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Abstract

We introduce and fully analyze a new commutation relation KL1 = L2K between

finite convolution integral operator K and differential operators L1 and L2, that has

implications for spectral properties of K. This work complements our explicit char-

acterization of commuting pairs KL = LK and provides an exhaustive list of kernels

admitting commuting or sesquicommuting differential operators.

1 Introduction

In many applications it is important to understand spectral properties of finite convolution
integral operators

(Ku)(x) =

∫ 1

−1

k(x− y)u(y)dy, (1.1)

especially, when such operators are compact and self-adjoint, i.e. when k(z) is smooth and
k(−z) = k(z), z ∈ [−2, 2]. No general algorithm exists for answering this question. One
approach that can work in certain cases calls for comparison of a given operator to a special
one that commutes with a differential operator as was done in [4], for example. In the first
part of this work [1] we have examined all such operators with possibly complex k(z), ex-
tending an earlier result of Morrison [3] (see also [2, 5]) for real-valued k(z). Unfortunately,
no essentially new cases of commutation were discovered: all self-adjoint compact operators
(1.1) with complex-valued k(z) that commute with differential ones were conjugate to Mor-
rison’s. In an attempt to significantly enlarge the set of special operators we introduce a
new type of commutation that we call sesquicommutation:

{

KL1 = L2K,

LT
j = Lj,

j = 1, 2, (C)

where L1, L2 are differential operators with complex coefficients.
We note that Morrison’s result lies in the intersection of commutation and sesquicommu-

tation (with L1 = L2), when K is real and self-adjoint, since in this case sesquicommutation
reduces to commutation.
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The main case of interest is for self-adjoint operator K. However, even if K is not self-
adjoint (but compact) the sesquicommutation (C) permits us to relate singular values and
functions of K to solutions of differential equations. It can be easily checked that (C) implies

L1K
∗K = K∗KL1. (1.2)

Let now λ be a singular value of K corresponding to singular function u, i.e. K∗Ku = λu,
clearly λ ∈ R and therefore we find λL1u = K∗KL1u. It follows that L1u is either zero,
or an eigenfunction of K∗K with the same eigenvalue λ. If the corresponding eigenspace of
K∗K is one-dimensional, then there exists a complex number σ such that

L1u = σu.

Otherwise, applying (1.2) to L1u we find that

K∗K(L∗

1L1u) = λL∗

1L1u,

hence eigenspaces of K∗K are invariant under the fourth order self-adjoint operator L∗

1L1. In
particular, there exists an eigenbasis of K∗K consisting of eigenfunctions of L∗

1L1. Moreover,
transposing the sesquicommutation relation and then taking adjoint we find KL∗

1 = L∗

2K,
which along with (C) implies

KL∗

1L1 = L∗

2L2K.

In particular if L1 = L2 =: L we see that L∗L commutes with K (and also with K∗), hence
eigenspaces of L∗L are invariant under K and K∗.

Under the assumption that K is self-adjoint we prove in Theorem 1 that k is trivial
(see Definition 1), unless L1 = L2 or L1 = −L2. We then show in Theorem 4 that the
latter case yields only trivial kernels. The results in the former case are listed in Theorem 2,
which presents a new class of finite convolution operators whose spectral properties will be
amenable to analysis by means of differential equations.

As a particularly interesting example derived from sesquicommutation, we mention that
the eigenfunctions of the compact self-adjoint integral operator K with kernel k(z) =
e−iπ

4
z

cos π
4
z
+

zei
π
4
z

sin π
2
z
are eigenfunctions of the fourth order self-adjoint differential operator L∗L

(these eigenfunctions, however, cannot be found because boundary conditions are not pre-
scribed), where

L = − d
dy

[

cos
(

πy
2

)

d
dy

]

+ π2

32
ei

πy
2 .

The corresponding integral operator K is self-adjoint and compact, since singularities at
z = ±2 of k(z) are removable.

The strategy for obtaining the complete list of sesquicommuting pairs in Theorem 2 is the
same as in analyzing commutation in Part I of this work [1]. Sesquicommutation is written
in terms of the kernel k(z) and coefficients of the differential operator L. From this relation
we obtain differential equations satisfied by the coefficients of L and k(z).
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2 Preliminaries

We assume that k(z) ∈ L2((−2, 2),C) is analytic in a neighborhood of 0. Further, assume
that Lj are second order differential operators:

{

Lu = au′′ + bu′ + cu,

a(±1) = 0, b(±1) = a
′(±1),

(2.1)

where the indicated boundary conditions are necessary for the sesquicommutation relation
to hold. They are also necessary for symmetry of differential operators, in which case we will
only be specifying additional constraints on the coefficients of L, always assuming that the
boundary conditions in (2.1) hold. In particular operators Lj have to be of Sturm-Liouville
type, since L = LT implies that b = a

′. Thus

{

Lju = (bju
′)′ + cju,

bj(±1) = 0,
j = 1, 2. (2.2)

Due to the imposed boundary conditions it is a matter of integration by parts to rewrite (C)
as

b1(y)k′′(z)− b2(y + z)k′′(z)− b
′

1(y)k
′(z)− b

′

2(y + z)k′(z)+

+c1(y)k(z)− c2(y + z)k(z) = 0.
(R)

The main idea of the proof is to analyze (R) by differentiating it w.r.t. z sufficient number
of times and evaluating the result at z = 0. This allows one to find relations between
the coefficient functions of the differential operators, and an ODE for the highest order
coefficient. Once the form of the highest order coefficient is determined, we consequently
find the forms of all the other coefficient functions. It turns out that the coefficient functions
satisfy linear ODEs with constant coefficients, and therefore are equal to linear combinations
of polynomials multiplied by exponentials. We then substitute these expressions into (R)
and using the linear independence of functions yjeyλl , obtain equations for k. Then the task
becomes to analyze how many of these equations can be satisfied by k and how its form
changes from one equation to another.

Remark 1. The reason that reduction of (C) to L1 = ±L2 (see Section 5) works, is the self-
adjointness assumption on K. This induces symmetry in (R). More precisely, (R) becomes a

relation involving the even and odd parts (and their derivatives) of the function k(z)e
λ
2
z. And

as a result the relations for even and odd parts separate. We then prove that if L1 6= ±L2,
then both even and odd parts of k are determined in a way that k becomes trivial.

3 Main Results

Definition 1. We will say that k (or operator K) is trivial, if it is a finite linear combination
of exponentials eαz or has the form eαzp(z), where p(z) is a polynomial. Note that in this
case K is a finite-rank operator.
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Let us assume that

(A) K is self-adjoint, so k(−z) = k(z), z ∈ [−2, 2].

Theorem 1 (Reduction of sesquicommutation)
Let K,L1, L2 be given by (1.1) and (2.2) with bj,cj , k smooth in [−2, 2]. Assume k is
nontrivial, (A) holds, and k is analytic at 0, but not identically zero near 0. Then (C)
implies either L1 = L2 or L1 = −L2.

Remark 2. Let M be the multiplication operator by z 7→ eτz with τ ∈ iR, then MKM−1

is a finite convolution operator with kernel k(z)eτz (where k is the kernel of K), which is
also self-adjoint since so is K. If K sesquicommutes with L, i.e. KL = LK, then MKM−1

sesquicommutes with M−1LM−1. With this observation the results of Theorem 2 are stated
up to multiplication of k by eτz, i.e. we chose a convenient constant τ in order to more
concisely state the results.

Theorem 2 (L1 = L2)
Let K,L1, L2 be given by (1.1) and (2.2), with L1 = L2 and let their coefficient functions be
b and c. Let b,c, k be smooth in [−2, 2]. Further, assume k is nontrivial, (A) holds, k is
analytic at 0, but not identically zero near 0. Then (C) implies (all the used parameters are
real, unless stated otherwise)

1. k(z) =
γ sinhµz

µ sinh γz
.







b(y) = 1
2γ2 [cosh(2γy)− cosh(2γ)] ,

c(y) = (γ2 − µ2)b(y) + c0,

where µ ∈ R ∪ iR and c0 ∈ C.

2. k(z) = αe−iµz +
sinµz

z
, α 6= 0 and







b(y) = y2 − 1,

c(y) = iµb′(y) + µ2
b(y) + µ

α
.

3. k(z) =
sinh(2µ2) sinh(µ1z)e

−
iπ
4
z + sinh(2µ1) sinh(µ2z)e

iπ
4
z

µ1µ2 sin
πz
2

and







b(y) = − cos πy
2
,

c(y) = i
µ2
2−µ2

1

π
b
′(y)−

(

π2

16
+

µ2
1+µ2

2

2

)

b(y),
(3.1)

where µ1, µ2 ∈ R∪ iR. In the special case µ1 = iµ; µ2 = i(µ± π
2
) with µ ∈ R, to c(y)

a complex multiple of e−2i(π
4
±µ)y can be added.
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Remark 3.

(i) In items 1 and 3, if µ, µj or γ = 0, one takes appropriate limits. Note that k can be
multiplied by arbitrary real constant and L1 = L2 by a complex one.

(ii) Using the same proof techniques one can easily check that under the given assumptions
of the theorem, no kernel would satisfy the sesquicommutation relation, when L1 = L2

is a first order operator.

(iii) In item 1, K is real valued and self-adjoint, in particular sesquicommutation reduces
to commutation and we recover Morrison’s result.

From the discussion in the introduction we immediately obtain:

Corollary 3. Let K be one of the operators of Theorem 2 and let L be corresponding
operator that sesquicommutes with it (i.e. KL = LK), then L∗L commutes with K. In
particular, the eigenfunctions of K are eigenfunctions of the fourth order self-adjoint differ-
ential operator L∗L. Moreover, if eigenspaces of K are one-dimensional, then eigenfunction
u of K satisfies second order differential equation Lu = σu for some σ ∈ C.

Remark 4. The example mentioned in the introduction is obtained from item 3 of Theorem 2
by choosing µ2 = 0, µ1 =

iπ
4
.

Theorem 4 (L1 = −L2)
Let K,L1, L2 be given by (1.1) and (2.2), with L1 = −L2 and let the coefficients of L1 be b

and c. Let b,c, k be smooth in [−2, 2]. Further, assume (A) holds, k is analytic at 0, but
not identically zero near 0. If (C) holds true, then k is trivial.

4 Relations for coefficients

In this section we consider (C) with L1, L2 given by (2.2). We assume (A) holds, k is analytic
at 0, but not identically zero near 0 and finally k is not of the form eαz. We aim to find
the relations that the coefficient functions bj,cj must satisfy. Write k(z) =

∑

∞

n=0
kn
n!
zn near

z = 0. The n-th derivative of (R) w.r.t. z at z = 0 gives

(−1)n[b1kn+2+b
′

1kn+1+c1kn]−
n
∑

j=0

Cn
j b

(n−j)
2 kj+2−

n
∑

j=0

Cn
j b

(n−j+1)
2 kj+1−

n
∑

j=0

Cn
j c

(n−j)
2 kj = 0,

(4.1)
where Cn

j =
(

n
j

)

, when n = 0 we get

k1(b
′

1 − b
′

2) + k2(b1 − b2) + k0(c1 − c2) = 0.

• If k0 = k1 = 0, then let us show that k is trivial. Assume first b1 6= ±b2, then clearly
k2 = 0. Let us prove by induction that all kj = 0, which contradicts to the assumption that
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k doesn’t vanish near 0. Assume kj = 0 for j = 0, ...,m, then (4.1) for n = m − 1 reads
[(−1)m−1

b1 − b2] km+1 = 0, therefore km+1 = 0. Let now b1 = b2, assume for the induction
step that kj = 0 for j = 0, ..., n, then (4.1) reads

[(−1)n − 1] kn+2b1 + [(−1)n − n− 1] kn+1b
′

1 = 0.

When n is odd we immediately obtain kn+1 = 0. When n is even we get (n + 2)kn+1b
′

1 +
2kn+2b1 = 0 and because of boundary conditions b1(±1) = 0 we deduce kn+1 = kn+2 = 0.
Finally, the case b1 = −b2 can be done analogously.

• If k0 = 0, k1 6= 0, by rescaling let k1 = 1 and by considering e−
k2
2
zk(z) instead of k(z) (see

Remark 2) we may assume k2 = 0. Now, b2(y) = b1(y) + α for some α ∈ C. From (4.1)
with n = 1 we find c2 = −b

′′

1 − 2k3b1 − c1 − k3α. Using the obtained expressions, from the
relation corresponding to n = 2 we get

c
′

1 = −1
2
b
′′′

1 − k3b
′

1 +
k4α
2
. (4.2)

Now, (4.1) with n = 3 reads

2b
(4)
1 + k3b

′′

1 − 5k4b
′

1 + 2(k2
3 − k5)b1 + 3c′′

1 + α(k2
3 − k5) = 0.

Let us now replace c
′′

1 using (4.2). The result becomes an ODE for b1: for some constants
αj,

b
(4)
1 +

3
∑

j=0

αjb
(j)
1 = α4.

• If k0 6= 0, by rescaling let k0 = 1 and by considering e−k1zk(z) instead of k(z) (see Remark 2)
we may assume k1 = 0. Note that c2 = c1 + k2(b1 − b2), using this in (4.1) with n = 1, we
get

c
′

1 = −k3(b1 + b2)− k2(2b
′

1 + b
′

2). (4.3)

The relation for n = 2 reads

−k2(b
′′

1 + 2b′′

2) + k3(b
′

1 − 3b′

2) + (k4 − k2
2)(b1 − b2)− c

′′

1 = 0,

and replacing c
′′

1 using (4.3) we obtain

k2(b
′′

1 − b
′′

2) + 2k3(b
′

1 − b
′

2) + (k4 − k2
2)(b1 − b2) = 0.

Consider the following cases:

1. If k2 = k3 = 0, then we are going to show that k is trivial. Assume first that b1 6= ±b2,
so from the above equation k4 = 0. Further, we see that in this case c1 = c2 = const.
Let now kj = 0 for j = 1, ..., n+ 1, then (4.1) reads

kn+2 [(−1)nb1 − b2] = 0,
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so kn+2 = 0 and by induction kj = 0 for any j 6= 0, i.e. k is trivial. When b1 = b2,
then also c1 = c2. Assuming kj = 0 for j = 0, ..., n, (4.1) reduces to

kn+1b
′

1 + 2kn+2b1 = 0,

therefore again k is trivial. The case b1 = −b2 can be treated as the previous one,
leading to the same conclusion.

2. If k2 = 0 and k3 6= 0, then b2(y) = b1(y) +αeτy with τ = − k4
2k3

and some α ∈ C. From
(4.1) with n = 3 (by replacing c

′′′

1 using (4.3)) we find

c1 = − α
2k3

(5τ 2k3 + 4τk4 + k5)e
τy − 2b′′

1 −
5k4
2k3

b
′

1 −
k5
k3
b1.

Finally we replace this and b2 in (4.3) to obtain, for some other constants αj

b
(3)
1 +

2
∑

j=0

αjb
(j)
1 = α3e

τy.

3. If k2 6= 0, then b2(y) = b1(y) + f(y) and f solves k2f
′′ + 2k3f

′ + (k4 − k2
2)f = 0, so

either f(y) = λ1e
τ1y + λ2e

τ2y or f(y) = (λ1y + λ2)e
τy. Using the ODE for f , (4.1) for

n = 3 can be written as

4k2b
′′′

1 + 6k3b
′′

1 + 5k4b
′

1 + 2k5b1 + c
′′′

1 + 3k2c
′

1 + 2k3c1 = −k4f
′ + (k2k3 − k5)f.

Let us now replace c
′′′

1 and c
′

1 in the above relation using (4.3). The result becomes

2k3c1 =− k2b
′′′

1 − 4k3b
′′

1 + (9k2
2 − 5k4)b

′

1 + (6k2k3 − 2k5)b1+

+ (4k2
2 − 2k4 + 2

k23
k2
)f ′ + (3k2k3 − k5 +

k3k4
k2

)f,

but because f ′ has the same form as f we can rewrite the above relation as

2k3c1(y) = −k2b
′′′

1 +
2
∑

j=0

γjb
(j)
1 (y) + f(y),

with different constants λj in f and γj are some constants. Now if k3 = 0 we got
an ODE for b1, otherwise divide by it and substitute the obtained expression and the
expression of b2 into (4.3), the result is (with different constants)

b
(4)
1 +

3
∑

j=0

γjb
(j)
1 = f(y).
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5 Reduction of the general case

In this section we prove Theorem 1, i.e. if k is nontrivial, then L1 = L2 or L1 = −L2.
Analysis of the previous section shows that bj ,cj are linear combinations of polynomials
multiplied with an exponential, moreover the polynomials have degree at most five. So let
us consider a typical such term:

b1(y) ↔

(

5
∑

j=0

bjy
j

)

eλy, c1(y) ↔

(

5
∑

j=0

cjy
j

)

eλy,

and analogous terms in b2,c2 only with possibly different coefficients b̃j, c̃j respectively. Set

k(z) = κ(z)e−
λ
2
z and let

κ+(z) =
1
2
[κ(z) + κ(−z)], κ−(z) =

1
2
[κ(z)− κ(−z)]. (5.1)

Substituting the expressions for bj ,cj and k(z) = e−
λ
2
z[κ+(z) + κ−(z)] into (R), we obtain

that a linear combination of terms yjeλy is zero. From linear independence we conclude that
each coefficient must vanish. In particular, the relation corresponding to y5eλy reads

(b5 − b̃5)κ
′′

+ −
(

(b5 − b̃5)
λ2

4
+ c̃5 − c5

)

κ+ − (b5 + b̃5)κ
′′

−
+
(

(b5 + b̃5)
λ2

4
− c̃5 − c5

)

κ− = 0.

Because κ+ is even, and κ− is odd we can add the above relation, with z replaced by −z, to
itself. Like this we separate the above relation into two ODEs one for κ+ and the other for
κ−:







(b5 − b̃5)κ
′′

+ −
(

(b5 − b̃5)
λ2

4
+ c̃5 − c5

)

κ+ = 0,

(b5 + b̃5)κ
′′

−
−
(

(b5 + b̃5)
λ2

4
− c̃5 − c5

)

κ− = 0.

If b5 6= ±b̃5, then κ+ = cosh(µz) and κ− is either z or sinh(µz) for some µ ∈ C, therefore k
is trivial. Therefore, we consider the following cases:

• b5 = b̃5, then obviously c5 = c̃5 and we get b5κ
′′

−
−
(

b5λ2

4
− c5

)

κ− = 0. Assume b5 6= 0,

then by normalization we can make b5 = 1, now with µ2 = λ2

4
− c5

κ−(z) =

{

αz, µ = 0,

α sinh(µz), µ 6= 0.

Using the ODE that κ− solves, the even part of the relation corresponding to y4eλy reads

(b4 − b̃4)κ
′′

+ −
(

(b4 − b̃4)
λ2

4
+ c̃4 − c4

)

κ+ = 0,

which immediately implies b4 = b̃4, and hence c4 = c̃4. Odd part of that relation is

zκ′′

+ + 2κ′

+ − µ2zκ+ = −2b4
5
κ′′

−
+
(

b4λ2

10
− 2c4

5
+ λ
)

κ−.
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Making the change of variables κ+(z) =
u(z)
z
, the left-hand side of the above relation becomes

u′′ − µ2u, therefore using the expression for κ− and the evenness of κ+ we find

κ+(z) =

{

α1z
2 + α0, µ = 0,

α1 cosh(µz) + α0
sinhµz

z
, µ 6= 0.

If κ+ is given by the first formulas, then k is trivial. Therefore, we assume µ 6= 0 and the
second formula holds. The even part of the relation for y3eλy is

(−10z2 + b3 − b̃3)κ
′′

+ − 20zκ′

+ +
[(

5λ2

2
− 10c5

)

z2 − (b3 − b̃3)
λ2

4
+ c3 − c̃3

]

κ+ =

= 4b4zκ
′′

−
− (b4λ

2 − 4c4 + 10λ)zκ−.

When we substitute the formulas for κ± and multiply the relation by z3, the result has the
form

p(z)eµz − p(−z)e−µz = 0,

where p(z) =
∑4

j=0 pjz
j, therefore by linear independence we conclude that all the co-

efficients of p vanish, in particular one can compute that p0 = −2α0(b3 − b̃3) and p2 =

α0

(

−(b3 − b̃3)µ
2 + (b3 − b̃3)

λ2

4
+ c̃3 − c3

)

, if α0 = 0, then obviously k is trivial, so p0 = 0

implies b3 = b̃3, but then p2 = 0 implies c3 = c̃3. Looking at the even part of the relation
coming from y2eλy we obtain an analogous equation, where the polynomial p may be of 5th
order, but expressions of p0, p2 stay the same, only the subscripts of b3, b̃3, c3, c̃3 change to
two. And we conclude b2 = b̃2 and c2 = c̃2. Likewise looking at the even parts of the relations
coming from yeλy, eλy we find bj = b̃j and cj = c̃j for j = 1, 0.

When we look at another term with
(

∑5
j=0 b

′

jy
j
)

eλ
′y in the coefficient b1 (and similar

terms for other coefficient functions) we must have b′5 = b̃′5, otherwise k is trivial.
If b5 = 0, the same procedure applies, we only need to relabel the coefficients in the above

equations. Thus our conclusion is that L1 = L2.
• b5 = −b̃5, this case is analogous to the previous one and the conclusion is L1 = −L2.

6 L1 = L2

In this section we aim to prove Theorem 2. Item 1 (in the limiting case γ = 0) and item 2
of Theorem 2 are derived in Corollary 7. Item 1 (in the case γ 6= 0) and item 3 are derived
in Sections 6.3, 6.4. So let us assume the setting of Theorem 2.

The analysis in the beginning of Section 4 shows that b solves a linear homogeneous
ODE with constant coefficients of order at most 4. Hence b(y) is a linear combination of
terms like yleλjy, where λj (called also a mode) is a root of fourth order polynomial. We will
see that there are two major cases: Reλj = 0 (type 1 ) or Reλj 6= 0 (type 2 ). In the former
case k(z) is given in three possible forms featuring a free real-valued and even function (cf.
(6.8)). In the latter case k(z) is determined and has two possible forms (cf. (6.9)).
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In Section 6.1 we analyze the multiplicity of the mode λj, in particular type 2 mode
cannot have multiplicity larger than one, as is shown in Lemma 9, while type 1 mode can
have multiplicity at most 3 as established in Lemma 8.

Finally, in Section 6.2 we turn to the question of analyzing possibilities of having multiple
modes, i.e. distinct roots λj. In Corollary 11 we show that having three distinct type 1 modes
is impossible. In Corollary 15 we show that having three distinct type 2 modes is impossible.
In Lemma 12 we show that two distinct type 1 modes with one of them having multiplicity
at least 2 leads to trivial kernels. And in Lemma 16 we show that having type 1 mode with
multiplicity at least 2 and a type 2 mode again leads to trivial kernels. So the only cases
leading to nontrivial kernels are: two type 2 and one type 1 mode all with multiplicity one
analyzed in Section 6.3; and two type 1 modes with multiplicity 1 analyzed in Section 6.4.

Throughout this section, until Section 7 we will be working with k(−z) and with an
abuse of notation it will be denoted by k(z). We will remember about this notational abuse
when collecting the results in Theorem 2. In particular (R) becomes

b(y)k′′(z)−b(y+z)k′′(−z)−b
′(y)k′(z)+b

′(y+z)k′(−z)+c(y)k(z)−c(y+z)k(−z) = 0. (6.1)

The analysis in the beginning of the Section 4 shows that b solves a linear homogeneous
ODE with constant coefficients of order at most 4, and that

− k0c
′(y) + 2k1c(y) + k1b

′′(y)− 3k2b
′(y) + 2k3b(y) = 0. (6.2)

So b has the following form

b(y) =
ν
∑

j=1

pdj(y)e
λjy, (6.3)

where λ1, ..., λν are distinct complex numbers and pdj are polynomials of degree dj, so that

ν +
ν
∑

j=1

dj ≤ 4.

Then c(y) satisfying (6.2) must also have the same form, except the polynomials are different

and there could be an extra exponential term e
2k1
k0

y
, if 2k1

k0
/∈ {λ1, ..., λν}. Because we also

require b(±1) = 0, then either

I. ν = 1, d1 ≥ 1;

II. ν = 2, d1 ≥ 1;

III. ν = 2, d1 = d2 = 0, b(y) = eiβy sin(πn(y − 1)/2) for some β ∈ R and n ≥ 1;

IV. ν ≥ 3.
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6.1 Single mode and multiplicities

In this section we concentrate on the single mode λ and analyze its multiplicity. So suppose
p(y)eλy is one of the terms in (6.3), while q(y)eλy is one of the terms in c(y). Where
p(y) =

∑4
j=0 pjy

j and q(y) =
∑4

j=0 qjy
j. We are going to show that type 2 mode cannot

have multiplicity larger than one (see Lemma 9), while type 1 mode cannot have multiplicity
larger than 3 (see Lemma 8). Finally, here we also derive item 1 (in the limiting case γ = 0)
and item 2 of Theorem 2 (see Corollary 7).

After substitution of the corresponding expressions for b,c into (6.1), we collect the
coefficients of yjeλy and from linear independence conclude that they must be zero. Like this
we obtain 5 relations involving k. Let us first change the variables k(z) = κ(z)eλz/2, then
the relation corresponding to yjeλy can be conveniently written as

pjκ
′′(z)− p(j)(z)

j!
κ′′(−z) + p(j+1)(z)

j!
κ′(−z)− (j + 1)pj+1κ

′(z)+

+ ε(j)(z)
j!

κ(−z)− εjκ(z) = 0, j = 0, . . . , 4,
(6.4)

with the convention that p5 = 0, and the notation

ε(z) =
4
∑

j=0

εjz
j, εj =

λ2pj
4

− qj +
(j+1)

2
λpj+1.

Let deg(p) = m and deg(q) = n, and κ+, κ− be the even and odd parts of κ, respectively.
If n > m the relation in (6.4) for j = n reads qnκ−(z) = 0, so k(z) = κ+(z)e

λz/2, the
symmetry (A) implies λ = 2iβ for some β ∈ R and that κ+ is real valued.

Let now n ≤ m, then (6.4) for j = m reads

κ′′

−
(z)− µ2κ−(z) = 0, µ =

√

λ2

4
− qm

pm
, (6.5)

hence there are two possibilities: if µ = 0, then κ−(z) = αz + β and if µ 6= 0, then
κ−(z) = αeµz + βe−µz, using that κ− is an odd function we conclude

κ−(z) =

{

αz, µ = 0,

α sinh(µz), µ 6= 0.
(6.6)

Thus, k(z) = eλz/2 (κ+(z) + κ−(z)), where κ+ is a free even function. Now the symmetry
condition (A) says

eλz/2
(

κ+(z) + κ−(z)
)

= e−λz/2 (κ+(z)− κ−(z)) . (6.7)

This equation can be solved uniquely for κ+ if and only if Reλ 6= 0.
If λ = 2iβ, then κ+ can be arbitrary real and even function, while solvability implies that

k(z) = eiβz






κ+(z) +











iαz, µ = 0

iα sinh(µz), µ 6= 0

iα sin(µz), µ 6= 0






, (6.8)
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where α, µ ∈ R. Observe that the case n > m is included here when we take α = 0, therefore
we may assume m ≥ n.

Remark 5. When κ− is given by the second formula of (6.6), then (6.7) implies that there
are two cases, either α ∈ iR and µ ∈ R which gives the second formula of (6.8), or α ∈ R

and µ ∈ iR, which gives the third one, where with the abuse of notation we denoted the
imaginary part of µ again by µ.

If λ = 2γ + 2iβ with γ 6= 0, then

k(z) =



















zeiβz
αe−γz + αeγz

sinh(2γz)
, µ = 0,

eiβz
αe−γz sinh(µz) + αeγz sinh(µz)

sinh(2γz)
, µ 6= 0,

(6.9)

where α, µ ∈ C.
So far we have analyzed only one of the relations from (6.4) and deduced the possible

forms of k. When the mode λ has multiplicity at least two we have m ≥ 1, and therefore
there are more relations in (6.4) that k has to satisfy (in particular the one corresponding
to j = m− 1). In the two subsections below we analyze these possibilities.

6.1.1 Type 1 mode and multiplicities

Proposition 5. Let Reλ = 0 and m ≥ 1, then with λ = 2iβ and α, µ,κ, κ0 ∈ R we have
(in fact κ = iαω with ω defined in (6.11) below)

k(z) = eiβz ·











iαz + κ0 +
κ

6
z2, µ = 0,

iα sinh(µz) + κ0
sinhµz

z
+ κ

2µ
coshµz, µ 6= 0,

iα sin(µz) + κ0
sinµz

z
− κ

2µ
cosµz, µ 6= 0.

(6.10)

Proof. So we see that the function κ+ in (6.8) is not arbitrary and we are going to find it
from the relation (6.4) with j = m − 1 (because m 6= 0 we can consider the index m − 1).
Recall that w.l.o.g. we assumed m ≥ n, note that p(m−1)(z) = m!pmz + (m − 1)!pm−1,

εm = λ2pm
4

− qm and εm−1 =
λ2pm−1

4
− qm−1 +

m
2
λpm so we obtain

pm−1κ
′′(z)− (mpmz + pm−1)κ

′′(−z) +mpm[κ
′(−z)− κ′(z)]+

+[mεmz + εm−1]κ(−z)− εm−1κ(z) = 0.

Now using (6.5) we can rewrite the above relation as

zκ′′

+ + 2κ′

+ − µ2zκ+ = ωκ−, ω = −λ+ 2
mpm

(

qm−1 −
qmpm−1

pm

)

, (6.11)

where κ− appears in the three formulas from (6.8).
According to Remark 5, when κ−(z) = iα sinµz, in the above relation µ should be

replaced by iµ, which changes the sign of the last term on LHS from negative to positive.
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This explains the difference of the sign in the second and third formulas of (6.10). Solving
the obtained ODE, recalling that κ+ is even and real valued, we find (6.10) with κ = iαω.

When m ≥ 2, we can consider (6.4) with j = m − 2, moreover we know that (6.5) and
(6.11) also hold, and using these and p(m−2)(z) = m!

2
pmz

2 + (m− 1)!pm−1z + (m− 2)!pm−2,
the relation with j = m− 2 can be simplified to

zκ′

−
+ η1κ− = η2zκ+, η2 =

ω

2
, (6.12)

where ω is defined in (6.11) and η1 is a constant whose precise expression is not important.

Proposition 6. Let Reλ = 0 and m ≥ 2, then with λ = 2iβ and α, κ0, µ ∈ R

k(z) = eiβz ·















κ0
sinhµz

z
,

αeiµz + κ0
sinµz

z
.

(6.13)

Moreover, in the second case the following relations between the involved parameters must
be satisfied

κ0η2 = iαη1, η2 = ±iµ. (6.14)

Proof. By Proposition 5 we know what are the functions κ− and κ+ that satisfy the two
relations (6.4) with j = m,m − 1 (they are given in the three formulas in (6.10), with
κ = iαω). Here we want to see which of these satisfy the third relation (6.12). First note
that κ ∈ R implies ω and hence also η2 =

ω
2
are purely imaginary. The case (6.10)a implies

that k has rank at most three and so, is trivial.
If (6.10)b holds, then (6.12) after multiplying by 2µ reads

z(2iαµ2 − η2κ) cosh(µz) + 2µ(iαη1 − η2κ0) sinh(µz) = 0.

By linear independence we conclude that the two coefficients must vanish: 2iαµ2 − η2κ = 0
and iαη1 − η2κ0 = 0. Let us ignore the second equation (it just gives some restrictions on
qj’s), using the expression for κ the first one becomes α(µ2 − η22) = 0. If α 6= 0, because
η2 ∈ iR, we conclude µ = η2 = 0 which is a contradiction. Thus α = 0, which gives the first
formula of (6.13).

If (6.10)c holds, then (6.12) reads

z(2iαµ2 + η2κ) cos(µz) + 2µ(iαη1 − η2κ0) sin(µz) = 0.

Again the two coefficients must be zero, the second one implies the first relation of (6.14) and
the first one gives α(µ2 + η22) = 0. One possibility is α = 0, another one: when α 6= 0, then
Im η2 = ±µ, hence we may write κ(z) = ±α(cosµz± i sinµz)+κ0

sinµz
z

= ±αe±iµz +κ0
sinµz

z
.

These cases can be unified in the second formula of (6.13).

Corollary 7. When there is one type 1 root with multiplicity three (i.e. ν = 1, m = 2 and
λ = 2iβ), we obtain item 1 (in the limiting case γ = 0) and item 2 of Theorem 2.
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Proof. Using the boundary conditions b(y) = (y2 − 1)eλy, we know k from the above propo-
sition so it only remains to find c. Before that let us invoke Remark 2 and w.l.o.g. assume
that β = 0, or equivalently λ = 0.

From (6.2) we know that c(y) =
∑3

j=0 cjy
j + c4e

τy with τ 6= 0. Clearly µ 6= 0, otherwise
k is trivial (see (6.13)). We substitute these expressions into (6.1) and obtain that a linear
combination of eτy and monomials yj is zero, hence by linear independence each of the
coefficients must vanish. The equation coming from the term eτy reads

c4 [k(z)− eτzk(−z)] = 0. (6.15)

Equations coming from the terms y3, ..., 1, respectively are

c3 [k(z)− k(−z)] = 0,

k′′(z)− k′′(−z) + c2k(z)− (3c3z + c2)k(−z) = 0,

2zk′′(−z) + 2k′(z)− 2k′(−z)− c1k(z) + (3c3z
2 + 2c2z + c1)k(−z) = 0,

k′′(z) + (z2 − 1)k′′(−z)− 2zk′(−z)− c0k(z) + (c3z
3 + c2z

2 + c1z + c0)k(−z) = 0.

(6.16)

Assume k is given by the first formula of (6.13), in particular it is even and (6.15) implies
c4 = 0. The first equation of (6.16) is identity, the second one implies c3 sinh(µz) = 0 and
hence c3 = 0. Third one reads (c2 + µ2) sinh(µz) = 0, hence c2 = −µ2. Finally, the fourth
relation simplifies to c1 sinh(µz) = 0, so that c1 = 0. We note that c0 remains free. Thus,
we conclude that c(y) = −µ2y2 + c0 and since we are free to choose c0, we can rewrite c as
c(y) = −µ2

b(y) + c0, which proves item 1 of Theorem 2 in the case γ = 0 and µ ∈ R.
Assume k is given by the second formula of (6.13). Because κ0 6= 0, we may normalize it

to be one. (6.15) reads

c4
[

e−iµz − eiµz + e(iµ+τ)z − e(−iµ+τ)z + iαz(e(−iµ+τ)z − eiµz)
]

= 0,

and from the linear independence of the involved exponentials we get c4 = 0. The first
equation of (6.16) reads c3α sin(µz) = 0, and there are two cases to consider.

If α = 0, the second equation reads c3 sin(µz) = 0, so c3 = 0. The third equation becomes
(c2−µ2) sin(µz) = 0, hence c2 = µ2. Finally, the fourth equation implies c1 = 0 and again c0
is free. So we find c(y) = µ2

b(y) + c0, which proves item 1 of Theorem 2 in the case γ = 0
and µ ∈ iR.

If α 6= 0, then c3 = 0. The second equation of (6.16) implies c2 = µ2, the third one:
c1 = 2iµ and finally the fourth one implies c0 = −µ2+ 2µ

α
. Thus, c(y) = µ2(y2−1)+2iµy+ 2µ

α
,

which proves item 2 of Theorem 2.

Lemma 8. Let Reλ = 0 and m ≥ 3, then k is trivial.

Proof. By the previous proposition we know that κ(z) has two possible forms coming from
(6.13). The goal is to show that it cannot solve (6.4) with j = m − 3. Using the equations
(6.5), (6.11) and (6.12) we can rewrite the relation for j = m− 3 as

(η2z
2 + η3)κ− = z2κ′

+ + 3η1zκ+, (6.17)
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where η1, η2 are the same as in (6.12) and the expression for η3 is not important.

When k is given by the first formula of (6.13), κ−(z) = 0 and κ+(z) = κ0
sinh(µz)

z
so (6.17)

implies µ = 0 and hence k = 0.
When k is given by the second formula of (6.13), let us w.l.o.g. take κ0 = 1. As we

saw in the previous proposition κ−(z) = iα sin(µz) and κ+(z) =
sin(µz)

z
− iαη2

µ
cos(µz) with

η2 = ±iµ and iαη1 = η2. Let first η2 = iµ, then substituting κ± into (6.17) we get

[iαη3 + κ0(1− 3η1)] sin(µz)− z (µ+ 3αη1) cos(µz) = 0.

But then µ + 3αη1 = 4µ which must be zero, hence k is trivial. The case η2 = −iµ is done
analogously.

6.1.2 Type 2 mode and multiplicities

Lemma 9. Let Reλ 6= 0 and m ≥ 1, then k = 0.

Proof. Let λ = γ + iβ, with γ 6= 0, (6.7) implies

{

κ+ − κ+e
γz = κ−e

γz + κ−,

κ+ − κ+e
γz = κ−e

γz + κ−,

where the second equation was obtained by conjugating the first one, then

κ+ = − coth(γz)κ− − csch(γz)κ−. (6.18)

We know that both of the relations (6.5) and (6.11) hold. When µ = 0, we have κ−(z) = κz,
hence κ+(z) =

ωα
6
z2+κ0 and comparing this with (6.18) we conclude k = 0. So let us assume

µ 6= 0, then from (6.6), κ−(z) = α sinh(µz), hence solving the ODE (6.11) we get

κ+(z) = c2
sinh(µz)

z
+

κα

2µ
cosh(µz),

substitute this into (6.18) divide the result by sinh(µz) to get

c2
z
+

κα

2µ
coth(µz) = −α coth(γz)− α

sinh(µz)

sinh(µz)
csch(γz).

Assume γ > 0 (otherwise negate (γ, α,κ)), write µ = µ1 + iµ2, assume µ1 6= 0, then we may
assume µ1 > 0, otherwise multiply the equation by −1. Now consider the asymptotics as
z → +∞,

c2
z
+

κα

2µ
= −α− 2αe−γze−2iµ2z,

clearly this implies α = c2 = 0, so k = 0. Let now µ1 = 0, then the relation reads

c2
z
−

κα

2µ2

cot(µ2z) = −α coth(γz) + α csch(γz),

and asymptotics at +∞ gives c2
z
− κα

2µ2
cot(µ2z) = −α+2αe−γz which again implies α = c2 = 0.
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6.2 Multiple modes

Before we start to analyze the possibilities of having multiple distinct modes λj in (6.3), we
state that in view of Lemmas 8 and 9 the cases I and II can be rewritten

I. ν = 1, d1 = 2, Reλ1 = 0;

IIa. ν = 2, d1 ≥ 1, Reλ1 = Reλ2 = 0;

IIb. ν = 2, d1 ≥ 1, Reλ1 = 0, Reλ2 6= 0.

The case I was analyzed in Corollary 7, so it remains to consider cases IIa,b and III, IV. We
will see in Lemmas 12 and 16 that the cases IIa,b lead to trivial kernels k. Case III will be
analyzed in Section 6.4. We will show that case IV is only possible when there are exactly
three modes: two type 1 and one type 2, all with multiplicity one. This case will then be
analyzed in Section 6.3.

When λj = 2iβj (of course β1 6= β2) then (6.8) holds true for both of the modes λj and
we determine the free functions and conclude

k(z) =
α1ks(µ1z)e

iβ1z + α2kr(µ2z)e
iβ2z

sin(β1 − β2)z
, r, s ∈ {1, 2, 3}, (6.19)

where all the constants are real, µj 6= 0 and kr is given by

k1(t) = t, k2(t) = sin t, k3(t) = sinh t. (6.20)

Proposition 10. Let k be given by (6.19), then β1 and β2 are determined by k.

Proof. W.l.o.g. let β1 − β2 > 0, otherwise swap β1 with β2; r with s; µ1 with µ2 and replace
(α1, α2) by (−α2,−α1). There are six cases to consider.

• If (s, r) = (3, 3); we have

k(it) = e−β1t ·
α1 sin(µ1t) + α2 sin(µ2t)e

(β1−β2)t

sinh(β1 − β2)t
,

therefore

k(it) ∼

{

2α1 sin(µ1t)e
(β2−2β1)t + 2α2e

−β1t sin(µ2t), t → +∞,

2α1 sin(µ1t)e
−β2t + 2α2e

(β1−2β2)t sin(µ2t), t → −∞.

When (s, r) = (1, 1) the same formulas hold with sin(µjt) replaced by t for j = 1, 2. And
when (s, r) = (1, 3) the same formulas hold with sin(µ1t) replaced by t. The above asymp-
totics immediately conclude the proof in this case.
• If (s, r) = (2, 3), we may assume µ1 > 0, otherwise negate α1, so

k(it) = e−β1t ·
α1 sinh(µ1t) + α2 sin(µ2t)e

(β1−β2)t

sinh(β1 − β2)t
,

and therefore
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k(it) ∼

{

α1e
(µ1+β2−2β1)t + 2α2 sin(µ2t)e

−β1t, t → +∞,

α1e
−(µ1+β2)t + 2α2 sin(µ2t)e

(β1−2β2)t, t → −∞.

If α2 6= 0 clearly β1 and β2 are determined. So assume α2 = 0, then from the above
asymptotics we conclude that α1, µ1+β2 and β1 are determined. But note that k0 := k(0) =
µ1α1

β1−β2
, so we have a system (k1 denotes a parameter determined by k)

{

α1µ1 + k0β2 = k0β1

µ1 + β2 = k1

Which is not solvable w.r.t. µ1 and β2 if and only if k0 = α1, but in this case the first
equation implies β1 − β2 = µ1, therefore k(z) = α1e

iβ1z which is trivial. When (s, r) = (2, 1)
the asymptotic formulas hold with sin(µ2t) replaced by t and the same argument applies.
• If (s, r) = (2, 2), we may assume µ1, µ2 > 0, otherwise negate α1, α2, so

k(it) = e−β1t ·
α1 sinh(µ1t) + α2 sinh(µ2t)e

(β1−β2)t

sinh(β1 − β2)t
,

therefore

k(it) ∼

{

α1e
(µ1+β2−2β1)t + α2e

(µ2−β1)t, t → +∞,

α1e
−(µ1+β2)t + α2e

−(µ2−β1+2β2)t, t → −∞.

If α1, α2 6= 0, clearly β1 and β2 are determined. Assume α1 = 0, then from the above
asymptotics we conclude that α2, µ2 − β1 and β2 are determined. Next, as above we look
at k(0) = µ2α2

β1−β2
, and conclude that β1, µ2 are not determined if and only if µ2 = β1 − β2 in

which case k is trivial. Analogous conclusion holds in the case α2 = 0.

Corollary 11. Having three distinct modes λ1, λ2, λ3 ∈ iR is impossible.

Lemma 12. Having two distinct type 1 modes, one of them with multiplicity at least two
leads to a trivial kernel. In other words, if k(z) can be written in the form (6.10) and (6.19),
then k is trivial.

Proof. The denominator in (6.19) is zero when z = πn/(β1 − β2). If the numerator does
not vanish at all of these values then the function in (6.19) is not entire, while all functions
(6.10) are entire. Thus it must hold

α1ks

(

πµ1n
β1−β2

)

+ (−1)nα2kr

(

πµ2n
β1−β2

)

= 0 ∀n ∈ Z.

This equation can hold in three cases (r, s) = (2, 2), (2, 3) or (1, 2). Let us consider the first
one, the other two can be analyzed similarly, and in fact are simpler. The solutions of the
above equation for r = s = 2 are

(a) µj = mj(β1 − β2) with mj ∈ Z for j = 1, 2,

(b) α1 = ±α2 , µ2 = (2m1 + 1)(β1 − β2)∓ µ1.
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In both of these cases k is a trigonometric polynomial. But if k is given by (6.10) and is a
trigonometric polynomial, then k(z) = eiβz(iα sinµz + α′ cosµz) for some constants α, α′, β
and µ. Showing that k is trivial.

Lemma 13. Let k be given by (6.9), then the pair (|γ|, β) is determined by k.

Proof. Let k be given by the first formula, assume γ > 0, otherwise replace (γ, α) with
(−γ,−α), then

k(z) ∼ 2αze−γzeiβz, as z → +∞, (6.21)

so α, γ, β are determined by k. But note that the sign of γ is not determined.
Let now k be given by the second formula, write µ = µ1 + iµ2 and α = α1 + iα2,

1. let µ1 6= 0, we may assume µ1 > 0, otherwise we replace (α, µ) with (−α,−µ). Also
assume γ > 0, otherwise we replace (γ, α, µ) with (−γ,−α, µ), then

k(z) ∼ αe(−γ+µ1)zei(β−µ2)z, as z → +∞, (6.22)

so α,−γ + µ1 and β − µ2 are determined by k. We then note that k(0) = Re(αµ)
γ

and

k′(0) = iβk(0)− i Im(αµ). Because of the symmetry of k, we know that k(0) ∈ R and

k′(0) ∈ iR, so let us set k0 = k(0) and k1 =
k′(0)
i
, then we obtain the system



















α1µ1 − α2µ2 − k0γ = 0,

−α2µ1 − α1µ2 + k0β = k1,

µ1 − γ = k2,

−µ2 + β = k3,

A =









α1 −α2 −k0 0
−α2 −α1 0 k0
1 0 −1 0
0 −1 0 1









,

where the unknowns are µ1, µ2, γ, β and k2, k3 are parameters determined by k. The
system is linear and one can compute det(A) = (α1 − k0)

2 + α2
2. If det(A) 6= 0, then

the system has a unique solution and all the constants µ1, µ2, γ, β are determined by
the function k. Of course we see that the signs of γ and µ1 are not determined.

When det(A) = 0, we get α1 = k0 and α2 = 0, then (note that k0 6= 0, because
otherwise k = 0). Now we must have k2 = 0 and k3 =

k1
k0

and the above system reduces
to

{

µ1 − γ = 0,

−µ2 + β = k3.

So α is real and µ1 = γ, and in this case one can check that the formula reduces to
k(z) = αei(β+µ2)z which is a trivial kernel.
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2. µ1 = 0, we may assume γ > 0, otherwise replace (γ, α) by (−γ, α), then

k(z) ∼ αe−γz
[

ei(β−µ2)z − ei(β+µ2)z
]

as z → +∞, (6.23)

so α, γ, β, µ2 are determined by k. And again we see that the sign of γ is not determined.

Corollary 14. Let λj = 2γj + i2βj, with γj 6= 0 for j = 1, 2. Assume λ1 6= λ2, then
λ2 = −λ1.

Proof. For each λj, k can be given by two formulas from (6.9), let us refer to them as ”a” and
”b”. There are three cases to consider: (a,a); (b,b) and (a,b). By comparing the asymptotics
(6.22) and (6.23) with (6.21) we see that they cannot be matched, hence the third case is
impossible. Consider the first one, then

k(z) = zeiβjz ·
αje

−γjz + αje
γjz

sinh(2γjz)
, j = 1, 2.

As we saw |γj| and βj are determined by k, hence we conclude |γ1| = |γ2| and β1 = β2.
Because λ1 6= λ2 we must have γ1 = −γ2. The second case is done analogously.

Corollary 15. Having three distinct modes λ1, λ2, λ3 /∈ iR leads to trivial k..

Lemma 16. Having a type 2 mode and a type 1 mode of multiplicity at least two leads to
a trivial kernel. In other words, if k(z) can be written in the form (6.10) and (6.9), then k
is trivial.

Proof. So λ1 = i2β1 and λ2 = 2γ + i2β2 with γ 6= 0. All the functions in (6.10) are entire,
and one can easily check that the first function of (6.9) is entire if and only if α = 0, which
leads to k = 0. So let us consider the case when k is given by the second formula:

k(z) = eiβ2z·
α2e

−γz sinh(µz) + α2e
γz sinh(µz)

sinh(2γz)
= eiβ1z











iα1z + κ0 +
κ

6
z2,

iα1 sinhµ0z + κ0
sinhµ0z

z
+ κ

2µ0
coshµ0z,

iα1 sinµ0z + κ0
sinµ0z

z
− κ

2µ0
cosµ0z,

(6.24)
where µ0( 6= 0), α1, κ0,κ ∈ R, and write µ = µ1 + iµ2.

Case 1: if µ1 6= 0, may assume µ1 > 0 and γ > 0. If k is given by the

1. 1st formula, then comparing the asymptotics we see that α1 = κ = 0, then for the
LHS k(z) ∼ κ0e

iβ1z. Again comparing we find α2 = κ0, −γ + µ1 = 0 and β2 − µ2 = β1.
The last two conditions can be rewritten as λ2−λ1 = 2µ, and so k(z) = κ0e

iβ1z, which
is trivial.
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2. 2nd formula, we may assume µ0 > 0, otherwise negate (α1, κ0,κ), then

k(z) ∼ 1
2
(iα1 +

κ

2µ0
)eµ0zeiβ1z, comparing with (6.22) we conclude

−γ + µ1 = µ0, β2 − µ2 = β1, iα1 +
κ

2µ0
= 2α2,

with these, in (6.24) we express sinh and cosh in terms of exponentials, by linear
independence we conclude that κ0 = 0, and obtain

−α2e
(γ−µ1)z + α2e

(γ−µ1)z = ei2µ2z
[

α2e
(−3γ+µ1)z − α2e

(−3γ−µ1)z
]

.

Hence µ2 = 0, then using that γ, µ1 6= 0 we deduce that the above relation is possible

(with α2 6= 0) if and only if µ1 = 2γ. Thus k(z) = eiβ1z
[

iα1 sinhµ0z +
κ

2µ0
coshµ0z

]

is

trivial.

3. 3rd formula, we may assume µ0 > 0, otherwise negate (α1, κ0,κ), then

k(z) ∼ eiβ1z
[

(α1

2
− κ

4µ0
)eiµ0z − (α1

2
+ κ

4µ0
)e−iµ0z

]

, comparing this with (6.22) we con-

clude −γ + µ1 = 0 and

(a) β1 + µ0 = β2 − µ2,
α1

2
− κ

4µ0
= α2 and α1

2
+ κ

4µ0
= 0 , or

(b) β1 − µ0 = β2 − µ2,
α1

2
− κ

4µ0
= 0 and α1

2
+ κ

4µ0
= −α2

Let us consider the first option, in that case (6.24) simplifies to κ0e
iβ1z sinµ0z

z
= 0 which

implies κ0 = 0, and so k(z) = α1e
i(β1+µ0). The other case is done analogously.

Case 2: if µ1 = 0, we may assume γ > 0. If k is given by the 1st or 3rd formulas, comparing
the asymptotics of LHS with (6.23) we conclude γ = 0, which is a contradiction, so these
cases lead to k = 0. Now let k be given by the second formula, again w.l.o.g let µ0 > 0,
then we see that the asymptotics cannot be matched because in (6.23) ei(β2±µ2)z are linearly
independent, hence k = 0.

Lemma 17. Let λ1 = i2β1 and λ2 = 2γ + i2β2, with γ 6= 0, then β1 = β2 =: β and

k(z) = αeiβz
kr(µz)

sinh γz
, r ∈ {1, 2, 3}, (6.25)

where α, µ ∈ R and kr is defined in (6.20).

Proof. So k is given by both of the forms (6.9) and (6.8). Assume k is given by the first
formula of (6.9), then we can find

κ+(z) = zei∆βzαe
−γz + αeγz

sinh(2γz)
− iα′kr(µ

′z), r ∈ {1, 2, 3},
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where ∆β = β2 − β1, 0 6= µ′, α′ ∈ R. It is easy to check that κ+ as above satisfies κ+(−z) =
κ+(z), hence κ+ is real valued if and only if it is even, and with α = α1 + iα2 the imaginary
part of κ+ being zero reads

zα1
sin(∆βz)

sinh(γz)
− zα2

cos(∆βz)

cosh(γz)
= α′kr(µ

′z). (6.26)

We may assume γ > 0, otherwise replace (γ, α1) with (−γ,−α1). Assume k 6= 0, note that

LHS ∼ 2ze−γz[α1 sin(∆βz)− α2 cos(∆βz)], as z → +∞.

Comparing this with the asymptotic of RHS for r = 1, 2, 3 we conclude that (6.26) is possible
if and only if ∆β = 0 and α2 = α′ = 0. And we see that k is given by (6.25) with r = 1.

Assume now k is given by the second formula of (6.9), then

κ+(z) = ei∆βz ·
αe−γz sinh(µz) + αeγz sinh(µz)

sinh(2γz)
− iα′kr(µ

′z), r ∈ {1, 2, 3}.

Write µ = µ1 + iµ2 and α = α1 + iα2, w.l.o.g. let γ > 0, assume µ1 6= 0 then we can assume
µ1 > 0; again κ+ being even and real valued are equivalent and Imκ+ = 0 reads

sin(∆βz)

sinh(γz)
[α1 sinh(µ1z) cos(µ2z)− α2 cosh(µ1z) sin(µ2z)]−

−
cos(∆βz)

cosh(γz)
[α1 cosh(µ1z) sin(µ2z) + α2 sinh(µ1z) cos(µ2z)] = α′kr(µ

′z).

(6.27)

We note that as z → ∞

LHS ∼ e(−γ+µ1)z [α1 sin(∆β − µ2)z − α2 cos(∆β − µ2)z] ,

comparing this with the asymptotic of RHS for r=1,2,3 we conclude that (6.27) is possible
for non-trivial k if and only if ∆β = µ2 and α2 = α′ = 0. (For example when r = 2, (6.27)
is also possible when µ1 = γ, α2 = 0, α′ = α1 and ∆β − µ2 = µ′ but in this case one easily
checks that k is trivial). Now (6.27) reduces to

sin(2µ2z)

[

sinhµ1z

sinh γz
−

coshµ1z

cosh γz

]

= 0.

If the second factor is zero, we must have γ = µ1 and in this case k reduces to a trivial
kernel. So µ2 = 0, and k is given by (6.25) with r = 3. Let now µ1 = 0, then (6.27) becomes

− sin(µ2z)

[

α2
sin∆βz

sinh γz
+ α1

cos∆βz

cosh γz

]

= α′kr(µ
′z). (6.28)

We note that as z → ∞

LHS ∼ −2e−γz sin(µ2z) [α2 sin(∆βz) + α1 cos(∆βz)] ,
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comparing this with the asymptotics of RHS for r=1,2,3 we find that (6.28) is possible for
non-trivial k if and only if ∆β = 0 and α1 = α′ = 0. And k is given by (6.25) with r = 2.

Corollary 18. Having three distinct modes λ1, λ2 ∈ iR and λ3 /∈ iR is impossible.

6.3 Item 1, γ 6= 0

The previous analysis shows that case IV is only possible when we have exactly three modes
λ1, λ2 /∈ iR and λ3 ∈ iR with multiplicities 1, that is dj = 0 for j = 1, 2, 3. Moreover, by
Corollary 14 and Lemma 17 we conclude that λ1 = 2γ+2iβ, λ2 = −2γ+2iβ, λ3 = 2iβ and
k(z) is given by (6.25). Invoking Remark 2 let us w.l.o.g. assume β = 0. Thus,

λ1 = 2γ, λ2 = −2γ, λ3 = 0, and k(z) =
kr(µz)

sinh γz
, r ∈ {1, 2, 3},

where kr is defined in (6.20), moreover b(y) = cosh(2γy) − cosh(2γ). Because of (6.2), c
has the following form

c(y) = (c1y + d1)e
λ1y + (c2y + d2)e

λ2y + (c3y + d3)e
λ3y + c4e

τy,

where τ is different from all λj’s. Substituting these expressions into (6.1) and looking
at linearly independent parts it is easy to conclude that c1 = c2 = c3 = c4 = 0, and

d1 =
λ2
1+4µ2

8
, d2 =

λ2
2+4µ2

8
if in the formula for k we have r = 2. When r = 3 in the

expressions of d1, d2; µ should be replaced by iµ and when r = 1, in those formulas µ = 0.
This concludes item 1 of Theorem 2 in the case γ 6= 0.

6.4 Item 3

Finally we consider the case III, because of the boundary conditions one can find that
λ2 − λ1 = iπn with 0 6= n ∈ Z, therefore λ1, λ2 ∈ iR (otherwise by Corollary 14 and
Lemma 17 the difference λ2−λ1 is real). Let us now take λ1 = 2i(β+ πn

4
) and λ2 = 2i(β− πn

4
)

with some β ∈ R. In this case we find b(y) = e2iβy sin
(

πn(y−1)
2

)

and by (6.19)

k(z) = eiβz
α1ks(µ1z)e

iπnz/4 + α2kr(µ2z)e
−iπnz/4

sin(πnz/2)
, r, s ∈ {1, 2, 3}. (6.29)

From (6.2), c has the form

c(y) = (c1y + d1)e
λ1y + (c2y + d2)e

λ2y + c3e
τy,

with τ 6= λj, note that also τ = 2k′(0)
k(0)

∈ iR. The denominator of k has zeros at z = 2m
n

for

m ∈ Z, since we want k to be smooth in [−2, 2], we need

(−1)mα1ks
(

2µ1m
n

)

+ α2kr
(

2µ2m
n

)

= 0, ∀m ∈ Z s.t. m
n
∈ [−1, 1]. (6.30)
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1. r = s = 3, if n 6= ±1, then (6.30) must hold for m = 1, 2, one can easily see
that this leads to a contradiction. Therefore n = ±1, in which case (6.30) implies
α1 sinh(2µ1) = α2 sinh(2µ2). To find c, we substitute these expressions into (6.1) and
look at the coefficients of linearly independent parts, which must vanish. In particular
the coefficient of eτy gives

c3

{

α2 sinh(µ2z)
[

e−
λ2−2τ

2
z − e

λ2
2
z
]

+ α1 sinh(µ1z)
[

e−
λ1−2τ

2
z − e

λ1
2
z
]}

= 0.

The four exponentials in square brackets are linearly independent, moreover their ex-
ponents are purely imaginary, while µ1, µ2 are real, hence all the terms are linearly
independent, therefore our conclusion is that c3 = 0, otherwise k = 0. Using similar
arguments and looking at coefficients of yeλjy, eλjy we find c1 = c2 = 0 and

d1 = −
ie−

iπ
2

8
[λ2

1 − 4µ2
2], d2 =

ie
iπ
2

8
[λ2

2 − 4µ2
1] (6.31)

2. s = 1, r = 3, we can absorb µ1 into α1 and relabel µ2 by µ, as in 1 we see n = ±1 and
2α1 = α2 sinh(2µ). Then one can find c1 = c2 = c3 = 0 and (6.31) holds with µ2 = 0
and µ1 = µ.

3. r = s = 1, absorb µj into αj, again n = ±1 and α1 = α2, in which case (up to a real
multiplicative constant) k(z) = eiβz z

sin(πz/4)
, then we can conclude c1 = c2 = 0, τ = 2iβ

and (6.31) holds with µ1 = µ2 = 0.

4. s = 1, r = 2, absorb µ1 into α1. If n = ±1 we get 2α1 = α2 sin(2µ2), and following the
strategy described in 1 we find c1 = c2 = c3 = 0, and (6.31) holds with µ1 = 0 and µ2

replaced by iµ2. If |n| > 1, then (6.30) holds for at least m = 1, 2. It is easy to see
that these two equations imply α1 = 0 and sin

(

2µ2

n

)

= 0. But in that case (6.30) holds
for any m ∈ Z. So µ2 = πnl

2
for some l ∈ Z, hence we see that k is a trigonometric

polynomial, and therefore is trivial.

5. s = 3, r = 2, again if |n| > 1 we get α1 = 0 and sin
(

2µ2

n

)

= 0, which again implies k is
trivial. So n = ±1, and we find α1 sinh(2µ1) = α2 sin(2µ2)

6. s = r = 2, as we saw in Lemma 12 if n 6= ±1, then k is trivial. So n = ±1 and
α1 sin(2µ1) = α2 sin(2µ2), one of αj is nonzero, assume it is α2. When sin(2µ1) = 0,
then sin(2µ2) = 0 and again k is a trigonometric polynomial. So sin(2µ1) 6= 0 and also
sin(2µ2) 6= 0, again because of the same reason. We then find c1 = c2 = 0, (6.31) holds
with µj replaced by iµj for j = 1, 2. Finally the relation for eτy reads

c3

{

α̃1 sin(µ1z)
[

e(τ−
λ1
2
)z − e

λ1
2
z
]

+ α̃2 sin(µ2z)
[

e(τ−
λ2
2
)z − e

λ2
2
z
]}

= 0,

where α̃j = sin(2µj) 6= 0, λ1 − λ2 = iπ
2
. Now c3 = 0 or the function in curly brackets

(denote it by f(z)) vanishes, looking at the asymptotics f(iz) as z → ∞, and also at
f ′(0), f ′′(0), f (4)(0) we can find that f = 0 if and only if µ2 = µ1 ±

π
2
(which implies

α̃1 = −α̃2) and τ = 2i(β − π
4
± µ1).
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Choosing β = 0 (cf. Remark 2) we conclude item 3 of Theorem 2.

7 L2 = −L1

Assume the setting of Theorem 4, recall that b := b1 and c := c1. Now (R) reads

b(y)k′′(−z) + b(y + z)k′′(z) + b
′(y)k′(−z) + b

′(y + z)k′(z)+

+c(y)k(−z) + c(y + z)k(z) = 0.
(7.1)

The analysis in the beginning of Section 4 shows that (in the case L2 = −L1) b(y) solves sec-
ond order, linear homogeneous ODE with constant coefficients, and because of the boundary
conditions it must be of the form

b(y) = b1e
λ1y + b2e

λ2y, c(y) = c1e
λ1y + c2e

λ2y + c0, λ1 6= λ2,

where c is of the same form as b because it satisfies c′ = −k1
k0
b
′ − k2

k0
b. Clearly both bj are

different from zero, and from boundary conditions

λ1 − λ2 = πin, n ∈ Z. (7.2)

With these formulas, (7.1) becomes a linear combination of functions eλjy with coefficients
depending on z, hence each coefficient must vanish. Let us concentrate on the coefficient of
eλ1y, making the change of variables k(z) = κ(z)e−λ1z/2 we rewrite it as

κ′′

+(z)− µ2κ+(z) = 0, µ =

√

λ2
1

4
− c1

b1
,

where κ+ is the even part of κ, because it is an even function we get

κ+(z) = α cosh(µz).

The symmetry of k implies

e−λ1z/2
(

κ+(z) + κ−(z)
)

= eλ1z/2 (κ+(z)− κ−(z)) .

If λ1 = 2iβ with β ∈ R, then κ− is an arbitrary odd and purely imaginary function.
Moreover, κ+ must be real valued, hence it must be a real multiple of cosh(µz) or of cos(µz),
where µ ∈ R. As a result k takes one of the following two forms:

k(z) = e−iβz

(

κ−(z) +

{

α cosh(µz)

α cos(µz)

)

, (7.3)

where α, µ ∈ R.
If λ1 = 2γ + 2iβ with γ 6= 0, then (recalling that k is smooth at 0), with κ0 ∈ R

k(z) = αe−iβz e
γz cosh(µz)− e−γz cosh(µz)

sinh(2γz)
.
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Now k should come from two distinct modes λ1, λ2, and from (7.2) we see that Reλ1 =
Reλ2 =: 2γ, so if γ 6= 0 we must have

α1e
−iβ1z

(

eγz cosh(µz)− e−γz cosh(µz)
)

= α2e
−iβ2z

(

eγz cosh(νz)− e−γz cosh(νz)
)

,

which implies β1 = β2, leading to a contradiction. Indeed, the function on LHS (denoted by
f(z)) determines β1, because with µ = µ1 + iµ2

f(iz) = κ0e
β1z
[

ieµ2z sin ((γ − µ1)z) + e−µ2z cos ((γ + µ1)z)
]

.

Assume µ2 > 0, then f(iz) ∼ κ0e
(β1+µ2)z sin ((γ − µ1)z) as z → +∞, hence β1 + µ2 is

determined by f , but by looking at the asymptotics as z → −∞ we see that also β1 − µ2 is
determined, hence so is β1. The case µ2 ≤ 0 is done analogously.

Thus λj = 2iβj ∈ iR and k is given by the form (7.3) for two different parameter choices:
β1, β2 in place of β (and αj, µj in place of α, µ for j = 1, 2). Then κ− is determined and we
can find

k(z) =
α1k

′

s(µ1z)e
iβ1z + α2k

′

r(µ2z)e
iβ2z

i sin(β1 − β2)z
, r, s ∈ {1, 2, 3}, (7.4)

where all the constants are real, and k′

r is the derivative of function kr defined in (6.20).
Moreover because k is smooth at 0, we must have α2 = −α1. The denominator of the above
function vanishes at z = 2m

n
with m ∈ Z, since k is smooth in [−2, 2] we should require

(−1)mk′

s

(

2µ1m
n

)

− k′

2

(

2µ2m
n

)

= 0, ∀m ∈ Z, s.t. m
n
∈ [−1, 1].

Because n 6= 0, this condition should hold at least for m = 1. One can easily check that this
implies that the functions given by (7.4) are either zero, or trigonometric polynomials, and
therefore: trivial.
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