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The proof of Theorem 5 does not prove the statement in Theorem 5. The problem is that
the cut-off functions θr

k(x) that vanish on ∂Ω cannot correctly recover the function I(x0,x0)
at the points x0 ∈ ∂Ω1, where the measure π̃ has a non-zero mass. This problem is easily
fixed by using cut-off functions θr

k ∈ C∞
0 (B(x0, r)) that do not vanish on ∂Ω, if x0 ∈ ∂Ω.

We require that θr
k(x) → χB(x0,r)(x), as k → ∞ for all x ∈ R

d. This change corrects the
proof of Theorem 5 but makes the arguments in Step 4 in the proof of Theorem 2 (p. 82)
invalid, since θr

k(x)vn(x) no longer has to vanish on ∂BΩ(x0, r) ∩ ∂Ω. This problem is fixed
by augmenting the statement of the Decomposition Lemma (Lemma 1). We claim that it is
possible to modify sequences zn and vn is such a way that they vanish on ∂Ω1, while satisfying
all the other properties required by Lemma 1. Using the modified functions in the consequent
analysis leads now to the functions θr

k(x)vn(x) that do vanish on ∂BΩ(x0, r).

Theorem 1 Suppose the sequence of functions ψn ∈ W 1,∞(Ω; Rm) that vanish on ∂Ω1 (rel-
atively open subset of a C1 boundary ∂Ω of Ω) is bounded in W 1,2(Ω; Rm). Suppose αn → 0,
as n → ∞ is a sequence of positive numbers such that αnψn → 0 in W 1,∞ weak-*. Suppose
zn and vn are as in Lemma 1, i.e.

(a) ψn(x) = zn(x) + vn(x);

(b) For all x ∈ Ω \ Rn we have zn(x) = ψn(x) and ∇zn(x) = ∇ψn(x);

(c) The sequence {|∇zn|
2} is equiintegrable;

(d) vn ⇀ 0 weakly in W 1,2(Ω; Rm);

(e) |Rn| → 0 as n → ∞;

(f) αn∇zn is bounded in L∞;

Then there exists modified versions z̃n and ṽn of zn and vn, respectively, such that they satisfy
all the properties (a)–(f) and additionally the following two properties
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(g) αnz̃n → 0, as n → ∞ uniformly in x ∈ Ω;

(h) z̃n(x) = ṽn(x) = ψn(x) = 0 for all x ∈ ∂Ω1.

Proof: Step 1. Let wn(x) = (w
(1)
n (x), . . . , w

(m)
n (x)) be defined by

w(i)
n (x) = min{z(i)

n (x), ‖ψn‖L∞(Ω\Rn)}, i = 1, . . . , m.

Then wn(x) is Lipschitz continuous with |∇wn(x)| ≤ |∇zn(x)| for a.e. x ∈ Ω, and wn(x) =

ψn(x) for almost all x ∈ Ω \ Rn. Similarly, let un(x) = (u
(1)
n (x), . . . , u

(m)
n (x)) be defined by

u(i)
n (x) = max{w(i)

n (x),−‖ψn‖L∞(Ω\Rn)}, i = 1, . . . , m.

Then un(x) is Lipschitz continuous with |∇un(x)| ≤ |∇zn(x)| for a.e. x ∈ Ω, and un(x) =
ψn(x) for almost all x ∈ Ω \ Rn. Therefore |∇un|

2 is also equiintegrable and

αn‖un‖∞ ≤ αn‖ψn‖∞ → 0, as n → ∞.

Step 2. Let ψ0 be a W 1,2-weak limit of (a subsequence of) ψn. Then there exists a

sequence ψ̂n ∈ C1(Ω; Rm) such that ψ̂n vanishes on ∂Ω1, converges to ψ0 in the W 1,2 norm
and additionally satisfies

lim
n→∞

αn‖ψ̂n‖1,∞ = 0.

It follows from |Rn| → 0, as n → ∞ that ψn − un ⇀ 0 weakly in W 1,2. Thus, by Rellich’s
lemma,

lim
n→∞

‖un − ψ̂n‖2 = 0.

Let ηn(x) be a Lipschitz cut-off function such 0 ≤ ηn(x) ≤ 1 and

ηn(x) =

{
1, x ∈ ∂Ω,

0, dist(x, ∂Ω) ≥ δn.
(1)

It is possible to do so, while ensuring that

‖∇ηn‖∞ ≤
C

δn

, (2)

where C depends only on Ω and δn → 0, as n → ∞ so slowly that

lim
n→∞

αn‖un‖∞
δn

= lim
n→∞

αn‖ψ̂n‖1,∞

δn

= lim
n→∞

‖un − ψ̂n‖2

δn

= 0.

Step 3. Let
z̃n = (1 − ηn)un + ηnψ̂n.

It is obvious that z̃n(x) vanishes on ∂Ω1 and that αnz̃n(x) → 0, as n → ∞ uniformly in
x ∈ Ω. Defining ṽn = ψn − z̃n, proves (a), (g) and (h). By definition z̃n(x) = un(x) for all
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x, such that dist(x, ∂Ω) ≥ δn. Hence, (b) and (e) are also established. The property (d) is a
consequence of (b), (c) and (e). Let us now establish (f).

∇z̃n = (1 − ηn)∇un + ηn∇ψ̂n + (ψ̂n − un) ⊗∇ηn. (3)

Hence,

αn‖∇z̃n‖∞ ≤ αn‖∇zn‖∞ + αn‖ψ̂n‖1,∞ +
αn‖ψ̂n‖1,∞

δn

+
αn‖un‖∞

δn

.

The property (f) is proved. To prove property (c), we observe that

‖∇z̃n −∇un‖2 ≤ ‖ηn(∇un −∇ψ̂n)‖2 +
‖un − ψ̂n‖2

δn

→ 0, as n → ∞

because |∇un −∇ψ̂n|
2 is equiintegrable and ηn is bounded and supported on a set of small

measure. Hence, (c) follows from the equiintegrability of |∇un|
2.

Another correction has to be made to the statements of Theorems 5 and 6. Theorem 5
has to apply to points in Ω ∪ ∂Ω1, while Theorem 6 to points in ∂Ω2. Finally, no additional
smoothness assumptions are required of ∂Ω1. We only need ∂Ω1 to be relatively open and
coincide with the interior of its closure. If this condition is not satisfied we should just redefine
∂Ω1 as the interior of the closure of the original ∂Ω1. The set ∂Ω2 is then defined as ∂Ω\∂Ω1.
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