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Abstract

In this paper we continue the development of mathematically rigorous theory of
“near-flip” buckling of slender bodies of arbitrary geometry, based on hyperelasticity.
In order to showcase the capabilities of this theory we apply it to buckling of axially
compressed circular cylindrical shells. The theory confirms the classical formula for
the buckling load, whereby the perfect structure buckles at the stress that scales as
the first power of shell’s thickness. However, in the case of imperfections of load, the
theory predicts scaling instability of the buckling stress. Depending on the type of
load imperfections, buckling may occur at stresses that scale as thickness to the power
1.5 or 1.25, corresponding to the lower and upper ends, respectively, of the historically
accumulated experimental data.
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1 Introduction

1.1 Near-flip buckling

The term buckling, understood broadly, refers to a failure of structural stability. As such it
encompasses a plethora of disparate phenomena from classical buckling of the Euler column
to plastic failure. In this paper we study one specific notion of buckling that we refer to,
following [16], as “near-flip” buckling of slender structures in order to distinguish it from
other meanings of the word used in the literature.

Buckling of the Euler column is a typical example of “near-flip” buckling. To explain the
term we recall D’Alembert’s objection to the famous Euler formula for the critical stress of
the compressed column. D’Alembert has observed that such a column, to which compressive
dead loads are applied at both ends, would loose stability at zero stress, since an infinitesimal
rotation of the column would cause it to flip. Of course, this objection does not invalidate
Euler’s results, since in his work [7] Euler addressed this concern explicitly: “If the column
be so constituted that it cannot slip, nothing else need be feared from the weight P , if it be
not excessively great, except the bending of the column. . . ”. Mathematically, this suggests
that Euler meant more complicated boundary conditions than pure dead loads applied at
both ends of the column. However, D’Alembert’s observation is an important one. It was
shown in [16] that the same mechanism that was responsible for the flip instability is still at
play in the buckling of Euler’s column. In fact, buckling can be viewed as a “parametrized
flip”, whereby displacements undergone by small portions of the column are superpositions
of a rigid motion (flip) and a small elastic deformation. Such configurations can have lower
energy than the unbuckled ones, since rigid motions do not contribute to the total energy
of the structure. This property of elastic energy is referred to as “objectivity” or “frame
indifference”. Its validity for all elastic structures implies that the flip mechanism described
above applies to buckling of all slender1 bodies, such as plates and shells, provided the
prebuckled configuration satisfies certain conditions that we are going to discuss now.

Our use of the term “near-flip buckling” is limited to structures whose prebuckled state
falls in the linearly elastic regime. For example, the stress in a compressed Euler column
in its prebuckled state could be found from equations of linear elasticity with high degree
of accuracy. At a critical value of the compressive stress this seemingly “linearly elastic”
configuration looses its stability. It is crucial for the applicability of our theory that the value

1In this paper we will use the term “slender” in a mathematically precise sense defined in [16] (see also
Definition 2.5 below).
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of the critical stress goes to zero as the column’s slenderness parameter (ratio of its diameter
to its length) goes to zero. In general, we define “near-flip” buckling as a failure of stability
of such linearly elastic configurations of slender bodies, whereby the critical value of the
loading parameter (such as compressive stress for a column) goes to zero, as the slenderness
parameter goes to zero (see Definition 2.2).

The general theory of near-flip buckling, developed in [16], detects when the prebuck-
led state (the trivial branch) stops being a weak local minimizer of the fully non-linear
energy functional in the context of 3D hyperelasticity2. The main feature of the theory is
the constitutive linearization principle that simplifies the second variation of the energy by
replacing local material response with the linear elastic constitutive law, while retaining all
the geometric non-linearity that is necessary to capture the leading order asymptotics of the
buckling load. The idea is that at the initial stages of buckling (and before) the absolute
magnitude of the stress at every point lies well into the linear elastic regime for the mate-
rial that the structure is made of. The non-linearity of the structure’s response to applied
loads is of purely geometric nature [39, 9]. It is important to emphasize that constitutive
linearization is not an assumption, but a theorem that guarantees that the constitutively
linearized second variation captures the leading order asymptotics of the buckling load and
the buckling mode correctly.

In this paper we prove the constitutive linearization theorem under weaker assumptions
on the trivial branch than in [16]. This strengthening of the theory is necessary for analyzing
buckling of axially compressed cylindrical shells, which fail to satisfy conditions for consti-
tutive linearization in [16]. The passage from the second variation of the original non-linear
energy to its constitutively linearized version suggests an equivalence relation on the set of
functionals, called B-equivalence in [16]. This notion was the main simplification tool in [15],
where the first completely rigorous derivation of the classical formula for the critical strain
and an explicit description of a very large space of buckling modes, described in terms of the
Koiter circle [25], were obtained by the application of the general theory of near-flip buck-
ling. The strengthened constitutive linearization theorem and simple and effective criteria
for B-equivalence established in this paper (see Theorem 2.11) have served as the theoretical
foundation of the analysis in [15].

1.2 Imperfection sensitivity

The classical shell theory supplies the following formula for the critical stress [30, 37] (see
also [38]):

σcr =
Eh√

3(1− ν2)
, (1.1)

where E and ν are the Young modulus and the Poisson ratio, respectively, and h = t/R is
the ratio of the wall thickness to the radius of the cylinder. A large body of experimental
results indicates that the theoretical value of the buckling load is about 4 to 5 times higher
than the one observed in experiments. This is generally attributed to the sensitivity of the

2While hyperelasticity is hardly the “ultimate” theory of elasticity, it is sufficiently general to capture
buckling of slender structures.
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Figure 1: Imperfection sensitivity caused by a sub-critical bifurcation point

buckling load to imperfections of load and shape [1, 36, 41, 13, 42]. The mechanism of such
high imperfection sensitivity is believed to be the sub-critical nature of the bifurcation [4] in
equations of shell theory, such as von-Kármán-Donnell equations, for example [23, 24, 29, 21].
The gist of such an explanation is captured in Fig. 1. Generically, imperfections eliminate
sharp bifurcation transitions [3]. However, the abrupt appearance of the dimple-shaped
buckle, accompanied by an audible click and a sharp drop in load in our soda can buckling
experiments [17] suggests that the imperfections might not eliminate bifurcations. Instead,
they may cause the system to follow a slightly different “trivial branch” that also undergoes
near-flip buckling at its own critical value of the loading parameter. In fact, in Section 4.1 and
in Appendix A we exhibit families of trivial branches parametrized by a load imperfection
parameter and show that they all undergo a near-flip buckling instability. In this case our
theory can accurately predict the critical load and the corresponding buckling mode for the
imperfect structure.

A more serious problem with the standard explanation of imperfection sensitivity was
pointed out in [43, 6]. In the traditional interpretation, imperfections do not affect the
scaling of the critical load with respect to the slenderness parameter h. For example, Koiter
in his dissertation [25] gives a formula for λ∗ (see Fig. 1):

λ∗ ≈ λ1(1− c
√
ǫ), (1.2)

where ǫ describes the magnitude of (shape) imperfections. An analysis in [43] of the large
body of experimental data in [2] showed that in practice the critical stress σcr scales like h

α

for some α ∈ [1.3, 1.5] in direct contradiction with (1.1), and even (1.2). A similar empirical
scaling law, but with exponent α = 1.4 was found in [39], based on the experimental data
available at the time. The experiments of Calladine and Barber [5] and Mandal and Calladine
[31] give a more consistent α = 1.5 exponent.

An attempt to explain the empirical h3/2 scaling was made in [6, 43]. The idea was to
find a relation between the vertical displacement of the top edge of the shell and the elastic
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energy stored in the buckle (dimple) that was observed to form in experiments. To solve the
problem a relation was found between the depth of a round bend in an inextensible line (or
a strip) and the corresponding displacement of its endpoint. The elastic energy stored in the
bend was taken to be the energy stored in the inverted spherical cap of the same depth as
the bend in the line (strip). The compressive force necessary to sustain the dimple was then
computed as the derivative of this energy with respect to the vertical displacement.

Relatively recently, a different approach has been proposed in [20] to explain high sensitiv-
ity of the buckling load to imperfections. It is based on the examination of the global energy
landscape of the perfectly circular infinitely long cylindrical shell and discovery of different
equilibria and mountain passes between them. Imperfections of load capable of overcoming
energy barriers (mountain pass heights) between different equilibria, especially those that
feature lateral loading, were shown to have a dramatic effect on the shell conformation. Sin-
gle dimple solutions were obtained as the mountain pass states. Our approach also examines
the energy functional of the perfect cylinder, but explores only the local energy landscape in
the vicinity of the trivial branches corresponding to various loading imperfection schemes.

Recent years have also seen significant progress in the mathematically rigorous analysis
of dimensionally reduced theories of plates and shells based on Γ-convergence [10, 32, 11,
27, 28]. In this approach, one must postulate the scaling of energy and the forces3 a priori,
whereby different scaling assumptions lead to different dimensionally reduced plate and shell
equations. These analyses prove that the tacit assumptions of validity of specific shell theories
must be justified before conclusions about the elastic behavior of such shells can be regarded
as rigorous. In the case of buckling of circular cylindrical shells it is the scaling of energy that
needs to be determined, and hence, these theories cannot be applied directly. By contrast,
the theory of near-flip buckling has no need for such a priori assumptions, since it pursues
a less ambitious goal of identifying the leading order asymptotics of the buckling load and
buckling mode of a specific structure without determining the equations governing its global
post-buckling behavior.

In this paper we offer a mathematically rigorous and mechanically rational explanation
of the h3/2 scaling. We show that imperfections in loading can cause the shell deformation to
follow a slightly altered trivial branch that becomes unstable at a critical load that no longer
scale as h, as in (1.1). We call this new phenomenon scaling instability. We demonstrate
that imperfections of loading that are modeled by adding pressure terms lead to the h3/2

scaling law, justifying the von Mises-Southwell formula [33, 34, 35, 40]. If imperfections of
load are permitted to alter only the boundary conditions at the top of the cylinder, they
may change the scaling of σcr only to h5/4, as in [12]. It is important to emphasise that the
power law h3/2 arises in our theory as the scaling of the universal lower bound on safe loads
given by the Korn constant [16, 14] of the axially loaded cylindrical shell. These results in
the framework of the general theory of near-flip buckling illustrate the mechanism of scaling
instability in buckling loads of slender bodies. This is discussed in detail in Section 5.

This paper is organized as follows. In Section 2 we recall the general theory of buckling of
slender bodies from [16]. We prove the strengthened version of the constitutive linearization

3Alternatively, scaling of the forces and additional information on how the forces are applied, sufficient
to determine the scaling of the energy, may be given.
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theorem, applicable to axially compressed cylindrical shells, and derive the effective criteria
for B-equivalence. Section 3 applies the theory to the problem of buckling of perfect circular
cylindrical shells. In Section 4 we consider imperfections of load by adding a pressure com-
ponent and a torsional component at the top edge of the shell. We demonstrate that such
perturbation in loading causes scaling instability in the critical value of the applied strain.
In Section 5 we discuss the mechanism of scaling instability in buckling loads of slender
structures, as seen through the theory of near-flip buckling.

2 Near-flip buckling of slender structures

In this section we review and extend the general theory of buckling developed in [16], so
that it can be applied to the buckling of axially compressed cylindrical shells. The theory
provides a recipe for computing the asymptotics of buckling loads of slender structures, as
the slenderness parameter goes to zero.

We say that the elastic configuration y = y(x), x ∈ Ω ⊂ R
3 is stable if it is a weak local

minimizer of the energy, i.e. if it has the lowest energy among all configurations that are
sufficiently close to y(x) in the C1 norm and satisfy the imposed boundary conditions. We
assume that the energy functional is given by

E(y) =
∫

Ω

W (∇y)dx−
∫

∂Ω

y · t(x)dS(x),

where W (F ) is the energy density function of the body and t(x) is the vector of dead load
tractions. The energy density function W (F ) ∈ C3(R3×3) is assumed to satisfy the four
fundamental properties:

(P1) Absence of prestress: WF (I) = 0;

(P2) Frame indifference: W (RF ) = W (F ) for every R ∈ SO(3);

(P3) Local stability of the undeformed state y(x) = x: 〈L0ξ, ξ〉 ≥ 0 for any ξ ∈ R
3×3, where

L0 = WFF (I) is the linearly elastic tensor of material properties;

(P4) Non-degeneracy: 〈L0ξ, ξ〉 = 0 if and only if ξT = −ξ.

Here, and elsewhere in this paper we use the notation 〈A,B〉 = Tr (ABT ) for the Frobenius
inner product on the space of 3 × 3 matrices, and the first and second gradients of W (F )
with respect to F are denoted WF and WFF , respectively:

WF =
∂W

∂Fiα
, WFF =

∂2W

∂Fiα∂Fjβ
.

We remark that properties (P3) and (P4) of L0 imply a uniform lower bound

〈L0ξ, ξ〉 ≥ αL0
|ξsym|2, ξsym =

1

2
(ξ + ξT ) (2.1)

for some αL0
> 0.
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2.1 The trivial branch

Consider a sequence of progressively slender4 domains Ωh parametrized by a dimensionless
parameter h. For example, for circular cylindrical shells, h is the ratio of cylinder wall
thickness to the cylinder radius (assuming we keep the ratio of cylinder height to its radius
constant). We consider a loading program parametrized by the loading parameter λ describ-
ing the magnitude of the applied tractions t(x;h, λ) = λth(x) + O(λ2), as λ → 0, or as
a measure of the prescribed strain entering through the displacement boundary conditions.
Here and below O(λα) is understood uniformly in x ∈ Ωh and h ∈ [0, h0]. Let y(x;h, λ) be
a family of Lipschitz equilibria of

E(y;h, λ) =
∫

Ωh

W (∇y)dx−
∫

∂Ωh

y(x) · t(x;h, λ)dS(x) (2.2)

defined on W 1,∞(Ωh;R
3) × [0, h0] × [0, λ0] for some h0 > 0 and λ0 > 0. The general theory

places no direct restrictions on the type of boundary conditions we can have. To describe a
wide class of ones, we restrict y to an affine subspace of W 1,∞(Ωh;R

3), given by

y ∈ y(x;h, λ) + V ◦
h , (2.3)

where V ◦
h is a linear subspace of W 1,∞(Ωh;R

3) that contains W 1,∞
0 (Ωh;R

3) and does not
depend on the loading parameter λ. The given function y(x;h, λ) ∈ W 1,∞(Ωh;R

3) describes
the “displacement part” of the boundary conditions, while the vector t(x;h, λ) describes
the traction part. The use of a fairly general subspace V ◦

h permits us to describe boundary
conditions in which desired components of displacements and tractions, or their linear com-
binations are prescribed on the boundary. An example of such a description of the boundary
conditions for the cylindrical shell will be given in Section 3.1.

Definition 2.1. We call the family of Lipschitz equilibria y(x;h, λ) of E(y;h, λ) a regular

trivial branch if there exist h0 > 0 and λ0 > 0, so that for every h ∈ [0, h0] and λ ∈ [0, λ0]

(i) y(x;h, 0) = x.

(ii) There exist a family of Lipschitz functions uh(x), independent of λ, such that

‖∂(∇y)

∂λ
(x;h, λ)−∇uh(x)‖L∞(Ωh) ≤ Cλ, (2.4)

where the constant C is independent of h and λ.

Several remarks are in order. We note that neither uniqueness nor stability of the trivial
branch are assumed. We also note that uniformity of the estimate (2.4) in h is the main
factor determining the applicability of this theory to buckling of specific structures. We also
observe that integrating estimate (2.4) in λ and using property (i) we obtain the estimate

‖∇y(x;h, λ)− I − λ∇uh(x)‖L∞(Ωh) ≤ Cλ2, (2.5)

4The notion of slenderness, introduced in [16] is recalled in Definition 2.5.
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where the constant C is independent of h and λ.
The equilibrium equations and the boundary conditions satisfied by the trivial branch

y(x;h, λ) can be written explicitly in the weak form:

∫

Ωh

〈WF (∇y(x;h, λ)),∇φ〉dx−
∫

∂Ωh

φ · t(x;h, λ)dS = 0, ∀φ ∈ V ◦
h , (2.6)

Differentiating (2.6) in λ at λ = 0, which is allowed due to (2.4), we obtain

∫

Ωh

〈L0∇uh(x),∇φ〉dx−
∫

∂Ωh

φ · th(x)dS = 0, ∀φ ∈ V ◦
h . (2.7)

In other words, the function uh can be computed by solving equations of linear elasticity.
The loss of stability occurs for some λ = λ∗(h) when it becomes energetically more

advantageous to activate bending modes rather than store more compressive stress. This
exchange of stability is detected by the change in sign of the second variation in the energy
functional E(y),

δ2E(φ;h, λ) =
∫

Ωh

〈WFF (∇y(x;h, λ))∇φ,∇φ〉dx, φ ∈ Vh, (2.8)

as λ crosses its critical value λ∗(h). Here Vh = V ◦
h is the closure of V ◦

h in W 1,2(Ωh;R
3).

The passage from V ◦
h to Vh is not essential, but is simplifies language and notation in what

follows.

2.2 Buckling load and buckling mode

We now assume that a regular trivial branch y(x;h, λ) is fixed. Using the second variation
criterion for stability we define the buckling load as

λ∗(h) = inf{λ > 0 : δ2E(φ;h, λ) < 0 for some φ ∈ Vh}. (2.9)

Definition 2.2. We say that a regular trivial branch undergoes a near-flip buckling if
λ∗(h) > 0 for all h ∈ (0, h0), for some h0 > 0, and λ∗(h) → 0, as h→ 0.

We refer to [16] for an extensive discussion of why this terminology is appropriate.
The buckling mode is generally understood as the variation φ∗

h ∈ Vh \ {0}, such that
δ2E(φ∗

h;h, λ
∗(h)) = 05. However, if we are only interested in the asymptotics of the critical

load, as h → 0, then we should not distinguish between λ∗(h) and another function λ(h),
as long as λ(h)/λ∗(h) → 1, as h → 0. If we replace λ∗(h) with λǫ(h) = λ∗(h)(1 + ǫ), then,
using a formal Taylor expansion, we estimate

δ2E(φ∗
h;h, λ

∗(h)(1 + ǫ)) ≈ λ∗(h)ǫ
∂(δ2E)
∂λ

(φ∗
h;h, λ

∗(h)).

5The question of existence of the buckling mode φ∗
h
is irrelevant here, since the goal of this discussion is to

motivate our somewhat unusual definition of a buckling mode below, which makes no existence assumptions.
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This means that for the purposes of asymptotics we should not distinguish differences in
values of second variation that are infinitesimal, compared to

λ∗(h)
∂(δ2E)
∂λ

(φ∗
h;h, λ

∗(h)).

In keeping with these observations, we redefine the notion of the buckling load and buckling
mode, under the assumption that the body undergoes a near-flip buckling in the sense of
Definition 2.2.

Definition 2.3. We say that λ(h) → 0, as h→ 0 is a buckling load if

lim
h→0

λ(h)

λ∗(h)
= 1. (2.10)

A buckling mode is a family of variations φh ∈ Vh \ {0}, such that

lim
h→0

δ2E(φh;h, λ
∗(h))

λ∗(h)
∂(δ2E)
∂λ

(φh;h, λ
∗(h))

= 0. (2.11)

The most important insight in [16] is that the stress at or below the critical value of the
loading parameter λ∗(h) is well inside the linearly elastic regime. Hence, the local material
response can be linearized, and we can replace the original second variation (2.8) by a simpler
constitutively linearized second variation:

δ2Ecl(φ;h, λ) =
∫

Ωh

{〈L0e(φ), e(φ)〉+ λ〈σh,∇φT∇φ〉}dx, φ ∈ Vh, (2.12)

where e(φ) =
1

2
(∇φ+ (∇φ)T ) and

σh(x) = L0e(u
h(x)) (2.13)

are the linear elastic strain and stress, respectively.
The goal of this section is to determine under what conditions the original second variation

(2.8) can be replaced with the constitutively linearized one. In order to do that we will have
to show that the constitutively linearized buckling load, coming from examining the sign of
the constitutively linearized second variation (2.12), has the same asymptotics as λ∗(h). We
will also need to show that the buckling modes determined by δ2E and δ2Ecl are the same.

The sign of δ2Ecl is determined by the competition between the two terms in (2.12). The
first term

Sh(φ) =

∫

Ωh

〈L0e(φ), e(φ)〉dx (2.14)

is always non-negative due to the assumption (P3), and hence, we interpret it as the measure
of stability of the trivial branch. The second term, or rather

Ch(φ) =
∂(δ2Ecl)
∂λ

(φ;h, λ) =

∫

Ωh

〈σh,∇φT∇φ〉dx (2.15)
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measures the destabilizing influence of compressive stresses. Note that, if the stress tensor
σh is negative definite (i.e. compressive) then Ch(φ) is negative

6. Thus,

Ah = {φ ∈ Vh : Ch(φ) < 0} (2.16)

is the set of all potentially destabilizing variations for (2.12). If Ah = ∅, then the structure
might not be susceptible to a near-flip buckling. For example, it will not undergo a near-flip
buckling, if there exists a constant c > 0, such that Ch(φ) ≥ c‖∇φ‖2. This can be seen from
the error estimate (2.26), for example. Here and elsewhere in this paper ‖ · ‖ always denotes
the L2-norm on Ωh.

Henceforth we will work under the assumption that the applied loading has a compressive
nature, i.e. Ah 6= ∅ for all h ∈ (0, h0) for some h0 > 0. The constitutively linearized version
of the critical load can now be computed my minimizing the Rayleigh quotient

R(h,φ) = −
∫
Ωh

〈L0e(φ), e(φ)〉dx∫
Ωh

〈σh,∇φT∇φ〉dx = −Sh(φ)

Ch(φ)
, (2.17)

and the constitutively linearized buckling mode is defined by (2.11), in which δ2E is replaced
with δ2Ecl. We summarize this in the following definition.

Definition 2.4. The constitutively linearized buckling load λcl(h) is defined by

λcl(h) = inf
φ∈Ah

R(h,φ). (2.18)

We say that the family of variations {φh ∈ Ah : h ∈ (0, h0)} is a constitutively linearized

buckling mode if

lim
h→0

R(h,φh)

λcl(h)
= 1. (2.19)

In order to formulate conditions under which the buckling load and the buckling mode
can be determined from the constitutively linearized second variation, we recall the definition
of the Korn constant

K(Vh) = inf
φ∈Vh

‖e(φ)‖2
‖∇φ‖2 . (2.20)

Definition 2.5. We say that the body7 Ωh is slender if

lim
h→0

K(Vh) = 0. (2.21)

We remark that this notion of slenderness, introduced in [16], is not purely geometric,
but depends on the type of loading described by the subspace Vh. On the one hand, a thin
rod or a plate in the hard device will not be regarded as slender, since their Korn constant

6This is a consequence of a classical result in matrix algebra, due to I. Schur, that even though the
product of two positive definite matrices does not have to be positive definite, its trace is always positive.

7Of course, it is the family of bodies Ωh that may or may not be “slender” according to our definition.
We abuse the terminology for the sake of euphony.
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is 1/2, regardless of their geometric slenderness. On the other hand, a geometrically non-
slender body, such as a ball or a cube will not be slender under our definition, for any set of
boundary conditions that excludes all rigid body motions. In fact, any admissible continuous
family of rotations will cause the Korn constant to be identically zero, since the gradient of
the infinitesimal generator of such a family will be a skew-symmetric matrix.

We are now ready to state and prove the constitutive linearization theorem. (The reader,
who wishes to skip the proof, can go to Section 2.3.)

Theorem 2.6 (Asymptotics of the critical load). Suppose that the body is slender in the
sense of Definition 2.5. Assume that the constitutively linearized critical load λcl(h), defined
in (2.18) satisfies λcl(h) > 0 for all sufficiently small h and

lim
h→0

λcl(h)
2

K(Vh)
= 0. (2.22)

Then λcl(h) is the buckling load and any constitutively linearized buckling mode φh is a
buckling mode in the sense of Definition 2.3.

The theorem is proved by means of the basic estimate, which is a simple modification of
the estimates in [16] used in the derivation of the formula for δ2Ecl(φ;h, λ):

Lemma 2.7. Suppose y(x;h, λ) is a regular trivial branch in the sense of Definition 2.1 and
W (F ) has the properties (P1)–(P4). Then

∣∣δ2E(φ;h, λ)− δ2Ecl(φ;h, λ)
∣∣ ≤ C

(
λ√
K(Vh)

+
λ2

K(Vh)

)
Sh(φ) (2.23)

and ∣∣∣∣
∂(δ2E)
∂λ

(φ;h, λ)− Ch(φ)

∣∣∣∣ ≤ C

(
1√
K(Vh)

+
λ

K(Vh)

)
Sh(φ), (2.24)

where the constant C is independent of h, λ and φ.

Proof. According to the frame indifference property (P2), W (F ) = Ŵ (F TF ). Differentiat-
ing this formula twice we obtain

〈WFF (F )ξ, ξ〉 = 4〈ŴCC(C)(F Tξ),F Tξ〉+ 2〈ŴC(C), ξTξ〉, C = F TF . (2.25)

We can estimate

|〈ŴCC(C)(F Tξ),F Tξ〉 − 〈ŴCC(I)ξ, ξ〉| ≤ |〈ŴCC(C)(F T − I)ξ, (F T − I)ξ〉|+

|〈(ŴCC(C)− ŴCC(I))ξ, ξ〉|+ 2|〈ŴCC(C)ξ, (F T − I)ξ〉|.
When F is uniformly bounded we obtain

|〈ŴCC(C)(F Tξ),F Tξ〉−〈ŴCC(I)ξ, ξ〉| ≤ C
(
|F − I|2|ξ|2 + |C − I||ξsym|2 + |F − I||ξsym||ξ|

)
.
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Similarly,
|〈ŴC(C)− ŴCC(I)(C − I), ξTξ〉| ≤ C|C − I|2|ξ|2.

When F = ∇y(x;h, λ) and ξ = ∇φ we obtain, taking into account (2.4) and (2.5), that

|C − I − 2λe(uh)| ≤ Cλ2, |F − I| ≤ Cλ, |C − I| ≤ Cλ.

Observing that 4ŴCC(I) = WFF (I) = L0 we obtain the estimate

|〈WFF (F )ξ, ξ〉 − 〈L0ξsym, ξsym〉 − λ〈σh, ξTξ〉| ≤ C(λ|ξsym||ξ|+ λ2|ξ|2). (2.26)

Integrating over Ωh as using the coercivity (2.1) of L0 we obtain the estimate (2.23).
In order to prove the estimate (2.24) we substitute F = ∇y(x;h, λ) and ξ = ∇φ into

(2.25) and differentiate in λ, obtaining

∂〈WFF (F )ξ, ξ〉
∂λ

= 4〈(ŴCCC(C)Ċ)(F Tξ),F Tξ〉+8〈ŴCC(C)(F Tξ), Ḟ Tξ〉+2〈ŴCC(C)Ċ, ξTξ〉,

where Ċ and Ḟ denote differentiation with respect to λ. Using the uniform boundedness of
Ċ, which is a corollary of (2.4), we estimate

|〈(ŴCCC(C)Ċ)(F Tξ),F Tξ〉| ≤ C(|ξsym|2 + λ|ξ||ξsym|)

and
|〈ŴCC(C)(F Tξ), Ḟ Tξ〉| ≤ C(|ξ||ξsym|+ λ|ξ|2).

We also estimate, using |C − I| ≤ Cλ and |Ċ − 2e(uh)| ≤ Cλ, that are consequences of
(2.4):

|2〈ŴCC(C)Ċ, ξTξ〉 − 〈σh, ξTξ〉| ≤ Cλ|ξ|2.

Proof of Theorem 2.6. By definition of λcl(h), for any ǫ > 0 and any h ∈ (0, h0) there exists
φh ∈ Ah such that

Sh(φh) + λcl(h)(1 + ǫ)Ch(φh) < 0. (2.27)

Thus,

δ2Ecl(φh;h, λcl(h)(1 + 2ǫ)) ≤ −ǫSh(φh)

1 + ǫ
.

The estimate (2.23) gives the upper bound on the second variation:

δ2E(φh;h, λcl(h)(1 + 2ǫ)) ≤
(
− ǫ

(1 + ǫ)
+ C

(
λcl(h)√
K(Vh)

+
λcl(h)

2

K(Vh)

))
Sh(φh).

Therefore, due to (2.22), for sufficiently small h, we have δ2E(φh;h, λcl(h)(1 + 2ǫ)) < 0, and
hence λ∗(h) ≤ λcl(h)(1 + 2ǫ). We conclude that

lim
h→0

λ∗(h)

λcl(h)
≤ 1. (2.28)
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To prove the opposite inequality we observe that by definition of λcl(h) we have

Sh(φ) + λcl(h)Ch(φ) ≥ 0

for any φ ∈ Vh. Therefore, for any ǫ > 0 and any 0 < λ ≤ λcl(h)(1− ǫ) we have

δ2Ecl(φ;h, λ) ≥ ǫSh(φ).

The estimate (2.23) now gives the lower bound on the second variation:

δ2E(φ;h, λ) ≥
(
ǫ− C

(
λcl(h)√
K(Vh)

+
λcl(h)

2

K(Vh)

))
Sh(φ).

Thus for all sufficiently small h and all φ ∈ Vh \ {0} we have δ2E(φ;h, λ) > 0 for all
0 < λ ≤ λcl(h)(1− ǫ), which means that λ∗(h) ≥ λcl(h)(1− ǫ). This implies

lim
h→0

λ∗(h)

λcl(h)
≥ 1. (2.29)

Combining (2.28) and (2.29) we conclude that λcl(h) is the buckling load.
Assume now that φh is a constitutively linearized buckling mode, i.e. (2.19) holds. Set

λ = λ∗(h) and φ = φh in the inequality (2.23). Then, dividing both sides of the inequality
by −λ∗(h)Ch(φh) > 0 we obtain

∣∣∣∣
δ2E(φh;h, λ

∗(h))

−λ∗(h)Ch(φh)
−
(
R(h,φh)

λ∗(h)
− 1

)∣∣∣∣ ≤ C

(
λ∗(h)√
K(Vh)

+
(λ∗(h))2

K(Vh)

)
R(h,φh)

λ∗(h)
.

Since we have proved that λcl(h) is the buckling load we conclude that

lim
h→0

δ2E(φh;h, λ
∗(h))

λ∗(h)Ch(φh)
= 0.

Similarly, setting λ = λ∗(h) and φ = φh in the inequality (2.24) and dividing both sides of
the inequality by −Ch(φh) > 0 we obtain

∣∣∣∣∣∣∣

∂(δ2E)
∂λ

(φh;h, λ
∗(h))

−Ch(φh)
+ 1

∣∣∣∣∣∣∣
≤ C

(
λ∗(h)√
K(Vh)

+
(λ∗(h))2

K(Vh)

)
R(h,φh)

λ∗(h)
.

We conclude that

lim
h→0

∂(δ2E)
∂λ

(φh;h, λ
∗(h))

Ch(φh)
= 1.

It follows now that φh satisfies (2.11), and the theorem is proved.
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2.3 B-equivalence

In Section 2.2 we showed that the asymptotics of the critical load and buckling mode can be
captured by the Rayleigh quotient R(h,φ). Even though such a characterization of buckling
represents a significant simplification, compared to the original characterization based on
the second variation of a fully non-linear energy functional, further simplifications may be
necessary in order to obtain an explicit analytic expression for the buckling load. We envision
two ways in which the required analysis can be simplified. One, is the simplification of the
functional R(h,φ). The other, is replacing the space of all admissible functions Ah with a
smaller space Bh. For example, we may want to justify a restriction to a specific ansatz, like
the Kirchhoff ansatz in buckling of rods and plates. In order to formalize our simplification
procedure we make the following definitions.

Definition 2.8. Assume that J(h,φ) is a functional defined on Bh ⊂ Ah. We say that the
pair (Bh, J(h,φ)) characterizes buckling if the following three conditions are satisfied

(a) Characterization of the buckling load: If

λ(h) = inf
φ∈Bh

J(h,φ),

then λ(h) is a buckling load in the sense of Definition 2.3.

(b) Characterization of the buckling mode: If φh ∈ Bh is a buckling mode in the sense of
Definition 2.3, then

lim
h→0

J(h,φh)

λ(h)
= 1. (2.30)

(c) Faithful representation of the buckling mode: If φh ∈ Bh satisfies (2.30) then it is a
buckling mode.

Definition 2.9. Two pairs (Bh, J1(h,φ)) and (Ch, J2(h,φ)) are called B-equivalent if the
pair (Bh, J1(h,φ)) characterizes buckling if and only if (Ch, J2(h,φ)) does.

The notion of B-equivalence of functionals (Bh, J(h,φ)) is an extension of the notion of
B-equivalence, introduced in [16], now encompassing buckling modes in addition to buckling
loads.

Let us first address a question of restricting the space of functions Bh to an “ansatz” Ch.
The answer is fairly obvious. The space Bh can be replaced by an “ansatz” Ch if the ansatz
contains the buckling mode. We state this observation as a lemma.

Lemma 2.10. Suppose the pair (Bh, J(h,φ)) characterizes buckling. Let Ch ⊂ Bh be such
that it contains a buckling mode. Then the pair (Ch, J(h,φ)) characterizes buckling.

Proof. Let
λ(h) = inf

φ∈Bh

J(h,φ), λ̃(h) = inf
φ∈Ch

J(h,φ).

14



Then, clearly, λ̃(h) ≥ λ(h). By assumption there exists a buckling mode φh ∈ Ch ⊂ Bh.
Therefore,

lim
h→0

λ̃(h)

λ(h)
≤ lim

h→0

J(h,φh)

λ(h)
= 1,

since the pair (Bh, J(h,φ)) characterizes buckling. Hence

lim
h→0

λ̃(h)

λ(h)
= 1, (2.31)

and part (a) of Definition 2.8 is established.
If φh ∈ Ch ⊂ Bh is a buckling mode then

lim
h→0

J(h,φh)

λ(h)
= 1,

since the pair (Bh, J(h,φ)) characterizes buckling. Part (b) now follows from (2.31).
Finally, if φh ∈ Ch satisfies

lim
h→0

J(h,φh)

λ̃(h)
= 1,

then, φh ∈ Bh and by (2.31) we also have

lim
h→0

J(h,φh)

λ(h)
= 1.

Therefore, φh is a buckling mode. The Lemma is proved now.

Our key tool for simplification of the functionals J(h,φ) characterizing buckling is the
following theorem.

Theorem 2.11 (B-equivalence). Suppose that λ(h) is a buckling load in the sense of Defi-
nition 2.3. If either

lim
h→0

λ(h) sup
φ∈Bh

∣∣∣∣
1

J1(h,φ)
− 1

J2(h,φ)

∣∣∣∣ = 0, (2.32)

or

lim
h→0

1

λ(h)
sup
φ∈Bh

|J1(h,φ)− J2(h,φ)| = 0, (2.33)

then the pairs (Bh, J1(h,φ)) and (Bh, J2(h,φ)) are B-equivalent in the sense of Definition 2.9.

Proof. Let us introduce the following notation:

λi(h) = inf
φ∈Bh

Ji(h,φ), i = 1, 2.

δ±(h) = λ(h)±1 sup
φ∈Bh

∣∣J1(h,φ)±1 − J2(h,φ)
±1
∣∣ .
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Then ∣∣∣∣
λ(h)

λ1(h)
− λ(h)

λ2(h)

∣∣∣∣ = λ(h)

∣∣∣∣ sup
φ∈Bh

1

J1(h,φ)
− sup

φ∈Bh

1

J2(h,φ)

∣∣∣∣ ≤ δ−(h)

and
|λ1(h)− λ2(h)|

λ(h)
=

1

λ(h)

∣∣∣∣ infφ∈Bh

J1(h,φ)− inf
φ∈Bh

J2(h,φ)

∣∣∣∣ ≤ δ+(h).

Assume that (Bh, J1(h,φ)) characterizes buckling. Then we have just proved that if either
δ+(h) → 0 or δ−(h) → 0, as h → 0, then λ2(h)/λ(h) → 1, as h → 0, and condition (a) in
Definition 2.8 is proved for J2(h,φ).

Observe that by parts (b) and (c) of Definition 2.8 φh ∈ Bh is the buckling mode if and
only if

lim
h→0

J1(h,φh)

λ1(h)
= 1.

This is equivalent to

lim
h→0

λ(h)

J1(h,φh)
= 1.

Therefore,

lim
h→0

J2(h,φh)

λ(h)
= 1,

since either ∣∣∣∣
λ(h)

J1(h,φh)
− λ(h)

J2(h,φh)

∣∣∣∣ ≤ δ−(h)

or
|J1(h,φh)− J2(h,φh)|

λ(h)
≤ δ+(h).

Thus, in view of part (a), φh is a buckling mode if and only if

lim
h→0

J2(h,φh)

λ2(h)
= 1.

As an application of Theorem 2.11 we show that we can simplify the Rayleigh quotient
R(h,φ) further.

Theorem 2.12. Suppose that the critical load λcl(h) satisfies (2.22). Let

R
∗(h,φ) = −

∫
Ωh

〈L0e(φ), e(φ)〉dx
1

4

∫

Ωh

〈σ̃h∇× φ,∇× φ〉dx
= −Sh(φ)

C∗
h(φ)

,

where
σ̃h = (Trσh)I − σh (2.34)

is the compression tensor. Then (Ah,R(h,φ)) and (Ah,R
∗(h,φ)) are B-equivalent.
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Proof. For a ∈ R
3, let π(a) denote a 3×3 antisymmetric matrix defined by the cross-product

map:
π(a)u = a× u.

Then ∇φ− (∇φ)T = π(∇×φ). We observe that replacing ∇φ with e(φ) + π(∇×φ)/2 in
Ch(φ) we obtain

Ch(φ) =

∫

Ωh

〈σh, e(φ)2 + e(φ)π(∇× φ)〉dx+ C
∗
h(φ).

It follows that for every φ ∈ Vh

|Ch(φ)− C
∗
h(φ)| ≤ ‖σh‖∞(‖e(φ)‖2 + 2‖e(φ)‖‖∇φ‖) ≤ ‖σh‖∞‖e(φ)‖2

(
1 +

2√
K(Vh)

)
.

Recalling that, due to (2.1),
Sh(φ) ≥ αL0

‖e(φ)‖2

we obtain

λcl(h)

∣∣∣∣
1

R(h,φ)
− 1

R∗(h,φ))

∣∣∣∣ ≤
‖σh‖∞
αL0

(
λcl(h) +

2λcl(h)√
K(Vh)

)
.

Thus (2.22) implies that the sufficient condition (2.32) for B-equivalence is satisfied. The
theorem is proved.

Theorem 2.12 shows that in order to quantify the destabilizing effect of stress in a pre-
buckled state, it is not necessary to deal with a quadratic form H 7→ 〈σh,HTH〉 on the
9-dimensional space of 3×3 matrices. The same information is also contained in a quadratic
form on R

3, given by the symmetric 3 × 3 matrix σ̃h. For example, the set of destabilizing
variations Ah could be empty, even if σh has negative eigenvalues. By contrast, Ah is non-
empty if and only if , the compression tensor has a negative eigenvalue. Similarly, Ah = Vh,
if and only if σ̃h is negative definite, which does not require all of the principal stresses to
be negative. 8 In that respect the compression tensor σ̃h is a much better descriptor of
compressiveness than the original stress tensor σh. The tensor σ̃h is a natural quantity and
has been appearing regularly, albeit implicitly, in analyses of stability, e.g. [19, 18, 8].

Another consequence of Theorem 2.12 is a dramatic difference between buckling in two
and three dimensions. It comes from the fact that ∇ × φ is a scalar in 2D, and similar
calculations show that the functional R(h,φ) can be replaced in 2D by

R
2D(h,φ) = −

∫
Ωh

〈L0e(φ), e(φ)〉dx
1
2

∫
Ωh

(Trσh(x))|∇φ|2dx ,

or, in the case of a homogeneous trivial branch, by

R
2D
hom(h,φ) = −

2
∫
Ωh

〈L0e(φ), e(φ)〉dx
c‖∇φ‖2 ,

8The former happens when σ1 + σ2 < 0, where σ1 ≤ σ2 ≤ σ3 are the principal stresses, the latter when
σ2 + σ3 < 0.
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where
c = lim

h→0
Trσh.

Therefore, we can formulate the 2D alternative. Generically, either c > 0, in which case the
structure will not buckle (in the sense of near-flip buckling), or c < 0, in which case we have
a general formula for the critical load [16]:

λcl(h) = −2KL0
(Vh)

c
,

where

KL0
(Vh) = inf

φ∈Vh

∫
Ωh

〈L0e(φ), e(φ)〉dx
‖∇φ‖2 . (2.35)

By contrast, the situation in 3D is much more nuanced, even in the case of a homogeneous
trivial branch, since the asymptotics of the critical load depends on a tensor σ̃h, given by
(2.34), instead of a scalar Trσh.

3 Axially compressed circular cylindrical shells

In this section we apply the theory of near-flip buckling developed in Section 2 to the buckling
of circular cylindrical shells under axial compression. In the remainder of the paper we
assume that the energy density W (F ) is isotropic.

3.1 The trivial branch

Consider the circular cylindrical shell given in cylindrical coordinates (r, θ, z) as follows:

Ch = Ih × T× [0, L], Ih = [1− h/2, 1 + h/2],

where T is a 1-dimensional torus (circle) describing 2π-periodicity in θ. We impose the the
following boundary conditions on the deformation y : Ch → R

3

yθ(r, θ, 0) = yz(r, θ, 0) = yθ(r, θ, L) = 0, yz(r, θ, L) = (1− λ)L, (3.1)

where yr, yθ and yz are coordinates of the vector field y in the standard moving orthonormal
frame er, eθ, ez associated with cylindrical coordinates. The loading is parametrized by
the compressive strain λ > 0 in the axial direction. According to (3.1) the the base of the
shell is fixed in the vertical and circumferential directions, but is allowed to undergo radial
Poisson expansion, when compressed. At the top rim the loading device is controlling only
the vertical component of the displacement.

To use our theory of buckling we need to describe the applied loading in the form (2.2),
(2.3). This is done by defining

y(x;h, λ) = (1− λ)zez, t(x;h, λ) = 0. (3.2)
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In that case

Vh = {φ ∈ W 1,2(Ch;R3) : φθ(r, θ, 0) = φz(r, θ, 0) = φθ(r, θ, L) = φz(r, θ, L) = 0}. (3.3)

In our notation the dependence on the fixed ratio L of length to the radius will be consistently
suppressed, while the essential dependence on h → 0 will be emphasized. Let us show
that (under a certain non-degeneracy condition) there exists a homogeneous trivial branch
y(x;h, λ), given in cylindrical coordinates by

yr = (a(λ) + 1)r, yθ = 0, yz = (1− λ)z, (3.4)

where the function a(λ), satisfying a(0) = 0, is uniquely determined by the energy density
function W (F ) through the natural boundary conditions at the two lateral boundaries of
the shell

P (∇y)er = 0, r = 1± h

2
. (3.5)

Here P (F ) = WF (F ), the gradient of W with respect to F , denotes the Piola-Kirchhoff
stress tensor.

Lemma 3.1. Assume that W (F ) is three times continuously differentiable in a neighborhood
of F = I, satisfies properties (P1)–(P3) and that W (F ) is isotropic, i.e.

W (FR) = W (F ), ∀R ∈ SO(3). (3.6)

Then there exists a unique function a(λ), of class C2 on a neighborhood of 0, such that
a(0) = 0 and the natural boundary conditions (3.5) are satisfied by the trivial branch (3.4).

This lemma is a particular case of Lemma 4.1, corresponding to p = 0. Lemma 3.1
implies that the fundamental regularity assumption (2.4) is satisfied, since the trivial branch
is smooth in λ and does not depend on h explicitly. It is straightforward to compute, using
(3.4) and (3.5), that

σh = −Eez ⊗ ez, (3.7)

where E is the Young’s modulus.

3.2 Scaling of the critical load

Theorem 3.2. Suppose that σh is given by (3.7). Then there exist constants c > 0 and
C > 0 depending only on L and the elastic moduli, such that

ch ≤ λcl(h) ≤ Ch. (3.8)

Proof. Observe that

Ch(φ) =

∫

Ch
〈σh,∇φT∇φ〉dx = −E(‖φr,z‖2 + ‖φθ,z‖2 + ‖φz,z‖2),
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and there exist constants α > 0 and β > 0 (depending only on the elastic moduli) such that

α‖e(φ)‖2 ≤ Sh(φ) ≤ β‖e(φ)‖2.

Thus, in order to compute the scaling of λcl(h), given by (2.18) and verify conditions of
Theorem 2.6 we need to estimate the Korn constant K(Vh), as well as the norms of gradient
components ‖φr,z‖2, ‖φθ,z‖2 and ‖φz,z‖2 in terms of ‖e(φ)‖. This was accomplished in [14].
The desired estimates are stated in the following theorem.

Theorem 3.3 (Korn-type inequalities). There exist constants C, c > 0 depending only on
L such that

ch3/2 ≤ K(Vh) ≤ Ch3/2. (3.9)

‖φθ,z‖2 ≤
C√
h
‖e(φ)‖2, (3.10)

‖φr,z‖2 ≤
C

h
‖e(φ)‖2. (3.11)

Moreover, the powers of h in the inequalities (3.9)–(3.11) are optimal, achieved simultane-
ously by the ansatz





φhr (r, θ, z) = −W,ηη

(
θ
4
√
h
, z
)

φhθ (r, θ, z) = r 4
√
hW,η

(
θ
4
√
h
, z
)
+ r−1

4
√
h
W,ηηη

(
θ
4
√
h
, z
)
,

φhz (r, θ, z) = (r − 1)W,ηηz

(
θ
4
√
h
, z
)
−

√
hW,z

(
θ
4
√
h
, z
)
,

(3.12)

for any smooth compactly supported function W (η, z) on R× (0, L), with the understanding
that the function φh(θ, z) is extended 2π-periodically in θ from [0, 2π) to R.

Adding inequalities (3.10), (3.11) and an obvious inequality ‖φz,z‖2 ≤ ‖e(φ)‖2 we obtain

− Ch(φ) ≤
C

h
Sh(φ). (3.13)

The power of h in (3.13) is optimal, achieved by the ansatz (3.12). Hence, the variational
definition (2.18) of λcl(h) implies (3.8).

We observe that the upper bound in (3.8) implies that condition (2.22) in Theorem 2.6
is satisfied. This proves that λcl(h) is the buckling load in the sense of Definition 2.3. If the
Hooke’s law tensor L0 is isotropic, then, as we have shown in [15], the exact asymptotics of
λcl, given by (2.18), is

lim
h→0

λcl(h)

h
=

1√
3(1− ν2)

,

which together with (3.7) agrees with the classical formula (1.1) for the critical stress.
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4 Imperfections of load and scaling instability

Let us now assume that the cylinder remains perfectly circular, however, some of the bound-
ary conditions (3.1), (3.2) are perturbed. We also continue working under the assumption
that W (F ) is isotropic. The goal is to show that there are imperfections of load that can
lead to two distinct scalings of the critical strain h3/2 and h5/4. This is a “proof of concept”
result, exhibiting the workings of scaling instability mechanism, rather than an explanation
of particular experimental data. We do not pretend that the boundary conditions in our
loading programs represent an actual experimental setup. However, we do believe that the
scaling instability mechanism is still at work under real experimental conditions.

4.1 Scaling λ∗(h) ∼ h3/2

Let us consider the loading program where in addition to increasing the compressive strain
λ we also simultaneously increase pressure. In other words, the perturbed loading is now
given by (3.1) and

y(x;h, λ) = (1− λ)zez, t(x;h, λ) = −λpn, (4.1)

where p > 0 and n is the outward unit normal on ∂Ch. Since we study the loading for very
small values of λ, the applied pressure λp can be regarded as a load imperfection, even for
values of p of order 1. It is important to note that the space Vh has remained the same, since
only the value of the traction vector was modified.

Let us show that such a loading is still consistent with a homogeneous trivial branch of
the form (3.4) for an isotropic material.

Lemma 4.1. Assume that W (F ) is three times continuously differentiable in a neighborhood
of F = I, satisfies properties (P1)–(P3) and is isotropic, i.e. satisfies (3.6). Then for every
p0 > 0 there exists δ > 0 and a unique function a(λ, p), of class C2((−δ, δ)× (−p0, p0)), such
that a(0, p) = 0 and the natural boundary conditions

P (∇y)er = −λper, r = 1± h

2
,

are satisfied by the trivial branch (3.4).

Proof. By (P2) W (F ) = Ŵ (F TF ). The function Ŵ (C) is three times continuously differ-
entiable in a neighborhood of C = I. Thus,

P (F ) = WF (F ) = 2F ŴC(F
TF ).

The isotropy of W (F ) implies that Ŵ (RCRT ) = Ŵ (C) for all R ∈ SO(3). Differentiating
this relation in R at R = I we conclude that ŴC(C) must commute with C. In particular,
this implies that the matrix ŴC(C) must be diagonal, whenever C is diagonal. We compute
that in cylindrical coordinates

F = ∇y =




1 + a 0 0
0 1 + a 0
0 0 1− λ


 , C = F TF =




(1 + a)2 0 0
0 (1 + a)2 0
0 0 (1− λ)2


 .
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Hence, P (F ) is diagonal, and boundary conditions (3.5) reduce to a single scalar equation

ŴC((1 + a)2(er ⊗ er + eθ ⊗ eθ) + (1− λ)2ez ⊗ ez)er · er = − λp

2(1 + a)
. (4.2)

Condition (P1) implies that (λ, p, a) = (0, p, 0) is a solution. The conclusion of the lemma is
guaranteed by the implicit function theorem, provided

L0(er ⊗ er + eθ ⊗ eθ)er · er 6= 0. (4.3)

When L0 is isotropic, the non-degeneracy condition (4.3) becomes

E

(1 + ν)(1− 2ν)
6= 0.

This condition is always satisfied because the left-hand side is positive due to (P3)–(P4).

In order to find the critical load (asymptotically) we need to compute

σh = L0∇uh = L0
∂F

∂λ

∣∣∣∣
λ=0

.

Differentiating (4.2) in λ at λ = 0 to find ∂a/∂λ we compute

σh = −pI − (E − 2p(1− ν))ez ⊗ ez. (4.4)

Theorem 4.2. The pair (Vh, J(h,φ)) characterizes buckling, where

J(h,φ) =

∫
Ωh

〈L0e(φ), e(φ)〉dx
p‖∇φ‖2 .

Proof. We compute
∣∣∣∣

1

R(h,φ)
− 1

J(h,φ)

∣∣∣∣ =
|E − 2p(1− ν)|‖(∇φ)ez‖2∫

Ωh

〈L0e(φ), e(φ)〉dx
.

Thus, according to Theorem 3.3

sup
φ∈Vh

∣∣∣∣
1

R(h,φ)
− 1

J(h,φ)

∣∣∣∣ ≤
|E − 2p(1− ν)|

αL0

sup
φ∈Vh

‖(∇φ)ez‖2
‖e(φ)‖2 ≤ C

h
.

Denoting λ(h) = infφ∈Vh J(h,φ), we obtain
∣∣∣∣
λ(h)

λcl(h)
− 1

∣∣∣∣ = λ(h)

∣∣∣∣ sup
φ∈Vh

1

R(h,φ)
− sup

φ∈Vh

1

J(h,φ)

∣∣∣∣ ≤
λ(h)C

h
.

Applying Theorem 3.3 once again we conclude that λ(h) ≤ Ch3/2, and therefore,

lim
h→0

λ(h)

λcl(h)
= 1.

22



Thus, condition (2.22) holds, and hence, both λcl(h) and λ(h) are buckling loads. The proof
is concluded by the application of Theorem 2.11, since

lim
h→0

λ(h) sup
φ∈Vh

∣∣∣∣
1

R(h,φ)
− 1

J(h,φ)

∣∣∣∣ = 0.

As a corollary of Theorem 4.2 we obtain that

λ∗(h) ∼ KL0
(Vh)

p
∼ h3/2, (4.5)

where KL0
(Vh) is defined in (2.35). This corresponds to the von Mises-Southwell formula

[33, 34, 35, 40].
We remark that adding pressure component to the load can be regarded as a load im-

perfection. According to (4.5), the critical stress and pressure are

σcr ∼ Eλ∗(h) ∼ E2h3/2

p
, Pcr = λcrp ∼ Eh3/2,

respectively. Hence, the condition for interpreting pressure as a load imperfection is p≪ E.
Since E ranges between 1 and 100 GPa for typical solids, the values of p on the order of KPa
would qualify as small, compared to E.

4.2 Scaling λ∗(h) ∼ h5/4

Let us examine a more subtle imperfection of load that occurs if we require to keep shell’s
lateral boundary stress-free. We also assume that boundary conditions (3.1) hold, except
that yθ(r, θ, L) is no longer required to be zero. We will work under the assumption that the
new loading results in a regular trivial branch in the sense of Definition 2.1. While we cannot
prove that such a trivial branch exists for all energy density functionsW (F ), satisfying (P1)–
(P4), we can exhibit one explicitly for a neo-Hookean material, which is done in Appendix A.
However, it is important to emphasize that once the existence of a regular trivial branch is
established, the theory expresses the asymptotics of the buckling load entirely in terms of
linear elastic trivial branch.

Let us show that regardless of the specific functional form of yθ(r, θ, L) the stress σ
h that

enters the constitutively linearized second variation is almost completely determined in an
asymptotic sense. For this calculation we make an additional assumption that the family of
Lipschitz functions uh from Definition 2.1 depends regularly on r and h. This assumption
can be verified directly for our explicit trivial in Appendix A. Hence, we have the relations

uh(r, θ, z) ≈ ũh(r, θ, z) = u0(θ, z) + (r − 1)u1(θ, z) +
(r − 1)2

2
u2(θ, z), (4.6)

that are understood in the following sense:

lim
h→0

uh = lim
h→0

ũh = u0, lim
h→0

∇uh = lim
h→0

∇ũh = lim
h→0

∇(u0 + (r − 1)u1),
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lim
h→0

∇∇uh = lim
h→0

∇∇ũh,

where the first two limits are understood in the a.e. sense, while the last limit is understood
in the sense of distributions.

Theorem 4.3. Suppose that uh(r, θ, z) from Definition 2.1 depends regularly on r and h.
Suppose further that

(i) ∇ · (L0e(uh)) = 0,

(ii) σher = 0 at r = 1± h/2, where σh = L0e(u
h),

(iii) uhz (r, θ, 0) = uhθ (r, θ, 0) = 0.

Then there exist two constants s and t, such that

u0r + (r − 1)u1r = −tν
E
r, u0θ + (r − 1)u1θ =

2(1 + ν)s

E
rz, u0z + (r − 1)u1z =

t

E
z, (4.7)

and consequently

σ0 =



0 0 0
0 0 s
0 s t


 . (4.8)

Proof. By the assumptions of regularity (4.6) and by condition (i) we have

lim
h→0

∇ · σh = lim
h→0

∇ · (σ0(θ, z) + (r − 1)σ1(θ, z)) = 0, (4.9)

where

σ0 = lim
h→0

L0e(u
0 + (r − 1)u1), σ1 = lim

h→0
L0e

(
u1 +

r − 1

2
u2

)
. (4.10)

Passing to the limit as h→ 0 in (4.9), we obtain




σ1
rr + σ0

rθ,θ + σ0
rr − σ0

θθ + σ0
rz,z = 0,

σ1
rθ + σ0

θθ,θ + 2σ0
rθ + σ0

θz,z = 0,

σ1
rz + σ0

θz,θ + σ0
rz + σ0

zz,z = 0.

(4.11)

The traction-free boundary conditions σher = 0 at r = 1± h/2 imply that

σ0(θ, z)er = σ1(θ, z)er = 0

for all (θ, z) ∈ T× (0, L). Substituting these equations into (4.11) we obtain

σ0
θθ = 0, σ0

θz,z = 0, σ0
θz,θ + σ0

zz,z = 0.

Solving these equations we obtain

σ0(θ, z) =



0 0 0
0 0 s(θ)
0 s(θ) t(θ)− zs′(θ)


 (4.12)
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for some functions s(θ) and t(θ). The first equation in (4.10) can now be written as





u1θ = u0θ − u0r,θ, u1z = −u0r,z, u0θ,z + u0z,θ =
2(1+ν)
E

s(θ),

u1r = − ν
1−ν (u

0
r + u0θ,θ + u0z,z), u0r + u0θ,θ +

ν
1−ν (u

1
r + u0z,z) = 0,

u0z,z +
ν

1−ν (u
1
r + u0r + u0θ,θ) =

(1+ν)(1−2ν)
E(1−ν) (t(θ)− zs′(θ)).

(4.13)

Solving these equations subject to the conditions

u0z(θ, 0) = u0θ(θ, 0) = u1z(θ, 0) = u1θ(θ, 0) = 0

we conclude that the functions s(θ) and t(θ) have to be constant9 and that the formulas
(4.7) hold. The formula (4.8) follows from (4.12).

We conclude that imperfections of load give rise to a family of trivial branches character-
ized by the parameter s in (4.7)–(4.8). The perfect axial compression described in Section 3.1
corresponds to s = 0, while s 6= 0 introduces a torsional component to the stress.

We show now that trivial branches characterized by a non-zero parameter s in (4.7)–(4.8)
become unstable at the critical load that scales as h5/4, establishing scaling instability of the
critical load (1.1) as a function of h. It is an important feature of constitutive linearization,
that in order to compute the asymptotics of the buckling load and the buckling mode we
do not need to know the non-linear trivial branch explicitly. (We only need to know that
it exists and is regular in the sense of Definition 2.1.) The desired asymptotics is given by
Theorem 2.6 in terms of the solution uh of the equations of linear elasticity10. In order to
obtain σ0 of the form (4.8) we observe that

uhr = νr, uhθ = srz, uhz = −z, (4.14)

solves 



∇ · (L0e(uh)) = 0, in Ch,
σher = 0, r = 1± h

2
,

uhz = uhθ = 0, z = 0,

(4.15)

resulting in

σh =




0 0 0

0 0
Esr

2(ν + 1)

0
Esr

2(ν + 1)
−E


 , σ0 =




0 0 0

0 0
Es

2(ν + 1)

0
Es

2(ν + 1)
−E


 . (4.16)

9We note that s =constant is a consequence of u1

z(θ, 0) = 0, while t =constant is a consequence of
u1

θ
(θ, 0) = 0.
10We emphasize that we are studying stability of the non-linearly elastic trivial branch in the context of

fully non-linear hyperelasticity. Linear elastic equations supply the leading order asymptotics of the fully
non-linear critical load.
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In this explicit solution the imperfections of load are described by a single torsion parameter
s. This specific representation of σ0 is, nevertheless, generic for arbitrary regular imperfec-
tions of load at z = L, according to Theorem 4.3. Similarly to Theorem 3.2, the formulas
(4.16) determine the scaling of the critical load with h, which, for every fixed s 6= 0, is
different from (3.8).

Theorem 4.4. Suppose that σ0 is given by (4.16). Then there are positive constants c and
C, depending only on L and the elastic moduli, such that

c

|s| ≤ lim
h→0

λcl(h)

h5/4
≤ C

|s| . (4.17)

Proof. Let us first obtain an upper bound on the critical load. This is done by using the
test functions (3.12) in the estimate

λcl(h) ≤ R(h,φh).

We have
Sh(φ

h) ≤ C‖e(φh)‖2 ≤ Ch2,

−Ch(φ
h) = E‖(∇φh)ez‖2 −

sE

ν + 1
((∇φh)ez, (∇φh)eθ),

where (f, g) denotes the inner product in L2(Ch). Extracting the leading order term in
Ch(φ

h) we rewrite it as

−Ch(φ
h) = − sE

ν + 1
(r(∇φh)ez, (∇φh)eθ) + ρh,

where, according to Theorem 3.3,

|ρh| ≤
C

h
‖e(φh)‖2 ≤ Ch.

Using the explicit formulas (3.12) for φh we compute

lim
h→0

h−3/4(r(∇φh)rz, (∇φh)rθ) =

∫ 2π

0

∫ L

0

W,ηηη(η, z)W,ηηz(η, z)dηdz. (4.18)

Hence, in order to prove the upper bound in (4.17) we only need to exhibit a fixed compactly
supported function W (η, z), such that the right-hand side in (4.18) is a non-zero number,
whose sign is opposite to sign(s). This is done by choosing two arbitrary non-zero compactly
supported functions φ(η) and ψ(z) and setting

W (η, z) = φ(η)ψ′(z)± φ′(η)ψ(z).

Then

W,ηηηW,ηηz =
1

4
(ψ′(z)2)′(φ′′(η)2)′ + (φ′′′(η)2)′(ψ(z)2)′ ± (φ′′′(η)φ′′(η))′ψ(z)ψ′′(z)

∓ φ′′′(η)2(ψ(z)ψ′(z))′ ± 2φ′′′(η)2ψ′(z)2.
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This shows that
∫ 2π

0

∫ L

0

W,ηηηW,ηηzdηdz = ±2

∫ 2π

0

∫ L

0

φ′′′(η)2ψ′(z)2dηdz 6= 0.

Now, Theorem 2.6 applies, and we conclude that λcl(h) is a buckling load.
We now prove the lower bound in (4.17). Let

C
0
h(φ) =

∫

Ch
〈σ0,∇φT∇φ〉dx.

Observe that
−C

0
h(φ) = −C̃h(φ) +Rh(φ),

where

−C̃h(φ) = E(‖(∇φ)rz‖2 + ‖(∇φ)θz‖2)−
sE

ν + 1
((∇φ)rz, (∇φ)rθ),

and

Rh(φ) = E‖(∇φ)zz‖2 −
sE

ν + 1
{((∇φ)θz, (∇φ)θθ) + (∇φ)zθ, (∇φ)zz)}.

By Theorem 3.3 we estimate

|Rh| ≤ C(‖e(φ)‖2 + ‖e(φ)‖‖∇φ‖) ≤ C‖e(φ)‖2√
K(Vh)

,

where the constant C is independent of φ ∈ Vh. Let

R̃(h,φ) = −Sh(φ)

C̃h(φ)
.

Then ∣∣∣∣∣
1

R̃(h,φ)
− 1

R(h,φ)

∣∣∣∣∣ =
|Rh|

Sh(φ)
≤ C√

K(Vh)
≤ Ch−3/4.

Recalling that we have prove that λcl(h) is the buckling mode and λcl(h) ≤ Ch5/4, we con-

clude, by Theorem 2.11, that the pair (R̃(h,φ), Vh) is B-equivalent to the pair (R(h,φ), Vh).
By Theorem 3.3 we obtain, applying the Cauchy-Schwarz inequality,

|((∇φ)rz, (∇φ)θr)| ≤ ‖(∇φ)rz‖‖∇φ‖ ≤ C‖e(φ)‖√
h

‖e(φ)√
K(Vh)

‖ ≤ C‖e(φ)‖2
h5/4

.

Applying Theorem 3.3 and (2.1) we obtain

R̃(h,φ) ≥ αL0
‖e(φ)‖2

C‖e(φ)‖2(h−1 + h−1/2 + |s|h−5/4)
≥ Ch5/4

|s|+ h1/4
. (4.19)

We remark that the scaling law σcr ∼ h5/4 has been obtained in [12] by methods similar
to the ones used to obtain (1.1).
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5 Conclusions

We have demonstrated that the theory of near-flip buckling from [16] can be made applicable
to buckling of shells. In the case of axially compressed circular cylindrical shells it reveals
the mechanism of scaling instability caused by load imperfections. There is an interplay
between the slenderness of the domain as measured by the Korn constant and the stress in
a “perfect” trivial branch. The scaling of the Korn constant is insensitive to the details of
boundary conditions, as evidenced by the compactly supported optimal ansatz (3.12). An
immediate consequence of our Rayleigh quotient characterization of buckling load (2.18) is
the safe load estimate:

λcl(h) = inf
φ∈Ah

R(h,φ) ≥ inf
φ∈Vh

αL0
‖e(φ)‖2

‖σh‖∞‖∇φ‖2 =
αL0

K(Vh)

‖σh‖∞
. (5.1)

For structures whose buckling loads are proportional to K(Vh), such as rods and plates, the
inequalities in (5.1) are asymptotically sharp. In particular, the scaling law of the buckling
load of such a structure would be insensitive to small perturbations of the stress tensor σh,
and hence, such structures should not exhibit sensitivity to imperfections.

However, theoretical buckling loads may be significantly different from K(Vh) due to
special structure of the stress tensor σh in a trivial branch. For example, the critical stress
for axially compressed circular cylindrical shells, given by (1.1), is much higher than K(Vh),
due to the special structure (3.7) of σh.

Now, let us identify general conditions that lead to scaling instability in slender bodies.
According to our definition of slenderness (Definition 2.5) there exists φh ∈ Vh such that some
of the components of ∇φh in some, possibly curvilinear, coordinate system, are much larger
than |e(φh)|, as h→ 0, due to cancellations. There is a potential for scaling instability if the
stress in a trivial branch “activates” only those components of ∇φh that are much smaller
that |∇φh|. For example, according to inequalities (3.10)–(3.11), (θz) and (rz) components
of ∇φh should be much smaller than |∇φh|. The scaling λcr ∼ h in the formula (1.1) is a
consequence of (3.7), since

〈σh,∇φT∇φ〉 ∼ |(∇φ)rz|2 + |(∇φ)θz|2 + |(∇φ)zz|2 ∼
1

h
|e(φ)|2,

provided φ saturates inequalities (3.10)–(3.11). Generalizing this observation we can say
that there is a potential for scaling instability if the stress σh in a linearized trivial branch
has the property

lim
h→0

K(Vh)

λcl(h)
= 0, (5.2)

where λcl(h) is given by (2.18). In that case it is easy to perturb σh (artificially) so as to
violate (5.2). If imperfections of load cause such a perturbation in the stress in the trivial
branch, then scaling instability will be observed. This was exactly how the scaling insta-
bilities exhibited in Sections 4.1 and 4.2 were produced. Another important observation is
that scaling laws come from Korn-type inequalities for gradient components. The scaling
exponents of the corresponding Korn constants are functions of certain “essential” features
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of spaces Vh. That means that (a) scaling of Korn constants can only be changed by alter-
ing radically the type of loading and (b) possible set of the scaling exponents is finite and
predetermined by the space Vh. (In our example it is ∼ h, ∼ h5/4, ∼ h3/2.) This means, in
particular, that the observed scaling laws will not depend on the minutiae of an imperfec-
tion, but rather on the buckling mode with the highest exponent that a given imperfection
activates.

In Section 4.2 we encountered a situation where imperfections of load could not perturb
the stress tensor arbitrarily, (see Theorem 4.3). Its structure, given by (4.8) resulted in the
jump from λcl(h) ∼ h in (5.2) for the purely axial load to λcl(h) ∼ h5/4 for a load with
a torsion component. In experiments described in [26], where imperfections of shape were
controlled, the observed buckling load fell at the upper end of the historically accumulated
data. This suggests that the new scaling h5/4 could be at play there. In fact, the scaling
exponents computed from experimental data reported in [22] range from 1.3 to 1.49, whose
lower end comes close to 5/4 and upper end to 3/2.

We conjecture that imperfections of shape (to which the theory could potentially be
applied) would add a hoop stress (i.e. (θθ)-component) to σh and achieve the absolute lower
bound (5.1) that scales as h3/2. This is exactly what happened in Section 4.1.

Acknowledgments. We are grateful to Eric Clement, Robert V. Kohn, Stephan Luckhaus,
Mark Peletier and Lev Truskinovsky for insightful comments and questions. We also want
to thank the anonymous referees whose suggestions helped improve the exposition. This
material is based upon work supported by the National Science Foundation under Grants
No. 1412058.

A Non-linear trivial branch for a neo-Hookean mate-

rial.

We note that in order to derive the asymptotics of the critical load in the presence of
torsion only the explicit linear trivial branch (4.14) is needed. However, for the result to
be legitimate we also need to know the existence of the regular trivial branch, and not its
explicit representation. At the moment we lack tools for establishing existence of regular
trivial branches, nor can we exhibit one entirely explicitly for a material whose energy density
satisfies our regularity assumptions. Here we derive an explicit form of the regular trivial
branch for an incompressible neo-Hookean material in the way of providing “evidence” for
our assumption of existence of the regular trivial branch for compressible materials.

The strain energy density function for a neo-Hookean solid has the form

W (F ) =
E

6
(|F |2 − 3), detF = 1. (A.1)

We are looking for a trivial branch in a cylindrical shell, given in cylindrical coordinates by

yr = ψ(r) cos(αz), yθ = ψ(r) sin(αz), yz = (1− λ)z, (A.2)

where ψ(r) also depends on α, λ and h. When α = 0 we expect that ψ(r) will reduce to
(a(λ) + 1)r, as in (3.4). We remark that, the ansatz (A.2) should also work for isotropic
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compressible materials with strain energy density

W (F ) =
1

2
|F |2 +H(detF ), H ′(1) = −1, H ′′(1) >

1

3
,

except the resulting non-linear second order boundary value problem for ψ(r)





ψ′′ +
ψ′

r
−
(
α2 +

1

r2

)
ψ = (1− λ)

ψ

r

d

dr

[
H ′
(
(1− λ)

ψψ′

r

)]
, r ∈ Ih,

ψ′ + (1− λ)
ψ

r
H ′
(
(1− λ)

ψψ′

r

)
= 0, r = 1± h

2

(A.3)

cannot be solved explicitly.
Returning to the neo-Hookean solid (A.1) we must have

det(∇y) = (1− λ)ψ′(r)
ψ(r)

r
= 1,

and hence

ψ(r) =

√
r2

1− λ
+ β (A.4)

for some β > −1.
The Piola-Kirchhoff stress function is

P (F ) =
E

3

(
F − 3p̂

E
cof(F )

)
,

where the Lagrange multiplier p̂ plays the role of pressure. For y, given by (A.2) and F = ∇y

we compute

F TF =



(ψ′(r))2 0 0

0 ψ(r)2

r2
αψ(r)2

r

0 αψ(r)2

r
α2ψ(r)2 + (1− λ)2


 .

The traction-free condition Per = 0 on r = 1± h/2 can be written as

F TFer = per, r = 1± h

2
, p = 3p̂/E.

The formula for F TF , together with detF = 1, implies that

p(r, θ, z) = (ψ′(r))2, r = 1± h

2
. (A.5)

This suggests that it is reasonable to look for the trivial branch for which the function
p(r, θ, z) depends only on r. Under this assumption we compute

3

E
P =



s1(r) cos(αz) −s2(r) sin(αz) −s3(r) sin(αz)
s1(r) sin(αz) s2(r) cos(αz) s3(r) cos(αz)

0 q1(r) q2(r)


 ,
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where

s1 = ψ′ − p

ψ′ , s2 =
ψ

r
− rp

ψ
, s3 = αψ, q1 =

αrp

1− λ
, q2 = 1− λ− p

1− λ
.

It follows that ∇ · P = 0 results in a single ODE for p(r):

(rs1)
′ = s2 + αrs3. (A.6)

Substituting (A.4) for ψ(r) into (A.6) and solving for p(r) we obtain

p(r) =
1

2(1− λ)

(
ln

(
1

1− λ
+
β

r2

)
− r2α2 − β(1− λ)

r2 + β(1− λ)
+ γ

)

for some constant of integration γ. The traction-free boundary conditions (A.5) become

r2

r2 + β(1− λ)
= ln

(
1

1− λ
+
β

r2

)
− r2α2 + γ − 1, r = 1± h

2
. (A.7)

To simplify notation we denote

Φ(r;λ, β) = ln

(
1

1− λ
+
β

r2

)
− r2

r2 + β(1− λ)
.

Then (A.7) can be written as

{
α2
(
1 + h

2

)2
= Φ

(
1 + h

2
;λ, β

)
+ γ − 1,

α2
(
1− h

2

)2
= Φ

(
1− h

2
;λ, β

)
+ γ − 1

(A.8)

Eliminating γ from (A.8) we obtain

α2 =
1

2h

(
Φ

(
1 +

h

2
;λ, β

)
− Φ

(
1− h

2
;λ, β

))
.

when h is small

α2 ≈ 1

2
Φ′(1;λ, β) = −β(1− λ)(2 + β(1− λ))

(1 + β(1− λ))2
.

Thus, when (h, λ) → (0, 0), β ≈ −α2/2. We conclude that α, and, therefore, β must go
to zero, as λ → 0, since otherwise, the trivial branch y(x;h, λ), given by (A.2), (A.4) will
not emanate from the undeformed configuration. The regularity of the trivial branch in λ
demands that α(h, λ) ∼ α0(h)λ, as λ → 0. Thus, for an arbitrary fixed parameter β0 > 0
we set11 β = −β2

0λ
2/2, resulting in the explicit expression for the parameter α:

α(λ, h) =

√
Φ(1 + h/2;λ,−β2

0λ
2/2)− Φ(1− h/2;λ,−β2

0λ
2/2)

2h
. (A.9)

11Recall that we are investigating imperfections of load where the boundary conditions at z = L are not
fully specified. This gives us just enough freedom to choose β0 arbitrarily.
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Hence, the non-linear trivial branch has the form

yr =

√
r2

1− λ
− β2

0λ
2

2
cos(α(λ, h)z), yθ =

√
r2

1− λ
− β2

0λ
2

2
sin(α(λ, h)z), yz = (1− λ)z,

(A.10)
where β0 > 0 is a constant and α(λ, h) is given by (A.9). We compute

∂α

∂λ

∣∣∣∣
λ=0

=
4β0

4− h2
,

∂ψ

∂λ

∣∣∣∣
λ=0

=
r

2
.

Therefore, the linearized trivial branch displacement uh is given by

uhr =
∂yr
∂λ

∣∣∣∣
λ=0

=
r

2
, uhθ =

∂yθ
∂λ

∣∣∣∣
λ=0

=
4β0rz

4− h2
, uhz =

∂yz
∂λ

∣∣∣∣
λ=0

= −z.

The corresponding linear stress and its h→ 0 limit are

σh = E



0 0 0

0 0 4β0r
3(4−h2)

0 4β0r
3(4−h2) −1


 , σ0 = E



0 0 0

0 0 β0
3

0 β0
3

−1


 .

These agree with formulas (4.14), (4.16) for ν = 1/2.
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