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Abstract

The goal of this paper is to apply the recently developed theory of buckling of
arbitrary slender bodies to a tractable yet non-trivial example of buckling in axially
compressed circular cylindrical shells, regarded as three-dimensional hyperelastic bod-
ies. The theory is based on a mathematically rigorous asymptotic analysis of the
second variation of 3D, fully nonlinear elastic energy, as the shell’s thickness goes to
zero. Our main results are a rigorous proof of the classical formula for buckling load
and the explicit expressions for the relative amplitudes of displacement components in
single Fourier harmonics buckling modes, whose wave numbers are described by Koi-
ter’s circle. This work is also a part of an effort to understand the root causes of high
sensitivity of the buckling load of axially compressed cylindrical shells to imperfections
of load and shape.
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1 Introduction

The buckling of rods, shells and plates is traditionally described in mechanics textbooks as an
instability in the framework of nonlinear shell theory obtained by semi-rigorous dimension
reduction of three-dimensional nonlinear elasticity. While these theories are effective in
describing large deformations of rods and shells (including buckling), their heuristic nature
obscures the source of the discrepancy between theoretical and experimental results, as is
the case for axially compressed circular cylindrical shells [18]. At the same time, a rigorously
derived theory of bending of shells [3] captures deformations in the vicinity of relatively
smooth isometries of the middle surface. While a plane and a line has a large space of
smooth isometries, the cylindrical surface has none. This fact explains higher axial rigidity
of cylindrical shells than plates and rods of the same thickness. Our approach, originating
in [6], combines the study of critical loads of Holden [7] with rigorous asymptotic analysis of
the second variation functional for slender structures.

It is universally accepted (see [1, 14, 17]) that sensitivity to imperfections is the cause of
the discrepancy between the experiment and the classical formula for buckling load [12, 15].
In any attempt to understand the mechanisms of high imperfection sensitivity one needs to
start by determining whether the tacit assumptions of the classical derivation contribute to
the discrepancy of theory with experiment. The result of our analysis is twofold. On the one
hand we produce a mathematically rigorous proof of the classical formula. On the other we
develop the machinery necessary for rigorous asymptotic analysis of imperfections of load
and shape.

Imperfection sensitivity is commonly explained by the instability of equilibrium states in
the vicinity of the buckling point on the bifurcation diagram [10, 17, 2]. However, the exact
mechanisms of imperfection sensitivity are not fully understood, and there is no reliable
theory capable of predicting experimentally observed buckling loads [11, 18, 8]. While a full
bifurcation analysis is necessary to understand the stability of equilibria near the critical
point, our method’s singular focus on the stability of the trivial branch gives access to the
scaling behavior of key measures of structural stability in the thin shell limit. We have
argued in [?] that axially compressed circular cylindrical shells are susceptible to scaling
instability of the critical load, whereby the scaling exponent, and not just its coefficient, can
be affected by imperfections. The new analytical tools developed in [4] give hope for a path
towards quantification of imperfection sensitivity.

Our approach is based on the observation that the prebuckled state is well approximated
by linear elasticity [6]. At the critical load, the linear elastic stress reaches a level at which
the trivial branch becomes unstable in the framework of fully non-linear 3D hyperelasticity.
The origin of this instability is completely geometric: the frame-indifference of the energy
density function implies1 non-convexity in the compressive strain region. Since buckling
occurs at relatively small compressive loads, the material’s stress-strain response is locally
linear. This explains why all classical asymptotic formulas for buckling loads, such as Euler’s
formula for columns, involve only linear elastic moduli and hold regardless of the constitutive
model.

1The assumption that the reference configuration is stress-free is also essential.
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The significance of our approach is two-fold. First, it provides a common platform to
study buckling of arbitrary slender bodies. Second, its conclusions are mathematically rig-
orous and its underlying assumptions are explicitly specified. Our analysis is powered by
asymptotically sharp Korn-like inequalities [9, 13], where instead of bounding the L2 norm
of the displacement gradient by the L2 norm of the strain tensor, we bound the L2 norm of
individual components of the gradient by the L2 norm of the strain tensor. These inequalities
have been derived in our companion paper [4]. The method of buckling equivalence [6, ?]
applied in this paper provides flexibility by furnishing a systematic way of discarding asymp-
totically insignificant terms, while simplifying the variational functionals that characterize
buckling.

The paper is organized as follows. In Section 2, we describe the loading and corresponding
trivial branch of an axially compressed cylindrical shell treated as 3-dimensional hyperelastic
body2. We then formulate the problem of the asymptotic analysis of the second variation of
energy. In Section 3, we give the rigorous derivation of the classical buckling load and identify
the explicit form of buckling modes. Our two most delicate results are a rigorous proof of
the existence of a buckling mode that is a single Fourier harmonic and the linearization of
the dependence of this buckling mode on the radial variable—the two assumptions that are
commonly made in the classical derivation of the critical load formula. This paper is self-
contained in the sense that all the results that we need from our prior work are restated. For
rigorous proofs of these statements one does need to consult our companion papers [4, 5].

2 Axially compressed cylindrical shell

In this section we will give a mathematical formulation of the problem of buckling of axially
compressed cylindrical shell.

2.1 Boundary conditions and trivial branch

Consider the circular cylindrical shell given in cylindrical coordinates (r, θ, z) as follows:

Ch = Ih × T× [0, L], Ih = [1− h/2, 1 + h/2],

where T is a 1-dimensional torus (circle) describing 2π-periodicity in θ. Here h is the slen-
derness parameter, equal to the ratio of the shell thickness to the radius. In this paper we
consider the axial compression of the shell where the Lipschitz deformation y : Ch → R

3

satisfies the boundary conditions, given in cylindrical coordinates by

yθ(r, θ, 0) = yz(r, θ, 0) = yθ(r, θ, L) = 0, yz(r, θ, L) = (1− λ)L. (2.1)

The loading is parametrized by the compressive strain λ > 0 in the axial direction. The
trivial deformation y(x) = x satisfies the boundary conditions for λ = 0. By a stable

2While hyperelasticity is hardly the “ultimate” theory of elasticity, it is sufficiently general to permit
rigorous study of the asymptotics of the buckling load of a slender structure.
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deformation we mean a Lipschitz function y(x;h, λ), satisfying boundary conditions (2.1)
and being a weak local minimizer3 of the energy functional

E(y) =
∫

Ch
W (∇y)dx

among all Lipschitz functions satisfying (2.1). The energy density function W (F ) is assumed
to be three times continuously differentiable in a neighborhood of F = I. The key (and
universal) properties of W (F ) are

(P1) Absence of prestress: WF (I) = 0;

(P2) Frame indifference: W (RF ) = W (F ) for every R ∈ SO(3);

(P3) Local stability of the reference configuration y(x) = x:

〈L0ξ, ξ〉 > αL0 |ξ|2, ξ ∈ Sym(R3), (2.2)

where Sym(R3) is the space of symmetric 3 × 3 matrices, and L0 = WFF (I) is the
linearly elastic tensor of material properties.

Here, and elsewhere we use the notation 〈A,B〉 = Tr (ABT ) for the Frobenius inner product
on the space of 3× 3 matrices. While this is not needed for general theory, in this paper we
will also assume that W (F ) is isotropic:

W (FR) = W (F ) for every R ∈ SO(3). (2.3)

Our goal is to examine stability of the homogeneous trivial branch y(x;h, λ) given in
cylindrical coordinates by

yr = (a(λ) + 1)r, yθ = 0, yz = (1− λ)z, (2.4)

where the function a(λ) is determined by the natural boundary conditions at the lateral
boundary of the shell

P (∇y)er = 0, r = 1± h

2
, (2.5)

where er, eθ, ez is the moving orthonormal frame associated with cylindrical coordinates,
and P (F ) = WF (F ), the gradient of W with respect to F , is the Piola-Kirchhoff stress
tensor.

Lemma 2.1. Assume that W (F ) is three times continuously differentiable in a neighborhood
of F = I, satisfies properties (P1)–(P3) and is isotropic (i.e. satisfies (2.3)). Then there
exists a unique function a(λ), of class C2 on a neighborhood of 0, such that a(0) = 0 and the
natural boundary conditions (2.5) are satisfied

3A deformation y is called a weak local minimizer, if it delivers the smallest value of the energy E(y)
among all Lipschitz function satisfying boundary conditions (2.1) that are sufficiently close to y in the W 1,∞

norm.
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Proof. By (P2) W (F ) = Ŵ (F TF ). The function Ŵ (C) is three times continuously differ-
entiable in a neighborhood of C = I. Thus,

P (F ) = WF (F ) = 2F ŴC(F
TF ).

The isotropy (2.3) implies that Ŵ (RCRT ) = Ŵ (C) for all R ∈ SO(3). Differentiating this
relation in R at R = I we conclude that ŴC(C) must commute with C. In particular, this
implies that the matrix ŴC(C) must be diagonal, whenever C is diagonal. We compute
that in cylindrical coordinates

F = ∇y =




1 + a 0 0
0 1 + a 0
0 0 1− λ


 , C = F TF =




(1 + a)2 0 0
0 (1 + a)2 0
0 0 (1− λ)2




Hence, P (F ) is diagonal, and boundary conditions (2.5) reduce to a single scalar equation

ŴC((1 + a)2(er ⊗ er + eθ ⊗ eθ) + (1− λ)2ez ⊗ ez)er · er = 0, (2.6)

where the left-hand side of (2.6) is a twice continuously differentiable function of (λ, a).
Condition (P1) implies that (λ, a) = (0, 0) is a solution. The conclusion of the lemma is
guaranteed by the implicit function theorem, provided the derivative of the left-hand side in
(2.6) with respect to a is non-zero when (λ, a) = (0, 0):

1

2
L0(er ⊗ er + eθ ⊗ eθ)er · er 6= 0. (2.7)

When L0 is isotropic, the non-degeneracy condition (2.7) becomes κ + µ/3 6= 0, which is
satisfied due to (P3). Here κ and µ are the bulk and shear moduli, respectively.

It is important, that as h → 0, the trivial branch does not blow up. In fact, in our case
the trivial branch is independent of h.

The general theory of buckling [6] is designed to detect the first instability of a trivial
branch in a slender body Ωh that is well-described by linear elasticity. Here is the formal
definition from [6, ?].

Definition 2.2. We call the family of Lipschitz equilibria4 y(x;h, λ) of E(y) a regular

trivial branch if there exist h0 > 0 and λ0 > 0, so that for every h ∈ [0, h0] and λ ∈ [0, λ0]

(i) y(x;h, 0) = x

(ii)

‖∂(∇y)
∂λ

(x;h, λ)−∇uh(x)‖L∞(Ωh) ≤ Cλ, (2.8)

4We restrict our attention to Lipschitz equilibria for technical simplicity of the theory. On the one hand,
in most cases of interest, and for a cylindrical shells in particular, the strains and stresses in the trivial
branch are uniformly bounded. On the other, the presence or absence of higher spatial derivatives of strains
and stresses are immaterial for the theory, and hence no assumptions about them are made.
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where the constant C is independent of h and λ.

We remark, that the leading order asymptotics uh(x) of the nonlinear trivial branch is
nothing else but a linear elastic displacement, that can be found by solving the equations
of linear elasticity ∇ · (L0e(uh)) = 0, augmented by the appropriate boundary conditions.

Here e(uh) =
1

2
(∇uh + (∇uh)T ) is the linear elastic strain. The linear elastic trivial branch

λuh(x) depends only on the linear elastic moduli L0, unlike the model-dependent nonlinear
trivial branch y(x;h, λ).

The fact that our trivial branch (2.4) satisfies all conditions in Definition 2.2 is easy to
verify. Here

uh(x) =
∂y(x;h, λ)

∂λ

∣∣∣∣
λ=0

= a′(0)rer − zez = νrer − zez

is independent of h. Here we computed that a′(0) = ν (Poisson’s ratio) by differentiating
(2.6) in λ at λ = 0.

2.2 Stability of the trivial branch

We describe critical strain λcrit in terms of the second variation of energy

δ2E(φ;h, λ) =
∫

Ch
〈WFF (∇y(x;h, λ))∇φ,∇φ〉dx, (2.9)

defined on the space of admissible variations

V ◦
h = {φ ∈ W 1,∞(Ch;R3) : φθ(r, θ, 0) = φz(r, θ, 0) = φθ(r, θ, L) = φz(r, θ, L) = 0}.

We remark that this approach is capable of capturing fractional powers of h in the asymp-
totics of the critical load, while the bifurcation analysis with the asymptotic expansion in h
as in [16] can produce only integral exponents.

By density of W 1,∞(Ch;R3) in W 1,2(Ch;R3) we extend the space of admissible variations
from V ◦

h to its closure Vh in W 1,2.

Vh = {φ ∈ W 1,2(Ch;R3) : φθ(r, θ, 0) = φz(r, θ, 0) = φθ(r, θ, L) = φz(r, θ, L) = 0}. (2.10)

The critical strain λcrit can be defined as follows.

λcrit(h) = inf{λ > 0 : δ2E(φ;h, λ) < 0 for some φ ∈ Vh}. (2.11)

While this definition is unambiguous, it is inconvenient, since the critical strain depends on
the choice of the nonlinear energy density function. Instead, we will focus only on the leading
order asymptotics of the critical strain, as h → 0. The corresponding buckling mode, to be
defined below, will also be understood in an asymptotic sense. Following [?] we define

Definition 2.3. We say that a function λ(h) → 0, as h → 0 is a buckling load if

lim
h→0

λ(h)

λcrit(h)
= 1. (2.12)
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A buckling mode is a family of variations φh ∈ Vh \ {0}, such that

lim
h→0

δ2E(φh;h, λcrit(h))

λcrit(h)
∂(δ2E)
∂λ

(φh;h, λcrit(h))

= 0. (2.13)

The definition of the buckling mode (2.13) requires an explanation. The natural definition
would be the variation φ∗

h ∈ Vh \ {0}, such that δ2E(φ∗
h;h, λcrit(h)) = 0. Such a variation

might not exist in the first place, and we are only interested in the asymptotics of the critical
load, as h → 0 in the sense of (2.12). That means that we can only distinguish between
λcrit(h) and λǫ(h) = λcrit(h)(1 + ǫ), provided ǫ is a fixed non-zero number. Assuming that
δ2E(φ∗

h;h, λcrit(h)) = 0 we estimate

δ2E(φ∗
h;h, λcrit(h)(1 + ǫ)) ≈ λcrit(h)ǫ

∂(δ2E)
∂λ

(φ∗
h;h, λcrit(h)).

This means that for the purposes of asymptotics we should not distinguish differences in
values of second variation that are infinitesimal, compared to

λcrit(h)
∂(δ2E)
∂λ

(φ∗
h;h, λcrit(h)).

Thus, in Definition 2.3 we declare that any variation φh satisfying (2.13) makes the second
variation δ2E(φh;h, λcrit(h)) indistinguishable from 0 for our purposes.

Targeting only the leading order asymptotics allows us to determine critical strain and
buckling modes from a constitutively linearized second variation, which is obtained by first
approximating WFF (∇y(x;h, λ)) with WFF (I + λ∇uh) and then computing its leading
order asymptotics as (h, λ) → (0, 0). This was done rigorously in [6, ?], where it was shown
that the constitutively linearized second variation δ2Ecl(φ;h, λ) has the form

δ2Ecl(φ;h, λ) =
∫

Ch
{〈L0e(φ), e(φ)〉+ λ〈σh,∇φT∇φ〉}dx, φ ∈ Vh, (2.14)

where σh is the linear elastic stress

σh(x) = L0e(u
h(x)). (2.15)

Since the first term in (2.14) is always non-negative we define the set

Ah =
{
φ ∈ Vh : 〈σh,∇φT∇φ〉 < 0

}
(2.16)

of potentially destabilizing variations5. Replacing the second variation of energy by its
constitutively linearized version in (2.11) we obtain the constitutively linearized version

5The set Ah could be empty, in which case there are no destabilizing variations, so that the trivial branch
remains stable in a neighborhood of (0, 0) in the (h, λ)-plane.
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λcl(h) of the critical load. It was shown in [6] that λcl(h) can also be regarded as a Korn
constant and defined in terms of the Rayleigh quotient

R(h,φ) = −
∫
Ωh
〈L0e(φ), e(φ)〉dx∫

Ωh
〈σh,∇φT∇φ〉dx . (2.17)

If we use constitutively linearized second variation in Definition 2.3 we also obtain the con-
stitutively linearized version of the critical mode. This motivates the following definition.

Definition 2.4. The constitutively linearized buckling load λcl(h) is defined by

λcl(h) = inf
φ∈Ah

R(h,φ). (2.18)

We say that the family of variations {φh ∈ Ah : h ∈ (0, h0)} is a constitutively linearized

buckling mode if

lim
h→0

R(h,φh)

λcl(h)
= 1. (2.19)

The functional R(h,φ) expresses the relative strength of the destabilizing compressive
stress, measured by the functional

Ch(φ) =

∫

Ωh

〈σh,∇φT∇φ〉dx (2.20)

and the reserve of structural stability measured by the functional

Sh(φ) =

∫

Ωh

〈L0e(φ), e(φ)〉dx. (2.21)

In [6] we have defined a measure of “slenderness” of the body in terms of the Korn constant

K(Vh) = inf
φ∈Vh

‖e(φ)‖2L2(Ωh)

‖∇φ‖2L2(Ωh)

. (2.22)

It is obvious (see [6]), that if K(Vh) stays uniformly positive, then so does the constitutively
linearized second variation δ2Ecl(φ;h, λ(h)) as a quadratic form on Vh, for any λ(h) → 0, as
h → 0. We therefore regard the structure as a slender one if its Korn constant is small.

Definition 2.5. We say that the body Ωh is slender if K(Vh) > 0 and

lim
h→0

K(Vh) = 0. (2.23)

This notion of slenderness requires not only geometric slenderness of the domain but
also traction-dominated boundary conditions conveniently encoded in the closed subspace
Vh, satisfying W 1,2

0 (Ωh;R
3) ⊂ Vh ⊂ W 1,2(Ωh;R

3). (See [6] for the detailed discussion of this
definition of slenderness.) We can now state the theorem proved in [?] that gives sufficient
conditions under which the constitutively linearized buckling load and buckling mode, defined
in (2.18)–(2.19), correctly describe the asymptotic behavior of fully nonlinear buckling load
and buckling mode, i.e. verify Definition 2.3.
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Theorem 2.6. Suppose that the body is slender in the sense of Definition 2.5. Assume that
the constitutively linearized critical load λcl(h), defined in (2.18) satisfies λcl(h) > 0 for all
sufficiently small h and

lim
h→0

λcl(h)
2

K(Vh)
= 0. (2.24)

Then λcl(h) is the buckling load and any constitutively linearized buckling mode φh is a
buckling mode in the sense of Definition 2.3.

Now we will show that Theorem 2.6 applies to the axially compressed circular cylindrical
shells. The asymptotics of the Korn constant K(Vh), as h → 0, was established in [4]. Ãh

Theorem 2.7. Let Vh be given by (2.10). Then, there exist positive constants c < C,
depending only on L6, such that

ch3/2 ≤ K(Vh) ≤ Ch3/2. (2.25)

In order to establish (2.24) we need to estimate λcl(h). For the trivial branch (2.4) we
compute

σh = −Eez ⊗ ez, (2.26)

where E is the Young’s modulus. Hence,

Ch(φ) = −E(‖φr,z‖2 + ‖φz,z‖2 + ‖φθ,z‖2), (2.27)

where from now on ‖ ·‖ will always denote the L2-norm on Ch. In order to estimate λcl(h) we
need to prove Korn-like inequalities for the gradient components, φr,z, φz,z, and φθ,z. This
was done in [4].

Theorem 2.8. There exist a constant C > 0 depending only on L such that for any φ ∈ Vh

one has,

‖φθ,z‖2 ≤
C√
h
‖e(φ)‖2, (2.28)

‖φr,z‖2 ≤
C

h
‖e(φ)‖2. (2.29)

Moreover, the powers of h in the inequalities (2.25)–(2.29) are optimal, achieved simultane-
ously by the ansatz





φh
r (r, θ, z) = −W,ηη

(
θ
4√
h
, z
)

φh
θ (r, θ, z) = r 4

√
hW,η

(
θ
4√
h
, z
)
+ r−1

4√
h
W,ηηη

(
θ
4√
h
, z
)
,

φh
z (r, θ, z) = (r − 1)W,ηηz

(
θ
4√
h
, z
)
−

√
hW,z

(
θ
4√
h
, z
)
,

(2.30)

where W (η, z) can be any smooth compactly supported function on R × (0, L), with the un-
derstanding that the above formulas hold on a single period θ ∈ [0, 2π], while the function
φh(r, θ, z) is 2π-periodic in θ.

6Here we consider cylindrical shells of radius 1 and lengths that are uniformly bounded away from 0 and
infinity. We therefore do not examine explicit dependence of our constants on L, since it does not affect our
results. The cases L → ∞ or L → 0 are beyond the scope of this paper.
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Corollary 2.9.

ch ≤ λcl(h) ≤ Ch. (2.31)

Proof. This is an immediate consequence of Theorem 2.8. The lower bound follows from
inequalities (2.2), (2.28) and (2.29) (and also an obvious inequality ‖φz,z‖ ≤ ‖e(φ)‖). The
upper bound follows from using a test function (2.30) in the constitutively linearized second
variation.

Inequalities (2.25) and (2.31) imply that the condition (2.24) in Theorem 2.6 is satisfied
for the axially compressed circular cylindrical shell.

2.3 Buckling equivalence

The problem of finding the asymptotic behavior of the critical strain λcrit and the corre-
sponding buckling mode, as h → 0 now reduces to minimization of the Rayleigh quotient
(2.17), which is expressed entirely in terms of linear elastic data. Even though this already
represents a significant simplification of our problem, its explicit solution is still technically
difficult. However, the asymptotic flexibility of the notion of buckling load and buckling
mode permits us to replace R(h,φh) with an equivalent, but simpler functional. The notion
of buckling equivalence was introduced in [6] and developed further in [?]. Here we give the
relevant definition and theorems for the sake of completeness.

Definition 2.10. Assume that J(h,φ) is a variational functional defined on Bh ⊂ Ah. We
say that the pair (Bh, J(h,φ)) characterizes buckling if the following three conditions are
satisfied

(a) Characterization of the buckling load: If

λ(h) = inf
φ∈Bh

J(h,φ),

then λ(h) is a buckling load in the sense of Definition 2.3.

(b) Minimizing property of the buckling mode: If φh ∈ Bh is a buckling mode in the sense
of Definition 2.3, then

lim
h→0

J(h,φh)

λ(h)
= 1. (2.32)

(c) Characterization of the buckling mode: If φh ∈ Bh satisfies (2.32) then it is a buckling
mode.

Definition 2.11. Two pairs (Bh, J(h,φ)) and (B′
h, J

′(h,φ)) are called buckling equivalent

if the pair (Bh, J(h,φ)) characterizes buckling if and only if (B′
h, J

′(h,φ)) does.

Of course this definition becomes meaningful only if the pairs (Bh, J(h,φ)) and (B′
h, J

′(h,φ))
are related.

The following lemma has been proved in [?].
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Lemma 2.12. Suppose the pair (Bh, J(h,φ)) characterizes buckling. Let B′
h ⊂ Bh be such

that it contains a buckling mode. Then the pair (B′
h, J(h,φ)) characterizes buckling

7.

The key tool for simplification of functionals characterizing buckling is the following
theorem, [?].

Theorem 2.13 (Buckling equivalence). Suppose that λ(h) is a buckling load in the sense of
Definition 2.3. If either

lim
h→0

λ(h) sup
φ∈Bh

∣∣∣∣
1

J1(h,φ)
− 1

J2(h,φ)

∣∣∣∣ = 0, (2.33)

or

lim
h→0

1

λ(h)
sup
φ∈Bh

|J1(h,φ)− J2(h,φ)| = 0, (2.34)

then the pairs (Bh, J1(h,φ)) and (Bh, J2(h,φ)) are buckling equivalent in the sense of Defi-
nition 2.11.

As an application we will simplify the denominator in the functional R(h,φ), given by
(2.17). Theorem 2.8 suggests that ‖φr,z‖2 can be much larger than ‖φz,z‖2 and ‖φθ,z‖2.
Hence, we will prove that we can replace Ch(φ), given by (2.27), with −E‖φr,z‖2. Hence, we
define a simplified functional

R1(h,φ) =

∫
Ch〈L̂0e(φ), e(φ)〉dx∫

Ch |φr,z|2dx
, L̂0 =

L0

E
.

Lemma 2.14. The pair (Ah,R1(h,φ)) characterizes buckling.

Proof. By Theorem 2.8 we have
∣∣∣∣

1

R(h,φ)
− 1

R1(h,φ)

∣∣∣∣ =
‖φθ,z‖2 + ‖φz,z‖2∫
Ch〈L̂0e(φ), e(φ)〉dx

≤ C√
h
.

for every φ ∈ Vh. Condition (2.33) now follows from (2.31). Thus, by Theorem 2.13, the
pair (Ah,R1(h,φ)) characterizes buckling.

3 Rigorous derivation of the classical formula for the

buckling load

In this section we prove the classical asymptotic formula for the critical strain [12, 15]

λcrit(h) ∼
h√

3(1− ν2)
. (3.1)

7This lemma highlights the fact that Part (b) in Definition 2.10 is designed to capture a buckling mode.
We make no attempt to characterize an infinite set of geometrically distinct, yet energetically equivalent
buckling modes that exist in our example.
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3.1 Restriction to a single Fourier mode

The goal of this section is to show that even if we shrink the space of admissible variations
to the set of single Fourier modes in (θ, z), we still retain the ability to characterize buckling.
The first step is to define Fourier modes by constructing an appropriate 2L-periodic extension
of φ in z variable. Since, no continuous 2L-periodic extension φ̃ has the property that
e(φ̃)(r, θ,−z) = ±e(φ)(r, θ, z), we will have to navigate around various sign changes in
components of e(φ). We can handle this difficulty if L0 is isotropic, which we have already
assumed. It is easy to check that there are only two possibilities that work8: odd extension
for φr, φθ, even for φz, and even for φr, φθ, odd for φz. Since, φr is unconstrained at the
boundary z = 0, L, only the latter possibility is available to us. Hence, we expand φr and
φθ is the cosine series in z, while φz is represented by the sine series:





φr(r, θ, z) =
∑

n∈Z

∞∑

m=0

φ̂r(r,m, n)einθ cos
(πmz

L

)
,

φθ(r, θ, z) =
∑

n∈Z

∞∑

m=0

φ̂θ(r,m, n)einθ cos
(πmz

L

)
,

φz(r, θ, z) =
∑

n∈Z

∞∑

m=0

φ̂z(r,m, n)einθ sin
(πmz

L

)
.

(3.2)

While functions in Vh can be represented by the expansion (3.2), single Fourier modes do not
belong to Vh. Yet, the convenience of working with such simple test functions outweighs this
unfortunate circumstance, and hence, we switch (for the duration of technical calculations)
to the space

Ṽh =

{
φ ∈ W 1,2(Ch;R3) : φz(r, θ, 0) = φz(r, θ, L) =

∫ L

0

φθ(r, θ, z)dz = 0 ∀(r, θ) ∈ Ih × T

}
.

(3.3)
We will come back at the very end to the space Vh to get the desired result for our original
boundary conditions.

The space Ṽh appears in our companion paper [4] as V 3
h , where the inequalities (2.25),

(2.28) and (2.29) have been proved for it. As a consequence, the estimates (2.31) hold for

λ̃(h) = inf
φ∈Ãh

R(h,φ), (3.4)

where Ãh is given by (2.16) with Vh replaced by Ṽh. We conclude that the pair (Ãh,R(h,φ))
characterizes buckling (for the new boundary conditions associated with the space Ṽh). In
that case the proof of Lemma 2.14 carries with no change for the space Ṽh. Hence, the pair
(Ãh,R1(h,φ)) characterizes buckling as well.

We now define the single Fourier mode spaces F(m,n). For any complex-valued function
f(r) = (fr(r), fθ(r), fθ(r)) and any m ≥ 1, n ≥ 0 we define

Φm,n(f) =
(
fr(r) cos

(πmz

L

)
, fθ(r) cos

(πmz

L

)
, fz(r) sin

(πmz

L

))
einθ,

8Meaning that each component of e(φ) and its trace either changes sign or remains unchanged.
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and
F(m,n) = {ℜe(Φm,n(f)) : f ∈ C1(Ih;C

3)}, m ≥ 1, n ≥ 0. (3.5)

We define
λ̃1(h) = inf

φ∈Ãh

R1(h,φ), λ̃m,n(h) = inf
φ∈F(m,n)

R1(h,φ). (3.6)

Theorem 3.1.

(i)

λ̃1(h) = inf
m≥1
n≥0

λ̃m,n(h). (3.7)

(ii) The infimum in (3.7) is attained at m = m(h) and n = n(h) satisfying

m(h) ≤ C√
h
,

n(h)2

m(h)
≤ C√

h
(3.8)

for some constant C depending only on L.

(iii) Let (m(h), n(h)) be a minimizer in (3.7). Then the pair (F(m(h), n(h)),R1(h,φ))
characterizes buckling in the sense of Definition 2.10.

Proof. Part (i). Let
α(h) = inf

m≥1
n≥0

λ̃m,n(h).

It is clear that λ̃m,n(h) ≥ λ̃1(h) for any m ≥ 1 and n ≥ 0, since F(m,n) ⊂ Ãh. Therefore,

α(h) ≥ λ̃1(h).
Let us prove the reverse inequality. By definition of α(h) we have

∫

Ch
〈L̂0e(φ), e(φ)〉dx ≥ α(h)‖φr,z‖2 (3.9)

for any φ ∈ F(m,n), and any m ≥ 1 and n ≥ 0. Any φ ∈ Ãh can be expanded in the
Fourier series in θ and z

φ(r, θ, z) =
∞∑

m=0

∞∑

n=0

φ(m,n)(r, θ, z),

where φ(m,n)(r, θ, z) ∈ F(m,n) for all m ≥ 1, n ≥ 0. If L0 is isotropic, then the sine and
cosine series in z do not couple and the Plancherel identity implies that the quadratic form
〈L̂0e(φ), e(φ)〉 diagonalizes in Fourier space:

∫

Ch
〈L̂0e(φ), e(φ)〉dx =

∞∑

m=0

∞∑

n=0

∫

Ch
〈L̂0e(φm,n), e(φm,n)〉dx. (3.10)

We also have

‖φr,z‖2 =
∞∑

m=0

∞∑

n=0

‖φ(m,n)
r,z ‖2 =

∞∑

m=1

∞∑

n=0

‖φ(m,n)
r,z ‖2.
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Inequality (3.9) implies that

∫

Ch
〈L̂0e(φm,n), e(φm,n)〉dx ≥ α(h)‖φ(m,n)

r,z ‖2, m ≥ 1, n ≥ 0. (3.11)

Summing up, we obtain that

∫

Ch
〈L̂0e(φ), e(φ)〉dx ≥

∞∑

m=1

∞∑

n=0

∫

Ch
〈L̂0e(φm,n), e(φm,n)〉dx ≥ α(h)‖φr,z‖2

for every φ ∈ Ãh. It follows that λ̃1(h) ≥ α(h), and Part (i) is proved.
To establish Part(ii) we require a new delicate Korn-type inequality, proved in [4]. It is

a weighted Korn inequality in Nazarov’s terminology [13].

Theorem 3.2. There exists a constant C depending only on L such that

‖∇φ‖2 ≤ C

(‖φr‖
h

+ ‖e(φ)‖
)
‖e(φ)‖. (3.12)

for any φ ∈ Ṽh.

Observe that, according to the estimate

ch ≤ λ̃1(h) ≤ Ch.

and Part (i) we have
inf
m≥1
n≥0

λ̃m,n(h) = inf
(m,n)∈Sh

λ̃m,n(h),

where
Sh = {(m,n) : λ̃m,n(h) ≤ 2Ch}.

Let us show that the bounds (3.8) hold for all (m,n) ∈ Sh. In particular, the sets Sh are finite
for all h > 0, and hence, the infimum in (3.7) is attained. Let h > 0 and (m,n) ∈ Sh be fixed.
Then, by definition of the infimum there exists φh ∈ F(m,n) such that R1(h,φ

h) ≤ 3Ch.
Hence, there exists a possibly different constant C (not relabeled, but independent of m, n
and h), such that

‖e(φh)‖2 ≤ Ch‖φh
r,z‖2 = Cm2h‖φh

r‖2. (3.13)

To prove the first estimate in (3.8) we apply inequality (3.12) to φh and then estimate
‖e(φh)‖ via (3.13):

m2π2

L2
‖φh

r‖2 = ‖φh
r,z‖2 ≤ ‖∇φh‖2 ≤ C

(
m2h+

m√
h

)
‖φh

r‖2.

Hence

h+
1

m
√
h
≥ c
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for some constant c > 0, independent of h. Therefore, we obtain a uniform in h ∈ (0, 1)
upper bound on m

√
h. To estimate n we write

n2‖φh
r‖2 = ‖φh

r,θ‖2 ≤ C0(‖(∇φh)rθ‖2 + ‖φh
θ‖2).

By the Poincaré inequality

‖φh
θ‖2 ≤

L2

π2
‖φh

θ,z‖2 ≤
L2

π2
‖(∇φh)θz‖2,

and hence n2‖φh
r‖2 ≤ C‖(∇φh)‖2. Applying (3.12) again and estimating ‖e(φh)‖ via (3.13)

we obtain

n2 ≤ C

(
hm2 +

m√
h

)
,

from which (3.8)2 follows via (3.8)1. Part (ii) is proved now.
Part (iii). Now, let m(h), n(h) be the minimizers in (3.7). It is sufficient to show, due to

Lemma 2.12, that F(m(h), n(h)) contains a buckling mode. By definition of the infimum in
(3.6), for each h ∈ (0, h0) there exists ψh ∈ F(m(h), n(h)) ⊂ Ãh such that

λ̃1(h) = λm(h),n(h)(h) ≤ R1(h,ψh) ≤ λ̃1(h) + (λ̃1(h))
2.

Therefore,

lim
h→0

R1(h,ψh)

λ̃1(h)
= 1.

Hence, ψh ∈ F(m(h), n(h)) is a buckling mode, since the pair (Ãh,R1(h,φ)) characterizes
buckling.

3.2 Linearization in r

In this section we prove that the buckling load and a buckling mode can be captured by
single Fourier harmonics whose θ and z components are linear in r. In fact, we specify
an explicit structure for buckling mode candidates. We define the linearization operator as
follows:

L(φ) = (φr(r, θ, z), rφθ(1, θ, z)− (r − 1)φr,θ(1, θ, z), φz(1, θ, z)− (r − 1)φr,z(1, θ, z)).

We show now that the buckling mode can be found among the linearized single Fourier
modes

Flin(m,n) = {L(φ) : φ ∈ F(m,n)}, m ≥ 1, n ≥ 0. (3.14)

Lemma 3.3. There exists C > 0 depending only on L, so that for every h ∈ (0, 1), every
m ≥ 1 and n ≥ 0, satisfying (3.8), and every φ ∈ F(m,n) we have the estimate

R1(h,L(φ)) ≤ (1 + Ch)R1(h,φ). (3.15)
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Proof. We will perform linearization in r sequentially, first in φθ and then in φz.
Step 1 (Linearization of φθ.) We introduce the operator of linearization of φθ component.

Lθ(φ) = (φr(r, θ, z), rφθ(1, θ, z)− (r − 1)φr,θ(1, θ, z), φz(r, θ, z)),

For φ ∈ Flin(m,n) we define φ(1) = Lθ(φ). Then, it is easy to see that φ(1) ∈ Flin(m,n). It
is clear that

e(φ(1))rr = e(φ)rr, e(φ(1))zr = e(φ)zr, e(φ(1))zz = e(φ)zz,

Thus we can estimate

‖e(φ(1))‖2 ≤ ‖e(φ)‖2 + ‖e(φ(1))rθ‖2 + 2‖e(φ(1))θθ − e(φ)θθ‖2 + 2‖e(φ(1))θz − e(φ)θz‖2,

‖Tr (e(φ(1)))− Tr (e(φ))‖ = ‖e(φ(1))θθ − e(φ)θθ‖2.
We also have

‖e(φ(1))θθ − e(φ)θθ‖ ≤ 2‖φ(1)
θ,θ − φθ,θ‖, ‖e(φ(1))θz − e(φ)θz‖ ≤ ‖φ(1)

θ,z − φθ,z‖.

Therefore,

‖e(φ(1))‖2 ≤ ‖e(φ)‖2 + ‖e(φ(1))rθ‖2 + 2(‖φ(1)
θ,θ − φθ,θ‖2 + ‖φ(1)

θ,z − φθ,z‖2), (3.16)

and
‖Tr (e(φ(1)))− Tr (e(φ))‖ ≤ 2‖φ(1)

θ,θ − φθ,θ‖2. (3.17)

Recalling that {φ,φ(1)} ⊂ F(m,n), and that the inequalities (3.8) imply that n2 ≤ C/h, we
obtain

‖φ(1)
θ,θ − φθ,θ‖2 = n2‖φ(1)

θ − φθ‖2 ≤
C

h
‖φ(1)

θ − φθ‖2, (3.18)

due to (3.8). Similarly,

‖φ(1)
θ,z − φθ,z‖2 =

π2m2

L2
‖φ(1)

θ − φθ‖2 ≤
C

h
‖φ(1)

θ − φθ‖2, (3.19)

Observe that

‖e(φ(1))rθ‖2 = ‖φr,θ − φr,θ(1, θ, z)

r
‖2 = n2

∥∥∥∥
1

r

∫ r

1

φr,r(t, θ, z)dt

∥∥∥∥
2

.

Using the inequality ∫

Ih

(∫ r

1

f(t)dt

)2

dr ≤ h2

4

∫

Ih

f(r)2dr, (3.20)

and the bounds on wave numbers (3.8) we obtain

‖e(φ(1))rθ‖2 ≤ 2n2Ch2‖φr,r‖2 ≤ Ch‖e(φ)‖2.
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We now proceed to estimate ‖φ(1)
θ − φθ‖. Let

w(r, θ, z) = φθ,r + φr,θ − φθ = 2e(φ)rθ − (1− r)(∇φ)rθ.

Therefore,
‖w‖2 ≤ 8‖e(φ)‖2 + h2‖∇φ‖2 ≤ 8‖e(φ)‖2 + C

√
h‖e(φ)‖2

due to Korn’s inequality (2.25). Thus, ‖w‖ ≤ C‖e(φ)‖. We can express φ
(1)
θ − φθ in terms

of w as follows

φθ − φ
(1)
θ =

∫ r

1

w(t, θ, z)dt+

∫ r

1

(φθ(t, θ, z)− φθ(1, θ, z))dt−
∫ r

1

(φr,θ(t, θ, z)− φr,θ(1, θ, z))dt.

Hence, by (3.20), we have

‖φθ − φ
(1)
θ ‖2 ≤ 3h2

4
(‖w‖2 + ‖φθ − φθ(1, θ, z)‖2 + ‖φr,θ − φr,θ(1, θ, z)‖2).

By the Poincaré inequality followed by the application of Korn’s inequality (2.25) we obtain,

‖φθ − φθ(1, θ, z)‖2 ≤ h2‖φθ,r‖2 ≤ C
√
h‖e(φ)‖2.

Similarly, by the Poincaré inequality and (3.8) we estimate

‖φr,θ − φr,θ(1, θ, z)‖2 = n2‖φr − φr(1, θ, z)‖2 ≤ Cn2h2‖φr,r‖2 ≤ Ch‖e(φ)‖2.

We conclude that
‖φθ − φ

(1)
θ ‖2 ≤ Ch2‖e(φ)‖2.

Hence, (3.16) and (3.17) become respectively,

‖e(φ(1))‖2 ≤ ‖e(φ)‖2(1 + Ch), (3.21)

and
‖Tr (e(φ(1)))‖2 ≤ ‖Tr (e(φ))‖2 + Ch‖e(φ)‖2. (3.22)

Hence, by (3.21), (3.22) and the coercivity of L̂0, we have

∫

Ch
〈L̂0e(φ(1)), e(φ(1))〉dx =

1

1 + ν

(
ν

1− 2ν
‖Tr (e(φ(1)))‖2 + ‖e(φ(1))‖2

)
≤

(1 + Ch)

∫

Ch
〈L̂0e(φ), e(φ)〉dx. (3.23)

Step 2 (Linearization of φz.) In this step we define φ(2) = L(φ) = L(φ(1)), and proceed
exactly as in Step 1. We observe that

e(φ(2))rr = e(φ(1))rr, e(φ(2))rθ = e(φ(1))rθ, e(φ(2))θθ = e(φ(1))θθ,
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and hence,

‖e(φ(2))‖2 ≤ ‖e(φ(1))‖2 + ‖e(φ(2))rz‖2 +2‖e(φ(2))θz − e(φ(1))θz‖2 + 2‖e(φ(2))zz − e(φ(1))zz‖2,

and
‖Tr (e(φ(1)))− Tr (e(φ(2)))‖ ≤ 2‖φ(1)

z,z − φ(2)
z,z‖2. (3.24)

We also have

‖e(φ(2))θz − e(φ(1))θz‖ ≤ 2‖φ(1)
z,θ − φ

(2)
z,θ‖, ‖e(φ(2))zz − e(φ(1))zz‖ ≤ ‖φ(1)

z,z − φ(2)
z,z‖. (3.25)

For functions {φ(1),φ(2)} ⊂ F(m,n) we obtain

‖φ(1)
z,θ − φ

(2)
z,θ‖ = n‖φ(1)

z − φ(2)
z ‖ ≤ C

h
‖φ(1)

z − φ(2)
z ‖,

and

‖φ(1)
z,z − φ(2)

z,z‖ =
πm

L
‖φ(1)

z − φ(2)
z ‖ ≤ C

h
‖φ(1)

z − φ(2)
z ‖,

where the bounds (3.8) on wave numbers have been used. Hence,

‖e(φ(2))θz−e(φ(1))θz‖2 ≤
C

h
‖φ(1)

z −φ(2)
z ‖2, ‖e(φ(2))zz−e(φ(1))zz‖2 ≤

C

h
‖φ(1)

z −φ(2)
z ‖2. (3.26)

For ‖e(φ(2))rz‖ we obtain

‖e(φ(2))rz‖2 = ‖φr,z − φr,z(1, θ, z)‖2 =
π2m2

L2
‖φr − φr(1, θ, z)‖2 =

π2m2

L2

∥∥∥∥
∫ r

1

φr,r(t, θ, z)dt

∥∥∥∥
2

.

Applying inequalities (3.20) and (3.8) we obtain

‖e(φ(2))rz‖2 ≤ Cm2h2‖φr,r‖2 ≤ Ch‖e(φ(1))‖2.

Finally, we estimate the norm ‖φ(1)
z − φ

(2)
z ‖. Integrating the identity φ

(1)
z,r = 2e(φ(1))rz − φ

(1)
r,z

we get

φ(1)
z (r, θ, z)− φ(1)

z (1, θ, z) = 2

∫ r

1

e(φ(1))rz(t, θ, z)dt−
∫ r

1

φ(1)
r,z (t, θ, z)dt.

Therefore,

φ(1)
z − φ(2)

z = 2

∫ r

1

e(φ(1))rz(t, θ, z)dt−
∫ r

1

(φ(1)
r,z (t, θ, z)− φ(1)

r,z (1, θ, z))dt.

Applying inequalities (3.20) and (3.8) we get

‖φ(1)
z − φ(2)

z ‖2 ≤ h2(‖e(φ(1))‖2 + ‖φ(1)
r,z (r, θ, z)− φ(1)

r,z (1, θ, z)‖2) =

h2(‖e(φ(1))‖2 + π2m2

L2

∥∥∥∥
∫ r

1

φ(1)
r,r (t, θ, z)dt

∥∥∥∥
2

) ≤ h2(‖e(φ(1))‖2 + π2m2h2

L2
‖φ(1)

r,r‖2) ≤

h2(1 +
π2m2h2

L2
)‖e(φ(1))‖2 ≤ Ch2‖e(φ(1))‖2.
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Applying this estimate to (3.26) and (3.24) we obtain

‖e(φ(2))θz − e(φ(1))θz‖2 ≤ Ch‖e(φ(1))‖2, ‖e(φ(2))zz − e(φ(1))zz‖2 ≤ Ch‖e(φ(1))‖2,

and
‖Tr (e(φ(2)))‖2 ≤ ‖Tr (e(φ(1)))‖2 + Ch‖e(φ(1))‖2.

We conclude that

‖e(φ(2))‖2 ≤ ‖e(φ(1))‖2(1 + Ch), ‖Tr (φ(2))‖2 ≤ ‖Tr (e(φ(1)))‖2 + Ch‖e(φ(1))‖2,

and hence, by coercivity of L̂0 we have

∫

Ch
〈L̂0e(φ(2)), e(φ(2))〉dx ≤ (1 + Ch)

∫

Ch
〈L̂0e(φ(1)), e(φ(1))〉dx. (3.27)

Combining (3.23) and (3.27) we obtain (3.15).

Lemma 3.3 permits us to look for a buckling mode among those single Fourier modes,
whose θ and z components are linear in r. Let C be a constant, whose existence is guaranteed
by Lemma 3.3. Let

Mh = {(m,n) : n ≥ 0, m ≥ 1 and inequalities (3.8) hold}.

Let
Fh

lin =
⋃

(m,n)∈Mh

Flin(m,n).

Corollary 3.4. The pair (Fh
lin,R1) characterizes buckling.

Proof. By Lemma 2.12 it is sufficient to show that Fh
lin contains a buckling mode. Let

(m(h), n(h)) be minimizers in (3.7). Then, according to Theorem 3.1, (m(h), n(h)) ∈ Mh

and F(m(h), n(h)) contains a buckling mode. Let ψh ∈ F(m(h), n(h)) be a buckling mode.
Let us show that L(ψh) ∈ Fh

lin is also a buckling mode. Indeed, by Lemma 3.3

1 ≤ R1(h,L(ψh))

λ̃1(h)
≤ (1 + Ch)

R1(h,ψh)

λ̃1(h)
.

Taking a limit as h → 0 and using the fact that ψh is a buckling mode, we obtain

lim
h→0

R1(h,L(ψh))

λ̃1(h)
= 1.

Hence, L(ψh) is also a buckling mode, since, by Theorem 3.1, the pair (F(m(h), n(h)),R1(h,φ))
characterizes buckling.
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3.3 Simplification via buckling equivalence

The linearization Lemma 3.3 allowed us to reduce the set of buckling modes significantly.
Yet, even for functions φ ∈ Flin(m,n) the explicit representation of the functional R1(h,φ)
is extremely messy. This can be dealt with by further simplification of the functional via
buckling equivalence that permits us to eliminate lower order terms that do not influence
the asymptotic behavior of the functional. Our first step is to simplify the denominator
in R1(h,φ) by replacing the unknown function fr(r) in φr = fr(r) cos(mz)einθ with fr(1).
Here, in order to simplify the formulas we use m in place of πm/L. Hence, we define a new
simplified functional

R2(h,φ) =

∫
Ch〈L̂0e(φ), e(φ)〉dx∫
Ch |φr,z(1, θ, z)|2dx

.

Lemma 3.5. The functionals R1(h,φ) and R2(h,φ) are buckling equivalent.

Proof. We observe that

|φr,z(r, θ, z)− φr,z(1, θ, z)| = m

∣∣∣∣
∫ r

1

φr,r(t, θ, z)

∣∣∣∣ .

Hence, due to (3.20)
‖φr,z(r, θ, z)− φr,z(1, θ, z)‖ ≤ mh‖e(φ)‖.

Therefore,
∣∣∣∣
∫

Ch
|φr,z(r, θ, z)|2dx−

∫

Ch
|φr,z(1, θ, z)|2dx

∣∣∣∣ ≤ mh‖e(φ)‖‖φr,z‖ ≤ m
√
h‖e(φ)‖2,

due to Theorem 2.8. Hence,
∣∣∣∣

1

R1(h,φ)
− 1

R2(h,φ)

∣∣∣∣ ≤ Cm
√
h,

by coercivity of L0. For (m,n) ∈ Mh we conclude that, due to (2.31) and (3.8),

lim
h→0

λ(h)

∣∣∣∣
1

R1(h,φ)
− 1

R2(h,φ)

∣∣∣∣ = 0.

Theorem 2.13 applies and hence the functionals R1(h,φ) and R2(h,φ) are buckling equiva-
lent.

We can also simplify the numerator of R2(h,φ) by replacing r with 1 in those places,
where it does not affect the asymptotics. The simplification now proceeds at the level of
individual components of e(φ). We may, without loss of generality, restrict our attention to
φ ∈ Flin(m,n), such that

φr = fr(r) cos(nθ) cos(mz). (3.28)

Of course, choosing sin(nθ) instead of cos(nθ) in (3.28) works just as well. The choice
between sin(nθ) and cos(nθ) in the remaining components becomes uniquely determined by
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the requirement that every entry in e(φ) must be made up of terms that have the same kind
of trigonometric function in nθ. (We have already taken care of the same requirement in z.)
Hence, the θ and z components of φ ∈ Flin(m,n) must have the form

{
φθ = (raθ + (r − 1)nfr(1)) sin(nθ) cos(mz),

φz = (az + (r − 1)mfr(1)) cos(nθ) sin(mz),
(3.29)

where aθ and az are real scalars that determine the amplitude of the Fourier modes. We
compute, 




e(φ)rr = f ′
r(r) cos(nθ) cos(mz),

e(φ)rθ =
n(fr(1)− fr(r))

2r
sin(nθ) cos(mz),

e(φ)rz =
m(fr(1)− fr(r))

2
cos(nθ) sin(mz),

e(φ)θθ =
n(raθ + (r − 1)nfr(1)) + fr(r)

r
cos(nθ) cos(mz),

e(φ)θz = −mr2aθ + naz + (r2 − 1)mnfr(1)

2r
sin(nθ) sin(mz),

e(φ)rz = m(az + (r − 1)mfr(1)) cos(nθ) cos(mz).

We can now replace e(φ) with a much simpler matrix E(φ), given by





E(φ)rr =
f ′
r(r)√
r

cos(nθ) cos(mz),

E(φ)rθ = 0,

E(φ)rz = 0,

E(φ)θθ =
n(raθ + (r − 1)nfr(1)) + fr(1)√

r
cos(nθ) cos(mz),

E(φ)θz = −mr2aθ + naz + (r2 − 1)mnfr(1)

2
√
r

sin(nθ) sin(mz),

E(φ)rz =
m(az + (r − 1)mfr(1))√

r
cos(nθ) cos(mz)

Lemma 3.6. The functionals R2(h,φ) and

R3(h,φ) =

∫
Ch〈L̂0E(φ), E(φ)〉dx
∫
Ch |φr,z(1, θ, z)|2dx

(3.30)

are buckling equivalent.
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Proof. Observing that

fr(r)− fr(1) =

∫ r

1

f ′
r(t)dt,

we obtain via (3.20) that

‖e(φ)rθ‖2 ≤ Cn2h2‖f ′
r‖2 ≤ Cn2h2‖e(φ)rr‖2.

Similarly,
‖e(φ)rz‖2 ≤ Cm2h2‖e(φ)rr‖2.

Hence, for every (m,n) ∈ Mh we have

‖e(φ)rθ‖2 + ‖e(φ)rz‖2 ≤ Ch‖e(φ)rr‖2.

For the components (rr), (θz) and (zz) we have

E(φ)rr =
e(φ)rr√

r
, E(φ)θz =

√
re(φ)θz, E(φ)zz =

e(φ)zz√
r

.

Therefore,

|E(φ)rr−e(φ)rr| ≤ Ch|e(φ)rr|, |E(φ)θz−e(φ)θz| ≤ Ch|e(φ)θz|, |E(φ)zz−e(φ)zz| ≤ Ch|e(φ)zz|.

Finally we compute

E(φ)θθ − e(φ)θθ = (
√
r − 1)e(φ)θθ −

fr(r)− fr(1)√
r

cos(nθ) cos(mz),

which implies
‖E(φ)θθ − e(φ)θθ‖ ≤ Ch(‖e(φ)θθ‖+ ‖e(φ)rr‖).

We conclude that that
‖E(φ)− e(φ)‖ ≤ C

√
h‖e(φ)‖,

and thus
∣∣∣∣
∫

Ch
〈L̂0E(φ), E(φ)〉dx−

∫

Ch
〈L̂0e(φ), e(φ)〉dx

∣∣∣∣ ≤ C
√
h‖e(φ)‖2 ≤ C

√
h

∫

Ch
〈L̂0e(φ), e(φ)〉dx,

by coercivity of L̂0. It follows that

|R3(h,φ)−R2(h,φ)| ≤ C
√
hR2(h,φ) ≤ C

√
hR3(h,φ) + C

√
h|R3(h,φ)−R2(h,φ)|.

Thus,

|R3(h,φ)−R2(h,φ)| ≤
C
√
h

1− C
√
h
R3(h,φ).

Dividing this inequality by R2(h,φ)R3(h,φ) we obtain

∣∣∣∣
1

R2(h,φ)
− 1

R3(h,φ)

∣∣∣∣ ≤
C
√
h

R2(h,φ)
.
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Therefore,

sup
φ∈Fh

lin

λ̃(h)

∣∣∣∣
1

R2(h,φ)
− 1

R3(h,φ)

∣∣∣∣ ≤
Cλ̃(h)

√
h

inf
φ∈Fh

lin

R2(h,φ)
.

It follows that, due to (2.31),

lim
h→0

sup
φ∈Fh

lin

λ(h)

∣∣∣∣
1

R2(h,φ)
− 1

R3(h,φ)

∣∣∣∣ = 0.

The application of Theorem 2.13 completes the proof.

3.4 The formula for the buckling load

At this point the strategy for finding the asymptotic formula for the buckling load can be
stated as follows. We first compute

λ3(h;m,n) = inf
φ∈Flin(m,n)

R3(h,φ), (3.31)

and then we find m(h) and n(h) as minimizers in

λ3(h) = min
m≥1
n≥0

λ3(h;m,n). (3.32)

The goal of the section is to prove that

lim
h→0

λ3(h)

λ∗(h)
= 1, λ∗(h) =

h√
3(1− ν2)

. (3.33)

The functional R3(h,φ) given by (3.30) will now be analyzed in its explicit form.

R3(h,φ) =
1

2(ν + 1)hm2|fr(1)|2
∫

Ih

{(mr2aθ + naz + (r2 − 1)mnfr(1))
2+

+ 2(f ′
r)

2 + 2(nraθ + (r − 1)n2fr(1) + fr(1))
2 + 2m2(az + (r − 1)mfr(1))

2

Λ(f ′
r(r) + nraθ + (r − 1)n2fr(1) + fr(1) +maz + (r − 1)m2fr(1))

2}dr,

where Λ = 2ν
1−2ν

. We minimize the numerator in fr(r) with prescribed value fr(1). This can
be done by minimizing the numerator in f ′

r(r) treating it as a scalar variable for each fixed
r:

f ′
r(r) = − Λ

Λ + 2
p(r),

where
p(r) = nraθ + (r − 1)n2fr(1) + fr(1) +maz + (r − 1)m2fr(1).

Thus, we reduce the problem of computing λ3(h;m,n) to finite-dimensional unconstrained
minimization:

λ3(h;m,n) = min
aθ,az ,fr(1)

∫
Ih
{ 2Λ
Λ+2

p(r)2 + q(r)}dr
2(ν + 1)hm2|fr(1)|2

, (3.34)
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where

q(r) = (mr2aθ + naz + (r2 − 1)mnfr(1))
2 + 2(nraθ + (r − 1)n2fr(1) + fr(1))

2+

2m2(az + (r − 1)mfr(1))
2.

Since the function to be minimized in (3.34) is homogeneous of degree zero in the vector
variable (aθ, az, fr(1)), we can set fr(1) = 1, without loss of generality. Then, evaluating the
integral in r we obtain

λ3(h;m,n) = min
aθ,az

1

2(ν + 1)m2

{
Q(0)

m,n(aθ, az) +
h2

12
Q(1)

m,n(aθ, az) +
h4

80
Q(2)

m,n(aθ, az)

}
,

where

Q(0)
m,n =

2Λ

Λ + 2
(1 + naθ +maz)

2 + 2(naθ + 1)2 + 2m2a2z + (maθ + naz)
2,

Q(1)
m,n =

2Λ

Λ + 2
(naθ+m2+n2)2+2n2(aθ+n)2+2m4+4m2(aθ+n)2+2m(aθ+n)(maθ+naz),

Q(2)
m,n = m2(aθ + n)2.

Let us show that the last term in Q
(1)
m,n, as well as Q

(2)
m,n can be discarded. Let

Q̃(1)
m,n(aθ) =

2Λ

Λ + 2
(naθ +m2 + n2)2 + 2n2(aθ + n)2 + 2m4 + 4m2(aθ + n)2

be the simplified version of Q
(1)
m,n. We observe that

2m|(aθ + n)(maθ + naz)| ≤ hm2(aθ + n)2 +
1

h
(maθ + naz)

2 ≤ h

4
Q̃(1)

m,n +
1

h
Q(0)

m,n.

Therefore,

h4

80
m2(aθ + n)2 +

h2

6
m|(aθ + n)(maθ + naz)| ≤ (h2 + h)

(
Q(0)

m,n +
h2

12
Q̃(1)

m,n

)
.

Hence,

(1− h− h2)

(
Q(0)

m,n +
h2

12
Q̃(1)

m,n

)
≤ Q(0)

m,n +
h2

12
Q(1)

m,n ≤ (1 + h+ h2)

(
Q(0)

m,n +
h2

12
Q̃(1)

m,n

)

If we denote

λ̃3(h;m,n) = min
aθ,az

1

2(ν + 1)m2

{
Q(0)

m,n(aθ, az) +
h2

12
Q̃(1)

m,n(aθ)

}
, (3.35)

then
(1− h− h2)λ̃3(h;m,n) ≤ λ3(h;m,n) ≤ (1 + h+ h2)λ̃3(h;m,n),
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which implies that

lim
h→0

λ̃3(h)

λ3(h)
= 1, λ̃3(h) = min

m≥1
n≥0

λ̃3(h;m,n). (3.36)

Minimizing Q
(0)
m,n(aθ, az) in az we obtain

az = −m(2ν + (ν + 1)naθ)

2m2 + (1− ν)n2
. (3.37)

The minimization in aθ was too tedious to be done by hand. Using computer algebra software
(Maple), we have obtained the following expression for λ̃3(h;m,n):

λ̃3(h;m,n) =
m2(1− ν2) +H(m2 + n2)4 +Hr1(m,n) +H2r2(m,n)

(1− ν2)m2(m2 + n2)2 +Hm2r3(m,n)
, H =

h2

12
, (3.38)

where r1(m,n) is a polynomial in (m,n) of degree 6, r2(m,n) is a polynomial in (m,n) of
degree 8 and r3(m,n) is a polynomial in (m,n) of degree 4. The minimum was achieved at

aθ = −n(n2 + (ν + 2)m2) +Hs1(m,n)

(m2 + n2)2 +Hs2(m,n)
, (3.39)

where s1(m,n) is a polynomial in (m,n) of degree 5, and s2(m,n) is a polynomial in (m,n)
of degree 4. Let us show that the terms ri(m,n) do not affect the asymptotics of λ̃3(h). Let

λ∗
3(h;m,n) =

m4(1− ν2) +H(m2 + n2)4

(1− ν2)m2(m2 + n2)2
, λ∗

3(h) = min
m≥1
n≥0

λ∗
3(h;m,n). (3.40)

Lemma 3.7.

λ∗
3(h) =

h√
3(1− ν2)

, (3.41)

and is attained on the Koiter circle [10]

m

m2 + n2
=

√
λ∗
3(h)

2
, m ≥ π

L
, n ≥ 0. (3.42)

Moreover,

lim
h→0

λ̃3(h)

λ∗
3(h)

= 1, (3.43)

Proof. Formulas (3.41) and (3.42) become obvious, if we observe that

λ∗
3(h;m,n) =

m2

(m2 + n2)2
+

H(m2 + n2)2

(1− ν2)m2
.

It is also clear from the degrees of polynomials r2(m,n) and r3(m,n) that

sup
m≥π/L
n≥0

H2r2(m,n)

2m4(1− ν2) + 2H(m2 + n2)4
≤ sup

m≥π/L
n≥0

Hr2(m,n)

2(m2 + n2)4
≤ CH,
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and

sup
m≥π/L
n≥0

Hr3(m,n)

(1− ν)(m2 + n2)2
≤ CH,

for some constant C, independent of m, n, and h.
In order to show that we can also eliminate Hr1(m,n) from the numerator of λ̃3(h;m,n)

we observe that for any constant C

lim
h→0

min
m2+n2≤C

λ̃3(h;m,n) > 0.

Hence, if (m(h), n(h)) is a minimizer in (3.38), then m(h)2 + n(h)2 → ∞, as h → 0. If
(m∗(h), n∗(h)) denotes a minimizer in (3.40), then formulas (3.41) and (3.42) imply that
m∗(h)2 + n∗(h)2 → ∞, as h → 0, and thus

lim
h→0

Hr1(m(h), n(h))

m(h)2(1− ν2) +H(m(h)2 + n(h)2)4
= lim

h→0

Hr1(m
∗(h), n∗(h))

m∗(h)2(1− ν2) +H(m∗(h)2 + n∗(h)2)4
= 0.

Therefore,
λ̃3(h;m(h), n(h))

λ∗
3(h;m(h), n(h))

≤ λ̃3(h)

λ∗
3(h)

≤ λ̃3(h;m
∗(h), n∗(h))

λ∗
3(h;m

∗(h), n∗(h))
,

and (3.43) follows.

We have now achieved our goal, since (3.33) follows from (3.36) and Lemma 3.7.

3.5 Buckling modes

In this section we return to the original boundary conditions and the space Vh, defined in
(2.10). Let

λ1(h) = inf
φ∈Ah

R1(h,φ). (3.44)

Even though, technically speaking, Vh is not a subspace of Ṽh, it is helpful to think of it as
such. Hence, our next lemma is natural (but not entirely obvious).

Lemma 3.8. Let λ1(h) and λ̃1(h) be given by (3.44) and (3.6), respectively, then

λ1(h) ≥ λ̃1(h). (3.45)

Proof. In view of Theorem 3.1 it is sufficient to prove the inequality

λ1(h) ≥ inf
m≥1
n≥0

λ̃m,n(h).

This is done by repeating the arguments in the proof of the analogous inequality in Theo-
rem 3.1. The argument is based on the fact the 2L-periodic extension of φ ∈ Ah ⊂ Vh, such
that φr and φθ are even and φz is odd, is still of class H1, and the expansion (3.10) is valid.
The inequality (3.45) follows from (3.7) and the inequality (3.11), which is valid for each
single Fourier mode.
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In order to prove that the asymptotic formula (3.1) holds for λ1(h) (and hence for λcrit(h))
it is sufficient to find a test function φh ∈ Ah such that

lim
h→0

R1(h,φ
h)

λ̃1(h)
= 1. (3.46)

Indeed,

1 = lim
h→0

R1(h,φ
h)

λ̃1(h)
≥ lim

h→0

λ1(h)

λ̃1(h)
≥ 1,

which proves both that

lim
h→0

λ1(h)

λ∗(h)
= 1,

and that φh ∈ Ah is a buckling mode.
We construct the buckling mode φh ∈ Vh as a 2-term Fourier expansion (3.2). For this

purpose we choose m = m(h) → ∞, as h → 0, and n = n(h) to lie on Koiter’s circle and





φh
r (r, θ, z) =

∑

m∈{m(h),m(h)+2}
fr(r,m, n(h)) cos(n(h)θ) cos(m̂z),

φh
θ (r, θ, z) =

∑

m∈{m(h),m(h)+2}
fθ(r,m, n(h)) sin(n(h)θ) cos(m̂z),

φh
z (r, θ, z) =

∑

m∈{m(h),m(h)+2}
fz(r,m, n(h)) cos(n(h)θ) sin(m̂z),

(3.47)

where now, in order to avoid confusion, we distinguish between m ∈ Z and

m̂ =
πm

L
.

To ensure that φh ∈ Vh we require

fθ(r,m(h) + 2, n(h)) = −fθ(r,m(h), n(h)).

The structure of coefficients f(r,m, n) is determined by optimality at each of the two values
of m separately, since the expansion (3.10) is valid for φ ∈ Vh. In particular, we choose

fθ(r,m(h), n(h)) = raθ(h) + (r − 1)n(h), aθ(h) = − n(n2 + (ν + 2)m̂2)

(m̂2 + n2)2

∣∣∣∣
m=m(h)
n=n(h)

.

Let

Fz(r,m, n, h) = az(m,n, h) + (r − 1)m̂, az(m,n, h) = −m̂(2ν + (ν + 1)naθ(h))

2m̂2 + (1− ν)n2
,

Fr(r,m, n, h) = 1− ν(r − 1)

1− ν
(naθ(h) + 1 + m̂az(m,n, h))− ν(r − 1)2

2(1− ν)
(naθ(h) + n2 + m̂2).
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Figure 1: Koiter circle buckling modes corresponding, left to right, to m(h) ∼ h−1/8, h−1/4

and h−3/8. Poisson’s ratio ν = 1/3.

Then

fr(r,m(h), n(h)) = Fr(r,m(h), n(h), h), fr(r,m(h)+2, n(h)) = −Fr(r,m(h)+2, n(h), h),

fz(r,m(h), n(h)) = Fz(r,m(h), n(h), h), fz(r,m(h)+2, n(h)) = −Fz(r,m(h)+2, n(h), h).

Maple calculation verifies that the test function, φh satisfies (3.46). Figure 1 shows buckling
modes for

m̂(h) =

(√
2

λ∗(h)

)α

, α = 1/4, 1, 2, 3/4.
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