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Abstract

In the variational problems involving non-convex integral functionals, finding the
binodal, the boundary of validity of the quasiconvexity of the energy density, is of
central importance. We develop a systematic methodology for identifying a part of the
binodal corresponding to simple laminates by showing that in this case the supporting
null-Lagrangians, establishing polyconvexity, can be constructed explicitly. We present
a nontrivial example from nonlinear elasticity where this approach allows one to obtain
the entire quasiconvex envelope.

1 Introduction

We consider the general problem of identifying strong local minimizers of an integral func-
tional

E[y] =

∫

Ω

L(x,y(x),∇y(x))dx, (1.1)

where Ω ⊂ R
n and y : Ω → R

m satisfies prescribed boundary conditions; the term “strong”
refers to local minima of E[y] in L∞ topology. Such vectorial variational problems are
encountered, for instance, in nonlinear elasticity [57].

When the integrand L(x,y,F ) is not rank-one convex in the F variable, as, for instance,
in models of elastic phase transitions [18, 6] and composite materials [42, 38], Euler-Lagrange
equations1 may have a large set of solutions, most of which are unstable in L∞ topology.
The main distinguishing characteristic of strong local minimizers y(x) is the quasiconvexity
of the integrand as a function of F at F = ∇y(x), x ∈ Ω [48, 46]. We recall that a function
W (F ) is quasiconvex at F ∈ R

m×n, if

−

∫

D

W (F +∇φ(x))dx ≥ W (F ) (1.2)

∗Temple University, Philadelphia, PA, USA
†ESPCI, Paris, France
1In nonlinear elasticity the integrand cannot be regular for physical reasons and minimizers cannot be

ascertained to satisfy Euler-Lagrange equations in general.
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for any2 domain D ⊂ R
n and any φ ∈ C∞

0 (D;Rm), where −
∫
denotes the average.

Definition 1.1. The set of points F , where quasiconvexity fails, will be called the QC
binodal region B for the function W (F ) [26]. The boundary of B will be called the QC
binodal.

The QC binodal is one of the main tools in distinguishing local minima from saddle points
in vectorial variational problems. For example, in the context of the study of stability of two-
phase elastic solids in [16] it would immediately rule out spherically-symmetric configurations
in an annulus with more than one interface. For vectorial variational problems identifying
the QC-binodal presents difficulties that are not present in the scalar (min(m,n) = 1) case.
Not only “vectorial” quasiconvexity lacks transparent geometric interpretation [39] enjoyed
by the analogous convexity condition for scalar variational problems, there seem to be no
systematic methods for its verification [52]. The goal of this paper is to show that a part
of the QC binodal is nonetheless accessible, providing at least some information about the
relaxed energy. In the worst case scenario this part is empty, and in the best it comprises
the entire QC binodal.

This work is motivated by the question of stability of interfaces across which the deforma-
tion gradient is discontinuous. Such interfaces are observed in minimizers of non-quasiconvex
functionals (1.1). For instance, in multi-well problems from elasticity theory such interfaces
represent phase/domain boundaries. For minimizers of (1.1), when they exist, the deforma-
tion gradients at the two sides of these interfaces lay on the subset of the “jump set” [25, 27]
that belongs to the QC binodal. The jump set is a co-dimension 1 variety in the phase space
of deformation gradients F defined by the equations relating the values of the deformation
gradients at the two sides of its jump discontinuity. The conventionally used system of rela-
tions on a jump discontinuity was recently found to be incomplete: an additional condition
was necessary for interface stability [25].

In scalar variational problems minimizers with discontinuous gradients are interpreted
as having “corners”, whose shape and location are restricted by the Weierstrass-Erdmann
(WE) corner conditions [15]. These necessary conditions can be used to prove [23] that jump
discontinuities are forbidden, if an extremal lies in the interior of the region of convexity. This
statement becomes apparent if we recall the geometric meaning of the scalar WE conditions
[22]: the values of the derivative of the minimizer on either side of the corner determine the
pair of points where the tangent plane touches the graph of the Lagrangian. If this plane is
supporting, i.e. lies below the graph of the Lagrangian, then the derivatives of minimizers
at the corners must be on the C (convex) binodal.

The need of generalizing the Weierstrass-Erdmann corner conditions for the vectorial
setting was understood in the studies of elastic phase transitions [19, 33, 31, 53]. For instance,
shifting the focus from the global behavior of minimizers to values of its gradient at points
of jump discontinuity permitted modeling of the laminar microstructures observed in shape
memory alloys [6, 7]. The study of geometry in phase space of the generalized WE conditions
was initiated in [20, 21], and the question of stability of the surfaces of gradient jump
discontinuity received much attention [29, 30, 54, 41, 50].

2If (1.2) holds for one D, then it will also hold for all others.
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It was first thought that in the vectorial case the analog of the necessary WE conditions
can be formulated in terms of rank-one convexity, whose geometric interpretation reduces
to double-tangency of rank-one lines. However, even if such a line is supporting (lies below
the graph of the Lagrangian), it no longer guarantees that the deformation gradients at
the surface of jump discontinuity are on the QC binodal. In this paper we propose a new
generalization of the WE conditions that retains its sufficiency property from the scalar
case. Specifically, we generalize the double-tangency (Maxwell) construction by delegating
the role of affine functions, bounding the energy from below, to the quasi-affine functions. In
this construction the role of the convex envelope, built in the scalar case by supporting affine
null-Lagrangians, is played by the polyconvex (PC) envelope defined in terms of supporting
quasi-affine null-Lagrangians.

Polyconvexity is a well-known sufficient condition for quasiconvexity [12]. However, since
polyconvex envelopes in vectorial problems are often strictly lower than the relaxed energy
density, at the first glance they seem to be useless for identifying any points of the QC
binodal. In this paper we show that the generalized WE conditions emerge from the analysis
of double-tangency of supporting null-Lagrangians, thereby guaranteeing that the relevant
points must lie on the QC binodal, where it also coincides with PC and RC (rank-one)
binodal. This leads to a constructive method of identifying points on the QC binodal where
“polyconvexity (PC) meets rank-one convexity (RC)”. A related approach that uses only
quadratic null-Lagrangians, and known as the translation method, has been very effective in
the study of composite media [55, 45, 43, 56].

At the technical level we essentially pursue what Carathéodory has called the “royal road”
to Calculus of Variations [58], which is based on the idea of supporting null-Lagrangians.
In the context of the variational problem (1.2) it translates to verifying polyconvexity [12].
This approach is well-known. However, its effectiveness is often limited, since the resulting
algebraic problem is usually too technically demanding to be practical. Moreover, establish-
ing polyconvexity does not deliver the QC binodal directly. The situation, however, changes
when points on a polyconvex binodal (boundary of validity of polyconvexity) can be shown
to belong to a rank-one binodal because such points would have to belong to the QC binodal
as well.

In this paper we show that there is a special regime in which points on the polyconvex
binodal must necessarily be a part of the jump set [25, 27]. This regime is characterized
geometrically by double-tangency of supporting null-Lagrangians, which evokes the “com-
mon tangent” interpretation of the Weierstrass-Erdmann (WE) corner conditions. As we
have already mentioned, while the latter naturally furnish the convexification of W (F ) via
affine functions their vectorial analogs, defining the jump set, do not automatically ensure
polyconvexification of W by quasi-affine functions. The implied geometrical analogy, is not
direct since the space of null-Lagrangians is

(
m+n

n

)
-dimensional and the boundary of valid-

ity of polyconvexity should be characterized by graphs of supporting quasi-affine functions
touching the graph of W (F ) in

(
m+n

n

)
− mn + 1 points. This number is equal to 2 if and

only if min(m,n) = 1, explaining the importance of double-tangency in scalar variational
problems. As we show, the role of the double-tangency condition in the general vectorial
context, or equivalently, of the generalized WE conditions, is more subtle and is related to
a nontrivial interplay between poly- and rank-one convexity.
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Indeed, in Carathéodory’s approach the method of supporting null-Lagrangians, deliver-
ing sufficient conditions for a strong local minimum, is applicable whenever (a strengthened
version of) necessary conditions holds. This connection breaks down for vectorial problems,
since polyconvexity (sufficient condition) is not equivalent to quasiconvexity (necessary con-
dition). In this paper we identify a subset of the QC binodal where polyconvexity would
necessarily collapse on rank-one convexity restoring the efficacy of Carathéodory’s approach.
While this subset may or may not exist in particular problems, our method allows one to
search for such subsets for general functionsW (F ). As an illustration, we present a vectorial
example where our method delivers the entire quasiconvexification of W (F ).

In general, the application of the method (in the context of two and three-dimensional
elasticity) may require analysis of minima of a function of a small number of variables, which
may be somewhat technically involved, if one aims to obtain explicit analytic results. We
therefore, have chosen an example, where the answer is obtainable by other means and the
calculations will not obscure the theoretical thrust of the paper. Full scale application of
the proposed method to the analysis of non-quasiconvex Hadamard materials will be done
in our forthcoming work.

The paper is organized as follows. In Section 2 we discuss the two main ingredients
of our approach: the idea of a supporting null-Lagrangian and the concept of a jump set.
In Section 3 we study the PC binodal and identify conditions when it (partially) overlaps
with the jump set. In Section 4 we show how to reconstruct the quasiconvex envelope for
points of quasiconvexity on the jump set. In Section 5 we present an analytically transparent
and yet nontrivial example, where our method is particularly effective delivering the whole
relaxed energy. We close the discussion with some conclusions in Section 6. Our Appendix A
contains proofs of two technical Lemmas. In Appendix B we show that if the goal is to locate
the limits of validity of rank-one convexity (RC binodal instead of QC binodal), the proposed
approach is even more effective. The reason is that, in contrast to QC binodal, RC binodal
is insensitive to modifications of W (F ) outside the binodal region. Finally, in Appendix C
we provide an alternative path to finding the relaxed energy in our example.

2 Preliminaries

In this section we recall the two key elements of our approach: the supporting null-Lagrangians
and the jump set.

2.1 Supporting null-Lagrangians

We recall that a function N(F ) is called a null-Lagrangian if
∫
D
N(∇y)dx depends only on

the values of y(x) on ∂D. A null-Lagrangian must be a linear combination of minors of F
[17, 14]. We say that N(F ) is a supporting null-Lagrangian at F0 ∈ R

m×n if

(A) N(F0) = W (F0)

(B) N(F ) ≤ W (F ) for all F ∈ R
m×n.
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If such a null-Lagrangian exists, then for every domain D ⊂ R
n and every φ ∈ C∞

0 (D;Rm)

−

∫

D

W (F0 +∇φ)dx ≥ −

∫

D

N(F0 +∇φ)dx = N(F0) = W (F0).

Hence, W (F ) is quasiconvex at F0. This simple observation is a starting point of the
classical approach of Carathéodory’s known as the “royal road” in Calculus of Variations
[58]. If W (F ) has a supporting null-Lagrangian at F0, we will say that W (F ) is polyconvex
at F0. The calculation above shows that polyconvexity at F0 implies quasiconvexity. The
converse is false, unless min(m,n) = 1.

Definition 2.1. The set of points F , where W (F ) is not polyconvex is called the PC
binodal region. The boundary of this region is called the PC binodal.

We remark that the method of supporting null-Lagrangians was applied in the theory
of composites under the name of translation method (see [47] and references therein). The
double-tangency trick we are exploiting below was also noted there and is responsible for the
optimality of translation bounds in particular regimes [24, 10].

Let us examine the implications of existence of a supporting null-Lagrangian at a fixed
F0 ∈ R

m×n. Let M(F ) denote a list of all minors of F of degree at least 2. Their ordering
can be arbitrary, but fixed once chosen. We search for constants H0, T0, M0, such that

W (F ) ≥ N(F ) = H0 + 〈T0,F 〉+ 〈M0,M(F )〉, (2.1)

for every F ∈ R
m×n, with equality reached at F = F0. Here 〈·, ·〉 denotes the Frobenius inner

product of matrices or dot product of vectors. We have written null-Lagrangians of degree
0 and 1 explicitly in (2.1) because their coefficients can be eliminated due to properties (A)
and (B). Indeed, condition (A) implies

H0 = W (F0)− 〈T0,F0〉 − 〈M0,M(F0)〉.

It also follows from (A) and (B) that F0 is a global minimizer of the nonnegative smooth
function W (F )−N(F ). Therefore,

T0 = WF (F0)−MF (F0)
T
M0,

where the subscript F denotes the array of partial derivatives with respect to components of
F and MF (F0)

TM0 is a m × n matrix whose (ij)th component is Mα
Fij

(F0)M
α
0 , assuming

summation over the repeated index α.
The remaining task is to find constants M0 from the condition

Ψ(F ;M0) = W̃ (F0,F )− 〈M0, M̃(F0,F )〉 ≥ 0, (2.2)

where
W̃ (F ,G) = W (G)−W (F )− 〈WF (F ),G− F 〉,

M̃(F ,G) = M(G)−M(F )−MF (F )(G− F ).
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In other words, we need to find a list of constants M0, such that F = F0 is a point of
global minimum of Ψ(F ;M0). A necessary condition for (2.2) to hold is the requirement
that F = F0 is a point of local minimum of Ψ(F ;M0). By construction ΨF (F0;M0) = 0
and therefore, it is necessary that

ΨFF (F0;M0) ≥ 0 (2.3)

in the sense of quadratic forms.

2.2 The jump set

One of the consequences of quasiconvexity at a point (1.2) is rank-one convexity at a point:

W̃ (F0,F0 + a⊗ n) ≥ 0 (2.4)

for every a ∈ R
m and n ∈ R

n (without loss of generality, we can take n to be a unit vector).
Following [28] we can describe the jump set as the boundary of validity of (2.4). Let us
briefly recall the argument.

Condition (2.4) can be restated as the property that

w(a,n) = W̃ (F0,F0 + a⊗ n)

has a minimal value 0 (achieved at a ⊗ n = 0). At the boundary of validity of (2.4) the
function w(a,n) will also be minimized at (a0,n0) 6= 0, which leads to equations





w(a0,n0) = 0,

∇aw(a0,n0) = 0,

∇nw(a0,n0) = 0.

(2.5)

If we eliminate variables a0 and n0 from these equations we obtain a scalar constraint on
F0, describing the surface J ⊂ R

m×n, which we call the jump set. This name comes from a
different way in which the jump set equations arise.

Indeed, in [25] we identified constraints on the traces F± of∇y(x) at a surface of the jump
discontinuity of ∇y(x), provided y(x) is a strong local minimizer of an integral functional
E[y]. In that context we can identify F− with F0 and F+ with F0 + a0 ⊗ n0. Noting that
equations of the jump set, found in [25], are invariant with respect to the interchange of F+

and F− we can rewrite them in a “canonical” (symmetric) form 3

rank[[F ]] = 1, (2.6)

[[WF ]][[F ]]T = 0, (2.7)

[[WF ]]
T [[F ]] = 0, (2.8)

[[W ]]− 〈W±
F , [[F ]]〉 = 0. (2.9)

3The canonical form of the jump set equations not only highlights the symmetry between phases F+ ↔ F−,
but also emphasizes the symmetry between the strain and the stress.
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where we use the notation [[A]] = A+ − A−. In the context of nonlinear elasticity equation
(2.6) is the kinematic compatibility condition, arising due to the continuity of the deformation
y(x) across, say, a martensitic phase boundary. Equation (2.7) expresses traction continuity
across such interface. Equation (2.9) is known as the Maxwell condition of phase equilibrium
[19].

It is straightforward to show that (2.7)-(2.9) is equivalent to (2.5). Moreover, one can also
easily recognize that (2.7)-(2.9) is a vectorial generalization of the well-known Weierstrass-
Erdmann corner conditions [15, 22]. The fact that the first Weierstrass-Erdmann condition
generalizes not to (2.7), but to a pair of equations (2.7), (2.8) is rather remarkable. The
variational meaning of (2.8) was elucidated in [25], where it was shown that it is related to
a roughening instability of an interface.

For our purposes we will only need the fact that that all points F± ∈ J belong to the
boundary of validity of rank-one convexity (2.4). Then, if W (F ) is quasiconvex at F±, these
points also lie on the QC binodal. The main idea of our approach is that quasiconvexity at
such points F± can be proved by establishing a more transparent property: the polyconvexity.

3 PC binodal

We now return to the inequality (2.2) that guarantees polyconvexity at F0 and examine the
boundary of its validity. As we cross such boundary two things may happen. Either F = F0

ceases to be a point of local minimum, which could be detected by the quadratic form in
(2.3) becoming degenerate, or it may stop being a global minimum before it stops being a
local minimum.

We focus on the latter possibility, since, by analogy with the convex envelope, it should
be the primary mode of polyconvexity failure for non polyconvex energies. Let us consider
the case where on the PC binodal there appears a single additional global minimizer F ∗ 6= F0

of Ψ(F ;M0). Then, we must have

Ψ(F ∗;M0) = 0, ΨF (F
∗;M0) = 0, (3.1)

Let us assume, in addition to (3.1), that

ΨFF (F0;M0) > 0, ΨFF (F
∗;M0) > 0, (3.2)

which is sufficient to ensure that F0 and F ∗ are local minima of Ψ(F ;M0). We also assume
that Ψ(F ;M0) > 0 for every F 6∈ {F0,F

∗}, guaranteeing that F0 and F ∗ are the only global
minimizers of Ψ(F ;M0).

Now, for the sake of the foregoing argument we assume thatW (F ) has very rapid growth
at infinity, say W (F )/|F |min(m,n) → ∞, when |F | → ∞. We will then derive a set of
equations to be satisfied by the unknowns F0, F

∗ and M0. We emphasize that our method
consists of choosing these parameters according to the derived constraints for all smooth
functions W (F ), regardless of their growth at infinity, since the success or failure of the
method consists entirely in the outcome of establishing inequality (2.2) for the chosen values
of the parameters.
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Assuming sufficiently fast growth ofW (F ) at infinity we can conclude that Ψ(F ;M0) →
∞, when |F | → ∞ uniformly in M0 on compact sets.

Lemma 3.1. Suppose that W (F ) is of class C3 and

lim
|F |→∞

W (F )

|F |min(m,n)
= +∞

Suppose that for a particular choice of parameters F0, F
∗ and M0 we have

(i) Ψ(F ∗,M0) = 0

(ii) Ψ(F ,M0) > 0, ∀F 6∈ {F ∗,F0}

(iii) ΨFF (F0,M0) > 0 and ΨFF (F
∗,M0) > 0 in the sense of quadratic forms.

Suppose further that
ΨM0

(F ∗;M0) 6= 0.

Then there exists δ > 0, so that for all F̂0 ∈ B(F0, δ) there exist constants M̂0 for which

Ψ̂(F ;M̂0) ≥ 0 for all F ∈ R
m×n, where Ψ̂ is defined in (2.2) with F0, replaced by F̂0.

The proof of this lemma is given in Appendix A. However, it is easy to explain why it
should be true. Indeed, if ΨM0

(F ∗;M0) 6= 0, then we can always choose constants M̂0,

sufficiently close to M0 for which Ψ(F ∗;M̂0) > 0. By continuity, Ψ̂(F ;M̂0) > 0 for all F̂0

sufficiently close to F0 and all F sufficiently close to F ∗, as well as for all F away from F0

and F ∗. By continuity of second derivatives Ψ̂(F ;M̂0) would still have a local minimum at
F = F̂0, showing that F0 is in the interior of the region of polyconvexity of W (F ). Hence,
Lemma 3.1 implies that for F0 to lie on the PC binodal we must require that

M̃(F0,F
∗) = ΨM0

(F ∗;M0) = 0. (3.3)

It remains to observe that equation (3.3) is equivalent to

rank(F ∗ − F0) = 1. (3.4)

Indeed, if M(F ) is a 2× 2 minor of F , then it is quadratic and homogeneous and therefore

M̃(F0,F
∗) =M(F ∗ − F0) = 0,

which implies (3.4). Conversely, (3.4) implies (3.3). Indeed, the “Weierstrass operator”

U 7→ Ũ annihilates all affine functions of F . But every minor of F is quasi-affine, i.e.
affine along rank-one directions. Therefore, M̃(F0,F

∗) = 0, provided (3.4) holds. This
argument explains why similar observation could be made in the study of energy-minimizing
composites [24, 10, 5], where the choice of W (F ) was particular (minimum of two linearly
elastic wells).

The rank-one relation (3.4) suggests a link with the jump set. For this reason we change
notations

F− = F0, F+ = F ∗, P± = WF (F±), (3.5)
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so that (3.4) coincides with (2.6). We will now show that equations (3.1) imply (2.7)–(2.9).
The first equation in (3.1) becomes

W̃ (F−,F+) = [[W ]]− 〈P−, [[F ]]〉 = 0, (3.6)

since M̃(F0,F
∗) = 0. Given that N(F ) is a null-Lagrangian, N(F + [[F ]]) must also be

null-Lagrangian. Hence, equation (3.6) must also hold if we switch the plus and the minus
subscripts in F . In other words, (3.6) must have a symmetric counterpart

W̃ (F+,F−) = −[[W ]] + 〈P+, [[F ]]〉 = 0. (3.7)

This establishes (2.9).
The second equation in (3.1) can be written as

[[P ]] = [[MT
F ]]M0. (3.8)

We will now show that equation (3.8) implies both (2.7) and (2.8). Indeed, (3.8) is a linear
system for constants M0. By the Fredholm alternative, equation (3.8) is solvable if and only
if

〈[[P ]],K〉 = 0, ∀K : [[MF ]]K = 0. (3.9)

Suppose that N(F ) is an arbitrary null-Lagrangian. Then

N(F + u⊗ v) = N(F ) + 〈NF (F ),u⊗ v〉, (3.10)

for all u and v. Differentiating (3.10) with respect to u and v we obtain

〈(NF (F + u⊗ v)−NF (F )), u̇⊗ v + u⊗ v̇〉 = 0,

where u̇ ∈ R
m and v̇ ∈ R

n can be arbitrary. It is evident now that all K of the form
K = b ⊗ n + a ⊗ m, b ∈ R

m, m ∈ R
n, where [[F ]] = a ⊗ n satisfy [[MF ]]K = 0. Hence,

according to (3.9), solvability of (3.8) implies
{
[[P ]]n = 0,

[[P ]]Ta = 0.
(3.11)

The first equation in (3.11) is equivalent to (2.7), while the second, to (2.8).
In particularly important cases m = n = 2 or 3 we can describe the set of solutions of

(3.8) explicitly. When m = n = 2

Ψ(F ;m0) = W̃ (F0,F )−m0 det(F − F0). (3.12)

where

m0 =
〈[[P ]], cof[[F ]]〉

|[[F ]]|2
. (3.13)

In addition inequalities (3.2) become

〈WFF (F±)ξ, ξ〉 − 2m0 det ξ > 0 (3.14)
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for all 2×2 matrices ξ. The points F±, where at least one of them fails the non-strict version
of (3.14) must lie in the interior of the binodal region. Inequalities (3.14) are equivalent to
the Legendre-Hadamard conditions for two-phase configurations [28].

If m = n = 3

Ψ(F ;b0,m0,m0) = W̃ (F0,F )− 〈cof(F − F0),M0〉 −m0 det(F − F0), (3.15)

where

M0 =
(∇cof[[F ]])[[P ]]

|[[F ]]|2
+ a⊗m0 + b0 ⊗ n, (3.16)

where [[F ]] = F ∗ − F0 = a ⊗ n, while b0 ∈ R
3, m0 ∈ R

3 and m0 ∈ R are free parameters.
Inequalities (3.2) become

{
〈WFF (F−)ξ, ξ〉 − 2〈cofξ,M0〉 > 0,

〈WFF (F+)ξ, ξ〉 − 2〈cofξ,M0 +m0[[F ]]〉 > 0,
(3.17)

and provide restrictions on the possible values of the free parameters, which need to be
determined from the condition

min
F

Ψ(F ;b0,m0,m0) = 0. (3.18)

If (3.18) is impossible to satisfy, then polyconvexity at F0 fails.

4 Relaxed energy

There is an additional “bonus” for proving quasiconvexity of W (F ) at F± ∈ J in the form
of the explicit formula for QW (F )—the quasiconvex envelope of W (F ) [11] as described by
the theorem below [27].

Theorem 4.1. Suppose F± is the corresponding pair of points on the jump set and W (F ) is
quasiconvex at F+ (or F−). Then W (F ) is quasiconvex at F− (or F+) and for any λ ∈ [0, 1]

QW (λF+ + (1− λ)F−) = λW (F+) + (1− λ)W (F−). (4.1)

Of course, under the assumptions of Theorem 4.1 equality QW (F0) = RW (F0) holds at all
F0 = λF+ + (1− λ)F−.

We can also use the right-hand side of (4.1) to define a function W (F ) for all pairs
F±, without verifying quasiconvexity. W (F ) can be called simple laminate-relaxation of
W (F ). Its QC (and RC) binodal contains points on the binodal of W (F ), not described by
Theorem 4.1. Hence, applying our method to W can reveal other common parts of the QC
and RC binodals, corresponding to higher order laminate-relaxations of W (F ). However,
one would have to confront increasingly more complex algebraic problems.

One drawback of the method is that establishing (2.2) may depend on W (F ) outside
of the binodal region. However, if we change our goal from proving W (F0) = QW (F0) to
proving W (F0) = RW (F0), where RW is the rank-one convex envelope of W (F ), then the
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method can be applied to a modified energy density Ŵ (F ), which is set to +∞ in regions
where we already know that RW (F ) = W (F ). Theorem B.2 in Appendix B shows that
such modifications do not affect the rank-one convex envelope, and therefore, if the method
is successful for Ŵ (F ) at F0 then

RW (F0) = RŴ (F0) = QŴ (F0) = Ŵ (F0) = W (F0),

even if the method fails for the original energy density. The modification trick does not work
for the quasiconvex envelopes because of the inherent “non-locality” of the quasiconvexity
condition [39, 40]. An effective numerical algorithm to compute the rank-one convexification
ofW (F ) was recently developed in [49]. Both the new and the older algorithm [13] implement
a similar iterative procedure numerically.

5 Example

To illustrate the effectiveness of the proposed method, consider a simple example of “geo-
metrically linearized” Hadamard material [32, 34]. Starting with W (F ) = h(detF ) + µ|F |2

we can use the “geometric” approximation detF ≈ 1+Tr (F −I), which is valid in the limit
F → I, however, the formal asymptotic expansion with respect to a small parameter would
also induce physical linearization and would trivialize the problem. For rigorous linearization
of multi-well energies see [51, 3, 4]. To avoid this we view the Hadamard material only as a
motivation and study below the ad hoc energy

W (F ) = f(θ) + µ|ε|2 + µ′|Ω|2, µ > 0, µ+ µ′ > 0, (5.1)

where

θ = Tr ε, ε =
1

2
(F + F T ), Ω =

1

2
(F − F T ). (5.2)

To ensure the existence of a QC binodal, we assume that the function f(θ) has a double-well
shape, illustrated in Fig. 1a.

Remark 5.1. Usually, geometrically linear but physically nonlinear theory of elasticity deals
with the energies of form W (F ) = Ŵ (ε), see for instance [36, 9, 35, 1, 2]. In the case of
Hadamard material the term µ|F |2 is already quadratic and applying geometric linearization
only to the nonlinear term we obtain the model (5.1) with µ′ = µ. In the absence of rigorous
derivation of such model we have no compelling reason to set µ′ = 0. Therefore, we study
(5.1) in the entire range of parameters µ, µ′ which obviously includes sub-cases µ′ = 0 and
µ′ = µ.

The first step of the method is to characterize the jump-set by solving (2.6)–(2.9). Given
that [[F ]] = a⊗ n and

WF (F ) = f ′(Tr ε)I + 2µε+ 2µ′Ω,

we obtain
[[WF ]] = [[f ′]]I + µ(a⊗ n+ n⊗ a) + µ′(a⊗ n− n⊗ a). (5.3)
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Figure 1: (a) Double-well nonlinearity in a geometrically linear Hadamard material; (b)
Common tangent to the graph of Φ(θ).

Equations (2.7) and (2.8) take the form

{
([[f ′]] + (µ− µ′)〈a,n〉)n+ (µ+ µ′)a = 0

([[f ′]] + (µ− µ′)〈a,n〉)a+ |a|2(µ+ µ′)n = 0.

Since, µ+ µ′ > 0, we can conclude that a = αn for some α 6= 0. Therefore, α = −[[f ′]]/2µ.
Now, taking the trace of [[F ]] = αn ⊗ n we obtain that α = [[θ]]. Equations (2.6)–(2.8)

can be summarized as follows




[[f ′ + 2µθ]] = 0,

[[F ]] = [[θ]]n⊗ n,

[[WF ]] = −2µ[[θ]](I − n⊗ n).

(5.4)

In order to simplify the Maxwell relation (2.9) we take the average4 of the two equations in
(2.9) to obtain

[[W ]]− 〈{{WF }}, [[F ]]〉 = 0,

where {{A}} =
1

2
(A+ +A−). The advantage for writing the Maxwell condition in this way is

that it annihilates all polynomial contributions of up to degree 2 in F . Therefore, we obtain

[[f ]]− {{f ′}}[[θ]] = 0. (5.5)

Note that neither µ nor µ′ enters this equation, since they are contained in the quadratic
term of the energy. We can use the degree 2 polynomial annihilation property again in order
to see the geometric meaning of the first equation in (5.4) coupled with (5.5). Defining

Φ(θ) = f(θ) + µθ2, (5.6)

4Since the two equations in (2.9) are equivalent we can use only one or only the other or an arbitrary
linear combination of the two.

12



we can now rewrite the entire jump set system in the form





[[Φ′]] = 0,

[[Φ]]− {{Φ′}}[[θ]] = 0,

[[F ]] = [[θ]]n⊗ n,

[[WF ]] = −2µ[[θ]](I − n⊗ n).

(5.7)

The first two equations in (5.7) are scalar and they imply that θ− = θ1 and θ+ = θ2, where θ1
and θ2 are the two points of common tangency to the graph of Φ(θ), shown in Fig. 1b. The
conclusion is that the jump set J for the energy (5.1) is the union of two disjoint hyperplanes

J− = {F ∈ M : TrF = θ1}, J+ = {F ∈ M : TrF = θ2}.

We recall [25] that the region

B0 = {F ∈ M : θ1 < TrF < θ2}

bounded by jump set always fails the Weierstrass positivity condition (2.4).
We are now in a position to establish polyconvexity for the entire jump set J in two space

dimensions. Formulas (3.13) and (5.7) give m0 = −2µ, and hence, (3.12) becomes

Ψ±(F ) = f̃(θ±, γ) + µ|ε|2 + 2µ′ω2 + 2µ(det ε+ ω2),

where

F = F± + ε+ ω

[
0 −1

1 0

]
, γ = TrF .

By assumption µ+µ′ > 0 and therefore Ψ±(F ) is minimized when ω = 0. We also have (for
any symmetric matrix ε)

|ε|2 + 2det ε = (Tr ε)2 = (γ − θ±)
2.

Hence,
min
F

Ψ±(F ) = min
γ

Φ̃(θ±, γ) = 0,

and the common tangent to the graph of Φ(θ) at θ± is a supporting line, as shown in Fig. 1b.
The polyconvexity of the jump set in now established.

Consider next the three-dimensional case. Formulas (3.16) and (5.7) give

M0 = −2µ(I3 − n⊗ n) + n⊗m0 + b0 ⊗ n, (5.8)

and hence, (3.15) becomes

Ψ±(F ;b0,m0,m0) = f̃(θ±, γ) + µ|ε|2 + µ′|Ω|2 − 〈M0, cof(F − F±)〉 −m0 det(F − F±).
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From this form it is immediately clear that we must choose m0 = 0, since detF has cubic
growth at infinity, even if we fix γ = TrF . This will make minF Ψ± = −∞, if m0 6= 0. Using
the orthogonal decomposition

F − F± = D +
η

3
I3 +Ω, D = ε−

1

3
(Tr ε)I3, η = γ − θ±,

we can conclude that Ψ±(F ;b0,m0) is quadratic in D and Ω. We can therefore minimize
Ψ± in D and Ω (constraining free parameters b0 and m0 so that the minimum value is not
−∞).

It will be convenient to parametrize 3× 3 antisymmetric matrices by vectors ω ∈ R
3, so

that Ωu = ω ×u and in what follows we will use for this mapping the notation Ω = Ω(ω).
Then

Ψ±(H ;b0,m0) = f̃(θ±, γ) + µ|ε|2 + 2µ′|ω|2 − 〈M0, cofε+ ω ⊗ ω +Ω(εω)〉.

Now we see that using formula (5.8) for M0 is less convenient than separating its symmetric
and antisymmetric parts:

M0 = −2µ(I3 − n⊗ n) + n⊙ u+Ω(n× k), n⊙ u =
1

2
(n⊗ u+ u⊗ n).

It is evident that we can set k = 0 because (setting γ = θ±) the nonnegativity of the quadratic
forms µ|D|2 + 〈M0, cofD〉 and 2µ′|ω|2 + 〈M0ω,ω〉 is already necessary. The nonnegativity
of the latter form is equivalent to

〈u,n〉 ≤ 2µ′. (5.9)

Hence, we obtain

Ψ±(F ;u) = f̃(θ±, γ) + µ|ε|2 + 2µ〈I3 − n⊙ v, cofε〉, v =
u

2µ
+ n,

where the constraint (5.9) becomes

〈v,n〉 ≤
µ+ µ′

µ
. (5.10)

If we decompose ε = D + (η/3)I3 we can use the relations

|ε|2 = |D|2 +
η2

3
, cofε = cofD −

η

3
D +

η2

9
I3.

Observing that for symmetric trace-free 3× 3 matrices Tr cofD = −|D|2/2 we can write

Ψ±(H ;u) = f̃(θ±, γ) + µη2 − 2µ〈n⊙ v, cofD −
η

3
D +

η2

9
I3〉.

Since
f̃(θ±, γ) + µη2 = Φ̃(θ±, γ) ≥ 0,

14
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Figure 2: (a) The graph of fqc(θ) for the example; (b) Relaxed energy QW (F ) restricted to
diagonal 2× 2 matrices F in the (F11, F22)-plane.

we see that setting v = 0 (which satisfies (5.10)) completes the proof of polyconvexity at
F±.

As we have already mentioned, polyconvexity and a fortiori quasiconvexity at F± implies
a simple formula (4.1) for the quasiconvex envelope of W . In the case of the energy density
(5.1) we obtain

QW (F ) = fqc(TrF ) + µ|ε|2 + µ′|Ω|2, (5.11)

where

fqc(θ) =

{
f(θ), F 6∈ B0,

{{f ′}}(θ − {{θ}}) + {{f }}+ µ(θ − θ1)(θ2 − θ), F ∈ B0,
(5.12)

where {{f }}, {{θ}} are constants, independent of θ.
In conclusion, we note that we can write the energy (5.1) as

W (F ) = g(θ) + µ|dev(ε)|2 + µ′|Ω|2,

where g(θ) = f(θ) + θ2/n, where n = 2 or 3 is the space dimension. In this form the
convexification of W (F ) is obviously

CW (F ) = Cg(θ) + µ|dev(ε)|2 + µ′|Ω|2,

where Cg(θ) is the convexification of g(θ). By contrast (see (C.4))

QW (F ) = gqc(θ) + µ|dev(ε)|2 + µ′|Ω|2,

where

gqc(θ) = CΦ(θ)−
n− 1

n
θ2.

Hence, gqc(θ) is quadratic in θ on [θ1, θ2], see a double-tangent downward-facing parabola
in Fig. 2a. By contrast, convexification of W (F ) would be represented by a double-tangent
straight line on the graph of g(θ). Behind this purely vectorial effect, is the fact that we

15



had to replace affine functions by quasi-affine functions in (2.1). The supporting quasi-affine
function used in our method is necessarily quadratic because of the quadratic rate of growth
of the energy at infinity in all directions perpendicular to multiples of the identity. The same
structure of QW (F ) is obtained in the case of piece-wise quadratic double-well energy in
[37] and for the same reason.

The graphs of the entire energies W (F ) and QW (F ), restricted to diagonal matrices are
shown in Fig. 2b.

Remark 5.2. For our geometrically linear example (5.1) the quasiconvexification of W (F )
can be also computed directly, see Appendix C. However, in the nontrivial case of a geo-
metrically nonlinear Hadamard material with double well dependence on the determinant,
the shortcut discussed in Appendix C won’t work while the general method developed in this
paper is still applicable. A preliminary study suggests that our approach allows one to fully
characterize the function QW (F ) for such materials when the parameter µ is sufficiently
large.

6 Conclusions

The proposed approach is based on a simple observation that the part of the PC binodal,
characterized by double-tangency of supporting null-Lagrangians, must necessarily belong
to the jump set, and therefore to the QC binodal. While the jump set and PC binodal
are known to provide bounds from the inside and from the outside for the QC binodal, the
general nature of bound collapse was not noticed before.

The main advantage of the proposed approach is that it is fully algebraic and therefore
constructive. The first step of the method is to compute the jump set J by solving algebraic
equations (2.6)–(2.9). Then for each point F0 ∈ J the point of second tangency F ∗ is uniquely
determined. Next, one needs to verify algebraic conditions (2.2), where the constants M0

satisfy (3.8). In the special case m = n = 2 the method delivers explicit values for M0,
while when m = n = 3 the method determines 4 out of 10 constants M0, see (3.15)–(3.16).
For large values of m and n the number of constants in M0 is vastly larger than mn, and
hence the practical value of the method rapidly diminishes with growth of the dimensions.

Nevertheless in the important case of nonlinear elasticity withm = n ≤ 3 the method can
be very effective. We illustrated the workings of the method on a nontrivial model example,
where it produced optimal answers, in the sense that the whole quasi-convex envelope could
be reconstructed analytically. The generality of the algorithm allows the method to be
applied systematically to problems for which finding directly the quasiconvexification of the
energy is currently beyond reach.
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the French Government under the Grant No. ANR-10-IDEX-0001-02 PSL.
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A Proof of Lemma 3.1

Lemma A.1. Suppose f(x,m) is a smooth (C2 is enough) function on R
d × B(0, 1), where

B(0, 1) is a unit ball in R
N . We assume that f(x,m) > 1 for all |x| > R and all m ∈ B(0, 1)

for some uniform constant R. Suppose that there exists x0 6= 0, such that x = 0 and x = x0
are the only global minimizers of f(x, 0). Specifically,

(i) f(0, 0) = f(x0, 0) = 0,

(ii) fxx(0, 0) > 0 and fxx(x0, 0) > 0 in the sense of quadratic forms

(iii) f(0,m) = 0, fx(0,m) = 0, m ∈ B(0, 1),

Suppose that fm(x0, 0) 6= 0. Then, for any δ ∈ (0, 1) there exists m ∈ B(0, δ) so that
f(x,m) > 0 for all x 6= 0.

Proof. Let us first examine what happens in the neighborhoods of 0 and x0. Near x = 0 we
have

f(x,m) = f(0,m) + 〈fx(0,m), x〉+
1

2
〈fxx(0,m)x, x〉+ o(|x|2) =

1

2
〈fxx(0,m)x, x〉+ o(|x|2).

By continuity of second derivatives, there exist δ0 > 0 and c0 > 0, so that f(x,m) ≥ c0|x|
2

for all |x| < δ0, |m| < δ0. In the neighborhood of x0 we have

f(x,m) = f(x, 0)+〈fm(x, 0),m〉+O(|m|2) = f(x, 0)+〈fm(x0, 0),m〉+O(|x−x0||m|)+O(|m|2).

By assumption there exists δ0 > 0 and c0 > 0 (we are using the same notation each time
instead of δ1, c1, . . ., ultimately choosing the smallest δj and cj), such that f(x, 0) ≥ c0|x−x0|

2

for all |x− x0| < δ0. Thus, there exists C > 0, so that

f(x,m) ≥ c0|x− x0|
2 + 〈fm(x0, 0),m〉 − C(|x− x0||m|+ |m|2),

for all |m| < δ0 and |x− x0| < δ0. Using the inequality

2|x− x0||m| ≤ k|x− x0|
2 +

|m|2

k

with k = c0/(2C) we conclude that

f(x,m) ≥
c0
2
|x− x0|

2 + 〈fm(x0, 0),m〉 − C|m|2,

If fm(x0, 0) 6= 0, then we can choose a unit vector u0 ∈ R
N , such that 〈fm(x0, 0), u0〉 > 0.

Therefore, there exists δ0 > 0, so that for all |x− x0| < δ0 and all δ ∈ (0, δ0)

f(x, δu0) ≥
c0
8
|x− x0|

2 +
δ

2
〈fm(x0, 0), u0〉

This shows that f(x, δu0) > 0 for all δ ∈ (0, δ0) and all |x− x0| < δ0.
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By our assumption f(x, 0) > γ0 > 0 for all x outside ofB(0, δ0)∪B(x0, δ0). By smoothness
there is a constant C > 0, so that

|f(x, δu0)− f(x, 0)| < Cδ

for all |x| < R, and therefore, f(x,m) > γ0/2 > 0 for all |m| < δ and all x outside of
B(0, δ0) ∪ B(x0, δ0), if we choose δ < γ0/(2C). The lemma is proved now.

This lemma shows that if Ψ(F ,M0) attains its minimum value 0 at exactly two points
F0 and F ∗ and ΨM0

(F ∗,M0) 6= 0, then it is possible to modify M0, so that Ψ(F ,M0)
attains its minimum value 0 only at F0. We now show that if F0 is the unique minimizer of
Ψ(F ,M0), satisfying (2.3), then this will also be true for all other F0 that are sufficiently
close to the original F0, where the constants M0 are kept fixed. Hence, we now regard Ψ as
a function of F and F0, keeping M0 fixed. The conclusion of Lemma 3.1 follows from the
lemma below.

Lemma A.2. Suppose that f ∈ C2(Rd × B(0, 1)) satisfies

(i) f(x, 0) > 0 for all x 6= 0

(ii) fxx(0, 0) > 0

(iii) f(a, a) = 0 and fx(a, a) = 0 for all a ∈ B(0, 1)

(iv) f(x, a) > 1 for all |x− a| > R and all a ∈ B(0, 1).

Then there exists δ > 0, so that f(x, a) > 0 for all x 6= a and |a| < δ.

Proof. By implicit function theorem there exists δ1 > 0, such that the equation fx(x, a) = 0
has a unique solution x = a on a neighborhoodof 0, provided |a| < δ1. By continuity
fxx(a, a) > 0 when |a| < δ1. Hence, x = a is also a point of local minimum of x 7→ f(x, a),
while f(a, a) = 0. Hence, f(x, a) > 0, whenever |x| < δ1, |a| < δ1 and x 6= a. By assumption

min
|x|≥δ1

f(x, 0) = γ > 0.

Hence, by condition (iv), there exists 0 < δ < δ1, so that

min
|x|≥δ1

f(x, a) = min
δ1≤|x|≤R+1

f(x, a) >
γ

2
> 0,

provided |a| < δ. But then for any |a| < δ we have f(x, a) > 0, whenever |x| < δ1 and x 6= a,
and f(x, a) > 0, when |x| ≥ δ1. The lemma is now proved.
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B The robustness of rank-one convex envelopes

In this section we will show that the rank-one convex envelope is insensitive (robust) to
certain “safe” modifications of the energy density. Specifically, let W (1),W (2) : Rm×n → R

be of class C1 and satisfy the mild growth conditions required to ensure that RW (1) and
RW (2) are of class C1 via a theorem of Ball, Kirchheim and Kristensen [8]. Let

Bj = {F : RW (j)(F ) < W (j)(F )}, j = 1, 2

be their rank-one convex binodal regions. The intuition is that since rank-one convexity, just
as convexity, can be locally defined, the binodal region of W (F ) is can be regarded as a set
of all points lacking rank-one convexity, while its complement consists of “rank-one convex
points”. According to that image any modification of W (F ) outside of rank-one binodal
that does not destroy rank-one convexity should not affect neither the binodal region, nor
the rank-one convex envelope inside the binodal region. In order to formulate our intuition
as a theorem we need to make precise what we mean by rank-one convexity at a point for
C1 functions.

Definition B.1. We say that a C1 function W (F ) satisfies the Legendre-Hadamard (LH)
condition at a point F0 if there exists δ > 0 so that

W (F0 + tu⊗ v) ≥ W (F0) + t〈WF (F0),u⊗ v〉

for all |t| < δ and all unit vectors u and v.

It is easy to see that if W (F ) is of class C2 then the above definition implies the classical
LH condition at a point 〈WFF (F0)(u⊗v),u⊗v〉 ≥ 0. The converse implication is also true
on open subsets. We will use the fact that a C1 function W (F ) is rank-one convex if and
only if it satisfies the LH condition at every F . This statement is referred to as “locality”
of rank-one convexity.

Theorem B.2. Suppose W (1), W (2), RW (1) and RW (2) are of class C1. Assume that

(a) W (1)(F ) = W (2)(F ) for all F ∈ B1

(b) W (2)(F ) satisfies the LH condition for all F 6∈ B1.

Then

(i) B2 = B1 = B

(ii) RW (1)(F ) = RW (2)(F ) for all F ∈ B.

Proof. The idea is to show that RW (1)(F ) ≤ RW (2)(F ) and RW (2)(F ) ≤ RW (1)(F ) for
every F ∈ B1. For this reason we define

Ŵ (1)(F ) =

{
W (1)(F ), F 6∈ B1,

RW (2)(F ), F ∈ B1,
, Ŵ (2)(F ) =

{
W (2)(F ), F 6∈ B1,

RW (1)(F ), F ∈ B1,
.
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Let us examine Ŵ (2). We note that for all F ∈ ∂B1 we have

W (2)(F ) = W (1)(F ) = RW (1)(F ), W
(2)
F (F ) = W

(1)
F (F ) = RW

(1)
F (F ).

Thus, Ŵ (2) is of class C1 and satisfies the LH condition at all F . We conclude that Ŵ (2)

is rank one convex. Also, Ŵ (2)(F ) = W (2)(F ) for all F 6∈ B1 and Ŵ (2)(F ) = RW (1)(F ) ≤

W (1)(F ) = W (2)(F ), for all F ∈ B1. Hence, Ŵ (2) is a rank one convex function, such that

Ŵ (2) ≤ W (2). Therefore,
Ŵ (2)(F ) ≤ RW (2)(F ), ∀F . (B.1)

In particular, for all F 6∈ B1

W (2)(F ) = Ŵ (2)(F ) ≤ RW (2)(F ) ≤ W (2)(F ).

We conclude that RW (2)(F ) = W (2)(F ) for all F 6∈ B1 and hence, B2 ⊂ B1. It follows that

Ŵ (1)(F ) =

{
W (1)(F ), F 6∈ B2,

RW (2)(F ), F ∈ B2.

Indeed, for every F ∈ B1 \ B2 the left-hand side has the value RW (2)(F ) = W (2)(F ) =
W (1)(F ), agreeing with the right-hand side. But then we can repeat the same argument
where the roles of W (1) and W (2) are interchanged, proving that B1 ⊂ B2 and, hence B1 =
B2 = B, and

Ŵ (1) ≤ RW (1)(F ), ∀F . (B.2)

But then for F ∈ B inequality (B.1) says RW (1)(F ) ≤ RW (2)(F ), while inequality (B.2)
says RW (2)(F ) ≤ RW (1)(F ), proving the theorem.

C Direct calculation of the quasiconvex envelope of

(5.1)

The quasiconvexification of W (F ) in the example (5.1) is actually easier to compute using
formula

QW (F ) = inf
φ∈C∞

0
(D;Rm)

−

∫

D

W (F +∇φ)dx, (C.1)

due to Dacorogna [11], if one can guess that for any matrix F we have

|ε|2 = θ2 + |Ω|2 − 2J2(F ), (C.2)

where θ, ε and Ω are defined in (5.2) and

J2(F ) =
1

2
((TrF )2 − Tr (F 2))
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is a null-Lagrangian. Decomposition (C.2) amounts to a direct guess of the supporting null-
Lagrangian in our method. Applying the decomposition (C.2) and recalling definition (5.6)
of Φ, we obtain

−

∫

D

W (F +∇φ)dx = −

∫

D

{
Φ(θ +∇ · φ) + (µ′ + µ)|Ω+∇φ− (∇φ)T |2

}
dx− 2µJ2(F )

Using the Jensen’s inequality (recalling that µ+ µ′ > 0) we obtain

−

∫

D

W (F +∇φ)dx ≥ CΦ(θ) + (µ′ + µ)|Ω|2 − 2µJ2(F ), (C.3)

where CΦ(θ) is the convex hull of Φ(θ), which agrees with Φ(θ), when θ 6∈ (θ1, θ2) and
agrees with the common tangent in Fig. 1b, when θ ∈ (θ1, θ2). Thus, if θ = TrF 6∈ (θ1, θ2)
the right-hand side of (C.3) is exactly W (F ). If θ ∈ (θ1, θ2), then we need to look for φ

that achieves equality in (C.3). Such φ must necessarily satisfy ∇φ − (∇φ)T = 0. Hence,
φ = ∇ψ. In addition, ∇ ·φ must take values θ1 − θ and θ2 − θ. These constraints can all be
met for D—a unit ball in R

n and ψ(x) = ψ(|x|):

ψ(r) =

{
θ2−θ
2n

(r2 + 2
(n−2)rn−2 ), 1 < r < r∗,

θ1−θ
2n

r2 + c, r∗ ≤ r ≤ 0,

where c is chosen to ensure that ψ(r) is continuous, and r∗ is chosen to ensure that ψ′(r)
is on continuous 0 ≤ r ≤ 1. It is easy to check that ∇ψ vanishes when r = 1 and that
∇·ψ ∈ {θ1− θ, θ2− θ}. This implies that φ = ∇ψ attains equality in (C.3), thereby proving
that the right-hand side of (C.3) is QW (F ) for all F .

Using formula (C.2) we can rewrite the right-hand side of (C.3) as follows

QW (F ) = CΦ(θ)− µθ2 + µ|ε|2 + µ′|Ω|2. (C.4)

It remains to observe that when θ 6∈ (θ1, θ2) we have

CΦ(θ)− µθ2 = Φ(θ)− µθ2 = f(θ).

When θ ∈ (θ1, θ2), then CΦ(θ) is affine and hence, CΦ(θ)−µθ2 must agree with fqc(θ), given
by (5.12), since fqc(θ) + µθ2 is affine on (θ1, θ2), agrees with Φ(θ) outside (θ1, θ2) and is of
class C1, so that the graph of the affine function fqc(θ) + µθ2 must be tangent to the graph
of Φ(θ) at θ1 and θ2. Such an affine function is unique and agrees with CΦ(θ) on (θ1, θ2).

We note that the direct calculation of the quasiconvex envelope is based on subtracting
the right null-Lagrangian −2µJ2(F ) from W (F ). This gives us immediate formulas for the
translation constants m0, b0 and m0. Formulas (3.13) and (3.16) show that our method can
recover these values without having to guess the right null-Lagrangian in (2.1).

References

[1] Rohan Abeyaratne and Jiang Guo-Hua. Dilatationally nonlinear elastic materials—I.
Some theory. International Journal of Solids and Structures, 25(10):1201 – 1219, 1989.

21



[2] Rohan Abeyaratne and Jiang Guo-Hua. Dilatationally nonlinear elastic materials—II.
an example illustrating stress concentration reduction. International Journal of Solids
and Structures, 25(10):1221 – 1233, 1989.

[3] V. Agostiniani, T. Blass, and K. Koumatos. From nonlinear to linearized elasticity
via Γ-convergence: the case of multiwell energies satisfying weak coercivity conditions.
Math. Models Methods Appl. Sci., 25(1):1–38, 2015.

[4] Roberto Alicandro, Gianni Dal Maso, Giuliano Lazzaroni, and Mariapia Palombaro.
Linearisation of multiwell energies. preprint, 2017.

[5] Mikhail A. Antimonov, Andrej Cherkaev, and Alexander B. Freidin. Phase transfor-
mations surfaces and exact energy lower bounds. International Journal of Engineering
Science, 90:153–182, 2016.

[6] John M. Ball and R. James. Fine phase mixtures as minimizers of energy. Arch. Ration.
Mech. Anal., 100:13–52, 1987.

[7] John M. Ball and R. James. Proposed experimental tests of a theory of fine microstruc-
ture and two-well problem. Phil. Trans. Roy. Soc. Lon., 338A:389–450, 1992.

[8] John M. Ball, Bernd Kirchheim, and Jan Kristensen. Regularity of quasiconvex en-
velopes. Calc. Var. Partial Differential Equations, 11(4):333–359, 2000.

[9] B. Budiansky, J.W. Hutchinson, and J.C. Lambropoulos. Continuum theory of dilatant
transformation toughening in ceramics. International Journal of Solids and Structures,
19(4):337 – 355, 1983.

[10] Isaac Chenchiah and Kaushik Bhattacharya. The relaxation of two-well energies with
possibly unequal moduli. Arch. Rat. Mech. Anal., 187(3):409–479, 2008.

[11] B. Dacorogna. Quasiconvexity and relaxation of nonconvex problems in the calculus of
variations. J. Funct. Anal., 46(1):102–118, 1982.

[12] B. Dacorogna. Direct methods in the calculus of variations. Springer-Verlag, New York,
2nd edition, 2008.

[13] Georg Dolzmann. Numerical computation of rank-one convex envelopes. SIAM journal
on numerical analysis, 36(5):1621–1635, 1999.

[14] Dominic GB Edelen. The null set of the Euler-Lagrange operator. Archive for Rational
Mechanics and Analysis, 11(1):117–121, 1962.
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[52] Jörg Schröder and Patrizio Neff. Poly-, quasi-and rank-one convexity in applied me-
chanics, volume 516. Springer Science & Business Media, 2010.
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