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Abstract

Structural optimization problems with non-affine boundary conditions must usually

be solved numerically. Here we present an example of such a problem which can be

solved analytically. Our method utilizes extremal composites as structural components,

and makes use of the explicit form of a certain optimal energy bound.

1 Introduction.

A typical problem of optimal design seeks to arrange fixed quantities of given materials
within a set Ω ∈ Rn, so that the resulting structure has an “optimal” response to a particular
load. The performance of the design may be measured by some functional of the elastic fields
in the structure. Then the goal is to minimize or maximize this functional over all possible
geometric arrangements of materials (microstructures).

In this article we consider an optimal material distribution problem, with the objective

functional being the strain-energy –

∫

Ω

(C(x)e(u), e(u))dx. Here C(x) is the local Hooke’s law

which may take only two values corresponding to two isotropic component materials. The
“loading” is produced by prescribing displacement boundary conditions on ∂Ω. We seek

a minimum of the strain energy over all possible phase geometries subject to

a constraint on the volume fraction of each phase. The simplest problem of this
type, the problem with affine boundary conditions in two space dimensions, is now rather
well understood. Closed form analytical solutions and explicit formulas are available in this
case [2], [7], [12], [16], [19]. This paper is different: we consider a problem with non-affine
boundary conditions.

∗This work was done while Y. G. was a student at the Courant Institute.
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To motivate this problem, we observe that it arises in the modeling of precipitation
processes due to phase transformations in crystalline solids [13], [14], [15], [17], [22]. In that
setting energy minimization is a traditionally accepted mechanism for explaining the shapes
of precipitates. We also note that our problem is closely linked with others addressed
in the recent literature on optimal design, such as [2], [3], [5], [7], [12], [16], [19], [20],
[21]. These articles are concerned with designing “stiff” structures, e.g. by minimizing the
complementary energy rather than the elastic energy. In two space dimensions there is a
correspondence between problems of elasticity (e.g. plane stress) and plate theory. Elastic
energy minimization in the one setting becomes complementary energy minimization in the
other. Thus our analysis is directly relevant to the design of stiff plates (see also [7]).

In virtually all cases the solutions to optimal design problems with non-affine boundary
conditions have had to be found numerically, at least at the final stage. In this article we
present a problem that can be solved analytically for a broad class of non-affine Dirichlet data.
We must mention that Kohn and Strang have solved explicitly a different problem from two
dimensional conductivity with methods and ideas which are very close to ours in all respects
[16] (Lemma 8.6). However, we consider our problem in any number of space dimensions,
while the previous literature has been focused almost exclusively on the two dimensional
case. The formula (3.6) below gives the lower bound on the energy in closed form. Besides
being interesting by itself, this explicit solution might be useful as a benchmark, providing
a test of any numerical method for solving these structural optimization problems.

The bound we derive is optimal for some but not all choices of the boundary displace-
ments. In this article we obtain necessary and sufficient conditions for the sharpness of the
bound in the form of a so called plastic limit analysis problem (see Theorem 1). We solve
this problem in the one-dimensional case (see the Appendix), and we also give a necessary
condition for the optimality of our bound in the general case (see Proposition 1). The com-
plete characterization of Dirichlet data for which our lower bound is optimal remains an
open problem.

Our treatment is based on the use of the homogenization or relaxation technique. In
physical terms this means that we are allowed to use composites at every point x ∈ Ω in
addition to the original materials themselves. This enlargement of the class of admissible
structural components does not change the minimum value of the energy, since composites
are themselves mixtures of the original materials. On the other hand this enlargement yields
a relaxed problem which always has a solution, while the original problem might not have
one. The import and mathematical foundation of this idea is discussed in detail in [16],
[18]. It is worth mentioning that the task of finding a formula for the relaxed problem is
the same as that of solving the optimal design problem with affine boundary conditions [2],
[16]. This fact is tacitly used or assumed known in this article and in many references that
we cite here.

Our main idea is to use just one of the lower bounds on elastic energy instead of the full
form of the relaxed functional (cf. [16] Lemma 8.5). There are several reasons to do this.
On the one hand the explicit formula for the relaxed functional is not available in space
dimensions more than two (however, see [8] for one simple 3-D case). Even in two space
dimensions, where it is available, it is not easily amenable to analysis as it consists of several
different lower bounds on the strain energy (three in 2-D), each bound being optimal for a
specific range of the average strain (see formula (1.3) of [1]). On the other hand if we decide
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to use a single bound we can choose the one that is valid for any number of space dimensions
(see [9], Chapter 6). Moreover, the Euler-Lagrange equation associated to this bound turns
out to be easily solvable.

The drawback of our approach is that a single bound is optimal only for a restricted
range of values of the local strain. Therefore, the prescribed boundary displacements must
satisfy certain conditions to ensure that the local strain can be chosen in the proper range at
every point of the domain. If these conditions are not satisfied, our method is not applicable,
and one should resort to numerical computations as was done in [2], [3], [5], [7], [12], [20],
[21].

In the next section we introduce our notation and formulate the relaxed problem.

2 Formulation of the relaxed problem.

Let Ω be an open bounded, convex domain in Rn with piecewise smooth boundary. We con-
sider two isotropic materials with bulk and shear moduli denoted by ki and µi respectively.
The Hooke’s law Ci is then defined by

Ciη = 2µi

(

η −
1

n
(Trη)I

)

+ ki(Trη)I (2.1)

for any symmetric n × n matrix η. We shall suppose further that the two materials are
well-ordered, i.e. k1 > k2 and µ1 > µ2; this assumption is necessary for the optimal bound
(2.4), (2.5) below to be applicable (see [9]). The total volume of each material is assumed
to be given, the first material having the volume θ|Ω|. The volume fraction θ can be any
number between 0 and 1. Also given is the displacement boundary condition u = g on ∂Ω.

We want to minimize the strain energy over all possible microstructures subject to the
constraints listed above. The standard energy variational principle allows us to formulate
the problem as follows:

Wmin = inf
<χ>=θ

inf
u|∂Ω=g

–

∫

Ω

(

C(x)e(u), e(u)
)

dx, (2.2)

where C(x) is the local Hooke’s law

C(x) = C1χ(x) + C2(1 − χ(x)),

and e(u) is the linear strain

e(u) =
1

2

(

∇u+ (∇u)t
)

.

The χ in the outer infimum in (2.2) and in the formula for C(x) denotes the characteristic
function of the set occupied by the material 1, and < χ > denotes the volume average of
the function χ(x).

The problem (2.2), as is well-known, may not possess a solution in the classical sense, i.e.
there might be no characteristic function χ(x) attaining the infimum in (2.2) [2], [16]. To
overcome this difficulty we use the homogenization method discussed in the introduction. It
amounts to allowing composites at every point x of Ω. Then instead of C(x) in (2.2) we may
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use a function C∗(x), which for every x takes its value from Gθ(x)—the set of all effective
Hooke’s laws that can be obtained by a homogeneous mixture of materials 1 and 2 taken
in volume fractions θ(x) and 1 − θ(x). The local volume fraction θ(x) may take any value
from 0 to 1. We only require that θ(x) be measurable as a function of x and that its volume
average be equal to θ. Thus the relaxed problem is

Wmin = inf
<θ(x)>=θ

inf
u|∂Ω=g

inf
C∗(x)∈Gθ(x)

–

∫

Ω

(

C∗(x)e(u), e(u)
)

dx. (2.3)

It is obvious that at every x it is best to choose C∗(x) to minimize (C∗(x)e(u), e(u)) for
the given strain e(u) and volume fraction θ(x). In [9] (section 6) we proved the following
inequality for any symmetric n× n matrix ξ:

inf
C∗∈Gθ

(C∗ξ, ξ) ≥ H(k(x) + 2
n− 1

n
µ2)(Trξ)2 − 4µ2J2(ξ), (2.4)

where H denotes the harmonic mean of its argument:

H(A(x)) =
(

–

∫

Ω

A−1(x)dx
)−1

for any invertible tensor A(x), and J2(ξ) is the second orthogonal invariant of the tensor ξ:

J2(ξ) =
∑

i<j

(ξiiξjj − ξijξji).

We also showed in [9] that equality holds in (2.4) if and only if the matrix ξ is positive or
negative definite and satisfies

ξ

Trξ
≥
H(k(x) + 2n−1

n
µ2)

nk1 + 2(n− 1)µ2
I. (2.5)

Thus we obtain

Wmin ≥ inf
<θ(x)>=θ

inf
u|∂Ω=g

–

∫

Ω

{

A(div u)2

θ(x)k2 + (1 − θ(x))k1 + 2n−1
n
µ2

− 4µ2J2

(

e(u)
)

}

dx, (2.6)

where

A = (k2 + 2
n− 1

n
µ2)(k1 + 2

n− 1

n
µ2). (2.7)

Equality holds in (2.6) if and only if e(u) is positive or negative definite and satisfies (2.5)
at every point x,

e(u)

div u
≥

1

n
·

k2 + 2n−1
n
µ2

θ(x)k2 + (1 − θ(x))k1 + 2n−1
n
µ2

I. (2.8)

Now we are ready to derive an explicit optimal bound on Wmin using the particular form
of the relaxed problem (2.6).
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3 Derivation of the bound.

Here we will derive an explicit bound onWmin, keeping track of conditions that are necessary
and sufficient for each inequality we use to become an equality. Our first step will use the
following relations:

J2

(

e(u)
)

= J2(∇u) −
1
8 |∇u − (∇u)t|2,

–

∫

Ω

J2(∇u)dx = P (g),

(3.1)

where P (g) is a scalar functional that depends only on the boundary value g(x). The first
formula in (3.1) is a matter of elementary algebra; the second reflects the fact that J2(∇u)
is a null-Lagrangian. We do not give the explicit formula for P because it is not essential to
our result, but it can easily be derived using the divergence theorem. Combining (2.6) and
(3.1) gives

Wmin ≥ −4µ2P (g) + inf
<θ(x)>=θ

inf
u|∂Ω=g

–

∫

Ω

A(div u)2

θ(x)k2 + (1 − θ(x))k1 + 2n−1
n
µ2

dx. (3.2)

Equality holds in (3.2) if and only if (2.8) holds, and in addition curl u = 0.
The problem has simplified a lot now. On our second step we will establish an explicit

bound on Wmin. It is an easy corollary of the Cauchy-Schwartz inequality that for any two
functions p ∈ L2(Ω) and q > 0

(

–

∫

Ω

p(x)dx
)2

≤
(

–

∫

Ω

p2(x)

q(x)
dx

)

·
(

–

∫

Ω

q(x)dx
)

.

We apply this inequality to (3.2) by taking p(x) = div u and q(x) equal to the denominator
of (3.2). Thus we obtain the inequality:

–

∫

Ω

(div u)2

θ(x)k2 + (1 − θ(x))k1 + 2n−1
n
µ2

dx ≥

(

1
|Ω|

∫

∂Ω
(g · n)ds

)2

θk2 + (1 − θ)k1 + 2n−1
n
µ2

. (3.3)

The inequality is achieved if and only if

div u = α
(

θ(x)k2 + (1 − θ(x))k1 + 2
n− 1

n
µ2

)

, (3.4)

where α is some constant. We can determine α easily by integrating (3.4) over Ω:

α =

1
|Ω|

∫

∂Ω
(g · n)ds

θk2 + (1 − θ)k1 + 2n−1
n
µ2

. (3.5)

Finally, putting everything together we arrive at the explicit bound for Wmin:

Wmin ≥
(k2 + 2n−1

n
µ2)(k1 + 2n−1

n
µ2)

θk2 + (1 − θ)k1 + 2n−1
n
µ2

( 1

|Ω|

∫

∂Ω

(g · n)ds
)2

− 4µ2P (g). (3.6)
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4 Optimality of the bound.

The inequality (3.6) represents a bound on Wmin which is valid for any piecewise smooth
bounded domain Ω in Rn and any displacement boundary condition g. However, this bound
is not always optimal. The following theorem gives necessary and sufficient conditions for
optimality of the bound (3.6).

Theorem 1 The bound (3.6) is optimal if and only if there exists a convex function ψ ∈
W 2,∞(Ω) with △ψ ≤ k1 − k2 and

∇ψ|∂Ω =
1

α
g(x) −

1

n
(k2 + 2

n− 1

n
µ2)x,

where α is given by (3.5).

Before we begin the proof, let us remark that in two space dimensions the question of
existence of a function ψ satisfying the conditions of the theorem is equivalent to a problem
of plastic limit analysis (see e.g. [6]). There the boundary traction g is considered “safe”
if there exists a divergence-free field σ(x) in Ω such that σ · ν = g on ∂Ω and σ(x) ∈ Σ for
almost all x ∈ Ω, where Σ is some closed convex set in the space of 2×2 symmetric matrices.
The question is to determine which loads are safe and which are not. Using the Airy stress
potential representation of a divergence-free field in two space dimensions we easily reduce
the question of existence of ψ as in the theorem to a problem of plastic limit analysis. We
now proceed with the proof of the theorem.

Proof. In the previous section we have determined that the inequality (3.6) becomes an
equality if and only if there exist a displacement field u and a local volume fraction function
θ(x) in Ω satisfying (2.8), (3.4) and curl u = 0. The last condition allows us to work with
a scalar potential φ:

u = ∇φ. (4.1)

We start by proving the necessity part of the theorem. So we assume that there are functions
θ(x) and φ(x) satisfying (2.8), (3.4) and (4.1). In terms of the scalar potential φ (3.4)
becomes

△φ = α
(

θ(x)k2 + (1 − θ(x))k1 + 2
n− 1

n
µ2

)

,

where α is given by (3.5). Substituting this equality in (2.8) we get

1

α
∇∇φ ≥

1

n
(k2 + 2

n− 1

n
µ2)I.

We remark that if α were equal to 0 the Hessian ∇∇φ would have to vanish at each point
x ∈ Ω, and u would have to be constant. Let us make a simple change of variables by
considering

ψ(x) =
1

α
φ(x) −

1

2n
(k2 + 2

n− 1

n
µ2)|x|

2. (4.2)
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Then we obtain the following system of optimality conditions:



















∇∇ψ ≥ 0,

△ψ = (1 − θ(x))(k1 − k2),

∇ψ|∂Ω = f,

(4.3)

where the boundary value f is given by

f(x) =
1

α
g(x) −

1

n
(k2 + 2

n− 1

n
µ2)x. (4.4)

Now the necessity in the theorem follows easily from (4.3).
To prove the sufficiency we will show how to construct the fields u and θ(x) that satisfy

the optimality conditions (2.8), (3.4) and curl u = 0. We start with a convex function ψ

satisfying the conditions of the theorem. Then the local volume fraction function θ(x) is
given by

1 − θ(x) =
△ψ

k1 − k2
(4.5)

and the local displacement field by

u(x) = α∇ψ +
α

n
(k2 + 2

n− 1

n
µ2)x. (4.6)

Now it is very easy to see that (2.8) and (3.4) are satisfied. To obtain a design that achieves
the bound (3.6) we should place an extremal microstructure corresponding to θ(x) and e(x)
at every point x ∈ Ω. The design will be classical if the local volume fraction given by (4.5)
takes only the values 0 and 1. The sufficiency is established. 2

We would like to remark that the optimal design is far from unique. At every point there
is a whole menagerie of optimal microstructures to choose from: rank-2 laminates [1], [8],
the confocal ellipse construction [10] and the Vigdergauz construction [11], to name just a
few. In addition the function ψ is not unique in most cases.

We conclude the article by proving a simple necessary condition for (4.3) to be satisfied.
Notice that the first inequality in (4.3) implies that ψ is convex in Ω. But it is obvious

that not all boundary values f can arise as the trace of the gradient of a convex function.
The following proposition characterizes the set of functions f for which there is a convex ψ
with ∇ψ|∂Ω = f .

Proposition 1 Let Ω ⊂ Rn be open bounded and convex. Let f : ∂Ω → Rn be a continuous
trace of a gradient, i.e. f |∂Ω = ∇F |∂Ω for some C1 function F . There exists a convex
function ψ defined on Ω with ∇ψ|∂Ω = f if and only if for all {x, y} ⊂ ∂Ω

(

f(y), x− y
)

≤ F (x) − F (y), (4.7)

with f(x) = f(y) in case of equality.
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Proof. First let us remark that the restriction of the function F to ∂Ω is defined uniquely
up to an additive constant by f . Therefore (4.7) is a well-defined condition. The second
remark is that the “only if” part is trivial. The inequality (4.7) follows from the geometric
fact that a tangent plane to the graph of a convex function over a convex domain always lies
below the graph. If there is equality in (4.7) it means that the tangent plane at y intersects
the graph of ψ at x. By convexity, such a plane has to be tangent at x too, which implies
that f(x) = f(y).

Now suppose (4.7) is satisfied. Let

ψ(x) = sup
y∈∂Ω

{

F (y) + (f(y), x− y)
}

, x ∈ Ω. (4.8)

Then ψ(x) is convex, being a supremum of linear functions, and it is Lipschitz continuous
on Ω. Our objective is to prove that ∇ψ exists and is equal to f on ∂Ω. This is easily
accomplished by means of a theorem from the non-smooth analysis ([4], Theorem 2.8.2
Corollary 2). According to this theorem the subgradient of ψ at x ∈ ∂Ω is the convex hull
of f(y) for all extremal y’s. But condition (4.7) implies that for each x ∈ ∂Ω the value of
all extremal f(y) is uniquely defined by x and equal to f(x). Thus the subgradient of ψ is
in fact a gradient and ∇ψ(x) = f(x) for all x ∈ ∂Ω.2

Obviously the function ψ we have constructed in the Proposition 1 does not satisfy the
optimality conditions (4.3) because in general ψ is only Lipschitz continuous and not twice
differentiable (by twice differentiable function we mean a function in W 2,∞). At present,
we do not know how prove the existence of a twice differentiable ψ. We conjecture that the
necessary condition (4.7) is also a sufficient one, given some additional smoothness of f .

An even more serious problem arises in connection with the second condition in (4.3). It
is obvious that we need further restrictions on the boundary value f in order to satisfy

sup
x∈Ω

△ψ ≤ k1 − k2. (4.9)

In fact, it is easy to verify that any function f arising in our problem through (4.4) must
satisfy

1

|Ω|

∫

∂Ω

(f · n)ds = (1 − θ)(k1 − k2) (4.10)

As for sufficient conditions on f , this problem seems very hard and may not have a simple
answer. But in the one dimensional case we can solve it geometrically (see the Appendix).
This 1-D problem can provide some further necessary conditions on f by applying it to each
pair of points {x, y} ⊂ ∂Ω. It seems, however, that in this problem a truly multidimensional
argument is called for.

5 Appendix: A one dimensional model problem.

Even for n = 1 the problem (4.3) is nontrivial. Here we solve the problem in this one
dimensional case.
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Figure 1: The geometric solution of the 1-D problem.

Suppose that we have boundary data for the function φ ∈ W 2,∞([a, b]) with φ′(b) > φ′(a).
We seek necessary and sufficient conditions on the four numbers φ(a), φ(b), φ′(a), φ′(b) for
the existence of a convex function ψ satisfying

ψ(x) =
1

α
φ(x) −

1

2
k2x

2, (5.1)

where

α =
φ′(b) − φ′(a)

(b− a)(k1(1 − θ) + k2θ)
,

and
ψ′′(x) ≤ k1 − k2. (5.2)

The following proposition provides the tool for solving this problem.

Proposition 2 Let A be the subset of W 2,∞([a, b]) consisting of all functions h which are
convex, with specified values for h(a), h(b), h′(a), h′(b). Then

inf
h∈A

‖h′′‖∞ =
1

2
max

{

(

h′(b) − h′(a)
)2

(b− a)h′(b) + h(a) − h(b)
;

(

h′(b) − h′(a)
)2

h(b) − h(a) − (b− a)h′(a)

}

. (5.3)

Moreover, the extremal h always exists and is unique.

Proof. The formula (5.3) has a simple geometric interpretation in the plane (x, h′). If
h0(x) is the optimal choice, then the graph of h′0(x) must join the two points (a, h′(a))
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and (b, h′(b)) by a nondecreasing absolutely continuous curve with a given area under it (as
∫ b

a
h′(x)dx = h(b) − h(a)), and such that the maximum slope of the curve is as small as

possible. Figure 1 shows the solution of the problem if the value of the area under the curve
is less than the area of the trapezoid formed by x-axis, two vertical lines x = a and x = b

and a dashed line AB.
To see that h0 is the right choice, we observe that it is impossible to join any point in

the triangle BCD with B while keeping the maximum slope no greater than that of BC.
Also, any nondecreasing curve lying above ACB will have area under its graph larger than
the area under ACB. Thus any nondecreasing function joining the points A and B has
maximum slope at least that of BC, provided the area under its graph is equal to the area
under ACB. Moreover, our argument clearly shows that a function attaining the infimum
in (5.3) must coincide with h0(x). Calculating the maximal slope of h′0(x) we obtain the
result of the proposition.2

According to (5.2) (cf. (4.9)) we need ‖ψ′′‖∞ ≤ k1 − k2. Applying the Proposition 2
and (5.1) we find, after a simple but lengthy calculation, that this holds if and only if the
boundary data for the original function φ satisfy:

1

2

k1(1 − θ)2 + k2(1 − (1 − θ)2)

k1(1 − θ) + k2θ
≤
φ(b) − φ(a) − φ′(a)(b − a)

(φ′(b) − φ′(a))(b − a)
≤

1

2

k1(1 − θ2) + k2θ
2

k1(1 − θ) + k2θ
.
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