the variation φǫ given by (5.15) is equivalent to ǫψ, and therefore,

lim
ǫ→0

1

ǫ2

∫

Ω\VΣ(ǫ)

L⋆dx =
1

2
δ2IΩ\Σ(ψ, 0). (5.24)

To expand the second term in (5.23) we need to expand L⋆ to the first order in ǫ, since the
set VΣ(ǫ) has O(ǫ) measure. This is done using the formulas (5.11), (5.14) and (5.15). If
x ∈ V ±

Σ (ǫ), then

L⋆ = ∓p∗ ∓ z

[
[[
∂L

∂n
]] − (

∂P±

∂n
, [[F ]]) − (P±, [[

∂F

∂n
]]) − (L±

y , [[F ]]n)

]

∓ ǫ[([[P ]],∇ψ∓) + ([[Ly]],ψ∓)] + o(ǫ).

The Maxwell relation p∗ = 0 then implies that L⋆ = O(ǫ). Therefore,

∫

V ±

Σ
(ǫ)

L⋆dx = −ǫ
2

2

∫

Σ±

Λ±dS + o(ǫ2),

where

Λ± = ξ2

[
[[
∂L

∂n
]] − (

∂P±

∂n
, [[F ]]) − (P±, [[

∂F

∂n
]]) − (L±

y , [[F ]]n)

]

+ 2ξ[([[P ]],∇Σψ∓) + ([[Ly]],ψ∓)].

It remains to observe that ∫

Σ±

[[Λ]](u)dS(u) = 0. (5.25)

Indeed,

−[[Λ]] = ξ2

[
([[
∂P

∂n
]], [[F ]]) + ([[P ]], [[

∂F

∂n
]]) + ([[Ly]], [[F ]]n)

]
+ 2ξ[([[P ]],∇Σ[[ψ]]) + ([[Ly]], [[ψ]])].

We can now use (5.9) and the relations

([[
∂P

∂n
]], [[F ]]) = ([[Ly]], [[F ]]n) − (∇Σ · [[P ]], [[F ]]n),
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which follows from (5.22), and

([[P ]], [[
∂F

∂n
]]) = ([[P ]],∇Σ([[F ]]n)).

which follows from (5.19) and (5.7) to obtain

[[Λ]] = ∇Σ · (ξ2[[P ]]T [[F ]]n).

The desired relation (5.25) follows from the fact that due to (5.7) the vector field ξ2[[P ]]T [[F ]]n
is tangent to Σ and ξ vanishes on the boundaries of Σ± (since, these boundaries are either
points where ξ changes sign or points on ∂Ω, where ξ vanishes). Moreover, regardless of
the boundary values of ξ, the expression [[P ]]T [[F ]]n must necessarily vanish for stable jump
discontinuities, as we have recently shown in [26]. In any case we obtain, using (5.17), that

lim
ǫ→0

1

ǫ2

∫

VΣ(ǫ)

L⋆dx = −
∫

Σ

[
([[P ]],∇Σ{{ψ}})ξ

+
1

2

(
∂p∗

∂n
− ({{Ly}}, [[F ]]n)

)
ξ2 + ξ([[Ly]], {{ψ}})

]
dS,

Combining this relation with (5.24) we obtain the result (5.16).
The link between the formula (5.16) and the calculations of Grinfeld [29] who used the

Weierstrass-Erdmann technique is discussed in the Appendix A.

6 Global necessary conditions

6.1 General conditions

If y(x) is a strong local minimizer, then the first variation δI(φ, θ) must vanish, while the
second variation δ2IΩ(φ, θ) must be non-negative.

The condition of vanishing of the first variation leads to two types of equations

δIΩ(φ, 0) =

∫

Ω

{(Ly,φ) + (P ,∇φ)}dx = 0, (6.1)

for all φ ∈ Var, and

δIΩ(0, θ) =

∫

Ω

{(Lx, θ) + (P ∗,∇θ)}dx = 0, (6.2)

for all θ ∈ C2(Ω; Rd)∩C0(Ω; Rd). For general Lipschitz extremals these two equations should
be regarded as independent. By contrast, in the case of C2 extremals, (6.2) becomes a
corollary of (6.1).

In the case of interest, when singularities are present, the Eshelby equation (6.2) reduces
to conditions localized at the singular set. For example, when y(x) is of class C2, except on a
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smooth surface of jump discontinuity for F (x), equations (6.1) and (6.2) produce additional
jump conditions: the continuity of tractions [[P ]]n = 0 and the Maxwell relation

[[L]] − ({{P }}, [[F ]]) = 0. (6.3)

If the singular set Σ has co-dimension larger than 1, then there exists a family Dǫ of smooth
subdomains of Ω such that |Ω \Dǫ| → 0, as ǫ → 0, Σ ⊂ Ω \Dǫ and the surface area of ∂Dǫ

goes to zero. Then, the boundedness of F (x) implies

δIΩ(φ, θ) = lim
ǫ→0

δIDǫ
(φ, θ).

Applying Theorem 4.3 with D = Dǫ we obtain

δIΩ(φ, θ) = lim
ǫ→0

{
δIDǫ

(ψ, 0) +

∫

∂Dǫ

L(θ,n)dS

}
.

Since the surface area of ∂Dǫ goes to zero, we obtain δIΩ(φ, θ) = δIΩ\Σ(ψ, 0). In other
words, the weak form of the Eshelby equation (6.2) is a consequence of the weak form of the
Euler-Lagrange equation (6.1), and the variational functional “does not see” singularities of
co-dimension more than 1 at the level of first variation. By contrast, the method above can
provide non-trivial information about singularities with unbounded F (x) (e.g. [8]).

We now turn to the condition of non-negativity of second variation. In the general case
we can use (3.19) to obtain

∫

Ω

{2J2(∇θ)L+ 2((Lx, θ) + (Ly,φ))∇ · θ + (Lxxθ, θ) + (Lyyφ,φ) + 2(Lxyφ, θ)

+ 2(PΘ(∇θ),H) + (LFFH ,H) + 2(LFxθ + LFyφ,H)}dx ≥ 0. (6.4)

This inequality has to hold for every choice of φ ∈ Var and θ ∈ C1(Ω; Rd) ∩ C0(Ω; Rd). If
y ∈ C2(Ω; Rm) then the non-negativity of (3.19) is equivalent to the non-negativity of the
classical second variation:

δ2IΩ(φ, 0) =

∫

Ω

{(Lyyφ,φ) + (LFF∇φ,∇φ) + 2(LFyφ,∇φ)}dx ≥ 0. (6.5)

In the case of a smooth surface of jump discontinuity, condition (6.4) reduces to

∫

Ω

{(Lyyψ,ψ) + (LFF ∇̃ψ, ∇̃ψ) + 2(LFyψ, ∇̃ψ)}dx−
∫

Σ

{2([[P ]],∇Σ{{ψ}})ξ+
(
∂p∗

∂n
− ({{Ly}}, [[F ]]n)

)
ξ2 + 2ξ([[Ly]], {{ψ}})}dS ≥ 0, (6.6)

where ∇̃ψ is the regular part of the gradients of the discontinuous function ψ. The surface
term containing [[P ]], represents the prestress of the interface and can have a destabilizing
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effect, capable of making the second variation negative, even when the tangential elasticity
tensor LFF (x) is uniformly positive definite (see the example in Section 6.2).

If F (x) is singular on a set of higher co-dimension, we proceed as in the case of the first
variation, to obtain

δ2IΩ(φ, θ) = lim
ǫ→0

δ2IDǫ
(φ, θ).

We then apply Theorem 4.4 and conclude that EL equivalence principle

δ2IΩ(φ, θ) = δ2IΩ\Σ(ψ, 0) (6.7)

holds, provided |∇F (x)|ǫk−1 → 0, when the distance between x and Σ is ǫ, and k is the
co-dimension of Σ. If |∇F | grows faster as we approach the singularity then we may not
conclude that (6.7) holds, because

lim
ǫ→0

∫

∂Dǫ

(∇∂Dǫ
(Fθ),P ((θ,n)I − n⊗ θ))dS

might be non-zero.
This analysis shows that certain singularities of higher co-dimension may be “invisible”

by the functional I(y). This may explain the surprising counterexamples to regularity in
vectorial variational problems [44, 54] in high dimensions.

6.2 Example

In this example we deal with an equilibrium configuration whose instability can at present
be only detected by examining the global inner-outer second variation (5.16).

Consider the vectorial 2D problem with the double-well energy density L(F ) in the form
L(F ) = W (ε), where ε = (F + F T )/2 and F is a 2 × 2 matrix. This energy density comes
from the problem of finding energy-minimizing composite materials [34]. Assume that

W (ε) = min{f+(ε), f−(ε)}, f±(ε) =
1

2
(C±ε, ε) + w±, (6.8)

where ε ∈ Sym(R2) and the two isotropic phases have different elastic moduli

C±ε = κ±(Tr ε)I + 2µ±

(
ε− 1

2
(Tr ε)I

)

with κ+ > κ− > 0, µ+ > µ− > 0.

Remark 6.1. If the transformation strains ε◦± are present, they can be eliminated by a simple
affine transformation, provided [[C]] is invertible [12, 43, 21]. It is enough to observe that if

Ŵ (ε) = min{1

2
(C+(ε− ε◦+), ε− ε◦+) + ŵ+,

1

2
(C−(ε− ε◦−), ε− ε◦−) + ŵ−} (6.9)
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Figure 3: The heterogeneous disc

then

Ŵ (ε) = W (ε− ε) + (σ◦, ε) − 1

2
(σ◦, ε),

where

ε = [[C]]−1[[Cε◦]], σ◦ = {{C}}ε− {{Cε◦}} = C±(ε− ε◦±), w± = ŵ± − 1

2
(σ◦, ε◦±).

Therefore the double-well energy (6.9) is equivalent to the energy (6.8).

Assume that Ω is the unit disk, which is loaded by uniform pressure σn = p0n (see
Figure 3). Consider the radially symmetric equilibrium configuration

y(x) =






α+x, if |x| ≤ r∗,

(
α− +

β−
r2

)
x, if r∗ ≤ |x| ≤ 1

with the two phases located at 0 < r < r∗ and r∗ < r < 1. It will be convenient to denote

γ(r) =
β−
r2
, γ∗ =

β−
r2
∗

.

The continuity of displacements and tractions on the gradient discontinuity r = r∗ are equiv-
alent to

[[α]] = γ∗, [[κα]] = −µ−γ∗, (6.10)

respectively. Solving for α± we obtain

α± = − γ∗
[[κ]]

(κ∓ + µ−).

The Maxwell condition can be written as

p∗ =
1

2
([[σ]], {{ε}}) − 1

2
({{σ}}, [[ε]]) + [[w]] = 0. (6.11)

Eliminating α± from (6.10) and substituting into (6.11) we obtain the equation for γ∗

2(κ− + µ−)(κ+ + µ−)γ2
∗ + [[w]][[κ]] = 0. (6.12)
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Finally, the pressure boundary conditions on |x| = 1 result, after a simple computation, using
(6.10), in

p0 = −2γ∗

(
κ−
κ+ + µ−

[[κ]]
+ µ−r

2
∗

)
. (6.13)

We see that among the two solutions γ∗ of (6.12) we need to choose the one with the sign
opposite to p0. If we substitute that value of γ∗ from (6.12) into (6.13) we will obtain the
equation for r∗. The inequality 0 < r∗ < 1 implies the restrictions on the values of p0 for
which the heterogeneous configuration shown in Figure 3 is possible:

2|γ∗|κ−
κ+ + µ−

[[κ]]
≤ |p0| ≤ 2|γ∗|κ+

κ− + µ−

[[κ]]
.

Once r∗ are γ∗ are determined the parameters α± and β− = γ∗r
2
∗ are also determined.

We will now examine the global stability condition (5.16) on the fields

ψ(x) =





A+x, if |x| ≤ r∗,

(
A− +

B−

r2

)
x, if r∗ ≤ |x| ≤ 1,

(6.14)

By using an auxiliary condition (C−∇ψ)n = 0 on |x| = 1 we obtain

ψ(x) =






A+x, if |x| ≤ r∗,

A−

(
1 +

κ−
µ−r2

)
x, if r∗ ≤ |x| ≤ 1.

We can now compute

E+ =

∫

Ω+

(C+∇ψ,∇ψ)dx = 4πr2
∗κ+A

2
+.

E− =

∫

Ω−

(C−∇ψ,∇ψ)dx = 4π(1 − r2
∗)κ−A

2
−

(
1 +

κ−
µ−r2

∗

)
.

On |x| = r∗ we obtain

[[ψ]] =

(
A+ − A−

(
1 +

κ−
µ−r2

∗

))
x,

while [[ε]]n = −(2γ∗/r∗)x. Therefore, according to (5.9),

ξ =
r∗
2γ∗

(
A+ − A−

(
1 +

κ−
µ−r2

∗

))
.

By using
[[σ]] = −4µ−γ∗(I − x̂⊗ x̂). (6.15)
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we obtain

S1 = 2

∫

|x|=r∗

([[σ]], {{∇̃ψ}})ξdS(x) = −4πr2
∗µ−

(
A2

+ −A2
−

(
1 +

κ−
µ−r2

∗

)2
)
.

We compute
∂p∗

∂n
= 0, and therefore, S2 = 0. Thus, we obtain

δ2IΩ(ψ, 0)

4π
= r2

∗(κ+ + µ−)A2
+ − r2

∗(κ− + µ−)A2
−

(
1 +

κ−
µ−r2

∗

)
.

The quadratic form δ2IΩ is always indefinite. Therefore, the radially symmetric heterogeneous
configurations in the unit ball are always unstable. Since the instability is with respect to
radial variations, it can also be detected using the method of Lifshitz and Gulida [39, 38],
where a radial equilibrium boundary value problem is solved and the second derivative of the
energy at the equilibrium r∗, given by the Maxwell relation, is computed.

In a companion paper [23] we show that the extremal tested in this example satisfies both
the quasiconvexity and the classical second variation conditions. Local stability condition,
derived in the next section, is therefore, also satisfied.

7 Local necessary conditions

7.1 General conditions

We recall that in classical calculus of variations the Legendre-Hadamard condition is the
localization of classical second variation condition δ2IΩ(φ, 0) ≥ 0. If we take a sequence of
test functions

φǫ(x) = ǫφ0((x− x0)/ǫ), (7.1)

where φ0 ∈ C∞
0 (B; Rm) and B is the unit ball in Rd, we obtain

lim
ǫ→0

δ2IΩ(φǫ, 0)

ǫd
=

∫

B

(LFF (x0)∇φ0,∇φ0))dx ≥ 0.

This condition is equivalent, via the density argument, to the inequality

∫

Rd

(LFF (x0)∇φ,∇φ))dx ≥ 0 (7.2)

which must hold for all φ ∈ H1(Rd; Rm). Applying the Parceval’s identity we obtain

∫

Rd

(LFF (x0)(φ̂(k) ⊗ k), φ̂(k) ⊗ k)dk ≥ 0, (7.3)

33



where φ̂(k) is the Fourier transform of φ(x). We conclude that (7.2) holds if and only if the
acoustic tensor A(n) at F0 is non-negative definite for all directions n. The acoustic tensor
is a symmetric m×m matrix A(n) defined in terms of its quadratic form:

(A(n)u,u) = (LFF (u⊗ n),u⊗ n). (7.4)

In addition to the acoustic tensor A(n), let us define the 4-linear “acoustic form” described
by an m×m matrix A(m,n):

(A(m,n)u,v) = (LFF (u⊗m),v ⊗ n).

Then A(n) = A(n,n) and AT (m,n) = A(n,m). Let

Γ(m,n) = (A(m,n) +A(n,m))/2, Λ(m,n) = (A(m,n) −A(n,m))/2

be the symmetric and antisymmetric parts of the acoustic form A(m,n), respectively. Once
the direction of the unit normal n is chosen, we denote with a subscript “+” the trace on
the phase boundary from the region to which n points. The other trace is denoted with the
subscript “−”. The formulas that contain no + or − subscripts should be understood as two
formulas for each of the two subscripts.

7.2 Localization of the second variation

Below we perform the general localization analysis, which is the direct analog of the classi-
cal Legendre-Hadamard analysis based on (7.1) and (7.3). Such analysis was first done by
Grinfeld [28, 29] in the context of a special example.

We begin by choosing the same sequence of test functions φǫ(x) and θǫ(x) as in (7.1) and
using them in the formula (3.19) to obtain the expression for δ2IΩ(φ, θ). If x0 ∈ Σ then by
changing variables x = x0 + ǫz we obtain

lim
ǫ→0

δ2IΩ(φǫ, θǫ)

ǫd
= δ2Iloc(φ0, θ0). (7.5)

The localized second variation δ2Iloc(φ0, θ0) retains the same form as the original general
second variation δ2IΩ(φ, θ), except the surface of discontinuity Σ is replaced by its tangent
plane Tx0

Σ at x0 and F (x) is replaced with

F (z) = lim
ǫ→0
F (x0 + ǫz) =

{
F+, if z ·n > 0
F−, if z ·n < 0.

(7.6)

Therefore, the same argument, leading from (3.19) to (5.16) holds and results in the formula

δ2Iloc(φ0, θ0) =

∫

B

(LFF (z)∇̃ψ, ∇̃ψ)dz −
∫

Tx0
Σ∩B

([[P ]],∇Σ{{ψ}})ξ(z)dS(z),
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where

LFF (z) = LFF (x0,y(x0),F (z)), ψ(z) = φ0(z) − F (z)θ0(z), ξ(z) = (θ0(z),n).

The remaining terms in (5.16) vanish in the limit (7.5), because the rescaled Lagrangian
Lloc(F ) = L(x0,y(x0),F ) does not depend on x and y explicitly and because the field F (z)
is piecewise constant.

The density argument, as in the classical case allows us to define the localized condition

δ2Iloc(ψ) =

∫

Rd

(LFF (z)∇̃ψ, ∇̃ψ)dz −
∫

Πn

([[P ]],∇Σ{{ψ}})ξ(z)dS(z) ≥ 0, (7.7)

where Πn = {z ∈ Rd : (z,n) = 0}. The fields ψ± ∈ C1(H±; Rm) ∩ H1(H±; Rm) and
ξ ∈ C1(Πn) ∩ L2(Πn) satisfy

[[ψ]] = −aξ(z), (7.8)

where a is defined in (5.6) and

H± = {z ∈ R
d : ±(z,n) > 0}.

Continuing the parallel with the classical Legendre-Hadamard condition we analyze the
non-negativity of (7.7) by means of the Parceval’s identity. The difference here is that Parce-
val’s identity could be used only along the plane Πn [1, 10]. In the normal direction, derivatives
cannot be eliminated via a Fourier transform.

First we consider the bulk term
∫

Rd

(LFF (z)∇̃ψ, ∇̃ψ)dz = B+ +B−,

where

B± =

∫

H±

(L±
FF∇ψ,∇ψ)dz

Now we can apply the d− 1-dimensional Parceval’s identity along the plane Πn:

B± =

∫ ∞

0

∫

Πn

{
(A±(m)ψ̂±, ψ̂±) + (A±(n)ψ̂′

±, ψ̂
′
±) ± 2Im(A±(m,n)ψ̂±, ψ̂′

±)
}
d̄mdt,

where (.,. ) denotes the Hermitian inner product, and

d̄m =
dm

(2π)d−1
(7.9)

is the normalized Lebesgue measure on Πn. Here we also introduced notations

ψ̂(m, t) =

∫

Πn

ψ(z′, t)ei(m,z′)dz′, ψ̂′(m, t) =
∂ψ̂(m, t)

∂t
, m ∈ Πn,

35



where ψ±(z′, t) = ψ(z′ ± tn) for z′ ∈ Πn and t ∈ R.
Now, consider the surface term in (7.7). We obtain

∫

Πn

ξ([[P ]],∇Πn
{{ψ}})du = i

∫

Πn

ξ̂([[P ]]m, {{ψ̂(0)}})d̄m = −Im

∫

Πn

ξ̂([[P ]]m, {{ψ̂(0)}})d̄m,

where ψ̂(0) is the shorthand for ψ̂(m, 0).
Next we split A(m,n) into symmetric and antisymmetric parts A(m,n) = Γ(m,n) +

Λ(m,n) and observe that

∫ ∞

0

2Im(Λ(m,n)ψ̂(t), ψ̂′(t))dt = −Im(Λ(m,n)ψ̂(0), ψ̂(0)),

where ψ̂(t) is the shorthand for ψ̂(m, t). Thus,

δ2Iloc(ψ) =

∫

Πn

{
I0(m) +

∫ ∞

0

(I+(ψ̂+(t)) + I−(ψ̂−(t)))dt

}
d̄m,

where

I±(f (t)) = (A±(m)f (t),f (t)) + (A±(n)f ′(t),f ′(t)) ± 2Im(Γ±(m,n)f (t),f ′(t))

and
I0(m) = −Im

{
[[(Λ(m,n)ψ̂(0), ψ̂(0))]] − 2ξ̂([[P ]]m, {{ψ̂(0)}})

}
.

The problem now is for each fixed m ⊥ n to minimize

J (ψ) = I0(m) +

∫ ∞

0

(
I+(ψ̂+(t)) + I−(ψ̂−(t))

)
dt,

subject to the constraint
[[ψ̂(0)]] = −ξ̂a (7.10)

which is due to (7.8).

7.3 Auxiliary variational problem

The strategy is to solve first the auxiliary classical variational problem

I±
∗ (f0) = min

f(0)=f0

∫ ∞

0

I±(f (t))dt. (7.11)

The minimum I±
∗ (f0) is going to be quadratic in f0. Then the non-negativity of δ2Iloc(ψ) is

going to be equivalent to the non-negativity of the quadratic form

q(ψ̂−(0), ξ̂) = I+
∗ (ψ̂+(0)) + I−

∗ (ψ̂−(0)) + I0(m), (7.12)
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where ψ̂+(0) is eliminated from (7.12) via (7.10).
The Euler-Lagrange system for (7.11) is

A±(m)f (t) −A±(n)f ′′(t) ± 2iΓ±(m,n)f ′(t) = 0. (7.13)

We assume that the acoustic tensors A±(n) are strictly positive definite for all |n| = 1.
Therefore, the second order system (7.13) can be rewritten as the first order system of twice
the size:

f ′(t) = h(t), h′(t) = Mf (t) + iNh(t),

where the matrices M and N are given by

M± = A±(n)−1A±(m), N± = ±2A−1
± (n)Γ±(m,n). (7.14)

In other words, if u(t) = (f (t),h(t)) then u′(t) = Ku(t), where K is given by

K =

[
0 I

M iN

]
. (7.15)

The solutions of this linear system of ODEs with constant coefficients come from the spectral
data for K. Suppose, λ ∈ C is an eigenvalue for K and uλ = (fλ,hλ) is an eigenvector. Then

A±(m)fλ ± 2iλΓ±(m,n)fλ = λ2A±(n)fλ.

Let us set λ = iτ and take a (Hermitian) inner product with fλ. We obtain

(A±(m)fλ,fλ) ± 2τ(Γ±(m,n)fλ,fλ) + τ 2(A±(n)fλ,fλ) = 0.

This equation has no real roots, because the matrices

A±(m± τn) = A±(m) ± 2τΓ±(m,n) + τ 2A±(n)

are strictly positive definite by our assumption. Thus K has no purely imaginary eigenvalues.
In addition, since the matrices A(m), A(n) and Γ(m,n) are real, if λ is an eigenvalue of K,
then so is −λ. The fact that K has no purely imaginary eigenvalues implies that λ and −λ
are distinct and thus K has the Jordan normal form given by

K =

[
C11 C12

C21 C22

] [
J 0

0 −J

] [
C11 C12

C21 C22

]−1

, (7.16)

where the m×m block J corresponds to the eigenvalues with negative real parts.
For a given fixed f0 ∈ Cm, we need to find h0 ∈ Cm such that u0 = (f0,h0) belongs

to the invariant subspace of K corresponding to the Jordan block J , i.e. generating an
exponentially decaying geodesic. It is not difficult to show that there is a unique choice of
h0 given by h0 = Qf0, where Q = C21C

−1
11 and the matrices Cij are defined via the Jordan
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decomposition (7.16). Thus, for each f0 ∈ Cm there is a unique exponentially decaying
geodesic u(t) such that u(0) = (f0,h0) for some h0 ∈ Cm. It is easy to calculate that

I±
∗ (f0) = −(K±f0,f0),

where K is defined by

K(m,n) = (A(n)C11JC
−1
11 )H = (A(n)Q)H, (7.17)

where XH = (X + X∗)/2 is the Hermitian symmetrization of X (X∗ denotes the usual
Hermitian adjoint).

There is a way to compute Q in (7.17) without having to compute the Jordan decom-
position (7.16) of K. Let pJ(λ) be the characteristic polynomial of J . Multiplying (7.16)
by [

C11 C12

C21 C22

]

on the right and expanding, we obtain, after easy manipulations, that (see also [42])

M + iNQ = Q2. (7.18)

By the Cayley-Hamilton theorem pJ(Q) = 0. The equation (7.18) can then be used to reduce
this polynomial equation to the linear equation of the form UQ = V , which is easily solvable
for Q. For example, If m = 2 and pJ(λ) = λ2 − a1λ+ a2 then

(a1I − iN)Q = M + a2I. (7.19)

If m = 3 and pJ(λ) = λ3 − a1λ
2 + a2λ− a3, then, we get

(M −N 2 − ia1N + a2I)Q = a1M + a3I − iNM . (7.20)

Observe that the characteristic polynomial PK(λ) of K has the structure

PK(λ) = (−1)mpJ(λ)pJ(−λ).

If λ = iτ , τ ∈ R then

PK±
(iτ) = (−1)m detA±(m∓ τn)

detA±(n)
.

Thus, the characteristic polynomial pJ(λ) of J can be computed from the equation

|pJ±
(iτ)|2 =

detA±(m∓ τn)

detA±(n)
, τ ∈ R.

To do this, one needs to compute the roots of

detA±(m∓ τn) = 0, (7.21)

which come as a set of m complex-conjugate pairs. Then

pJ(λ) =
m∏

j=1

(λ− iτj),

where τ1, . . . , τm are the roots of (7.21) with positive imaginary parts.
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7.4 Algebraic form

We can now return to (7.12) and obtain

q({{ψ̂(0)}}, ξ̂) = −






A(m,n) p(m,n)

p(m,n) α(m,n)






2{{ψ̂(0)}}

ξ̂


 ,




2{{ψ̂(0)}}

ξ̂




 ,

where A(m,n), p(m,n) and α(m,n) are given by

A(m,n) = − i

2
[[Λ(m,n)]] + {{K(m,n)}}, (7.22)

p(m,n) = −i[[P ]]m +

(
−i{{Λ(m,n)}} +

1

2
[[K(m,n)]]

)
[[F ]]n (7.23)

and
α(m,n) = ({{K(m,n)}}[[F ]]n, [[F ]]n). (7.24)

Using our analysis it is now straightforward to construct the perturbation (ψ(x), ξ(z′)) cor-

responding to any given vector ([[ψ̂(0)]], ξ̂). Hence, the condition

A(m,n) = −




A(m,n) p(m,n)

p(m,n) α(m,n)



 ≥ 0 (7.25)

implies the non-negativity of δ2Iloc.
Our analysis involves localized variations of Euler-Lagrange type leading to the Legendre-

Hadamard condition in the absence of discontinuities. For this reason we call the matrix A

the phase boundary acoustic tensor. Since the phase boundary acoustic tensor A(m,n) is
given in block form, it makes sense to reformulate the condition of non-negative definiteness
of A(m,n) in terms of its blocks. A simple linear algebra gives the following result.

Theorem 7.1. Suppose that the uniform Legendre-Hadamard condition A±(n) > 0 is sat-
isfied for all n. Then the second variation (7.7) is non-negative if and only if the matrix
A(m,n) is positive semi-definite. The matrix A(m,n) is positive semi-definite if and only if
−A(m,n) is a positive semi-definite matrix, p(m,n) belongs to the range of A(m,n) and

min
m∈Πn ,|m|=1

{
(A−1(m,n)p(m,n),p(m,n))− α(m,n)

}
≥ 0, (7.26)

where the inverse A−1 is taken on the range of A.

We remark that the condition

A(m,n) ≤ 0, m ⊥ n (7.27)

is equivalent to the Simpson-Spector condition [53], corresponding to the case θ = 0. In
other words (7.27) is equivalent to the non-negativity of the classical outer second variation
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δ2IΩ(φ, 0). In that respect the condition (7.27) is a necessary condition for the classical weak
local minimum, while condition (6.6) is necessary for the classical strong local minimum.
Observe that the condition (7.27) is a constraint on the elastic moduli and the interface
normal n. It does not place any constraints on the values of deformation gradient F± in
contrast to the inequality (7.26).

Remark 7.2. In the special case when d = 2 there is no minimum to compute in (7.26) and
we can write explicitly

(A−1(n⊥,n)p(n⊥,n),p(n⊥,n)) ≥ α(n⊥,n), (7.28)

where n⊥ = (−n2, n1).

Remark 7.3. What we have done for jump discontinuities could also apply to the traction
part of the outer boundary of ∂Ω. The respective calculations are a lot simpler, since inner
variations are no longer allowed (unless we change the notion of a local minimum and al-
low variable reference domain.) The corresponding condition says that the m × m complex
Hermitian matrices

A
b(m,n) = −iΛ(m,n) −K(m,n) (7.29)

must be positive semi-definite for all m ⊥ n, where n is now the outer unit normal to ∂Ω.

We will call the matrix Ab(ξ,n) the boundary acoustic tensor. The Legendre-Hadamard
condition for traction free boundaries have been discussed in detail in [42, 51, 52], where the
authors also address the special case of quadratic energy and derived conditions that ensure
non-negativity in the case when the acoustic tensor is not strictly positive definite.

7.5 Example

In this example we present a configuration satisfying (4.14) and (4.15), with positive definite
classical second variation, whose instability is detected by the local condition (7.28).

Consider the scalar 2D variational problem, corresponding to anti-plane shear in elasticity
with d = 2 and m = 1. The elastic energy has the form L(x,y,F ) = W (F ), where

W (F ) = min

{
1

2
µ+|F |2 + w+,

1

2
µ−|F |2 + w−

}
, (7.30)

where F ∈ R2 and µ± > 0 are the shear moduli of the phases. More specifically, if the
transformation strains F ◦

± are present, they can be again eliminated by a simple affine trans-
formation. If

Ŵ (F ) = min

{
1

2
µ+|F − F ◦

+|2 + ŵ+,
1

2
µ−|F − F ◦

−|2 + ŵ−

}
,

then

Ŵ (F ) = W (F − F ) + (σ◦,F ) − 1

2
(σ◦,F ),
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Figure 4: The heterogeneous annulus.

where

F =
[[µF ◦]]

[[µ]]
, σ◦ = {{µ}}F − {{µF ◦}}, w± = ŵ± − 1

2
(σ◦,F ◦

±).

We begin by computing the 2 × 2 matrix A(n⊥,n) for the energy (7.30). We have

M = 1, N = 0, Q = −
√
M = −1.

Therefore, K(n⊥,n) = −µ and Λ(n⊥,n) = 0. Hence, A(n⊥,n) = −{{µ}} < 0. This shows
that the condition (7.27) is satisfied regardless the orientation of the surface of discontinuity.
We also have

p(n⊥,n) = −i([[P ]],n⊥) +
1

2
[[µ]]([[F ]],n).

and
α(n⊥,n) = −{{µ}}([[F ]],n)2.

The inequality (7.28) is then equivalent to

µ+µ−([[F ]],n)2 ≥ ([[P ]],n⊥)2. (7.31)

Consider a circular annulus shown in Figure 4 and assume that the loading is compatible
with the following equilibrium configuration

u(x) =





(a−,x) +
(b−,x)

r2
, if R ≤ |x| ≤ r∗

(a+,x) +
(b+,x)

r2
, if r∗ ≤ |x| ≤ 1

(7.32)

The continuity of displacements and tractions can be written as

[[a]] +
[[b]]

r2
∗

= 0, [[µa]] =
[[µb]]

r2
∗

, (7.33)

respectively. The Maxwell condition can be written as

p∗ =
1

2
([[µF ]], {{F }}) − 1

2
([[F ]], {{µF }}) + [[w]].
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Knowing that the deformation gradient is equal to

F = a+ (I − 2x̂⊗ x̂)
b

r2
.

We get from (7.33)

[[F ]] = 2([[a]], x̂)x̂, [[µF ]] = 2(I − x̂⊗ x̂)[[µa]].

Applying the product rule (5.5)

[[µb]] = [[µ]]{{b}} + {{µ}}[[b]], [[b]] = [[µ−1µb]] = [[µ−1]]{{µb}} + {{µ−1}}[[µb]]

and using (7.33) we can write

{{b}}
r2
∗

=
[[µa]] + {{µ}}[[a]]

[[µ]]
,

{{µb}}
r2
∗

= − [[a]] + {{µ−1}}[[µa]]

[[µ−1]]
.

Then, applying the product rule (5.5) again, we get

{{F }} =
2[[µa]]

[[µ]]
− 2

[[µ]]
([[µa]] + {{µ}}[[a]], x̂)x̂,

{{µF }} =
2[[a]]

[[µ−1]]
− 2

[[µ−1]]
(I − x̂⊗ x̂)([[a]] + {{µ−1}}[[µa]]).

Hence,

p∗ =
2

[[µ]]
((I − x̂⊗ x̂)[[µa]], [[µa]]) − 2

[[µ−1]]
([[a]], x̂)2 + [[w]].

Let

B =
[[µa]] ⊗ [[µa]]

[[µ]]
+

[[a]] ⊗ [[a]]

[[µ−1]]
.

Then p∗ = 0 is equivalent to (Bx̂, x̂) = β for all x̂, where

β =
|[[µa]]|2

[[µ]]
+

1

2
[[w]].

We conclude that B = βI. Observe also that for any vector v ∈ R2 that is perpendicular
to [[a]] we get (Bv,v) ≥ 0, assuming µ+ > µ−. Similarly for any vector w ∈ R2 that is
perpendicular to [[µa]] we get (Bw,w) ≤ 0. Hence detB ≤ 0. But B is a multiple of the
identity. Hence, we conclude that B = 0 and β = 0. That means, that

[[µa]] = ν[[a]], ν2 = µ+µ−, |[[a]]|2 =
1

2
[[µ−1]][[w]]. (7.34)

We have in view of (7.33)

([[F ]],n) = 2([[a]], x̂), ([[P ]],n⊥) = 2([[µa]], x̂⊥) = 2ν([[a]], x̂⊥).
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If (7.31) holds then for any unit vector x̂ we must have

4µ+µ−([[a]], x̂)2 ≥ 4µ+µ−([[a]], x̂⊥)2.

According to (7.34), [[a]] 6= 0. Then taking x̂ = [[a]]⊥/|[[a]]|, we obtain |[[a]]|2 = 0 contradicting
(7.34). We can now conclude that any solution u(x) in the annulus of the form (7.32) is
unstable.

We remark that once the direction of [[a]] is chosen arbitrarily, the solution (7.32) is
determined uniquely by the jump conditions (7.33) and (7.34). Any such solution has positive
classical second variation:

δ2IΩ(φ, 0) =

∫

Ω

µ(x)|∇φ|2dx > 0, µ(x) =

{
µ+, R ≤ |x| ≤ r∗

µ−, r∗ ≤ |x| ≤ 1.

Remark 7.4. The instability of solutions (7.32) could also be easily detected by the roughening
stability condition derived in [26]. For this example it reads

4ν([[a]], x̂⊥)([[a]], x̂)x̂⊥ = 0

for any unit vector x̂. In other words, at least one component of [[a]] must be zero in any
orthonormal basis. This means that [[a]] = 0, contradicting (7.34).
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A Grinfeld’s expression for second variation

In [28, 29] Grinfeld considered the problem of stability of phase boundaries and computed
the second variation of the energy for the case when the outer variation in the bulk regions
is complemented by the simultaneous displacement of the phase boundary in Lagrangian
coordinates. Although he did not use the concept of inner variations we can show that his
result agrees with our formula (5.16), when L(x,y,F ) = W (F ).

Written in our notations, Grinfeld’s second variation formula has the form δ2IΩ(φ, θ) =
δ2IΩ(ψ, 0) − Z, where ψ is given by (2.11) and

Z =

∫

Σ

{ξ(δjk − njnk)[[Pijψi,k − Pij,kψi]] + ξ2(δjk − njnk)[[PijFik,r]]nr − [[Pijψi]](∇Σξ)j}dS.

Here we show that Z = S. Expanding and using the chain rule PijFij,r = W,r, we get

Z =

∫

Σ

{ξ[[(P ,∇ψ)]] − ξ

(
[[
∂ψ

∂n
]],Pn

)
+ ξ[[

(
∂P

∂n
n,ψ

)
]] + ξ2[[

∂W

∂n
]]

− ξ2

(
Pn, [[

∂F

∂n
]]n

)
−
(
[[P Tψ]],∇Σξ

)
}dS(x).
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Observe that

[[(P ,∇ψ)]] −
(

[[
∂ψ

∂n
]],Pn

)
= [[(P ,∇Σψ)]].

Using (5.22) for the third term in Z and integration by parts formula (5.21) in the last term
in Z, we obtain

Z =

∫

Σ

{
2ξ[[(P ,∇Σψ)]] + ξ2[[

∂W

∂n
]] − ξ2

(
Pn, [[

∂F

∂n
]]n

)
− ξ (Pn, [[ψ]])∇Σ · n

}
dS(x).

Now, let us apply the formula

[[(P ,∇Σψ)]] = ([[P ]],∇Σ{{ψ}}) + ({{P }},∇Σ[[ψ]]) (A.1)

and (5.9) to the first and the last terms of Z, respectively, to get

Z =

∫

Σ

{2ξ([[P ]],∇Σ{{ψ}}) − 2ξ({{P }},∇Σ(ξ[[F ]]n)) + ξ2[[
∂W

∂n
]]

− ξ2

(
Pn, [[

∂F

∂n
]]n

)
+ ξ2 (Pn, [[F ]]n)∇Σ · n}dS(x).

Let us apply (5.19) to the second term

Z ′ = −2

∫

Σ

ξ({{P }},∇Σ(ξ[[F ]]n))dS(x)

of Z. We get

Z ′ =

∫

Σ

{
−({{P }}∇Σ(ξ2), [[F ]]n) − 2ξ2

(
{{P }}, [[∂F

∂n
]]

)
+ 2ξ2

(
Pn, [[

∂F

∂n
]]n

)}
dS(x).

Integrating the first term by parts and using (5.19) and (5.22) again, we obtain

Z ′ =

∫

Σ

{
ξ2

(
{{P }}, [[∂F

∂n
]](I − n⊗ n)

)
− ξ2

(
{{ ∂P
∂n

}}n, [[F ]]n

)
− ξ2(Pn, [[F ]]n)∇Σ · n

−2ξ2

(
{{P }}, [[∂F

∂n
]]

)
+ 2ξ2

(
Pn, [[

∂F

∂n
]]n

)}
dS(x).

Now we substitute this expression for Z ′ back into the formula for Z and use (5.6). After all
the cancellations we obtain

Z =

∫

Σ

{
2ξ([[P ]],∇Σ{{ψ}}) + ξ2[[

∂W

∂n
]] − ξ2

(
{{ ∂P
∂n

}}, [[F ]]

)
− ξ2

(
{{P }}, [[∂F

∂n
]]

)}
dS(x),

which agrees with the surface integral term in (5.16) in view of (5.17).
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