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Abstract

An important necessary condition for an exact relation for effective moduli of polycrystals
to hold is stability of that relation under lamination. This requirement is so restrictive that it is
possible (if not always feasible) to find all such relations explicitly. In order to do that one needs
to combine the results developed in Part I of this paper and the representation theory of the
rotation groups SO(2) and SO(3). More precisely, one needs to know all rotationally invariant
subspaces of the space of material moduli. This paper presents an algorithm for getting all such
subspaces. We illustrate the workings of the algorithm on the examples of 3-D elasticity, where
we get all the exact relations and 2-D and 3-D piezoelectricity, where we get some (possibly all)
of them.

1 Introduction.

Suppose that effective moduli of a polycrystal satisfy a set of equations, provided that the moduli of
individual crystals satisfy them. The embedded local manifold described by such equations will be
called an exact relation for effective moduli. The simplest example is the Keller-Dykhne-Mendelson
[8, 14, 19] family of exact relations

Mt = {σ ∈ Sym(R2) : detσ = t}.

There is a very extensive literature on the subject of microstructure independent relations. However,
in all cases, the results are tied to a particular physical context. In [9], henceforth referred to as
Part I, we have treated the whole range of physical problems in the unifying framework developed
by Milton [22]. One disadvantage (which may be partially overcome, as we will show elsewhere)
is that we obtain a complete characterization of exact relations for laminates of polycrystals only.
Another minor disadvantage of our purely algebraic approach is the loss of physical interpretations
of the exact relations we obtain.

The existing literature shows two major trends: the constant field approach that dates back to
Hill [11] and Cribb [7] (see also [4] and references therein), and the decoupling approach that was
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initiated by Straley [23] (see also [5, 20, 21]). In its essence, the constant field approach is a “trivial”
observation that the set

Π(u, v) = {C : Cu = v},
where u and v are given constant fields, is stable under homogenization. In its full generality, this
observation was made by Lurie and Cherkaev [16]1.

The decoupling approach is based on transforming a coupled problem to a decoupled problem
using similarity transformations for quadratic forms. The general treatment of the method for any
number of coupled electrostatics problems is done by Milgrom and Shtrikman [20, 21]. We will show
elsewhere that the former approach corresponds to rotationally invariant ideals while the latter may
be placed in a broader class of exact relations corresponding to some special rotationally invariant
subalgebras in the space of all linear transformations of physical fields.

The goal of this paper is to combine our general theory developed in Part I with the representation
theory of the rotation groups SO(2) and SO(3) and to describe an algorithm that works in all cases
where Part I applies. We illustrate the procedure by working out exact relations for 3-D elasticity
and 2-D and 3-D piezoelectricity. Before we begin, let us briefly remind the reader of the abstract
framework of Part I.

For each material property, there is an associated vector space T of field tensors. The physical
fields in the body (or plate) have values in T at every point x. For example, in conductivity the
electric and current fields are vectors, i.e. they take their values in T = Rd, d = 2, 3. In elasticity,
the stress and strain are symmetric matrices, so in this case, T =Sym(Rd), is the linear space
of symmetric operators on Rd. It is important that T is a tensor space, as there is a special
transformation rule that T has to obey under the change of coordinates. Let R ∈ SO(d) be a
rotation. If we rotate the body by R, then the components of the physical fields must be changed by
a linear transformation. Let E(x) be such a field in the original body. Then the field in the rotated
body will be given by

E′(Rx) = Θ(R)E(x), (1.1)

where Θ(R) is an orthogonal operator on the vector space T . The function Θ(R) depends on the
rotation R in a very particular manner. For example, in the case of conductivity where T = Rd, we
have Θ(R)τ = Rτ for τ ∈ Rd. In the case of elasticity, T = Sym(Rd), and for any τ ∈ Sym(Rd),
we have Θ(R)τ = RτRT . The key here is that Θ(R) is a representation of SO(d) on T , i.e. Θ(R)
preserves multiplication and inversion of the orthogonal matrices in SO(d). Thus, Θ(R) is a function
mapping the group SO(d) into SO(T ) such that for any R, Q ∈ SO(d),

Θ(QR) = Θ(Q)Θ(R)

and
Θ(Q−1) = Θ(Q)−1.

Such a function is called a group homomorphism.
We now define the representation g(R) of SO(d) on the space of material moduli

Y = Sym(T ) (1.2)

by the rule that for every C ∈ Y,

g(R)C = Θ(R)C[Θ(R)]T . (1.3)

Obviously, any polycrystalline G-closure G must have rotational invariance: C ∈ G implies
g(R)C ∈ G. Our focus here is on the exact relations for effective moduli of polycrystals. An exact
relation may be represented as a surface in the Euclidean space Y containing a G-closed set with

1See English translation in [17].
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non-empty interior in the induced topology of the surface. In Part I, we have investigated surfaces
containing sets closed under lamination, where it appeared more convenient to work with the new
variables

S = (I − C

c0
)−1, (1.4)

where c0 is an arbitrary scalar constant chosen such that the inverse in (1.4) exists.
The main result of Part I was that the tangent space L at the isotropic tensor S0 (in the variables

S) is rotationally invariant, i.e. L ∈ L implies g(R)L ∈ L for every R ∈ SO(d) and satisfies equations
(3.13) of Part I. The knowledge of this subspace is sufficient to describe the exact relation manifold
in the neighborhood of S0. Let us remind the reader how to obtain explicit equations for such a
manifold corresponding to L.

Parametric equations

Let {L1, . . . , Lk} be a basis for L. Then

C(λ1, . . . , λk) = c0






I −







W−1
0

[

W−1
0 +

k
∑

i=1

λiLi

]−1

W−1
0 + Γ







−1





, (1.5)

where W0 and Γ are constant tensors in Y defined in Part I. They depend on the physical setting,
but not on the choice of the subspace L.

Implicit equations

Let {K1, . . . , KN−k} be a basis for L⊥. Then

(

[

(I − C

c0
)−1 − Γ

]−1

, W−1
0 KrW

−1
0

)

=
(

W−1
0 , Kr

)

, 1 ≤ r ≤ N − k. (1.6)

It is easy to see that (1.5) and (1.6) are equivalent. Thus, instead of giving explicit equations for an
exact relation, it is enough to specify only the subspace L that generates an exact relation via (1.5)
or (1.6). It is in this form that we provide the answers in section 5. Below we briefly summarize the
results.

In 3-D elasticity, we obtain 3 exact relations. One of them is the well-known result of Hill
[12, 13] that a mixture of isotropic materials with constant shear modulus is isotropic and has the
same shear modulus. The second one is a less known result of Hill [11], see also [2]. It says that
the set of tensors having the 3x3 identity matrix as an eigenvector with fixed eigenvalue is a set
stable under lamination (and homogenization). The third exact relation says that a rank-one tensor
plus a null-Lagrangian is a conserved property under homogenization. This is a 3-D version of an
analogous statement for 2-D [10].

In the context of piezoelectricity we have only searched for exact relations within a class of
rotationally invariant subspaces that are “well-behaved” with respect to a “natural” decomposition
of Y. We conjecture that these are in fact all exact relations. In principle, it is possible to use
our methods (and a Maple program) to find all exact relations. However, It is our hope that a
better understanding of the algebraic properties of exact relations will lead to a less tedious and
more illuminating way of checking our conjecture, as well as describing all exact relations in more
complicated physical situations.

In 2-D piezoelectricity we have found 12 genuinely piezoelectric, essential exact relations2. The
question of finding exact relations for piezoelectricity has been previously addressed by Y. Benveniste

2An exact relation is called essential if it cannot be obtained as an intersection of other exact relations.
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[3, 4, 5]. However, he was looking for a different type of exact relations. He considered a 3-D crystal
and a 2-D microgeometry, obtaining relations between in-plane and out-of-plane moduli. He used a
“constant field” method that in our context would have yielded two truly piezoelectric exact relations
(for both 2 and 3-D piezoelectricity). We identify them in the list of exact relations in section 5.

In 3-D piezoelectricity we have found only 4 genuinely piezoelectric, essential exact relations, two
of which are of “constant field” type. We are not aware of any previous results in this setting.

2 Invariant subspaces of representations

We will first recall some general notions from the representation theory of compact groups (see
for example [6]). Let G be a compact group, and let V be a continuous, finite dimensional real
representation of G, i.e. V is a real, finite dimensional vector space together with a continuous
homomorphism ρ : G → GL(V ). (We will also call V a real G-module3.) The representation
V admits a G- invariant inner product, so that after an appropriate choice of basis for V , the
image ρ(G) will consist of orthogonal matrices. The representation V may be decomposed into

an orthogonal direct sum of irreducible representations V =
⊕k

i=1 Vi. This decomposition is not
in general unique. However, for any irreducible representation W , let V (W ) be the sum of all
irreducible subrepresentations of V isomorphic to W . Equivalently, V (W ) is the sum of all the Vi’s
isomorphic to W . We then have the canonical decomposition of V into W -isotypic components
V =

⊕

W∈Irr(G,R) V (W ), where Irr(G,R) denotes the set of isomorphism classes of irreducible real
representations of G.

We will also need to consider complex representations of G. Analogous statements hold in this
situation, with obvious modifications. Note that in this case, explicit matrices for the representation
will in general be unitary instead of orthogonal.

We now turn to the classification of G-invariant subspaces of a representation. Let V be a
representation of G over the field K, where K is the real or complex numbers, and let L be a
subrepresentation of V . Again, L is the sum of its isotypic components with L(W ) ⊆ V (W ). Thus,
it suffices to determine all possible subrepresentations of V (W ) ∼= W⊕m where m = mW is the
multiplicity of W in V . Note that any such subrepresentation L(W ) is isomorphic to W⊕k for some
k, 0 ≤ k ≤ m.

We will start by determining the irreducible subrepresentations of W⊕m. These are given by
the images of nonzero elements of HomG(W, W⊕m), the set of G-maps W → W⊕m. Note that
d ∈ HomG(W, W⊕m) can be viewed as a row vector (d1, . . . , dm), where the di’s are G-equivariant

endomorphisms of W , i.e. elements of D
def
= EndG(W ) = HomG(W, W ). We now use the fact that

the endomorphism ring D has a particularly simple form. By Schur’s lemma, the endomorphism
ring D is a finite-dimensional division algebra over K. If K = C, this implies that D = C and all
endomorphisms of W are scalar multiples of the identity. However, if K = R, D can be R, C, or the
quaternions H, partitioning the Irr(G,R) into representations of real, complex, and quaternionic
type. Let {w1, w2, . . . , wn} be a basis for W . Then any nonzero d ∈ Dm gives rise to the irreducible
subrepresentation of W⊕m with basis {vj = (d1(wj), . . . , dm(wj)) | 1 ≤ j ≤ n}; moreover, another
nonzero d′ ∈ Dm will give the same irreducible submodule if and only if d′ and d are parallel. Thus,
the irreducible representations of L isomorphic to W are in bijective correspondence with the set of
one-dimensional subspaces of Dm, i.e. with m − 1- dimensional projective space Pm−1(D).

More generally, there is a bijective correspondence between the subrepresentations of W⊕m

isomorphic to W⊕k and the set of k-planes (through the origin) in Dm. Indeed, let A ⊆ Dm be a
k-dimensional subspace of Dm, say with basis {d1, . . . , dk}. Then the corresponding submodule LA

has basis
{vl

j = (dl
1(wj), . . . , d

l
m(wj)) | 1 ≤ l ≤ k, 1 ≤ j ≤ n}. (2.7)

3There is no relation to the notion of G-closure.
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As an immediate corollary, note that V has a finite number of invariant subspaces if and only if the
multiplicity of each irreducible representation in V is at most one or equivalently, if each nontrivial
isotypic component is irreducible.

In order to complete the description of the irreducible subspaces of V , it is still necessary to
understand the action of the division algebra D on W in the cases where it is not scalar multiplication,
i.e. when K = R and D 6= R. It will be convenient to recharacterize our partition of Irr(G,R).
Recall that for a complex representation M , the conjugate representation M is obtained by taking
the complex conjugate of the homomorphism G → GL(M). It is irreducible if and only if M is. Let
W be an irreducible real representation, and consider the complex representation WC = W ⊗ C.
Note that WC is always isomorphic to its conjugate. It is not necessarily irreducible. In fact, it can
be shown that there are precisely three possibilities for the irreducible decomposition of WC and
that these correspond to real G-modules of real, complex, and quaternionic type respectively. The
complexified representation may be irreducible, or it may split into two irreducibles: WC

∼= U ⊕ U ,
where U is irreducible, but not self-conjugate, or WC

∼= U ⊕ U , where U is irreducible and self-
conjugate. In particular, there is a bijective correspondence between irreducible real representations
of real type and irreducible complex representations whose matrix coefficients can be taken to be
real numbers.

Now suppose that W is of complex type, so that there exists an irreducible complex representation
U , not isomorphic to its conjugate, such that WC = U ⊕ U . Choose a basis {u1, . . . , ud} of U and
corresponding basis {ū1, . . . , ūd} of U . This gives rise to a basis {(uj+ūj)/2, (ūj−uj)/2i | 1 ≤ j ≤ d}
for the real vector space W . The endomorphism of W determined by λ ∈ C is then induced by
uj 7→ λuj and ūj 7→ λ̄ūj. A similar analysis for real representations of quaternionic type is possible,
though more complicated. However, since neither SO(2) nor SO(3) have any such representations,
we will not supply the details.

The usefulness of the above theory is limited in practice by the necessity of finding an explicit
decomposition of the given representation into irreducible components, which is a difficult problem
in general. However, in our applications, we will be concerned with representations on spaces of
symmetric matrices, spaces whose structure gives rise to certain simplifications. Let V be a real

inner product space and make it into a real orthogonal G-module via the homomorphism G
ρ→ O(V ).

We assume that the decomposition of V into irreducibles is known. Let W = Sym(V ) be the set of
symmetric linear operators on V , and define an action of G on W via g ·A = ρ(g)Aρ(g)t. Note that
W comes equipped with the G-invariant inner product 〈A, B〉 = Tr(AB), where Tr(A) denotes the
trace of A.

It will be convenient to identify W with Sym2(V ), the second symmetric power of V (or more
concretely, homogeneous polynomials of degree two in elements of V ). The group G acts naturally
on V ⊗ V via g · (v1 ⊗ v2) = ρ(g)v1 ⊗ ρ(g)v2, and this action descends to Sym2(V ). Choose an
orthonormal basis {e1, . . . , en} of V , and let Eij be the n × n matrix with 1 in the i, j entry and
zeros elsewhere. It is then easy to check that the linear isomorphism Sym2(V ) → W given by
eiej 7→ (Eij + Eji)/2 is G- equivariant, so that W ∼= Sym2(V ).

Now let V =
⊕d

i=1 V ⊕mi

i where the Vi’s are pairwise nonisomorphic irreducible representations.
Using the well-known fact that Sym2(A ⊕ B) ∼= Sym2(A) ⊕ (A ⊗ B) ⊕ Sym2(B) and induction, we
obtain the G-module decomposition

W = Sym2(V ) ∼=
d
⊕

i=1

(Sym2(Vi)
⊕mi ⊕ (Vi ⊗ Vi)

⊕
(mi−1)mi

2 ) ⊕
⊕

i<j

(Vi ⊗ Vj)
⊕mimj

∼=
d
⊕

i=1

(Sym2(Vi)
⊕

mi(mi+1)

2 ⊕ Λ2(Vi)
⊕

(mi−1)mi
2 ) ⊕

⊕

i<j

(Vi ⊗ Vj)
⊕mimj ,

(2.8)

where Λ2(Vi) is the second exterior power of Vi with the natural G-action. The last isomorphism
follows because A ⊗ A ∼= Sym2(A) ⊕ Λ2(A). Viewing W as symmetric dim V ×dimV matrices, this
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means that W decomposes into symmetric blocks along the diagonal and pairs of blocks which are
the reflections of each other across the diagonal. Thus, if for any pair of irreducible representations
V ′ and V ′′, we can decompose Sym2(V ′), Λ2(V ′), and V ′ ⊗V ′′ into irreducible components, we can
decompose W into irreducibles and thereby find the invariant subspaces of W .

3 Representation theory of SO(2).

We now specialize the above analysis to the group G = SO(2), i.e. the circle group S1 ⊂ C. First,
we will recall the classification of irreducible real representations of S1, and then we will show how
to obtain an explicit decomposition of an arbitrary real representation into irreducibles.

The irreducible complex representations of S1 are one- dimensional, since S1 is abelian. In fact,
they are given by one-dimensional vector spaces Pk, k ∈ Z, with S1-action z · p = zkp for z ∈ S1,
p ∈ Pk. This follows from the fact that a continuous homomorphism S1 ∼= R/Z → C∗ = C − {0}
is a homomorphism R → C∗ which is trivial on Z. Note that Pk = P−k and that the matrix
coefficient for the self- conjugate representation P0 is 1 ∈ R. Thus, Irr(S1,R) consists of the trivial
one-dimensional module M0, which is of real type, and for each positive integer k, a two-dimensional
representation Mk of complex type such that (Mk)C = Pk⊕P−k. Explicitly, for k > 0, let fk and f−k

span Pk and P−k respectively, and let Mk be the real vector space spanned by ek,1 = (fk + f−k)/2
and ek,2 = (f−k − fk)/2i. If we set

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

∈ SO(2), (3.9)

it is immediate that S1 acts on Mk with respect to the basis {ek,1, ek,2} via the homomorphism
S1 → SO(2), eiθ 7→ R(kθ).

Let V be a real representation of SO(2). The M0 isotypic component V (0)
def
= V (M0) is just

the set of fixed points in V , say of dimension k0. To find V (k)
def
= V (Mk) for k > 0, consider the

complexification VC. Choose a basis {fk
j | 1 ≤ j ≤ jk} for the Pk isotypic component of VC, i.e.

diagonalize the action of S1 and let {fk
j } be a basis for the eigenspace of the eigenvalue eikθ. (Such

a simultaneous eigenvalue is called a weight of Pk, and the isotypic component of VC(Pk) is the
corresponding weight space.) The −k weight space has basis {f̄k

j }. It follows easily that V (k) is

isomorphic to jk copies of Mk via V (k) =
⊕jk

j=1(Rek
1,j ⊕ Rek

2,j), where ek
1,j = (fk

j + f̄k
j )/2 and

ek
2,j = (f̄k

j − fk
j )/2i. Thus, V ∼=

⊕∞

k=0 M⊕jk

k ; of course, jk = 0 for all but finitely many k. The
invariant subspaces of V are just direct sums of invariant subspaces of the V (k)’s, which are given
by (2.7). In particular, the irreducible subrepresentations isomorphic to M0 are the one-dimensional
subspaces of V (0) while the irreducible subspaces isomorphic to Mk for k > 0 are

Wz = R(

jk
∑

j=1

(xje
k
1,j + yje

k
2,j)) ⊕ R(

jk
∑

j=1

(xje
k
2,j − yje

k
1,j)), (3.10)

where z = (x+iy) a nonzero element of Cjk determined up to homothety, i.e an element of P jk−1(C).
In order to use (2.8) to find the irreducible components of W = Sym2(V ), it remains to decompose

Sym2(Mk), Λ2(Mk), and Mk⊗Ml for k < l. This can be done easily using the above methods, noting
that complexification is compatible with tensor products and symmetric and alternating powers. It
is immediate that Sym2(M0) ∼= M0, Λ2(M0) = {0}, and M0 ⊗Ml

∼= Ml for l > 0, so we assume that
k ≥ 1. Also, Λ2(Mk) ∼= M0, since it is a one-dimensional real representation.

Let {ek,1, ek,2} be the standard basis for Mk, so that fk = ek
1−iek

2 and f−k = ek
1 +iek

2 respectively
span the k and −k weight spaces of (Mk)C. Then (Sym2(Mk))C has one-dimensional weight spaces
with weights 2k, −2k, and 0 spanned by f2

k , f2
−k, and fkf−k = e2

k,1 + e2
k,2. Thus, Sym2(Mk) ∼=
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M2k ⊕ M0; the M0 component has basis {e2
k,1 + e2

k,2} and the M2k component has standard basis

{e2
k,1 − e2

k,2, 2ek,1ek,2}. Finally, (Mk ⊗ Ml)C has one-dimensional weight spaces with weights l + k,
−(l + k), l− k, and −(l− k) spanned by fk ⊗ fl, f−k ⊗ f−l, f−k ⊗ fl, and fk ⊗ f−l respectively. This
gives rise to the decomposition

Mk ⊗ Ml = (R(ek,1 ⊗ el,1 − ek,2 ⊗ el,2) ⊕ R(ek,1 ⊗ el,2 + ek,2 ⊗ el,1)

⊕ (R(ek,1 ⊗ el,1 + ek,2 ⊗ el,2) ⊕ R(ek,1 ⊗ el,2 − ek,2 ⊗ el,1)
∼= Ml+k ⊕ Ml−k.

(3.11)

We summarize this as a theorem:

Theorem 1 For k ≥ 1, let Mk be the real irreducible representation of SO(2) whose complexification
has weights ±k, and let M0 be the trivial representation. Then if l > k ≥ 1, Sym2(Mk) ∼= M2k⊕M0,
Λ2(Mk) ∼= M0, and Mk ⊗ Ml

∼= Ml+k ⊕ Ml−k. Moreover, Sym2(M0) ∼= M0, Λ2(M0) = {0}, and
M0 ⊗ Ml

∼= Ml.

4 Representation theory of SO(3).

We now turn to the group G = SO(3). Again, we begin by recalling the classification of the
irreducible representations of SO(3).

The simplest description of these irreducible representations makes use of the fact that the group
SU(2) is the universal cover of SO(3) via a double cover SU(2)

π→ SO(3). To define the map π, we
view SU(2) as the unit quaternions using the isomorphism

ρ : a1 + a2i + b1j + b2k 7→
(

a b
−b̄ ā

)

, (4.12)

where a = a1 + ia2, b = b1 + ib2, and |a|2 + |b|2 = 1. The unit quaternions act orthogonally on
the pure quaternions Ri ⊕ Rj ⊕ Rk ∼= R3 by conjugation, so we have ρ(π(g)x) = gρ(x)g−1 for
g ∈ SU(2) and x ∈ R3. The kernel of π is {±I}. Since any representation of SO(3) lifts to the
universal cover SU(2) while a representation of SU(2) factors through SO(3) if and only if it is
trivial on the kernel of π, we see that an irreducible representation of SO(3) is just an irreducible
representation of SU(2) on which −I acts as the identity.

Let V1 be the standard representation of SU(2) given by C2 with the natural action. The
complex irreducible representations of SU(2) are just Vk = Symk(V1) for k ≥ 0, where Symk(V1)
denotes the k-th symmetric power of V1. Note that Vk has dimension k + 1. In order to decompose
representations into irreducible components, we will need a more intrinsic characterization of the
Vk’s. Consider the subgroup

T =

(

eiθ 0
0 e−iθ

)

∼= S1 (4.13)

in SU(2). This subgroup is maximal with respect to the property of being connected and abelian and
is called a maximal torus of SU(2). Any representation of SU(2) is a fortiori a T -module and hence
decomposes into weight spaces. It is easy to see that if e1 and e2 are the standard basis vectors for
V1, then ek−j

1 ej
2 is a weight vector of weight k − 2j for 0 ≤ j ≤ k. Thus, Vk is the unique irreducible

representation with highest weight k, and moreover, Vk splits into one-dimensional weight spaces
with weights k, k − 2, . . . ,−k + 2,−k.

Since −I acts as scalar multiplication by (−1)k on Vk, the complex irreducible representations
of SO(3) are just V2k for k ≥ 0. In particular, the weight spaces for odd weights of representations

of SO(3) are zero. This should come as no surprise, considering that the image of ( eiθ 0
0 e−iθ ) under

7



the homomorphism π is

R(2θ) =





1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ



 . (4.14)

The matrices for V2k can be chosen to have real coefficients, so the real irreducible representations
of SO(3) are all of real type and are given by modules Wk such that (Wk)C ∼= V2k.

An elementary (though perhaps not the most straightforward) approach to verifying that the
V2k are complexifications of real representations involves an entirely different description of the
representations in terms of harmonic polynomials. Note that SO(3) acts on the space Pk of real
homogeneous polynomials in three variables of degree k via g · p(x) = p(xg) for g ∈ SO(3), x ∈ R3;
moreover, this action commutes with the Laplace operator ∆ : Pk → Pk−2. Thus, the kernel Wk

of this linear map, i.e. the subspace of harmonic polynomials of degree k, is a subrepresentation.
It is easy to check that dim(Wk) = 2k + 1 and that (x2 + ix3)

k ∈ (Wk)C is a weight vector of
weight 2k. This implies that (Wk)C ∼= V2k as desired. (The irreducible representations V2k+1 of
SU(2) correspond to real irreducible representations of quaternionic type whose complexifications
are isomorphic to V2k+1 ⊕ V2k+1.)

We can use the torus T to obtain an inductive procedure for decomposing a real SO(3)-module
V into irreducible components. Let dj be the dimension of the 2j-weight space of VC for each j ∈ Z.
Since dimV < ∞ (and assuming that V 6= {0}), VC has a highest weight 2l ≥ 0, so that dl ≥ 1 and
dj = 0 for j > l. Then V ∼= Wl ⊕ V ′, where the orthogonal complement V ′ is a real representation
of strictly lower dimension with d′j = dj − 1 for |j| ≤ l and d′j = 0 otherwise. Now find a highest
weight for V ′

C
and continue until the orthogonal complement is {0}.

In order to find bases for the irreducible components of V , we will pass to the Lie algebra so(3) of
SO(3). It is elementary that a representation of a Lie group G gives rise to a representation of its Lie
algebra g by differentiating the group action; moreover, one recovers the original representation of G
by exponentiating the Lie algebra action. If G is simply connected, we obtain a canonical bijective
correspondence between the representations of G and g in this way. Thus, a decomposition of V (and
thereby VC) into irreducible SO(3)-modules is also a decomposition into irreducible so(3)-modules.
In fact, since a representation of so(3) on a complex vector space extends uniquely by linearity to a
representation of the complexified Lie algebra so(3)C = so(3)⊗C, decompositions of VC into SO(3)
and so(3)C irreducibles are the same.

This perspective is useful because so(3)C is isomorphic to the 2 × 2 traceless matrices sl(2,C),
and there is a simple, direct method for writing down explicit bases of irreducible sl(2,C)- invariant
subspaces. We take

H̃ =

(

1 0
0 −1

)

, X̃ =

(

0 1
0 0

)

, Ỹ =

(

0 0
−1 0

)

(4.15)

as basis vectors for sl(2,C). Note that [H̃, X̃ ] = 2X̃, [H̃, Ỹ ] = −2Ỹ , and [X̃, Ỹ ] = −H̃, with the
other commutators vanishing. The Lie algebra so(3) of 3 × 3 skew-symmetric matrices has as basis
the infinitesimal rotations around the coordinate axes:

Z1 =





0 0 0
0 0 −1
0 1 0



 , Z2 =





0 0 1
0 0 0
−1 0 0



 , Z3 =





0 −1 0
1 0 0
0 0 0



 . (4.16)

Setting H = −2iZ1, X = Z2 − iZ3, and Y = Z2 + iZ3, we see that H ,X , and Y satisfy the
commutation relations for sl(2,C) above and hence define an isomorphism so(3)C ∼= sl(2,C).

Let w be a k-weight vector in a complex representation of SU(2) (and thereby su(2)C ∼= so(3)C ∼=
sl(2,C)). Then differentiating the equation ( eiθ 0

0 e−iθ ) ·w = eikθw shows that iH̃ = ( i 0
0 −i ) ∈ su(2) ⊂

sl(2,C) acts on w via iH̃w = ikw. Accordingly, H̃w = kw and so the k-weight space of W is
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just the eigenspace of H̃ with eigenvalue k. Furthermore, the commutation relations show that X̃w
has weight k + 2 and Ỹ w has weight k − 2; as a result, X and Y are called raising and lowering
operators respectively. In fact, a complex irreducible SU(2)-module of highest weight l has a basis
of weight vectors {w, Ỹ w, . . . , Ỹ lw} where w is a highest weight vector or equivalently, a nonzero
vector annihilated by X̃. (These statements are easily verified by direct calculation on Symk(V1),

noting that A · (v1 · · · vk) =
∑k

j=1 v1 · · ·Avj · · · vk for A ∈ sl(2,C), v1, . . . , vk ∈ V1.)
We now return to the representation V of SO(3). The action of Zj , 1 ≤ j ≤ 3, on v ∈ V is

determined by differentiating exp(tZj) · v at t = 0, and linearity gives the action of H , X , and
Y . Since VC has highest weight 2l, an irreducible subrepresentation isomorphic to V2l is obtained
by choosing a highest weight vector w. Although a basis can be given as above, a more convenient
choice makes use of the fact that this irreducible submodule is a complexification of a real irreducible
submodule. This implies that it is closed under complex conjugation, so Y 2l−jw and Y jw are both
2j − 2l weight vectors in the submodule for 0 ≤ j ≤ l. Thus, we have a basis of weight vectors
{Y jw, Y jw | 0 ≤ j ≤ l − 1} ∪ {Y lw}. A real subrepresentation isomorphic to Wl has basis vectors

(Y jw + Y jw)/2 and (Y jw − Y jw)/2i for 0 ≤ j ≤ l − 1 as well as the real or the imaginary part
of Y l, the choice being arbitrary if they are both nonzero. We continue recursively, starting with a
weight vector w′ ∈ VC of highest weight subject to being linearly independent to the weight vectors
already used to split off irreducible summands.

In fact, using the Lie algebra approach, we can avoid the recursion altogether. The kernel of X
is H-invariant, and so breaks up into weight spaces Ker(X)2k. Let {wk,1, . . . , wk,bk

} be a basis for
Ker(X)2k. The wk,m’s will be highest weight vectors for irreducible subrepresentations isomorphic

to V2k into which VC splits. Accordingly, we have V ∼=
⊕l

k=0 W⊕bk

k , where bases for the summands
are obtained by the above procedure. Note that the number of summands is just the dimension of
Ker(X).

The invariant subspaces of V are now given by (2.7), where we are in the simple case that the
endomorphism rings of the irreducible representations are all just the real numbers. Alternatively,
an SO(3)-submodule is obtained by choosing subspaces Lk ⊆ Ker(X)2k. The subrepresentation
will have dim(Lk) components isomorphic to Wk. In particular, an irreducible invariant subspace
isomorphic to Wk is generated by a highest weight vector a1wk,1 + · · ·+ abk

wk,bk
for (a1, . . . , abk

) ∈
Rbk .

It only remains to find the decompositions of Sym2(Wk), Λ2(Wk), and Wk ⊗ Wl for k < l. Let
{wk

j | −k ≤ j ≤ k} be a basis of weight vectors for (Wk)C = V2k such that wk
j has weight 2j. It

is easy to see that for 0 ≤ j ≤ 2k, the 4k − 2j weight space of Sym2(V2k) has basis {wk
k−pw

k
k−j+p |

0 ≤ p ≤ [j/2]}, so its dimension is [j/2] + 1. This implies that Sym2(V2k) ∼=
⊕k

j=0 V4j , so that

Sym2(Wk) ∼=
⊕k

j=0 W2j . A similar argument shows that Λ2(Wk) ∼=
⊕k

j=1 W2j−1. Finally, the

2(l + k − j) weight space of V2k ⊗ V2l has dimension j + 1 with basis {wk
k−p ⊗ wl

l−(j−p) | 0 ≤ p ≤ j}
for 0 ≤ j ≤ 2k and dimension 2k + 1 with basis {wk

k−p ⊗ wl
l−(j−p) | 0 ≤ p ≤ 2k} for 2k ≤ j ≤ l + k.

Thus, we get the Clebsch-Gordon formula Wk ⊗ Wl
∼=
⊕2k

j=0 Wl+k−j . This proves the following
theorem:

Theorem 2 Let Wk be the real irreducible representation of SO(3) of dimension 2k + 1. We then

have Sym2(Wk) ∼=
⊕k

j=0 W2j and Λ2(Wk) ∼=
⊕k

j=1 W2j−1. For l > k, we also have Wk ⊗ Wl
∼=

⊕2k
j=0 Wl+k−j .
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5 Applications

5.1 SO(2): 2-D elasticity and piezoelectricity.

Throughout this section, we will use the notation that vectors denoted by f ’s and v’s with subscripts
will be weight vectors for the complexification of a representation with weight given by the index.
Vectors of weight zero will be taken to be in the underlying real representation. If vk is a weight vector
with positive weight k, v−k will be the complex conjugate of vk. Corresponding real bases will be
denoted by the preceding letter. Thus, the basis for the real representation whose complexification
is spanned by vk and v−k, where k > 0 (resp. v0) is {uk, u−k} with uk = (vk + v−k)/2, and
u−k = (v−k − vk)/2i (resp. {u0} where u0 = v0). In order to maintain consistency with this
convention, we will denote the standard basis for R2 by {e1, e−1}. The irreducible representations
of weight k will be denoted by a capital Latin letter with a subscript k. Different letters will
denote representations coming from different physics. Our (arbitrary) convention is to use N for
conductivity, K for elasticity and L for piezoelectric cross moduli. The prime will distinguish between
isomorphic representations appearing within the same physics. We are still using the letter M to
denote the abstract isomorphism class for a given representation. We recall that for two vectors
{a, b} ⊂ T ⊗ C, we identify symmetric tensors and degree two homogeneous polynomials via

ab =
1

2
(a ⊗ b + b ⊗ a). (5.17)

Sym2(Sym2(R2))—two dimensional elasticity.

The standard representation of SO(2) on R2 is isomorphic to M1, with weight vectors f1 =
e1 − ie−1 and f−1 = e1 + ie−1. Consequently, Sym2(R2) = N2 ⊕ N0. Then N0 is spanned by
û = f1f−1 = e2

1+e2
−1. Weight vectors for N2 are given by v2 = f2

1 and v−2 = f2
−1, with corresponding

real basis u2 = e2
1 − e2

−1 and u−2 = 2e1e−1. This is the same basis we have used in Part I (see also
[1, 15, 18]).

Theorem 1 and the decomposition formula (2.8) for symmetric squares gives

Sym2(Sym2(R2)) = Sym2(N2 ⊕ N0)

= Sym2(N2) ⊕ (N2 ⊗ N0) ⊕ Sym2(N0)

= (K4 ⊕ K0) ⊕ K2 ⊕ K ′
0.

(5.18)

Clearly, Sym2(N0) = K ′
0 is spanned by û2 and K2 = N2 ⊗N0 has weight vectors ûv2 and ûv−2 with

corresponding real basis {ûu2, ûu−2}. Moreover, the line K0 of SO(2)-fixed points in Sym2(N2) is
spanned by v2v−2 = u2

2 + u2
−2 while the irreducible summand K4

∼= M4 has weight vectors v2
2 and

v2
−2, with real basis {u2

2 − u2
−2, u2u−2}.

Since the irreducible representation M0 appears with multiplicity two in Sym2(Sym2(R2)) and
has real type, the lines of fixed points are parametrized by the real projective line, i.e. by the circle.
Accordingly, these lines are given by

Fφ = R(cos(φ)û2 + sin(φ)(u2
2 + u2

−2)). (5.19)

Now let A be an invariant subspace of Sym2(Sym2(R2)). Then A = A4 ⊕ A2 ⊕ A0 where A4 is
K4 or {0}, A2 is K2 or {0}, and A0 is K ′

0 ⊕ K0, Fφ, or {0}.
In order to obtain matrix representation of the basis vectors, one should replace each basis vector

above, which is given by a quadratic form in three variables û, u2 and u−2, by the corresponding 3x3
symmetric matrix. These matrices are written in the orthonormal basis {û, u2, u−2} given above as
quadratic forms in two variables e1 and e−1 (see Appendix).

We have already studied the question of exact relations for 2-D elasticity in Part I. We will need
the above analysis presently when we consider 2-D piezoelectricity.
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Sym2(Sym2(R2) ⊕ R2)—two dimensional piezoelectricity.

Again, we start by applying theorem 1 and the decomposition formula (2.8) for symmetric squares
to Y = Sym2(Sym2(R2) ⊕ R2), giving

Y ∼= Sym2(Sym2(R2)) ⊕ (Sym2(R2) ⊗ R2) ⊕ Sym2(R2)

= ((K4 ⊕ K0) ⊕ K2 ⊕ K ′
0) ⊕ ((N2 ⊕ N0) ⊗ R2) ⊕ (N2 ⊕ N0)

= ((K4 ⊕ K0) ⊕ K2 ⊕ K ′
0) ⊕ ((L3 ⊕ L1) ⊕ L′

1)) ⊕ (N2 ⊕ N0).

(5.20)

We have already dealt with the first and last summands, so it only remains to consider the cross-term.
It is clear that the submodule L′

1 = N0 ⊗ R2 ∼= M1 has weight vectors ûf1 and ûf−1 and real
basis {ûe1, ûe−1}. Let Lj denote the subrepresentations coming from N2 ⊗ R2 isomorphic to Mj .
Then L3 has weight vectors v2f1 and v−2f−1 with real basis {u2e1 − u−2e−1, u2e−1 + u−2e1}, and
L1 has weight vectors v2f−1 and v−2f1 with real basis {u2e1 + u−2e−1,−u2e−1 + u−2e1}.

Since M1 and M2 are representations of complex type appearing with multiplicity two in Y,
the irreducible submodules in these isomorphism classes are parametrized by P1(C). Given [p, q] ∈
P1(C) with p = p1 + ip2 and q = q1 + iq2, we have the corresponding subrepresentation N[p,q]

∼= M1

with weight vectors pv2f−1 + qûf1 and p̄v−2f1 + q̄ûf−1. Therefore, N[p,q] has real basis

{p1(u2e1 + u−2e−1) + p2(−u2e−1 + u−2e1) + q1ûe1 + q2ûe−1,

− p2(u2e1 + u−2e−1) + p1(−u2e−1 + u−2e1) − q2ûe1 + q1ûe−1}. (5.21)

Similarly, for [x = x1 + ix2, y = y1 + iy2] ∈ P1(C), we have the submodule K[x,y]
∼= M2 with real

basis

{x1ûu2 + x2ûu−2 + y1(e
2
1 − e2

−1) + y2(2e1e−1),

− x2ûu2 + x1ûu−2 − y2(e
2
1 − e2

−1) + y1(2e1e−1)}. (5.22)

Since M0 has real type and has multiplicity three in Y, the trivial irreducible submodules are
parametrized by P2(R). Given a = [a1, a2, a3] ∈ P2(R), the corresponding submodule Pa has basis
{a1û

2 + a2(u
2
2 + u2

−2) + a3(e
2
1 + e2

−1)}. The submodules isomorphic to M0 ⊕ M0 are parametrized
by two-dimensional subspaces of R3. If Z ⊂ R3 is such a subspace with basis {a, b}, the associated
submodule is QZ = Pa ⊕ Pb.

We can now classify the invariant subspaces of Y = Sym2(Sym2(R2)⊕R2). Let B be an invariant
subspace. Then B = B4⊕B3⊕B2⊕B1⊕B0 where B4 is K4 or {0}, B3 is L3 or {0}, B2 is K2⊕N2,
K[x,y], or {0}, B1 is L1 ⊕ L′

1, N[p,q], or {0}, and B0 is K0 ⊕ K ′
0 ⊕ N0, QZ , Pa or {0}.

In order to obtain matrix representation of the basis vectors one should replace each basis vector
above, which is given by a quadratic form in 5 variables û, u2, u−2, e1 and e−1 by the corresponding
5x5 symmetric matrix (see Appendix for a combined list of bases).

The existence of reducible isotypic classes (an irreducible representation appearing with mul-
tiplicity greater than one) prevents a fully automated search over all possible invariant subspaces
B. The large number of possibilities to examine (142) makes a manual search (examining Maple
output by eye) infeasible. Therefore, as a compromise, we make a fully automated search over those
invariant subspaces which appear as partial sums in the canonical decomposition (5.20). Since the
number of summands in (5.20) is 9, we have 29 − 2 = 510 possibilities to examine.

The intuition behind our choice is that the basis vectors of such submodules of Sym(T ), viewed
as linear operators on T , have “smallest possible” rank. Thus, the chances that (3.13) of Part I
will be satisfied are maximized. This heuristic reasoning is supported by our results for 2 and 3-D
elasticity, where we were able to examine all possibilities. There the exact relations were generated
only by the invariant subspaces coming from the “canonical” splitting. For piezoelectricity, we did
obtain several exact relations for both 2 and 3-D, but it is theoretically possible that some others
were missed.
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Before we begin describing our results, note that the automated search must return certain
“uninteresting” exact relations. These are of two types: “trivial” and “dull”. The “trivial” exact
relations are exact relations for the uncoupled problem. If we have no piezoelectric effect and
assume that our crystal is isotropic as a conductor, then our program will find the exact relations
for elasticity. The “dull” exact relations are those obtained as an intersection of other exact relations.
If we throw out all the “uninteresting” exact relations, then we obtain a list of “essential” ones. In
the case at hand, we have a total of 46 exact relations. However, 27 of these are “trivial” and 7 more
are “dull”, leaving 12 essential exact relations. Of these, only 7 contain strictly positive definite
material tensors, the remaining 5 consisting entirely of degenerate tensors. We shall thus distinguish
between general and degenerate essential exact relations. Unfortunately, at present we don’t know the
physical interpretations of the exact relations corresponding to the rotationally invariant subspaces
of the space of piezoelectric tensors listed below.

General essential exact relations.

• L = K2 ⊕ K ′
0 ⊕ L′

1.

• L = K4 ⊕ L1 ⊕ N2.

• L = K4 ⊕ L3 ⊕ N2.

• L = K ′
0 ⊕ L′

1 ⊕ N2 ⊕ N0.

• L = K2 ⊕ K ′
0 ⊕ L′

1 ⊕ N2.

• L = K2 ⊕ K ′
0 ⊕ L′

1 ⊕ N2 ⊕ N0.

• L = K4 ⊕ K0 ⊕ L3 ⊕ L1 ⊕ N2 ⊕ N0.

Here, the fourth and the seventh exact relations correspond to a “constant field” class of exact
relations.

Degenerate essential exact relations.

To obtain these, we need to use formula (1.5) or (1.6) with (S0)11 = 1, where S0 is an isotropic
tensor in the variables S lying on the exact relation surface and entering the formula for W0:

W0 = (S0 − Γ)−1.

Here is the list of invariant subspaces generating the exact relations:

• L = K4 ⊕ K0 ⊕ L1 ⊕ N2.

• L = K4 ⊕ K0 ⊕ L3 ⊕ N2.

• L = K4 ⊕ K0 ⊕ L1 ⊕ L3 ⊕ N2.

• L = K4 ⊕ K2 ⊕ K0 ⊕ L1 ⊕ L3.

• L = K4 ⊕ K2 ⊕ K0 ⊕ L1 ⊕ L3 ⊕ N2 ⊕ N0.

See Appendix for the list of basis vectors for each of the above subspaces.

12



5.2 SO(3): 3-D elasticity and piezoelectricity.

In this section, vectors denoted by f ’s or v’s with subscripts will be weight vectors for the complex-
ification of an irreducible representation with weight given by twice the index. We will use the Lie
algebra approach described at the end of section four to find highest weight vectors for submodules.
Thus, in order to find a highest weight vector for a submodule isomorphic to Wk, we will find a
vector of weight 2k which is annihilated by X = Z2− iZ3 ∈ so(3)C, using the notation of (4.16). We
will choose an appropriate multiple of the highest weight vector so that the corresponding vector of
weight zero will be in the underlying real representation. If vk is a highest weight vector, vj for j ≥ 0
will be obtained by taking a convenient scalar multiple of Y k−jvk (using the same scalar for the same
weight vector in an isomorphic representation) while v−j for j > 0 will be the complex conjugate of
vj (see Appendix). Corresponding real bases will be denoted by the preceding letter. Thus, for a
basis of weight vectors {v±j | 0 ≤ j ≤ k}, the basis for the real representation is {u±j | 0 ≤ j ≤ k}
with u0 = v0, uj = (vj +v−j)/2, and u−j = (v−j −vj)/2i. We will only deviate from this convention
in order to retain {e1, e2, e3} as the standard basis for R3. As in the previous section, we will use
the letter N for conductivity, K for elasticity, and L for piezoelectric cross moduli. The prime will
distinguish between isomorphic representations appearing within the same physics. We will use the
letter W to denote the abstract isomorphism class for a given representation.

Sym2(Sym2(R3))—three dimensional elasticity.

The standard representation of SO(3) on R3 is isomorphic to W1, with weight vectors f0 = e1,
f1 = e2−ie3, and f−1 = e2+ie3. Note that e2 = (f1+f−1)/2 and e3 = (f−1−f1)/2i. Accordingly, we
have Sym2(R3) = N2⊕N0. N0 will be spanned by a linear combination of zero weight vectors e2

1 and
f1f−1 annihilated by X . Since X ·(e2

1+f1f−1) = 0, N0 is spanned by û = e2
1+f1f−1 = e2

1+e2
2+e3

3. The
monomial f2

1 is a highest weight vector for N2, giving the basis of weight vectors and corresponding
real basis of N2:

v2 = f2
1 ,

v−2 = f2
−1,

v1 = f0f1,

v−1 = f0f−1,

v0 = 2f2
0 − f1f−1,

u2 = e2
2 − e2

3,

u−2 = 2e2e3,

u1 = e1e2,

u−1 = e1e3,

u0 = 2e2
1 − e2

2 − e2
3.

(5.23)

Using (2.8) and theorem 2, we have

Sym2(Sym2(R3)) = Sym2(N2 ⊕ N0)

= Sym2(N2) ⊕ (N2 ⊗ N0) ⊕ Sym2(N0)

= (K4 ⊕ K2 ⊕ K0) ⊕ K ′
2 ⊕ K ′

0.

(5.24)

Note that Sym2(Sym2(R3)) is 21-dimensional, and the problem has now been reduced to decom-
posing summands of dimensions 1, 5, and 15, appearing on the second line of (5.24).

It is immediate that K ′
0 = Sym2(N0) is spanned by û2 and that K ′

2 = N2 ⊗ N0 has weight
vectors {ûv±j | 0 ≤ j ≤ 2} with corresponding real basis {ûu±j | 0 ≤ j ≤ 2}. It remains to find
the irreducible summands Kj isomorphic to Wj in Sym2(W2). The line of fixed points K0 will be
spanned by a linear combination of zero weight vectors v2

0 , v1v−1 and v2v−2 which is annihilated by
X . We easily find that X · α = 0 for

α = v2
0 + 12v1v−1 + 3v2v−2 = u2

0 + 12(u2
1 + u2

−1) + 3(u2
2 + u2

−2).

Similarly in order to find the highest weight vector in K2 we need to find a linear combination of
the weight four vectors v2

1 and v0v2 which is annihilated by X. We obtain X · (3v2
1 − v0v2) = 0, so

the basis of weight vectors and corresponding real basis of K2 are:
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3v2
1 − v0v2,

3v2
−1 − v0v−2,

3

2
v−1v2 +

1

2
v0v1,

3

2
v1v−2 +

1

2
v0v−1,

3v−1v1 +
1

2
v2
0 − 3

2
v−2v2,

µ2 = 3(u2
1 − u2

−1) − u0u2,

µ−2 = 6u1u−1 − u0u−2,

µ1 =
3

2
(u1u2 + u−1u−2) +

1

2
u0u1,

µ−1 =
3

2
(u1u−2 − u−1u2) +

1

2
u0u−1,

µ0 = 3(u2
1 + u2

−1) +
1

2
u2

0 −
3

2
(u2

2 + u2
−2).

(5.25)

Finally, the highest weight vector v2
2 generates K4, giving bases:

v2
2 ,

v2
−2,

v1v2,

v−1v−2,

4v2
1 + v0v2,

4v2
−1 + v0v−2,

v2v−1 − 2v1v0,

v1v−2 − 2v−1v0,

v2v−2 − 16v1v−1 + 2v2
0 ,

u2
2 − u2

−2,

2u2u−2,

u1u2 − u−1u−2,

u1u−2 + u−1u2,

4(u2
1 − u2

−1) + u0u2,

8u1u−1 + u0u−2,

u1u2 + u−1u−2 − 2u1u0,

u1u−2 − u−1u2 − 2u−1u0,

u2
2 + u2

−2 − 16(u2
1 + u2

−1) + 2u2
0.

(5.26)

Since W0 and W2 appear twice as summands of Sym2(Sym2(R3)), the irreducible subrepresen-
tations of these types are parametrized by P1(R) ∼= S1. Consequently, the lines of fixed points
in Sym2(Sym2(R3)) are just Mγ = R(cos(γ)û2 + sin(γ)α). Similarly, the irreducible submodules
isomorphic to W2 are the subspaces Nδ with bases {cos(δ)ûu±j + sin(δ)µ±j | 0 ≤ j ≤ 2}.

We can now list the invariant subspaces of Sym2(Sym2(R3)). Let A be an invariant subspace.
Then A = A4 ⊕A2 ⊕A0 where A4 is K4 or {0}, A2 is K2 ⊕K ′

2, Nδ, or {0}, and A0 is K0 ⊕K ′
0, Mγ ,

or {0}.
We should warn the reader here that the basis {û}∪{u±j | 0 ≤ j ≤ 2} of Sym2(R3) is orthogonal,

but not orthonormal. Therefore, the corresponding matrix representations of the basis vectors for
Sym2(Sym2(R3)) cannot be obtained by taking matrices corresponding to quadratic forms listed
above. One has to make the following substitutions:

û =
√

3ŵ, u0 =
√

6w0, u1 =
1√
2
w1, u−1 =

1√
2
w−1, u2 =

√
2w2, u−2 =

√
2w−2 (5.27)

in the above quadratic forms. The resulting quadratic forms in 6 variables ŵ and w±j , 0 ≤ j ≤ 2
correspond to their matrix representations. See Appendix for a complete list.

Here, we have just 16 different possibilities to examine by hand (introducing free parameters γ
and δ for the reducible isotypic classes). We have found only 3 exact relations. All of them are
general essential exact relations and are generated by invariant subspaces that are the direct sums
of the irreducible summands appearing in the decomposition (5.24).

1. L = K ′
0.

This is the exact relation discovered by Hill [12, 13]. It says that a mixture of isotropic materials
with a common shear modulus will be isotropic with the same shear modulus.

2. L = K ′
2 ⊕ K ′

0.
This exact relation says that a mixture of materials whose Hooke’s laws can be represented as
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a rank one tensor plus a fixed null-Lagrangian has the same property. The equation

C(x) = c(x) ⊗ c(x) − µT

implies
C∗ = c∗ ⊗ c∗ − µT,

where the constant µ is such that C(x) is strictly positive definite. The null-Lagrangian T
is a tensor whose quadratic form is given by the sum of three principal 2x2 minors of a 3x3
symmetric matrix ξ:

(Tξ, ξ) = J2(ξ) =
∑

i<j

(ξiiξjj − ξijξji) = ξ1ξ2 + ξ2ξ3 + ξ3ξ1,

where ξ1, ξ2 and ξ3 are the eigenvalues of ξ. The above quadratic form is called the sec-
ond orthogonal invariant of ξ. It also appears as one of the coefficients of the characteristic
polynomial of ξ. This exact relation is a generalization of the one obtained in [10] for 2-D
elasticity.

3. L = K4 ⊕ K2 ⊕ K0.
This exact relation says that a mixture of crystals isotropic under hydrostatic loading and
sharing the same value of the bulk modulus is isotropic under hydrostatic loading and has the
same bulk modulus. This exact relation is due to Hill [11], see also [2].

The exact relations 1 and 3 above can be obtained as “constant field” exact relations (see Introduc-
tion).

Sym2(Sym2(R3) ⊕R3)—three dimensional piezoelectricity.

As in the previous example, we use (2.8) and theorem 2 to split the 45- dimensional space
Y = Sym2(Sym2(R3) ⊕ R3) into more manageable pieces. We have

Y = Sym2(Sym2(R3)) ⊕ (Sym2(R3) ⊗ R3) ⊕ Sym2(R3)

= ((K4 ⊕ K2 ⊕ K0) ⊕ K ′
2 ⊕ K ′

0) ⊕ ((N2 ⊗ R3) ⊕ (N0 ⊗ R3)) ⊕ (N0 ⊕ N2)

= ((K4 ⊕ K2 ⊕ K0) ⊕ K ′
2 ⊕ K ′

0) ⊕ ((L3 ⊕ L2 ⊕ L1) ⊕ L′
1) ⊕ (N0 ⊕ N2).

(5.28)

We have already analyzed the first and last summands in the first line of (5.28), so it only remains
to consider the submodule isomorphic to Sym2(R3) ⊗ R3. It is obvious that the subrepresentation
L′

1
∼= W1 coming from the N0⊗R3 term has basis {ûe1, ûe2, ûe3} with corresponding weight vectors

ûf±1 and ûf0. Let Lj be the irreducible submodule isomorphic to Wj in the N2 ⊗ R3 term. The
highest weight vector in L1 is a linear combination of the three vectors of weight two v1f0, v0f1 and
v2f−1, which is annihilated by the raising operator X . Since X annihilates 6v1f0 + 3v2f−1 − v0f1,
the basis of weight vectors and corresponding real basis of L1 are:

6v1f0 + 3v2f−1 − v0f1,

6v−1f0 + 3v−2f1 − v0f−1,

3v1f−1 + 3v−1f1 + 2v0f0,

τ1 = 6u1e1 + 3u2e2 + 3u−2e3 − u0e2,

τ−1 = 6u−1e1 − 3u2e3 + 3u−2e2 − u0e3,

τ0 = 6u1e2 + 6u−1e3 + 2u0e1.

(5.29)

The highest weight vector in L2 is a linear combination of the two vectors of weight four v1f1

and v2f0 which is annihilated by X . We find that v2f0 − v1f1 is killed by X , so it generates L2,
giving the bases:
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1

i
(v2f0 − v1f1),

− 1

i
(v−2f0 − v−1f−1),

1

4i
(2v1f0 − v2f−1 − v0f1),

− 1

4i
(2v−1f0 − v−2f1 − v0f−1),

3

2i
(v−1f1 − v1f−1),

ν2 = u−2e1 + u−1e2 + u1e3,

ν−2 = u2e1 − u1e2 + u−1e3,

ν1 =
1

4
(u−2e2 + u0e3 − 2u−1e1 − u2e3),

ν−1 =
1

4
(2u1e1 − u−2e3 − u0e2 − u2e2),

ν0 = 3(u−1e2 − u1e3).

(5.30)

Here we chose a 1/i multiple of the highest weight vector in order to make the zero weight vector
real, as was the case for all other subrepresentations.

Finally, the submodule L3 is generated by the highest weight vector v2f1, and we obtain the
bases:

v2f1,

v−2f−1,

2v1f1 + v2f0,

2v−1f−1 + v−2f0,

2v0f1 + 8v1f0 − v2f−1,

2v0f−1 + 8v−1f0 − v−2f1,

v−1f1 + v1f−1 − v0f0,

u2e2 − u−2e3,

u2e3 + u−2e2,

2u1e2 − 2u−1e3 + u2e1,

2u1e3 + 2u−1e2 + u−2e1,

2u0e2 + 8u1e1 − u2e2 − u−2e3,

2u0e3 + 8u−1e1 + u2e3 − u−2e2,

2u1e2 + 2u−1e3 − u0e1.

(5.31)

Since W1 appears in Y with multiplicity two, the irreducible subspaces isomorphic to W1 are
parametrized by a circle, given by Kβ with basis

{cos(β)ûe2 + sin(β)τ1, cos(β)ûe3 + sin(β)τ−1, cos(β)ûe1 + sin(β)τ0}. (5.32)

The trivial representation W0 has real type and has multiplicity three in Y , so the trivial irre-
ducible submodules are parametrized by P2(R). Given c = [c1, c2, c3] ∈ P2(R), the corresponding
submodule Rc has basis {c1û

2 + c2α + c3û}, where the last û = e2
1 + e2

2 + e3
3 is understood as a

quadratic form in {e1, e2, e3}, while the first û must be regarded as a variable in a quadratic form.
The submodules isomorphic to W0 ⊕ W0 are parametrized by two-dimensional subspaces of R3. If
Z ⊂ R3 is such a subspace with basis {c, d}, the associated submodule is SZ = Rc ⊕ Rd.

The situation is more complicated for W2, which has multiplicity four in Y . The irreducible
subrepresentations of this type are parametrized by P3(R); for a = [a1, a2, a3, a4] ∈ P3(R), the
corresponding submodule Pa has basis {a1ûu±j + a2µ±j + a3ν±j + a4u±j | 0 ≤ j ≤ 2}, where in
the last term u±j are quadratic forms in {e1, e2, e3} given by (5.23), while in the first term u±j are
to be understood as variables in a quadratic form. The submodules isomorphic to W2 ⊕ W2 are
parametrized by two-dimensional subspaces of R4; the submodule associated to Z2 ⊂ R4 with basis
{a, b} is QZ2 = Pa ⊕ Pb. Similarly the submodules isomorphic to W2 ⊕ W2 ⊕ W2 are parametrized
by three-dimensional subspaces of R4; the submodule associated to Z3 ⊂ R4 with basis {a, b, c} is
QZ3 = Pa ⊕ Pb ⊕ Pc.

Finally, let B be an invariant subspace of Y = Sym2(Sym2(R3) ⊕ R3). Then B = B4 ⊕ B3 ⊕
B2 ⊕ B1 ⊕ B0 where B4 is K4 or {0}, B3 is L3 or {0}, B2 is K2 ⊕ K ′

2 ⊕ L2 ⊕ M2, QZ3 , QZ2 , Pa, or
{0}, B1 is L1 ⊕ L′

1, Kβ , or {0}, and B0 is K0 ⊕ K ′
0 ⊕ M0, SZ , Rc, or {0}.

Again, we note that vectors û, u±j, 0 ≤ j ≤ 2, and ek, 1 ≤ k ≤ 3, forming the basis of T are
orthogonal but not orthonormal. Therefore the matrices of quadratic forms above are not the correct
basis vectors for appropriate subspaces. In order to obtain correct matrices, one needs to make the
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substitutions (5.27) first. The matrices of quadratic forms in the variables ŵ and w±j , 0 ≤ j ≤ 2,
and ek, 1 ≤ k ≤ 3, will be the correct matrices (see Appendix).

The number of different possibilities to consider (318) and the complexity of each one precludes
an exhaustive search. Therefore, we use the same strategy as for 2-D piezoelectricity: we consider
the “canonical” splitting of the isotypic classes given by (5.28). Thus, we have 211 − 2 = 2046
possibilities to examine. The search produces 14 general exact relations and no degenerate ones.
Only 5 of them are nontrivial. Among those 5 there are 4 essential exact relations which we list
below:

• L = K ′
2 ⊕ K ′

0 ⊕ L′
1.

• L = K ′
0 ⊕ L′

1 ⊕ N2 ⊕ N0.

• L = K ′
2 ⊕ K ′

0 ⊕ L′
1 ⊕ N2 ⊕ N0.

• L = K4 ⊕ K2 ⊕ K0 ⊕ L3 ⊕ L2 ⊕ L1 ⊕ N2 ⊕ N0.

The second and fourth relations are of “constant field” type. We still don’t know the physical
interpretation of the remaining two exact relations but we hope to get it soon.
Acknowledgements. Y.G. wishes to thank Graeme Milton and Andrej Cherkaev for discus-
sions about the physics of our results.
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6 Appendix

Here we list bases for various subspaces appearing in the paper. Usually, in papers on effective
properties of composites, the bases for tensor spaces are given by symmetric matrices of appropriate
dimension. In our situation, such a representation would take many pages filled with matrices.
Instead, we use the quadratic form notation. The matrix (aij)

n
i,j is given by its quadratic form

∑n
i,j=1 aijxixj in variables {x1, . . . , xn}.
We use the following system of notation. Different Latin letters are assigned to submodules

coming from different physics. We use the letter K for submodules coming from elasticity, the
letter N for submodules coming from conductivity, and the letter L for piezoelectric cross moduli.
The Arabic subscripts identify the maximal weight of the complexified subrepresentation for SO(2)-
modules and half the maximal weight for SO(3)-modules. We use primes to distinguish subspaces
with the same maximal weight, but having different algebraic origins (i.e. coming from different
terms of (2.8) via theorems 1 and 2). We took special care in listing the bases of the spaces below so
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that isomorphic submodules are spanned by isomorphic bases with the same order of basis vectors
throughout.

6.1 SO(2): Invariant subspaces.

Let {e1, e−1} be the standard basis of R2. Then we let

û =
1√
2
(e2

1 + e2
−1), u2 =

1√
2
(e2

1 − e2
−1), u−2 =

√
2e1e−1. (6.33)

This is the usual basis of the space of 2x2 symmetric matrices (see for example [1, 15, 18]) given by
their quadratic forms in 2 variables {e1, e−1}. The bases of the irreducible subrepresentations of

Sym2(Sym2(R2)) = (K4 ⊕ K0) ⊕ K2 ⊕ K ′
0 (6.34)

will be given as quadratic forms in 3 variables {û, u2, u−2}, replacing the list of six 3x3 symmetric
matrices:

K4 = Span{u2
2 − u2

−2, u2u−2}
K2 = Span{ûu2, ûu−2}
K0 = Span{u2

2 + u2
−2}

K ′
0 = Span{û2}.

(6.35)

The bases of the irreducible submodules

Sym2(Sym2(R2) ⊕ R2) = ((K4 ⊕ K0) ⊕ K2 ⊕ K ′
0) ⊕ ((L3 ⊕ L1) ⊕ L′

1)) ⊕ (N2 ⊕ N0) (6.36)

will be given as quadratic forms in 5 variables {û, u2, u−2, e1, e−1}. The bases for subspaces K4, K2,
K0 and K ′

0 are already given in (6.35).

L3 = Span{u2e1 − u−2e−1, u2e−1 + u−2e1}
L1 = Span{u2e1 + u−2e−1, u−2e1 − u2e−1}
L′

1 = Span{ûe1, ûe−1}
N2 = Span{e2

1 − e2
−1, 2e1e−1}

N0 = Span{e2
1 + e2

−1}.

(6.37)

6.2 SO(3): Invariant subspaces.

In this paper, we use the following scheme for producing bases of irreducible submodules from their
highest weight vectors

W1 : v1 v0 = −1/(2i)Y (v1)
W2 : v2 v1 = −1/(4i)Y (v2) v0 = −1/iY (v1)
W3 : v3 v2 = −1/(2i)Y (v3) v1 = −1/iY (v2) v0 = 1/(12i)Y (v1)
W4 : v4 v3 = −1/(8i)Y (v4) v2 = −1/iY (v3) v1 = 1/(6i)Y (v2) v0 = 1/iY (v1).

(6.38)

We also define v−k = v̄k. We choose a multiple of the highest weight vector which produces real v0

according to the scheme (6.38).
Now we list bases of the SO(3)-invariant subspaces. Let {e1, e2, e3} be the standard basis in R3.

Let

ŵ =
1√
3
(e2

1 + e2
2 + e2

3), w0 =
1√
6
(2e2

1 − e2
2 − e2

3)

w1 =
√

2e1e2, w−1 =
√

2e1e3

w2 =
1√
2
(e2

2 − e2
3), w−2 =

√
2e2e3

(6.39)
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be the orthonormal basis of the space of 3x3 symmetric matrices. Then the irreducible subspaces in
the decomposition

Sym2(Sym2(R3)) = (K4 ⊕ K2 ⊕ K0) ⊕ K ′
2 ⊕ K ′

0 (6.40)

have the following bases:

K ′
0 = Span{ŵ2}

K0 = Span{w2
0 + w2

1 + w−1
2 + w2

2 + w−2
2}

K ′
2 = Span{2

√
3ŵ w0, ŵ w1, ŵ w−1, 2ŵ w2, 2ŵ w−2}

(6.41)

The subspace K2 has the basis

µ0 = −6 w2
2 − 6 w−2

2 + 3 w1
2 + 3 w−1

2 + 6 w0
2,

µ1 = 3 w1 w2 + 3 w−1 w−2 +
√

3w0 w1,

µ−1 = 3 w1 w−2 − 3 w−1 w2 +
√

3w0 w−1,

µ2 = 3 w1
2 − 3 w−1

2 − 4
√

3w0 w2,

µ−2 = 6 w1 w−1 − 4
√

3 w0 w−2.

(6.42)

The subspace K4 has the basis

2 w2
2 − 2 w−2

2,
4 w2 w−2,
w1 w2 − w−1 w−2,
w1 w−2 + w−1 w2,

2 w1
2 − 2 w−1

2 + 2
√

3w0 w2,

4 w1 w−1 + 2
√

3w0 w−2,

w1 w2 + w−1 w−2 − 2
√

3w0 w1,

w1 w−2 − w−1 w2 − 2
√

3w0 w−1,
2 w2

2 + 2 w−2
2 − 8 w1

2 − 8 w−1
2 + 12 w0

2.

(6.43)

These bases are given in terms of quadratic forms in 6 variables {ŵ, w2, w0, w−1, w−2, w1}.
The bases of the irreducible subrepresentations of

Sym2(Sym2(R3)⊕R3) = ((K4⊕K2⊕K0)⊕K ′
2⊕K ′

0)⊕ ((L3⊕L2⊕L1)⊕L′
1)⊕ (N0⊕N2). (6.44)

will be given as quadratic forms in 9 variables {ŵ, w2, w0, w−1, w−2, w1, e1, e2, e3}. The bases for
subspaces K4, K2, K ′

2, K0 and K ′
0 are already given in (6.41), (6.42) and (6.43).

L′
1 = Span{ŵe1, ŵe2, ŵe3}

N0 = Span{e2
1 + e2

2 + e2
3}

N2 = Span{2e2
1 − e2

2 − e2
3, e1e2, e1e3, e2

2 − e2
3, 2e2e3}.

(6.45)

The subspace L1 has the basis

τ0 = 3 w1 e2 + 3 w−1 e3 + 2
√

3 w0 e1,

τ1 = 3 w1 e1 + 3 w2 e2 + 3 w−2 e3 −
√

3w0 e2,

τ−1 = 3 w−1 e1 − 3 w2 e3 + 3 w−2 e2 −
√

3w0 e3.

(6.46)

The subspace L2 has the basis

ν0 = 6 w−1 e2 − 6 w1 e3,

ν1 = w−2 e2 +
√

3 w0 e3 − w−1 e1 − w2 e3,

ν−1 = −w−2 e3 −
√

3w0 e2 + w1 e1 − w2 e2,
ν2 = 2 w−1 e2 + 2 w1 e3 + 4 w−2 e1,
ν−2 = 2 w−1 e3 + 4 w2 e1 − 2 w1 e2.

(6.47)
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The subspace L3 has the basis

w2 e2 − w−2 e3,
w2 e3 + w−2 e2,
w1 e2 − w−1 e3 + w2 e1,
w1 e3 + w−1 e2 + w−2 e1,

2
√

3w0 e2 + 4 w1 e1 − w2 e2 − w−2 e3,

2
√

3w0 e3 + 4 w−1 e1 + w2 e3 − w−2 e2,

w1 e2 + w−1 e3 −
√

3 w0 e1.

(6.48)
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