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Abstract

Analytic functions in the Hardy class H2 over the upper half-plane H+ are
uniquely determined by their values on any curve Γ lying in the interior or on
the boundary of H+. The goal of this paper is to provide a sharp quantitative
version of this statement. We answer the following question. Given f of a unit
H2 norm that is small on Γ (say, its L2 norm is of order ε), how large can f
be at a point z away from the curve? When Γ ⊂ ∂H+, we give a sharp upper
bound on | f (z)| of the form εγ , with an explicit exponent γ = γ(z) ∈ (0,1) and
explicit maximizer function attaining the upper bound. When Γ ⊂ H+ we give
an implicit sharp upper bound in terms of a solution of an integral equation on
Γ. We conjecture and give evidence that this bound also behaves like εγ for
some γ = γ(z) ∈ (0,1). These results can also be transplanted to other domains
conformally equivalent to the upper half-plane. © 2021 Wiley Periodicals, Inc.
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1 Introduction

Our motivation comes from the effort to understand stability of extrapolation
of complex electromagnetic permittivity of materials as a function of frequency
[26, 15]. An underlying mathematical problem is about identifying a Herglotz
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function—a complex analytic function in the upper half-plane H+ that has non-
negative imaginary part, given its values at specific points in the upper half-plane
or on its boundary. Such functions, and their variants, are ubiquitous in physics.
For example, the complex impedance of an electrical circuit as a function of fre-
quency has a similar property. Yet another example, is the dependence of effective
moduli of composites on the moduli of its constituents [4, 30]. These functions ap-
pear in areas as diverse as optimal design problems [27, 28], nuclear physics [6, 7]
and medical imaging [14]. It is simply impossible to enumerate all of the fields in
science and engineering where they occur. Notwithstanding a more than a century
of attention, Herglotz functions remain at the forefront of research, e.g. [10, 9, 36].

Let us assume that a Herglotz function has been experimentally measured on
a curve Γ in H+. The measurements may contain small errors and the actual data
may no longer come from any Herglotz function. The goal is to find a Herglotz
function consistent with such noisy measurements up to a small error. In this paper
we are not interested in any specific reconstruction or extrapolation algorithm, of
which there is an overabundance in the literature, but rather in characterizing a
worst case scenario, where two Herglotz functions differ little at the data points,
but may diverge significantly, the further away from the data source we move.
Since Herglotz functions that decay at infinity always lie in a Hardy space H2 of
the upper half-plane, we will ask how large can a Hardy function, representing the
difference between two Herglotz extrapolants of the same data be at a specific point
z if we know that it is L2-small on a curve Γ in the upper half-plane H+.

On the one hand complex analytic functions possess a large degree of rigidity,
being uniquely determined by values at any infinite set of points in a compact set.
This rigidity implies that even very small measurement errors will produce data
mathematically inconsistent with values of an analytic function. On the other hand
there is a theorem due to Riesz (see e.g. [33]) that restrictions of analytic functions
in a Hardy class H2 are dense in L2 on any smooth bounded curve. Therefore, any
data can be extrapolated as an analytic function with arbitrary degree of agreement.
The high accuracy of matching will be attained by an increasingly wild behavior
away from the curve [12]. To see why this occurs we can examine Carleman for-
mulas [8, 19] expressing values of the analytic function in the domain in terms of
its values on a part of the boundary. These formulas are highly oscillatory and
reproduce values of analytic functions using delicate exact cancellation properties
such functions enjoy. Small measurement errors destroy these exact cancellations
and small errors get exponentially amplified. For curves in the interior Carleman
type formulas have been developed in [1], but they exhibit the same error amplifi-
cation feature since they are also based on the same exact cancellation properties
of analytic functions.

Typically analytic continuation problems are regularized by placing additional
boundedness constraints on the extrapolant. The resulting competition between
“rigidity” and “flexibility” of complex analytic functions place such questions be-
tween ill and well-posed problems. Our goal is to obtain a quantitative version of
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such a statement. We therefore formulate the power law transition principle ac-
cording to which all so regularized analytic continuation problems must exhibit a
power law transition from well to ill-posedness. Specifically, if f (ζ ) is bounded in
some norm in the space of analytic functions on a domain Ω, and is also of order
ε on a curve Γ ⊂ Ω in some other norm (e.g. in L2(Γ) or L∞(Γ)), then it can be
only as large as Cεγ(z) at some other point z ∈ Ω \Γ. Moreover γ(z) ∈ (0,1) de-
creases from 1 to 0, as the point z moves further and further away from Γ. This
general principle in the form of an upper bound has been recently established in
[37]. In fact, upper and lower bounds of this form have long been known in the
literature, e.g. [5, 29, 34, 16, 38, 17, 11, 37]. However, exact values of γ(z) have
only recently been obtained in a few special cases [11, 37] by matching bounds and
constructions.

The most common regularizing boundedness constraints in the literature are in
the H∞(Ω) norm. The power law estimates are then derived from a maximum mod-
ulus principle, the classical Hadamard three circles theorem being the prime exam-
ple. In a related example from [37], the modulus of the function ez lnε f (z) does not
exceed ε on the boundary of the infinite strip ℜz ∈ (0,1), provided | f (z)| ≤ 1 in
the strip and | f (iy)| ≤ ε . The maximum modulus principle (or rather its Phragmén-
Lindelöf version) then implies that | f (z)| ≤ ε1−ℜz. The estimate is optimal, since
f (z) = εe−z lnε satisfies the constraints and achieves equality in the maximum mod-
ulus principle. We believe that the power law transition principle for analytic con-
tinuation holds in a wide variety of contexts irrespective of the choice of norms,
domain geometries and sources of data.

In this paper we formulate the problem of optimal analytic continuation er-
ror estimates using Hilbert space norms, rather than H∞ norms and use variational
methods that establish optimal upper bounds on the extrapolation error. The bounds
are formulated in terms of the solution of an integral equation. In this new formula-
tion the power law transition principle is contained in a somewhat implicit form. It
can be made explicit in those cases where the underlying integral equation can be
solved explicitly, as is done in Section 5, and in the companion paper [22]. There
we apply our methodology to the setting of [11], but with L2 rather than L∞ norms.
We recover their power law exponent, suggesting that the exponents must be ro-
bust and not very sensitive to the choice of specific norms in the spaces of analytic
functions. This phenomenon could be related to the fact that functions with worst
extrapolation error can be analytically continued into much larger domains, as is
evident from our integral equation, and hence satisfy the required constraints in all
Lp or H p norms.

Conformal mappings between domains can be used to “transplant” the ex-
ponent estimates from one geometry to a different one. For example, we can
transplant the exponent obtained in Section 5 for the half-plane to the half-strip
ℜz > 0, |ℑz| < 1, considered in [37]. The analytic function f (z) is assumed to be
bounded in the half-strip and also of order ε on the interval [−i, i] on the imag-
inary axis. Then any such function must satisfy | f (x)| ≤ Cεγ(x), x > 0, where
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γ(x) = (2/π)arccot(sinh(πx/2)). Moreover, the estimate is sharp, since it is at-
tained by the function W (−isinh(πz/2)), where W (ζ ) is given by (2.22). This re-
sult follows from the observation that ζ =−isinh(πz/2) is a conformal map from
the half-strip to the upper half-plane, mapping interval [−i, i] to the interval [−1,1].
As Trefethen points out in [37], the half-strip geometry gives a stark example of
the discrepancy between mathematical well-posedness (the analytic continuation
error goes go to 0 as ε → 0) and practical well-posedness: At x = 1 only a quarter
of all digits of precision will remain, while at x = 2 only 1/20th will remain.

We start our analysis by reformulating the problem as a maximization of a lin-
ear functional with quadratic inequality constraints, which is why we use Hilbert
space norms in the original problem formulation. We then use convex duality to
obtain an upper bound on | f (z)|. The conditions of optimality of the bound lead to
an integral equation for the worst case function u(ζ ). We conclude that our upper
bound is optimal, since u(ζ ) satisfies all the constraints. We show that the power
law transition principle is a consequence of the conjectured exponential decay of
the eigenvalues and eigenfunctions of the integral operator (see Theorem 2.4). The
eigenvalues of the integral operator are also singular values of the restriction op-
erator [23], whose exact exponential decay rates are well-known in some cases
[31, 32]. The integral operator in the upper half-plane possesses a special “dis-
placement structure”, and the exponential decay of its eigenvalues also follows
from the upper bound in [3]. Our numerical computations (with the help of Leslie
Greengard) show that this upper bound matches the rate of exponential decay of
eigenvalues extremely well, when Γ is the interval [−1,1]+ ih, h > 0. In this spe-
cial case the integral operator is also of finite convolution type and upper and lower
bounds on the rate of exponential decay of its eigenvalues follow from results of
Widom [39]. Our computations show that these bounds are far from optimal.

The paper is organized as follows. In the next section we state and discuss our
main results. In Section 3 we show how the power law transition principle arises
from putative features of the integral equation, such as exponential decay of its
eigenvalues. In Section 4 we prove that the maximizer of the analytic continuation
error can be obtained from the solution of an integral equation. In Section 5 we
analyze the case when Γ = [−1,1] lies on the boundary of H+. In this case we
show that the error maximizer also solves an integral equation, but with a singular,
non-compact integral operator. This singular equation is then solved explicitly and
the exponent γ(z) is computed. Examining the formula for γ(z) we find a beautiful
geometric interpretation of this exponent.

2 Main Results

Notation: Let us write A ∼ B as ε → 0, whenever lim
ε→0

A/B = 1. Let us also write

A ≲ B, if there exists a constant c such that A ≤ cB and likewise the notation A ≳ B
will be used. If both A ≲ B and A ≳ B are satisfied we will write A ≃ B.
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Let Γ ⊂ H+ be a compact smooth (C1) curve. Let L2(Γ) := L2(Γ, |dζ |). In
this paper all L2 spaces will be spaces of complex valued functions. Consider the
Hardy space

(2.1) H2 = H2(H+) := { f is analytic in H+ : sup
y>0

∥ f (·+ iy)∥L2(R) < ∞}.

It is well known [24] that a function f ∈ H2 has L2 boundary data and that ∥ f∥H2 =
∥ f∥L2(R) defines a norm in H2.

2.1 Interior
Theorem 2.1 (Interior). Let Γ ⋐H+ be a smooth (C1), bounded and simple curve
and z ∈ H+ \Γ be the extrapolation point. Let ε > 0 and f ∈ H2 be such that
∥ f∥H2 ≤ 1 and ∥ f∥L2(Γ) ≤ ε , then

(2.2) | f (z)| ≤ 3
2

uε,z(z)min

{
1

∥uε,z∥H2
,

ε

∥uε,z∥L2(Γ)

}
,

where uε,z solves the integral equation

(2.3) (Ku)(ζ )+ ε
2u(ζ ) = pz(ζ ), ζ ∈ Γ,

with

(2.4) (Ku)(ζ ) =
1

2π

ˆ
Γ

iu(τ)
ζ − τ

|dτ|, pz(ζ ) =
i

ζ − z

The theorem is proved in Section 4.

Remark 2.2.

(1) K is a compact, self-adjoint and positive operator on L2(Γ) (cf. Section 3).
In particular, (2.3) has a unique solution uε,z ∈ L2(Γ).

(2) It is evident that Ku and pz are well-defined members of H2(H+). Hence,
when ζ ̸∈ Γ the integral equation (2.3) is interpreted as a definition of
uε,z(ζ ). This explains the meaning of the right-hand side in (2.2).

The bound in (2.2) is asymptotically optimal, as ε → 0 since the function

(2.5) Mε,z(ζ ) = uε,z(ζ )min

{
1

∥uε,z∥H2
,

ε

∥uε,z∥L2(Γ)

}
has L2(Γ)-norm bounded by ε and H2-norm bounded by 1. Even though we only
required f to be in H2(H+), the optimal function Mε,z(ζ ) is actually analytic in
C\Γ.

We believe that the two quantities under the minimum in (2.5) have the same
asymptotics as ε → 0, and hence, the error maximizer can be written either as
uε,z/∥uε,z∥H2 or as εuε,z/∥uε,z∥L2(Γ).
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Conjecture 2.3. Let uε,z be as in Theorem 2.1, then

(2.6) ∥uε,z∥L2(Γ) ≃ ε∥uε,z∥H2 .

The difficulty in establishing (2.6) is that in this particular equation the solution
uε,z must achieve a delicate balance after the cancellation in (2.3). We will show
(see Section 3.2) that ∥uε,z∥L2(Γ) = o(ε−1), while

lim
ε→0

Kuε,z = pz

both in L2(Γ) and pointwise in H+. Therefore, the second term on the left-hand
side in (2.3) is infinitesimal compared to other terms and hence represents a deli-
cate matching of the remainder after cancellation in pz −Kuε,z = ε2uε,z = o(ε) in
L2(Γ). We will also see that Mε,z(z) = o(1) and Mε,z(z)≫ ε as ε ↓ 0. This implies
that if the power law transition principle holds, i.e.

(2.7) Mε,z(z)∼ ε
γ , as ε → 0,

then γ = γΓ(z) ∈ (0,1). In (2.7) we abuse our notation convention for ∼ for the
sake of aesthetics. The mathematically correct statement would be lnMε,z(z) ∼
γΓ(z) lnε . The exponent γΓ(z) is expected to grow smaller the further away point z
moves from Γ, so that γΓ(z)→ 0 as z → ∞. The genesis of the exponent γΓ(z) in
(2.7) from equation (2.3) that itself contains no fractional exponents of ε , comes
from the conjectured exponential decay of eigenvalues λn of K.

The exponential upper bound on λn is a consequence of the displacement rank
1 structure:

(2.8) (MK−KM∗)u =
i

2π

ˆ
Γ

u(τ)|dτ|=: Ru,

where M : L2(Γ) → L2(Γ) is the operator of multiplication by τ ∈ Γ: (Mu)(τ) =
τu(τ). The operator R on the right-hand side of (2.8) is a rank-one operator, since
its range consists of constant functions. Then, according to [3],

(2.9) λn+1 ≤ ρ1λn, ρ1 = inf
r∈M

maxτ∈Γ |r(τ)|
minτ∈Γ |r(τ)|

,

for all n ≥ 1, where M is the set of all Möbius transformations

r(τ) =
aτ +b
cτ +d

.

It is easy to see that ρ1 < 1 by considering Möbius transformations that map upper
half-plane into the unit disk. Then Γ will be mapped to a curve inside the unit
disk, so that m = maxτ∈Γ |r(τ)| < 1. By the symmetry property of Möbius trans-
formations the image of Γ will be symmetric to the image of Γ with respect to the
inversion in the unit circle. Thus, minτ∈Γ |r(τ)| = 1/m, so that ρ1 ≤ m2 < 1. In
particular this implies that all eigenvalues have multiplicity 1.
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The implied exponential upper bound λn+1 ≤ ρn
1 λ1 is not the best that one can

derive from the rank-1 displacement structure (2.8). According to a theorem of
Beckermann and Townsend [3], λn ≤ Zn(Γ,Γ)λ1, where Zn is the nth Zolotarev
number [40]. When n is large, the Zolotarev numbers decay exponentially lnZn(Γ,Γ)∼
−n lnρΓ, where ρΓ is the Riemann invariant, whereby the annulus {1 < |z|< ρΓ} is
conformally equivalent to the Riemann sphere with Γ and Γ removed [20]. Hence,

(2.10) λn ≲ ρ
−n
Γ

.

We are ready now to relate the spectral exponential decay rates to the power law
(2.7). Let {en}∞

n=1 denote the orthonormal eigenbasis of K. In this basis equation
(2.3) diagonalizes:

λnun + ε
2un = πn, un = (u,en)L2(Γ), πn = (pz,en)L2(Γ),

and is easily solved

(2.11) un =
πn

λn + ε2 .

We will prove that

(2.12)
∞

∑
n=1

|πn|2

λn
<+∞,

∞

∑
n=1

|πn|2

λ 2
n

=+∞,

indicating that the coefficients πn must also decay exponentially fast. The power
law principle is then a consequence of the strictly exponential decay of eigenvalues
λn and coefficients πn.

Theorem 2.4. Let {en}∞
n=1 denote the orthonormal eigenbasis of K, and let πn =

(pz,en)L2(Γ). Assume that

(2.13) λn ∼C1e−αn, |πn|2 ∼C2e−βn, 0 < α < β < 2α,

so that (2.12) holds. Then estimate (2.6) holds, and Mε,z, given by (2.5) has the
power law asymptotics

(2.14) Mε,z(z)≃ ε
β−α

α ,

with implicit constants independent of ε .

The theorem is proved in Section 3.3.

Remark 2.5. The coefficients πn of pz in the eigenbasis of K can be expressed in
terms of the eigenfunctions {en} (cf. (3.2)):

πn = 2πλnen(z).

Conjecture 2.6. The eigenvalues λn of K and coefficients πn = 2πλnen(z) have ex-
ponential decay asymptotics (2.13). Moreover, we also conjecture that the asymp-
totic upper bound (2.10) captures the rate of exponential decay of λn, i.e. α = lnρΓ.
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There is substantial evidence supporting this conjecture, including the explicit
formula for γ(z) in the limiting case when Γ ⊂ ∂H+, given in Theorem 2.7 below.
Also, if the L2 norm of f ∈ H2 were of order ε on a compact subdomain G ⊂H+,
instead of the curve Γ, then the conjectured asymptotics of λn would hold, as shown
in [32], provided the boundary of G is sufficiently smooth. Even though the curve
Γ could also be regarded as a limiting case of a domain, its boundary would not be
smooth and the analysis in [32] would not apply.

The operator ε2 +K in the integral equation (2.3) is almost singular when ε is
small, since K is compact and has no bounded inverse. It was the idea of Leslie
Greengard to solve (2.3) directly numerically using quadruple precision floating
point arithmetic available in FORTRAN. He has written the code and shared the
FORTRAN libraries for Gauss quadrature, linear systems solver and eigenvalues
and eigenvectors routines for Hermitian matrices. For the numerical computations
we took Γ = [−1,1] + ih, and extrapolation points z+ ih, z ≥ 1. Quadruple pre-
cision allowed us to compute all eigenvalues of K that are larger than 10−33 and
solve the integral equation (2.3) for values of ε as low as 10−16. For this partic-
ular choice of Γ the operator K is a finite convolution type operator with kernel
k(t) = i(2π)−1

t+2ih . Asymptotics of eigenvalues of positive self-adjoint finite convolu-
tion operators with real-valued kernels (i.e. even real functions k(t)) were obtained
by Widom in [39]. To apply these results we note that k̂(ξ ) = e−2hξ χ(0,+∞)(ξ ),
which has exact exponential decay when ξ →+∞. The operator K0 with the even
real kernel k0(t) = 2ℜk(t) has symbol k̂0(ξ ) = e−2h|ξ | to which Widom’s theory
applies. Widom’s formula gives

lnλn(K0)∼−Wn, as n → ∞, W =−π
K
(
sech

(
π

2h

))
K
(
tanh

(
π

2h

)) ,
where K(k) is the complete elliptic integral of the first kind. We therefore obtain
an upper bound

(2.15) lnλn(Kh)≤ lnλn(K0)∼−Wn.

The lower bound can be obtained from the same formula using an inequality

λn(K0)≤ λn/2(Kh)+λn/2(Kh) = 2λn/2(Kh),

so that

(2.16) lnλn(Kh)≥ ln 1
2 + lnλ2n(K0)∼−2Wn.

Figure 2.1a, where h = 1 supports the exponential decay conjecture (2.13) and
shows that estimates (2.15), (2.16) are not asymptotically sharp. By contrast, Fig-
ure 2.1a shows that the Beckermann-Townsend upper bound (2.10) matches the
asymptotics of λn very well. The explicit transformation Ψ of the extended com-
plex plane with [−1,1]± ih removed onto the annulus {v ∈ C : ρ

−1/2
Γ

< v < ρ
1/2
Γ

}
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(A) (B) (C)

FIGURE 2.1. Numerical support for the power law transition principle.

has been derived in [2, p. 138] in terms of the elliptic functions and integrals

(2.17) Ψ
−1(v) =

h
π

(
ζ

(
lnv
2πi

∣∣∣∣τ)−ζ

(
1
2

∣∣∣∣τ) lnv
πi

)
, τ =

K(1−m)

K(m)
,

where ζ (z|τ) is the Weierstrass zeta function with quasi-periods 1 and iτ . The
Riemann invariant ρΓ = e2πτ is computed after finding the unique solution m ∈
(0,1) of

K(m)E(x(m)|m)−E(m)F(x(m)|m) =
π

2h
, x(m) =

√
K(m)−E(m)

mK(m)
.

We can show by a specific construction that one cannot expect better precision
at a point z than εθ(z) for some θ(z) ∈ (0,1), giving an upper bound on γ(z). This
is done by mapping the explicit eigenfunction expansion of the solution of the
integral equation for the annulus problem to the upper half-plane by the explicit
conformal transformation Ψ (see [22, 21] for details). This gives the estimate

(2.18) θ(z) =
ln |Ψ(z)|

πτ
∈ (0,1),

achieved by the function

(2.19) f (ζ ) =
ε2−θ(z)

ζ + ih

∞

∑
n=1

(
Ψ(z)Ψ(ζ )

)n

ε2 +ρ−n ∈ H2(H+).

Figure 2.1b shows values of Mε,z(z) as a function of ε , supporting the power law
principle (2.7). We also compare the computed exponents γΓ(z) with the estimate
(2.18) for Γ = [−1,1]+ 0.5i, and extrapolation points z+ 0.5i, z > 1. Figure 2.1c
shows γ(z) (obtained by least squares linear fit of the data for various values of
z, four of which are shown in Figure 2.1b) and the upper bound θ(z) given by
(2.18). We remark that by virtue of transplanting the actual maximizer of | f (z)|
from one geometry to the other, the structure of the test function (2.19) resembles
the optimal one (2.11). In fact, for values of h > 0.6 the bound θ(z) is virtually
indistinguishable from γΓ(z).
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2.2 Boundary
We recall that functions in the Hardy space H2 (see (2.1)) are determined

uniquely not only by their values on any curve Γ ⊂ H+, but also on Γ ⊂ R. In-
deed, if f = 0 on Γ ⊂ R, the Cauchy integral representation formula implies

f (z) =
1

2πi

ˆ
Γc

f (t)dt
t − z

, z ∈H+,

where Γc = R \Γ. Then f (z) has analytic extension to C \Γc, which vanishes on
a curve Γ inside its domain of analyticity and therefore f ≡ 0. This rigidity prop-
erty suggests that we should expect the same power law behavior of the analytic
continuation error as for the curves in the interior of H+.

We will consider the most basic case when Γ ⊂ R is an interval. (By rescaling
and translation we may assume, without loss of generality, that Γ = [−1,1]). We
proceed by representing Γ as a limit of interior curves Γh = [−1,1]+ ih as h ↓ 0.
For curves Γh, Theorem 2.1 can be applied and in the resulting upper bound and
the integral equation, limits, as h ↓ 0, can be taken. As a result we obtain

Theorem 2.7 (Boundary). Let z = zr + izi ∈H+ and ε ∈ (0,1). Assume f ∈ H2 is
such that ∥ f∥H2 ≤ 1 and ∥ f∥L2(−1,1) ≤ ε , then

(2.20) | f (z)| ≤ ρε
γ(z)

where ρ−2 = zi
9

(
arctan zr+1

zi
− arctan zr−1

zi

)
and

(2.21) γ(z) =− 1
π

arg
z+1
z−1

∈ (0,1)

is the angular size of [−1,1] as seen from z, measured in units of π radians. More-
over, the upper bound (2.20) is asymptotically (in ε) optimal and the maximizer
that attains the bound up to a multiplicative constant independent of ε is

(2.22) W (ζ ) = ε
p(ζ )

∥p∥L2(−1,1)
e

i
π

lnε ln 1+ζ

1−ζ , ζ ∈H+

where p(ζ ) = i/(ζ − z) and ln denotes the principal branch of logarithm.

The theorem is proved in Section 5.
Remark 2.8.

(1) Our explicit formulas show that the problem of predicting the value of a
function at z = z0 ∈ R \ [−1,1] is ill-posed in every sense. Indeed, in the
optimal bound (2.20) ρ →+∞ and γ(z)→ 0 as z → z0.

(2) The set of points z ∈ H+ for which γ(z) is the same is an arc of a circle
passing through z, −1, and 1 that lies in the upper half-plane.
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3 Justification of the power law transition principle

In this section we prove Theorem 2.4 under slightly more general assumptions.
It shows how exponential decay of eigenvalues and eigenfunctions gives rise to
power law estimates (2.7). Throughout this section ∥ · ∥ and (·, ·) denote the norm
and the inner product of the space L2(Γ).

3.1 Spectral representation of uε,z(z)
We begin by rewriting the value uε,z(z), in terms of λn and coefficients πn of pz

in the eigenbasis {en}.

Lemma 3.1. Let uε,z be the solution of (2.3). Then

(3.1) 2πuε,z(z) =
∞

∑
n=1

|πn|2

λn(λn + ε2)
.

Proof. Observe that

(3.2) (u, pz) =

ˆ
Γ

u(τ)
i

z− τ
|dτ|= 2π(Ku)(z)

for any u ∈ L2(Γ), therefore for the solution uε,z of (2.3) we have

(3.3) 2πuε,z(z) =
1
ε2 (2π pz(z)−2π(Kuε,z)(z)) =

1
ε2

(
π

ℑz
− (uε,z, pz)

)
.

Since

(uε,z, pz) =
∞

∑
n=1

|πn|2

λn + ε2 ,

it is easy to see that (3.1) is equivalent to

(3.4)
π

ℑz
=

∞

∑
n=1

|πn|2

λn
.

Formally the series on the right-hand side of (3.4) can be written as
∞

∑
n=1

|πn|2

λn
= (K−1 pz, pz).

However, it is easy to see that pz is not in the range of K. Indeed, for any u∈ L2(Γ)
its image f (ζ ) = (Ku)(ζ ) has an analytic extension to C \Γ, while pz(ζ ) has a
pole at z ̸∈ Γ. As a consequence

(3.5)
∞

∑
n=1

|πn|2

λ 2
n

=+∞,

since otherwise the function

v =
∞

∑
n=1

πn

λn
en



ANALYTIC CONTINUATION IN THE UPPER HALF-PLANE 151

would belong to L2(Γ) and would have the property Kv = pz.
The key to understanding the operator K is the observation that its range

R(K) = { f : f =Ku, u ∈ L2(Γ)}

consists of functions that have an analytic extension to functions in H2(H+), more-
over for any f ∈ H2(H+) and u ∈ L2(Γ) we have

(3.6) (u, f ) = (Ku, f )H2 .

Indeed, changing the order of integration we obtain

(Ku, f )H2 =

ˆ
R
(Ku)(x) f (x)dx=

ˆ
Γ

u(τ)
(

1
2πi

ˆ
R

f (x)dx
x− τ

)
|dτ|=

ˆ
Γ

u(τ) f (τ)|dτ|=(u, f ),

where we have used the Cauchy representation formula for H2(H+) functions in
terms of their boundary values:

(3.7) f (ζ ) =
1

2πi

ˆ
R

f (x)dx
x−ζ

, ζ ∈H+.

An immediate corollary of (3.6) is

Lemma 3.2. R(K) is dense in L2(Γ).

Proof. Suppose u∈ L2(Γ) is orthogonal to R(K). Then for any v∈ L2(Γ) we have
(Kv,u) = 0. Choosing v = u we obtain

0 = (u,Ku) = ∥Ku∥2
H2 ,

which implies that Ku = 0. This implies that u = 0 in L2(Γ). This conclusion is
obtained by observing that for any v ∈ L2(Γ) the image f (ζ ) = (Kv)(ζ ) has an
analytic extension to C\Γ and by the Sokhotski-Plemelj formula

(3.8) [[Kv]]
Γ
(s) =

v(τ(s))

τ̇(s)
,

where τ(s) is the arc-length parametrization of Γ. For an oriented curve C ⊂ C
with parametrization τ(s) the notation [[ f ]]C(s) means

[[ f ]]C(s) = lim
ζ→τ(s)+

f (ζ )− lim
ζ→τ(s)−

f (ζ ),

where ζ → τ(s)+ means that the vectors τ̇(s), ζ − τ(s) form a positively oriented
pair.

Thus, if Ku = 0 in L2(Γ) it follows that the unique analytic extension of Ku is
a zero function and (3.8) implies u = 0. □

We remark that in the course of the proof of the Lemma we have also shown
that K is a positive operator with trivial null-space. We proceed now to the proof
of (3.4) by showing that it is a consequence of a more general and elegant result
about the operator K (see Lemma 3.3 below).
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On a dense subspace R(K)⊂ L2(Γ) we define a new inner product

( f ,g)+ = ( f ,g)H2 = (Ku,v)L2(Γ), f =Ku, g =Kv,

where formula (3.6) has been used. Suppose that fn = ( f ,en) and gn = (g,en), then
fn = λnun and gn = λnvn, where un = (u,en) and vn = (v,en). Then

( f ,g)+ =
∞

∑
n=1

λnunvn =
∞

∑
n=1

fngn

λn
.

We now define the Hilbert space H+ as the completion of R(K) with respect to
∥ · ∥+. Then

H+ =

{
f ∈ L2(Γ) : ∥ f∥2

+ :=
∞

∑
n=1

| fn|2

λn
< ∞

}
is a dense subspace in H0 = L2(Γ). In particular ∥ f∥2

+ ≥ λ
−1
1 ∥ f∥2.

Lemma 3.3. H+ consists of those functions in L2(Γ) that have (a necessarily
unique) extension to functions in H2(H+). Moreover,

(3.9) ( f ,g)+ = ( f ,g)H2 .

Proof. Formula (3.9) holds for all { f ,g} ⊂ R(K) by definition. Suppose that
f ∈ H+. We define

φN =
N

∑
j=1

fnen.

Obviously, φN ∈R(K) ⊂ H2, since each eigenfunction en is in R(K). But then
by (3.9), φN would be a Cauchy sequence in the H2 norm and would have a limit
φ∞ ∈ H2. By construction φN → f in H+. In particular φN → f in L2(Γ), but
φN → φ∞ in H2 and therefore in L2(Γ). Hence, f = φ∞ on Γ and f has the extension
φ∞ ∈ H2. Thus, if { f ,g} ⊂ H+ then f and g have extensions to H+ that are in
H2(H+). Moreover, if

ψN =
N

∑
j=1

gnen,

then we can pass to the limit on both sides of the equality

(φN ,ψN)+ = (φN ,ψN)H2

and obtain (3.9). To finish the proof we only need to show that restrictions to Γ of
H2 functions are in H+. According to (3.6)

(en,em)H2 =
1
λn

(Ken,em)H2 =
1
λn

(en,em) =
δmn

λn
.

Hence the eigenbasis functions en also form an orthogonal system in H+, but they
are no longer orthonormal. We now take f ∈ H2 and repeat the proof of Bessel’s
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inequality, using the orthogonality of {en}:

0 ≤ ∥ f −
N

∑
n=1

fnen∥2
H2 = ∥ f∥2

H2 −2
N

∑
n=1

fn( f ,en)H2 +
N

∑
n=1

| fn|2

λn
= ∥ f∥2

H2 −
N

∑
n=1

| fn|2

λn
,

since, according to (3.6),

( f ,en)H2 =
1
λn

( f ,Ken)H2 =
fn

λn
.

Thus,
N

∑
n=1

| fn|2

λn
≤ ∥ f∥2

H2

and hence the series is convergent, proving that the restriction of f ∈ H2 to Γ

belongs to H+. The Lemma is now proved. □

Corollary 3.4.

(3.10)
π

ℑz
= ∥pz∥2

H2 = ∥pz∥2
+ =

∞

∑
n=1

|πn|2

λn
,

establishing (3.4) and hence (3.1), which in the new notation of inner product in
H+ can also be written as

(3.11) 2πuε,z(z) = (uε,z, pz)+ = (uε,z, pz)H2 .

Lemma 3.1 is now proved. □

Corollary 3.5. By Lemma 3.1

2πuε,z(z)=
∞

∑
n=1

|πn|2

λn(λn + ε2)
=

∞

∑
n=1

|πn|2

(λn + ε2)2 +ε
2

∞

∑
n=1

|πn|2

λn(λn + ε2)2 = ∥uε,z∥2+ε
2∥uε,z∥2

+,

which in view of Lemma 3.3 proves

(3.12) 2πuε,z(z) = ∥uε,z∥2
L2(Γ)+ ε

2∥uε,z∥2
H2 .

Remark 3.6. For all { f ,g} ⊂ H+ we can formally write

(3.13) ( f ,g)+ =
∞

∑
n=1

fngn

λn
= (K−1 f ,g).

If f = Ku for some u ∈ L2(Γ), the right-hand side of (3.13) is equal to (u,g).
Otherwise, ( f ,g)+ will serve as a definition1 of (K−1 f ,g).

1 The theory of rigged Hilbert spaces [18] can be used to define Hilbert space H− of generalized
functions where K−1 f belongs for all f ∈H+. This space is naturally identified with the dual (H+)

∗,
so that (K−1 f ,g) is understood as the duality pairing between K−1 f ∈ H− = (H+)

∗ and g ∈ H+.
Most commonly this theory is used to define negative Sobolev spaces W−m,2, where the role of K−1

is played by an elliptic differential operator.
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3.2 A priori estimates
In this section we prove several general properties of solutions of the integral

equation (2.3). They show that the solution cannot depend analytically on ε , as
ε → 0.

Lemma 3.7. Let uε solve Ku+ ε2u = pz. Then as ε ↓ 0

(i) ∥uε∥→ ∞

(ii)
uε

∥uε∥
⇀ 0 in L2(Γ)

(iii)
uε

∥uε∥H2
⇀ 0 in L2(R)

Proof. Part (i). Recalling formula (2.11), we have

(3.14) ∥uε∥2 =
∞

∑
n=1

|un|2 =
∞

∑
n=1

|πn|2

(ε2 +λn)2 ,

and applying Lemma Fatou we conclude that
∞

∑
n=1

|πn|2

λ 2
n

≤ lim
ε→0

∥uε∥2.

Hence, boundedness along any subsequence of ∥uε∥ implies convergence of the
series in (3.5).

Part (ii). Let vε = uε/∥uε∥. Extracting a weakly convergent subsequence in
L2(Γ) and passing to the limit in

Kvε + ε
2vε =

pz

∥uε∥
,

while taking part (i) of the lemma into account, we obtain the equation for the weak
limit v0: Kv0 = 0. Hence, by Lemma 3.2, v0 = 0. Since every weakly convergent
subsequence of vε has a zero limit, the entire family vε converges weakly to 0.

Part (iii). Let now vε = uε/∥uε∥H2 , and let vεk ⇀ v0 in H2(H+). Then passing
to the limit in (3.7) we obtain

v0(ζ ) =
1

2πi

ˆ
R

v0(x)dx
x−ζ

.

Observing that ∥uε∥H2 ≥ c∥uε∥ → ∞, and repeating the argument in the proof of
Part (ii) of the lemma, we get Kv0 = 0 on Γ. Hence v0 = 0 on Γ, and by analyticity,
v0 = 0 on R. □

Lemma 3.7 has a number of immediate corollaries, especially when combined
with formula (3.12) (see Corollary 3.5) and the Cauchy representation formula for
H2 functions (3.7). Using the Cauchy representation formula (3.7) part (iii) implies
that uε(ζ )/∥uε∥H2 → 0, as ε → 0 for all ζ ∈H+. In particular, uε(z)/∥uε∥H2 → 0,
as ε → 0. Applying this fact to (3.12) we conclude that ∥uε∥H2 = o(ε−2) and that

(3.15) ∥uε∥2 = o(∥uε∥H2) = o(ε−2),
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showing that ∥uε∥= o(ε−1) and hence uε(z) = o(ε−2). From the integral equation
(2.3) we obtain

(3.16) pz −Kuε,z = ε
2uε,z = o(ε)

in L2(Γ). Returning to the Cauchy representation formula we conclude from (3.15):
ε2uε(ζ )→ 0, as ε → 0 for all ζ ∈H+. Hence, pz −Kuε,z → 0 pointwise in H+.

3.3 From exponential decay to power law
In this section we prove Theorem 2.4. We begin by showing that the first part

of the theorem holds under substantially weaker assumptions than (2.13). Here we
suppress dependence on ε and z from the notation. So that uε,z is denoted simply
by u. As before, λn denote the eigenvalues of K and πn = (pz,en) are coordinates
of pz in the eigenbasis of K.

Lemma 3.8. Let u solve (2.3). Assume that in addition to already proved inequality
(2.9) there exist ρ̃,σ , σ̃ ∈ (0,1), so that

(3.17) λn+1 ≥ ρ̃λn,
|πn+1|2

λn+1
≤ σ

|πn|2

λn
,

|πn|2

λ 2
n

≤ σ̃
|πn+1|2

λ 2
n+1

, ∀n large

Then ∥u∥ ≃ ε∥u∥H2 , i.e. Conjecture 2.3 is true.

Proof. We have

∥u∥2
H2 =

∞

∑
n=1

|πn|2

λn(λn + ε2)2 , ∥u∥2 =
∞

∑
n=1

|πn|2

(λn + ε2)2 .

Define the switchover index J = J(ε)

(3.18)

{
λn ≥ ε2 ∀ 1 ≤ n ≤ J(ε)
λn < ε2 ∀ n > J(ε)

then we see
(3.19)

∥u∥2
H2 ≃

J

∑
n=1

|πn|2

λ 3
n

+
1
ε4

∞

∑
n=J+1

|πn|2

λn
, ∥u∥2 ≃

J

∑
n=1

|πn|2

λ 2
n

+
1
ε4

∞

∑
n=J+1

|πn|2.

Indeed, for n ≤ J
1
4
|πn|2

λ 3
n

≤ |πn|2

λn(λn + ε2)2 ≤ |πn|2

λ 3
n

while for all n > J
1
4
|πn|2

λnε4 ≤ |πn|2

λn(λn + ε2)2 ≤ |πn|2

λnε4
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recall that the eigenvalues are labeled in decreasing order: λ1 ≥ λ2 ≥ .... Now, the
second inequality of (3.17) implies
(3.20)

|πn|2

λn
≤ σ

n−J−1 |πJ+1|2

λJ+1
, n ≥ J+1 =⇒

∞

∑
n=J+1

|πn|2

λn
≤ 1

1−σ

|πJ+1|2

λJ+1

But then we can estimate

∥u∥2
H2 ≲

1
λJ+1

(
J

∑
n=1

λJ+1

λ 3
n

|πn|2 +
|πJ+1|2

ε4

)
≲

1
λJ+1

(
J

∑
n=1

|πn|2

λ 2
n

+
|πJ+1|2

ε4

)
≲

∥u∥2

ε2 ,

where in the last inequality we used the first inequality of (3.17).
In order to prove the reverse inequality we appeal to the third inequality of

(3.17), which implies

(3.21)
J

∑
n=1

|πn|2

λ 2
n

≲
|πJ|2

λ 2
J

≤ λJ

J

∑
n=1

|πn|2

λ 3
n

But then we can estimate

ε
2∥u∥2

H2 ≳
ε2

λJ

(
J

∑
n=1

|πn|2

λ 2
n

+
1
ε4

∞

∑
n=J+1

|πn|2
)

≳ ∥u∥2,

where we also used the first inequality of (3.17): λJ ≲ λJ+1 < ε2 which concludes
the proof of the lemma. □

Let us now prove the second part of Theorem 2.4, that requires strict expo-
nential asymptotics (2.13), which implies (3.17), and therefore (2.6). In this case
formulas (2.2), (3.12) and (3.14) imply

Mε,z ≃ ε
2∥u∥H2 ≃ ε∥u∥= ε

√
∞

∑
n=1

|πn|2
(ε2 +λn)2 .

Then the conclusion of the second part of Theorem 2.4 follows from the following
lemma.

Lemma 3.9. Let {an,bn}∞
n=1 be nonnegative numbers such that an ≃ e−αn and

bn ≃ e−βn with 0 < β < α , where the implicit constants don’t depend on n. Let
δ > 0 be a small parameter, then

(3.22)
∞

∑
n=1

bn

(an +δ )2 ≃ δ
β

α
−2

where the implicit constants don’t depend on δ .

Proof. As in the proof of Lemma 3.8 we introduce the switchover index J = J(δ )∈
N defined by
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{
an ≥ δ ∀ 1 ≤ n ≤ J
an < δ ∀ n > J

Below all the implicit constants in relations involving ≃ or ≲ will be independent
of δ . It is clear that

∞

∑
n=1

bn

(an +δ )2 ≃ ∑
n≤J

bn

a2
n
+

1
δ 2 ∑

n>J
bn.

Note that
∑
n>J

bn ≲ ∑
n>J

e−βn ≲ e−β (J+1).

On the one hand, using our assumption on bn we find

(3.23) ∑
n>J

bn ≃ bJ+1 ≃ bJ.

On the other hand

∑
n≤J

bn

a2
n
≲ ∑

n≤J
e(2α−β )n = e2α−β e(2α−β )J −1

e2α−β −1
≲ e(2α−β )J ≃ bJ

a2
J
,

Thus we conclude

(3.24) ∑
n≤J

bn

a2
n
≃ bJ

a2
J
.

Now δ ≃ aJ and aJ ≃ e−αJ , therefore e−J ≃ δ
1
α . Using these along with (3.23) and

(3.24) we obtain
∞

∑
n=1

bn

(an +δ )2 ≃ bJ

a2
J
+

bJ

δ 2 ≃ bJ

a2
J
≃ e(2α−β )J ≃ δ

β

α
−2.

□

4 Maximizing the extrapolation error

Notation: In this section it will be convenient to switch notation and let ∥ · ∥ and
(·, ·) be the norm and the inner product of H2.

Our goal is to understand how large | f (z)| can be, under the assumptions ∥ f∥H2 ≤
1 and ∥ f∥2

L2(Γ)
≤ ε . From the representation formula (3.7) we find

f (z) =
1

2π
( f , p), p(x) =

i
x− z

on the other hand
∥ f∥2

L2(Γ) = (K f , f )

where

(K f )(s) =
ˆ
R

k(t,s) f (t)dt, k(t,s) =
1

4π2

ˆ
Γ

|dτ|
(t − τ)(s− τ)

, s ∈ R,
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and we see that K is a bounded, positive definite, self-adjoint operator in H2. We
can interchange the order of integration in the definition of K f , use (3.7), and
obtain an alternative representation:

(4.1) (K f )(s) =
i

2π

ˆ
Γ

f (τ)|dτ|
s− τ

, s ∈ R, f ∈ H2(H+).

From this representation it is obvious that K f has an analytic extension from R to
C\Γ and that its restriction to H+ is of Hardy class H2. Thus we arrive at a convex
maximization problem with two quadratic constraints. Since the constraints are
invariant with respect to the choice of the constant phase factor for the function f ,
instead of maximizing | f (z)| we consider the equivalent problem of maximizing a
real linear functional ℜ( f , p):

(4.2)


1

2π
ℜ( f , p)→ max

( f , f )≤ 1
(K f , f )≤ ε

2

For every f , satisfying (4.2)(b) and (4.2)(c) and for every nonnegative numbers µ

and ν (µ2 +ν2 ̸= 0) we have the inequality

((µ +νK) f , f )≤ µ +νε
2

obtained by multiplying (4.2)(b) by µ and (4.2)(c) by ν and adding. Also, for any
uniformly positive definite self-adjoint operator M on H2 we have

ℜ(u,v)− 1
2
(M−1v,v)≤ 1

2
(Mu,u)

valid for all functions u,v ∈ H2 (expand (M(M−1v− u),(M−1v− u)) ≥ 0). The
uniform positivity of M ensures that M−1 is defined on all of H2. This is an example
of convex duality (cf. [13]) applied to the convex function F(u) = (Mu,u)/2. Then
we also have for µ > 0

(4.3) ℜ( f , p)− 1
2
(
(µ +νK)−1 p, p

)
≤ 1

2
((µ +νK) f , f ) ,

so that

(4.4) ℜ( f , p)≤ 1
2
(
(µ +νK)−1 p, p

)
+

1
2
(
µ +νε

2)
which is valid for every f , satisfying (4.2)(b) and (4.2)(c) and all µ > 0, ν ≥ 0. In
order for the bound to be optimal we must have equality in (4.3), which holds if
and only if

p = (µ +νK) f ,

giving the formula for optimal vector f :

(4.5) f = (µ +νK)−1 p.
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The goal is to choose the Lagrange multipliers µ and ν so that the constraints in
(4.2) are satisfied by f , given by (4.5). Let us first consider special cases.

• If ν = 0, then f = p
∥p∥ , so we see that f does not depend on the small

parameter ε , which leads to a contradiction, because the second constraint
(K f , f )≤ ε2 is violated if ε is small enough.

• If µ = 0, the operator (µ+νK)−1 is not defined on all of H2. It is however
defined on a dense subspace of H2. Even so, the choice µ = 0 cannot be
optimal, since then the optimal function f would satisfy K f = 1

ν
p. This

equation has no solutions in H2, since p has a pole at z ̸∈ Γ, while K f has
an analytic extension to C\Γ.

Thus we are looking for µ > 0, ν > 0, so that equalities in (4.2) hold. These are
the complementary slackness relations in Karush-Kuhn-Tucker conditions, i.e.,

(4.6)

{(
(µ +νK)−1 p,(µ +νK)−1 p

)
= 1,(

K(µ +νK)−1 p,(µ +νK)−1 p
)
= ε2.

Let η = µ

ν
, we can solve either the first or the second equation in (4.6) for ν

(4.7) ν
2 = ∥(K+η)−1 p∥2,

or

(4.8) ν
2 = ε

−2 (K(η +K)−1 p,(η +K)−1 p
)
.

The two analysis paths stemming from using one or the other representation for ν

lead to two versions of the upper bounds on | f (z)|, optimality of neither we can
prove. However, the minimum of the two upper bounds is still an upper bound and
its optimality is then apparent. At first glance both expressions for ν should be
equivalent and not lead to different bounds. Indeed, their equivalence can be stated
as an equation

(4.9) Φ(η) :=

(
K(K+η)−1 p,(K+η)−1 p

)
∥(K+η)−1 p∥2 = ε

2

for η . We will prove that this equation has a unique solution η∗ = η∗(ε), but we
will be unable to prove that η∗(ε) ≃ ε2, as ε → 0, which would follow from the
purported strict exponential decay of λn and πn. Thus, we take η∗(ε) = ε2 without
justification, observing that any choice of η gives a valid upper bound. But then
the two expressions (4.7) and (4.8) for ν give non-identical upper bounds, whose
minimum achieves our goal.

We observe that

lim
η→∞

Φ(η) = lim
η→∞

(
K(η−1K+1)−1 p,(η−1K+1)−1 p

)
∥(η−1K+1)−1 p∥2 =

(Kp, p)
∥p∥2 <+∞.



160 YURY GRABOVSKY AND NAREK HOVSEPYAN

Using Lemma 3.3 we have

(4.10)
(
K(K+η)−1 p,(K+η)−1 p

)
=

∞

∑
n=1

|πn|2

(λn +η)2 ,

and

(4.11) ∥(K+η)−1 p∥2 =
∞

∑
n=1

|πn|2

λn(λn +η)2 .

From Lemma Fatou and (3.5) we know that

lim
η→0

∥(K+η)−1 p∥2 =+∞.

Let δ > 0 be arbitrary. Let K be such that λn < δ for all n > K. Then

Φ(η) = ΦK(η)+ΨK(η),

where

ΦK(η) =
∑

K
n=1

|πn|2
(λn+η)2

∥(K+η)−1 p∥2 , ΨK(η) =
∑

∞
n=K+1

|πn|2
(λn+η)2

∥(K+η)−1 p∥2

Then
lim
η→0

ΦK(η) = 0.

We also have

ΨK(η)≤
∑

∞
n=K+1

|πn|2
(λn+η)2

∑
∞
n=K+1

|πn|2
λn(λn+η)2

≤ λK+1 < δ .

Thus,
lim
η→0

Φ(η)≤ lim
η→0

ΦK(η)+ lim
η→0

ΨK(η)≤ δ .

Since δ > 0 was arbitrary we conclude that Φ(0+) = 0. Thus, for every ε <√
(Kp, p)/∥p∥ equation (4.9) has at least one solution η > 0. We can prove that

this solution is unique by showing that Φ(η) is a monotone increasing function.
To prove this we only need to write the numerator N(η) of Φ′(η), obtained by the
quotient rule. Using formula

d
dη

(K+η)−1 =−(K+η)−2

and denoting u = (K+η)−1 p we obtain

N(η) = 2((K+η)−1u,u)(Ku,u)−2(K(K+η)−1u,u)∥u∥2.

Using formula K(K+η)−1 = 1−η(K+η)−1 we also have

N(η) = 2((K+η)−1u,u)((K+η)u,u)−2(u,u)2.

Since operator K+η is positive definite we can use the inequality

(Ax,y)2 ≤ (Ax,x)(Ay,y)
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for A =K+η , x = (K+η)−1u and y = u, showing that N(η)≥ 0. The equality
occurs if and only if x = λy. In our case this would correspond to p being an
eigenfunction of K, which is never true, since p has a pole at z̄ and all functions
in the range of K have an analytic extension to C \Γ. Thus, N(η) > 0 and (4.9)
has a unique solution η∗ > 0. Finding the asymptotics of η∗(ε), as ε → 0 lies
beyond capabilities of classical asymptotic methods because Φ(η) has an essential
singularity at η = 0. Indeed, it is not hard to show2 that Φ′(−λm) = 0 for all m≥ 1.
Thus η = 0 is neither a pole nor a removable singularity of Φ(η).

We can avoid the difficulty by observing that since the bound (4.4) is valid for
any choice of µ and ν , we can choose η = µ/ν based on a non-rigorous analysis
of what η∗ should be, and then choose ν according to (4.7) or (4.8), while still
obtaining an upper bound.

In accordance with (2.13) we postulate that

|πn|2 = e−nβ , λn := e−nα

for some 0 < α < β < 2α , hence equations (4.10) and (4.11) give

(4.12) Φ(η) =

∞

∑
n=1

e−nβ

(e−nα +η)2

∞

∑
n=1

en(α−β )

(e−nα +η)2

= ε
2.

When e−nα > η we will neglect η , while when e−nα < η we will neglect e−nα .
Let J = J(η) be the switch-over index, for which e−J(η)α ≈ η . Then

∞

∑
n=1

en(α−β )

(e−nα +η)2 ≈
J

∑
j=1

en(3α−β )+
1

(η)2

∞

∑
j=J+1

en(α−β ) ≈ eJ(3α−β )+
eJ(α−β )

η2

Similarly,
∞

∑
n=1

e−nβ

(e−nα +η)2 ≈ eJ(2α−β )+
e−Jβ

η2

substituting these approximations in (4.12) and simplifying we obtain e−Jα ≈ ε2.
In other words

(4.13) η∗ ≈ e−Jα ≈ ε
2.

With this motivation let us choose η = ε2. With this and formulas (4.7) and (4.8)
for ν we obtain the two forms of the upper bound (4.4) conveniently written in
terms of u = (K+ ε2)−1 p:

(4.14) ℜ( f , p)≤ (u, p)
2∥u∥

+ ε
2∥u∥= πu(z)

∥u∥
+ ε

2∥u∥,

2 Specifically η =−λm is a pole of order 4 of ∥u∥4, while it is a pole of order 3 of N(η).
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where we have used (3.11), and similarly

(4.15) ℜ( f , p)≤ ε
πu(z)
∥u∥L2(Γ)

+ ε∥u∥L2(Γ),

By (3.12)

ε
2∥u∥ ≤ 2πu(z)

∥u∥
, ∥u∥L2(Γ) ≤

2πu(z)
∥u∥L2(Γ)

.

Therefore, we have both

| f (z)|= 1
2π

ℜ( f , p)≤ 3
2

u(z)
∥u∥

, | f (z)| ≤ 3ε

2
u(z)

∥u∥L2(Γ)

.

Inequality (2.2) is now proved.
We remark that equation (4.9) for the optimal choice η∗(ε) can be written as

∥u∥L2(Γ) = ε∥u∥H2 , in which case solution of (2.3) with η∗(ε) in place of ε would
satisfy

εuε,z(z)
∥u∥L2(Γ)

=
uε,z(z)
∥u∥H2

= Mε,z.

Moreover Mε,z would be an exact upper bound for | f (z)| achieved by both εuε,z(ζ )/∥u∥L2(Γ)

and uε,z(ζ )/∥u∥H2 . In the absence of exact asymptotics of η∗(ε) we have obtained
only a marginally weaker bound, differing from the optimal by at most a small
constant multiplicative factor.

5 Proof of Theorem 2.7

5.1 The integral equation
Let us first establish an analogous result to Theorem 2.1, i.e. below we formu-

late the upper bound in the case Γ = [−1,1] via the solution to an integral equation.

Theorem 5.1. Let z ∈H+ and ε > 0. Assume f ∈ H2 is such that ∥ f∥H2 ≤ 1 and
∥ f∥L2(−1,1) ≤ ε , then

(5.1) | f (z)| ≤ 3
2

ε
uε,z(z)

∥uε,z∥L2(−1,1)

where uε,z solves the integral equation

(5.2)
1
2
(Ku+u)+ ε

2u = pz, on (−1,1)

with

(5.3) Ku(x) =
i
π

ˆ 1

−1

u(y)
x− y

dy, pz(ξ ) =
i

ξ − z
,

where the integral is understood in the principal value sense.
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Proof. It is enough to prove the inequality (5.1) for ∥ f∥H2 ≤ 1 and ∥ f∥L2(−1,1) < ε ,
because when ∥ f∥L2(−1,1) = ε we can consider the sequence f n := (1− 1

n) f and
take limits in the inequality for f n as n → ∞.

Since f (·+ ih)→ f as h ↓ 0 in L2(−1,1) (a well-known property of H2 func-
tions, see [24]), the assumption ∥ f∥L2(−1,1) < ε implies that ∥ f (·+ ih)∥L2(−1,1) ≤ ε

for h small enough. In other words ∥ f∥L2(Γh) ≤ ε , where Γh = [−1,1]+ ih, so we
can apply Theorem 2.1 and conclude

| f (z)| ≤ 3
2

ε
uh(z)

∥uh∥L2(Γh)

, ∀h small enough

where uh solves the integral equation

Ku(ζ )+ ε
2u(ζ ) =

i
ζ − z

, ζ ∈ Γh

Let us set v(x) = u(x+ ih), then the above integral equation can be rewritten as

(5.4) Khv(x)+ ε
2v(x) = ph(x), x ∈ [−1,1]

with

(5.5) Khv(x) =
1

2π

ˆ 1

−1

iv(y)dy
x− y+2ih

, ph(x) =
i

x+ ih− z

again Kh is a positive operator on L2(−1,1), Khv has analytic extension to the
upper half-plane hence the solution v of (5.4) is also analytic in H+. Let us denote
this solution by vh to indicate its dependence on the small parameter h, namely
vh =

(
Kh + ε2

)−1 ph. Then the upper bound on f becomes

(5.6) | f (z)| ≤ 3
2

ε
vh(z− ih)
∥vh∥L2(−1,1)

, ∀h small enough

Our goal is to take limits in this upper bound as h ↓ 0.

Lemma 5.2. Let Kh and K be defined by (5.5) and (5.3), respectively. Then any
g ∈ L2(−1,1)

(5.7) Khg → 1
2(K +1)g, as h ↓ 0, in L2(−1,1).

Proof.
• {Kh}h>0 is uniformly bounded in the operator norm on L2(−1,1). To prove this
we observe that Khg = k ∗χ1g, where χ1 := χ(−1,1) and

k(t) =
i

2π(t +2ih)
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with the definition f̂ (ζ ) =
´
R f (x)e−iζ xdx we can compute k̂(ζ ) = e−2hζ χ>0(ζ ),

where χ>0(ζ ) = χ(0,+∞)(ζ ). In particular |̂k| ≤ 1, but then

∥Khg∥L2(−1,1) ≤ ∥Khg∥L2(R) =
1√
2π
∥k̂ · χ̂1g∥L2(R) ≤ 1√

2π
∥χ̂1g∥L2(R) =

= ∥χ1g∥L2(R) = ∥g∥L2(−1,1)

which immediately implies ∥Kh∥ ≤ 1 for any h > 0.
• By uniform boundedness of ∥Kh∥, it is enough to show convergence Khg →

1
2(K + 1)g in L2(−1,1) for a dense set of functions g. We will now show conver-
gence for all g ∈C∞

0 (−1,1). Since by Sokhotski-Plemelj formula this convergence
holds a.e. in (−1,1), to achieve the desired conclusion it is enough to show that
the family of functions |Khg|2 is equiintegrable in (−1,1). Vitali convergence the-
orem [35, p. 133, exercise 10(b)] then implies convergence of Khg in L2(−1,1).
We recall the definition of equiintegrability:

(5.8) sup
|A|≤δ

sup
h>0

ˆ
A
|Khg(x)|2dx → 0, as δ → 0,

where the first supremum is taken over measurable subsets A ⊂ (−1,1). We com-
puteˆ

A
|Khg(x)|2dx = ∥χAKhg∥2

L2(R) = ∥χ̂A ∗K̂hg∥2
L2(R) ≤ ∥χ̂A∥2

L2(R)∥K̂hg∥2
L1(R)

where we have used Young’s inequality. Now (5.8) follows from uniform bound-
edness of ∥K̂hg∥L1(R). We compute

K̂hg(ξ ) = e−2hξ
χ>0(ξ )χ̂1g(ξ )

hence
∥K̂hg∥L1(R) ≤ ∥χ̂1g∥L1(R) = ∥ĝ∥L1(R) < ∞

since for g ∈C∞
0 (−1,1) we have χ̂1g = ĝ ∈ L1(R). Thus,ˆ

A
|Khg(x)|2dx ≤ ∥χ̂A∥2

L2(R)∥ĝ∥2
L1(R) = |A|∥ĝ∥2

L1(R) → 0, as δ → 0

□

Since Kh is a positive operator for any h, we see that so is K +1 and hence the
inverse of 1

2(K +1)+ ε2 is well-defined on L2(−1,1). We now see that, as h ↓ 0

(5.9) vh =
(
Kh + ε

2)−1
ph −→

(1
2(K +1)+ ε

2)−1
p =: w, in L2(−1,1)

where p(x) = i
x−z . Using the resolvent identity(

Kh + ε
2)−1 −

(
K0 + ε

2)−1
=
(
Kh + ε

2)−1
(K0 −Kh)

(
K0 + ε

2)−1
,

where K0 =
1
2(K +1), we conclude that(

Kh + ε
2)−1

g →
(
K0 + ε

2)−1
g
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for any g ∈ L2(−1,1), since all operators above are uniformly bounded as h → 0.
Relation (5.9) then easily follows.

We now observe that because of the convergence (5.7) w∈ L2(−1,1), defined in
(5.9), represents the boundary values of an analytic function in the upper half-plane
(in fact an H2 function), hence we can extend w to H+, more specifically

ε
2w(ζ ) := p(ζ )− i

2π

ˆ 1

−1

w(y)
ζ − y

dy, ζ ∈H+

defines the extension. But then, from the integral equation for vh we see that

ε
2vh(z− ih) =

i
z− z

− i
2π

ˆ 1

−1

vh(y)
z− y+ ih

dy −→ ε
2w(z)

and thus we conclude

| f (z)| ≤ 3
2

ε
w(z)

∥w∥L2(−1,1)

It remains to relabel w by uε,z and conclude the proof. □

5.2 Solution of the integral equation
The goal of this section is to find the function u appearing in the upper bound

(5.1). Recall that u solves the integral equation

Ku+λu = 2p, on (−1,1)

where λ = 1+ 2ε2, K is the truncated Hilbert transform given by (5.3), and for
fixed z ∈H+

p(x) =
i

x− z
We can solve this integral equation using the spectral representation of K obtained
in [25]. For x,ζ ∈ (−1,1) let

(5.10) σ(x,ζ ) =
exp
{ i

2π
L(x)L(ζ )

}
π
√
(1− x2)(1−ζ 2)

, L(x) = ln
(

1+ x
1− x

)
Theorem 5.3. The formulae

f (x) =
ˆ 1

−1
g(ζ )σ(x,ζ )dζ , g(ζ ) =

ˆ 1

−1
f (x)σ(x,ζ )dx

are inversion formulae which represent isometries from the space L2(−1,1) to it-
self.

Theorem 5.4. If f (x) corresponds to g(ζ ), then K f (x) corresponds to ζ g(ζ ) (w.r.t.
the above transformation).

Remark 5.5. Integrals are understood in a limiting sense as the Fourier transform of
an L2 function, namely as the limit of

´ 1−δ

−1+δ
when δ ↓ 0 in the sense of L2(−1,1).
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Let (·, ·) denote the inner product of L2(−1,1), using the stated result we can
write

u(x) =
ˆ 1

−1
(u,σ(·,ζ ))σ(x,ζ )dζ , p(x) =

ˆ 1

−1
(p,σ(·,ζ ))σ(x,ζ )dζ

Ku(x) =
ˆ 1

−1
ζ (u,σ(·,ζ ))σ(x,ζ )dζ

then the integral equation gives

(λ +ζ )(u,σ(·,ζ )) = 2(p,σ(·,ζ ))
and therefore

(5.11) u(x) =
ˆ 1

−1

2(p,σ(·,ζ ))σ(x,ζ )
λ +ζ

dζ

Let us compute (p,σ(·,ζ )) explicitly by changing variables y = tanh(t), in which
case L(y) = 2t. We obtain

(p,σ(·,ζ )) = i

π
√

1−ζ 2

ˆ
R

e−itL(ζ )/π

sinh t − zcosh t
dt

let α ∈ C be such that cothα = z, then

(p,σ(·,ζ )) =− isinhα

π
√

1−ζ 2

ˆ
R

e−itL(ζ )/π

cosh(t −α)
dt

We observe that

cothα =
e2α +1
e2α −1

=
w+1
w−1

, w = e2α

The fractional linear map w 7→ w+1
w−1 maps lower half-plane into the upper half-

plane and therefore, w = w(z) is in the upper half-plane. Hence, ℑα ∈ (0,π/2).
It follows that there are no zeros of cosh(t −α) in the strip bounded by R and
ℑt = ℑα . Taking into account that

lim
R→∞

ˆ
ℑα

0

e−i(iτ±R)L(ζ )/π

cosh(iτ ±R−α)
idτ = 0

we conclude that

(p,σ(·,ζ )) =− ie−iαL(ζ )/π sinhα

π
√

1−ζ 2

ˆ
R

e−itL(ζ )/π

cosh(t)
dt =− ie−iαL(ζ )/π sinhα√

1−ζ 2 cosh(L(ζ )/2)

simplifying we obtain

(p,σ(·,ζ )) =−ie−iαL(ζ )/π sinhα

We now use this formula in (5.11).

u(x) =− 2isinhα

π
√

1− x2

ˆ 1

−1

eiL(ζ )[L(x)−2α]/2π

(λ +ζ )
√

1−ζ 2
dζ
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once again changing the variables ζ = tanhs we obtain

u(x) =− 2isinhα

π
√

1− x2

ˆ
R

eis[L(x)−2α]/π

sinhs+λ coshs
ds

Let β = β (λ ) be such that cothβ = λ , then β (λ )> 0 and β (λ )→+∞, as λ → 1.
Now

u(x) =−2isinhα sinhβ

π
√

1− x2

ˆ
R

eis[L(x)−2α]/π

cosh(s+β )
ds =−2isinhα sinhβ√

1− x2

e−iβ [L(x)−2α]/π

cosh(L(x)/2−α)

Next we simplify

cosh
(

L(x)
2 −α

)
= cosh

(
L(x)

2

)
coshα − sinh

(
L(x)

2

)
sinhα =

coshα − xsinhα√
1− x2

Thus we obtain the final answer

(5.12) u(x) =
2isinhβ

x− z
e−i β

π
[L(x)−2α] = 2p(x)sinh(β )e−i β

π
[L(x)−2α]

where (with ln denoting the principal branch of logarithm)

β = 1
2 ln
(
1+ ε

−2) , α = 1
2 ln

z+1
z−1

We see that
∥u∥L2(−1,1) = 2∥p∥L2(−1,1) sinh(β )e−2 β

π
ℑα

Because ℜL(z) = 2ℜα and eβ ∼ ε−1 as ε → 0, we find that

(5.13) ε
u(z)

∥u∥L2(−1,1)
= ε

p(z)e
β

π
ℑL(z)

∥p∥L2(−1,1)
∼ p(z)ε

1
π
[π−ℑL(z)]

∥p∥L2(−1,1)
=: B, as ε → 0

Since 1+z
1−z ∈H+ we see that π −arg 1+z

1−z =−arg z+1
z−1 and with z = zr + izi we obtain

(5.14) B =
ε
− 1

π
arg z+1

z−1

2
√

zi

√
arctan zr+1

zi
− arctan zr−1

zi

.

This concludes the proof of (2.20). To prove the optimality of this upper bound we
consider the function

W (ζ ) = ε
p(ζ )

∥p∥L2(−1,1)
e

i lnε

π
ln 1+ζ

1−ζ , ζ ∈H+

clearly this is an analytic function in the upper half-plane and belongs to H2,
∥W∥L2(−1,1) = ε and

∥W∥2
H2 = ε

2 +
∥p∥2

L2((−1,1)C)

∥p∥2
L2(−1,1)

= ε
2 −1+

π

arctan zr+1
zi

− arctan zr−1
zi

≤C

where C > 0 is independent of ε , therefore W is an admissible function. Further,

|W (z)|= B
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that is, W (ζ ) attains the bound (2.20) up to a constant independent of ε .
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