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Abstract

Marginal stability plays an important role in nonlinear elasticity because the associ-
ated minimally stable states usually delineate failure thresholds. In this paper we study
the local (material) aspect of marginal stability. The weak notion of marginal stability
at a point, associated with the loss of strong ellipticity, is classical. States that are
marginally stable in the strong sense are located at the boundary of the quasi-convexity
domain and their characterization is the main goal of this paper. We formulate a set of
bounds for such states in terms of solvability conditions for an auxiliary nucleation prob-

lem formulated in the whole space and present nontrivial examples where the obtained
bounds are tight.
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1 Introduction

A classical problem of calculus of variation is to find global minimizers and identify in this
way the most stable configurations known in physics as ground states. A more complex
and less studied problem concerns finding all local minima which in physical terms means
characterization of the set of metastable states. The task of finding all local minimizers is
often obfuscated by the fact that local minima can be defined in different ways depending
on the choice of the topology on the set of configurations. When such uncertainty exists,
it indicates certain degeneracy of the theory and its resolution requires additional physical
hypotheses external to the original variational problem.
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In this paper we pose a new problem of identifying all minimally stable local minimizers
that are usually interpreted in physical and mechanical literature as marginally stable states.
As in the case of local minima the definition of marginally stable states depends on the choice
of topology.

More specifically, we focuss on the study of variational functionals typical of nonlinear
elasticity

E(y) =

∫

Ω

W (∇y(x))dx, (1.1)

where the energy densityW is a continuous and bounded from below function on the space M
of allm×d matrices, with d being the spatial dimension. For the variational problem (1.1) the
two basic topologies are the W 1,∞ norm topology and the W 1,∞ sequential weak-* topology;
the associated local minimizers will be called weak and strong1, respectively. In elasticity
theory the selection of topology is a physical assumption and the choice between our strong
and week topologies may reflect, for instance, the presence of spatial inhomogeneities in the
physical problem. To avoid these decisions we consider two topologies on equal grounds being
aware that our choices are by no means exhaustive, for instance, both exclude cavitation.

The knowledge of marginally stable states is important in elasticity theory because reach-
ing such states entails either structural or material failure [121, 32, 111, 8]. In applications it
is important to identify states with disappearing reserve of stability in order to predict large
and sometimes catastrophic changes associated with decomposition of these states.

Structural instabilities are global and are associated with such physical phenomena as
buckling, barreling, microstructure collapse, etc. [64, 112, 83, 48, 57, 115, 21, 22]. In math-
ematical literature the notion of weak global stability is interpreted as non-negativity of the
second variation [17, 113, 49]. The full understanding of this concept in the scalar case was
already achieved in the classical work of Jacobi who characterized bifurcation points of the
Euler-Lagrange equations for the second variation [95, 47, 49]. In the vectorial case the situa-
tion is more complicated, since the space of all solutions of the vectorial analog of the Jacobi
equation is infinite dimensional.

Local instabilities manifest themselves at a point and are geometry independent. In
mechanical terms they are usually interpreted as material instabilities that can manifest
themselves through the nucleation of cracks, cavities, nuclei of a new phase, dislocation loops,
shear bands, etc. [65, 13, 15, 90, 84, 92]. Reaching local marginal stability thresholds usually
means termination of an equilibrium branch and often indicates transition from statics to
dynamics.

It is important to mention that material instabilities, epitomized by marginally stable
equilibria, serve as indicators that a system has reached the limit of applicability of classical
continuum elasticity, in particular, that the description of local deformation in terms of affine
Cauchy-Born scheme is about to fail. To advance beyond the limits of marginal stability
the theory must be augmented either by admitting singularities or by incorporating internal

1Traditionally a strong local minimizer is associated with L
∞ topology. Our abuse of terminology should

not cause problems, since in this paper we discuss only the necessary conditions. Clearly, all necessary
conditions for a W

1,∞ sequential weak-* local minimizer will also be necessary for a L
∞ local minimizer.
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length scales. In the first case additional hypotheses of physical nature must be added allowing
one to locate (track) these singularities in space. In the second case, these singularities must
be appropriately regularized and captured as high gradient regions in the framework of some
meso-scopic theory. Even more radical solution is to consider directly the micro-scopic theory
which is usually discrete or to build hybrid discrete-continuum numerical schemes. All these
extension of the classical elasticity allow one to see how marginal instability ultimately resolves
itself.

Recently it has become clear that marginally stable states also play a crucial role in quasi-
static evolution of distributed mechanical systems with nonconvex energy, e.g. [105, 109]. In
particular, marginally stable states are fundamentally important for self organization towards
criticality as observed in plasticity, friction, earthquakes, fracture, martensitic phase transi-
tions and damage propagation [133, 4, 110, 109]. Such driven systems exhibit a capability of
locking themselves in marginally stable states and the corresponding locus is known in dif-
ferent mechanical settings as yield limit, dynamic friction limit, Griffith limit, or martinsitic
hysteresis limit.

The simplest examples of material instabilities that can be linked to the two topologies
studied in this paper can be found in the theory of fluid equilibria where the loss of weak
local stability is associated with spinodal decomposition, and the corresponding marginally
stable states lie on the spinodal [82], while the loss of strong local stability is associated with
nucleation of a new phase, and the corresponding stability threshold is called the binodal
[124]. In this paper we propose a far reaching generalization of these physical concepts in
the context of calculus of variation. In the absence of better choices we continue using the
terms spinodal and binodal as the indicators of weak and strong marginally stable states,
respectively.

In the classical calculus of variation, dealing with either scalar or one-dimensional prob-
lems, the physical ideas of spinodal and binodal correspond to the notions of local and global
convexity limits. The spinodal is then a manifold where Hessian degenerates, while the bin-
odal can be associated with appropriate zeros of the Weierstrass excess function [47, 49].

The general vectorial criterion of weak local stability is given by the Legendre-Hadamard
condition whose relation to ellipticity loss of the Euler-Lagrange equations and associated
bifurcations has been thoroughly studied [125, 9, 39, 33, 72, 10, 101]. In the context of
nonlinear elasticity, the locus of weak marginally stable deformation gradients which we call
elastic spinodal can often be fully characterized analytically [71, 134, 35].

The mathematical notion of strong local, or material stability in vectorial problems is ex-
pressed by the quasiconvexity condition [94, 12, 111, 15, 36]. Unlike the Legendre-Hadamard
condition, this constraint is non-local and is much harder to explicate [77]. The quasi-
convexification is known explicitly only in a few very special cases [68, 76, 75, 6, 103, 36]
and our goal is to solve a simpler problem of computing the elastic binodal, without getting
into a task of relaxing a non-quasiconvex energy.

We first observe that the spinodal and the binodal regions, where our two notions of local
stability are strictly violated, can be characterized in terms of the parametric variational
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inequalities:

S =

{
F ∈ M : inf

φ∈C1
0 (B1;Rm)

∫

B1

(WFF (F )∇φ(z),∇φ(z))dz < 0

}
, (1.2)

for the spinodal region and

B =

{
F ∈ M : inf

φ∈C1
0 (B1;Rm)

∫

B1

{W (F +∇φ(z))−W (F )}dz < 0

}
. (1.3)

for the binodal region, where WF (F ) denote the array of partial derivatives ∂W/∂Fiα with
i = 1, . . . ,m and α = 1, . . . , d. These definitions, however, cannot be considered as universal
tools allowing one to characterize either spinodal or binodal regions directly by solving the
corresponding Euler-Lagrange equations. Even if minimizers can be determined in this way,
such characterization is usually not the simplest.

One way to obtain a constructive definition of spinodal and binodal regions is to formulate
problems equivalent to (1.2) and (1.3) in extended spaces of admissible test functions where
all unnecessary smoothness and growth conditions are eliminated. Different formulations
defining the same critical sets form an equivalence class. We show that in the case of weak
local minima, a particular equivalent reformulation of the original problem allows one to fully
characterize the spinodal region in the space of gradients and to localize the spinodal as its
boundary.

Similarly exhaustive reformulation in the case of a general binodal remains elusive. Here,
in contrast with the classical bifurcation theory, which is fully adequate in the case of the
spinodal [121, 101, 111], the implied generalized bifurcation problem cannot be understood
by linearization. In the absence of a general solution of such nonlinear bifurcational problem
we focus in this paper on the task of characterizing different subsets of binodal region and
constructing in this way some bounds separating (strongly) unstable states from the (strongly)
stable ones.

We use the crucial observation that in order to characterize the binodal we do not need to
know the value of the infimum in (1.2) and (1.3) but only its sign. This simplifies the equiv-
alence criterion and allows one to formulate alternative parametrized variational inequalities
that are more amenable to analysis. In particular, we show that in this way one can charac-
terize a subset of “unsafe loading conditions” by solving auxiliary problems formulated either
for a system of partial differential equations or an algebraic system. More specifically, we
show that by probing a homogeneous configuration with the test functions from sufficiently
large spaces one can obtain a partial characterization of the binodal (see earlier related work
reviewed in [89, 27, 28, 29]). How tight are the ensuing bounds depends on specifics of the
non-convexity of the energy density function.

The main tool in our analysis of the binodal is the notion of stability with respect to
nucleation which we formulate, building on some earlier insights [86, 85, 106, 107, 108, 68,
67, 45, 46, 44], in terms of solvability conditions for an auxiliary problem in all physical
space. The infinite size of the domain reflects the fact that marginalization of an equilibrium
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in strong topology is a manifestation of local instability. Here it is appropriate to mention
similar development in the theory of shape optimization where non convex functionals arise
naturally and where our nucleation problem can be linked to the computation of ’topological’
or ’Hadamard derivatives’ [116, 5].

The nucleation problem can be formulated in different but equivalent ways depending on
the assumed behavior of the test functions at infinity and we raise the problem of maximal
extension of the space of test functions in order to obtain the broadest possible notion of the
energy-neutral nucleus. In particular, we observe that seemingly natural requirement of the
energy density decay at infinity is inadequate for capturing non-compact nuclei represented
by cylinders and plates or by the sets of interacting nuclei spreading to infinity.

To supplement the PDE-based bounds we also consider a nucleation problem for gradient
Young measures of the sequences of test functions converging only weakly [130, 131, 14,
18, 102, 120]. Finding the optimal Young measures in the general case is hardly possible,
however, simple algebraic bounds on the binodal can be obtained by energy minimization
with respect to a subclass of Young measures represented by laminates. This leads to the
concept of partially relaxed energy density which can be used in the secondary nucleation
PDE-based problem. The generalized bifurcations in the resulting PDE can be interpreted
as nucleation of composite precipitates [106, 107, 108, 135, 74, 73] and our work establishes
a rigorous connection between the corresponding ’polydomain nucleation problem’ and the
task of identifying the limits of strong stability.

In addition to isolated inclusions we also consider arrays of interacting inclusions that are
periodic in some directions and decay in others. In physical terms the periodicity assumption
means that the elastic interaction between individual inclusions is necessary for optimality
and that we are dealing here with a cooperative phenomenon. The most dramatic example
of collective nucleation is provided by multi-rank laminates. While the resulting bounds are
in no way exhaustive they may be very useful in applications, where one has no hope of
computing the explicit quasiconvex envelopes.

To illustrate our formal development, we consider two examples in full detail. In the
first example we deal with the simplest energy exhibiting two incompatible (non rank one
connected) wells. The material is isotropic and the double well structure is imposed only
on the TrF dependence of the energy. In the second example we consider general isotropic
energy with two quadratic wells which has been broadly studied in composite theory and in
the theory of martensitic transformations. For these two examples we show that the PDE-
based methods combined with the laminate-based methods allow one to locate the entire
elastic binodal. It is, of course, not surprising since in both cases quasi-convexification is
known to coincide with rank one convexification.

Several important issues are not addressed in this paper. For instance, it is known that
both weak and strong versions of material stability have nontrivial heterogeneous versions
when the point of interest is located on the Neumann part of the external boundary [2, 3,
23, 17, 114, 111, 93] or on an internal point of inhomogeneity [37, 83, 63]. In the case of
weak local minima the corresponding theory is rather well developed [114, 111, 93] and the
associated concept of surface spinodal is straightforward. For strong local minimizers, one
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needs to find the limits of the quasiconvexification-on-the-boundary set [17, 113, 111, 11] which
makes an explicit characterization of the surface binodal a formidable challenge. Although
the associated instabilities play an important role in applications, e.g., [119, 66], we left this
interesting subject outside the scope of the present paper. Similarly, we did not attempt the
differential characterization of the binodal (Clausius-Clapeyron type relations) and did not
specifically study the nucleation conditions at the non-smooth part of the binodal associated
with simultaneous activation of distinct nucleation mechanisms.

While we succeeded in building some conceptual links between the notions of spinodal and
binodal, the ensuing stability limits remain fundamentally unconnected in the framework of
classical nonlinear elasticity which does not have an internal length scale. The situation
changes fundamentally if one considers regularized theory where the jumps of deformation
gradients are replaced by smooth transition layers. In such settings (e.g. gradient theory,
phase field theory, etc.) binodal and spinodal become parts of a single stability diagram where
the (regularized) spinodal indicates the actual bifurcation of a homogeneous configuration
while the (regularized) binodal marks the transition between the trivial and the nontrivial
branches of the global minimization path (see [19, 122] for 1D examples). These issues deserve
a careful separate study.

This paper is organized as follows. In Section 2 we introduce the concepts of elastic
spinodal and elastic binodal as the boundaries of the larger sets on which certain variational
functionals are non-negative. To identify these boundaries one needs to solve a bifurcation
problem in the case of the spinodal and a nucleation problem in the case of the binodal.
In Section 3 we present several examples of equivalent formulations of the bifurcation and
nucleation problems and propose the existence and the computability of solutions as possible
selection criteria. In Section 4 we obtain an explicit characterization of the spinodal and
binodal sets for some classes of test functions. In particular, we study the case when the
binodal is detectable by solving a system of PDEs complemented with additional conditions
allowing one to specify locations of gradient discontinuities. A case study for an important
class of bi-quadratic energies with two isotropic wells is presented in the last Section 5 where
we deal with arbitrary space dimensions and make the nucleation-based bounds on the binodal
fully explicit. While similar calculations have been performed many times before [68, 89, 45,
46, 28, 29] their direct relation to the notion of quasiconvexity was not rigorously established.

2 Spinodal and binodal

Consider a rather general variational functional used in non-linear elasticity theory

E(y) =

∫

Ω

W (∇y(x))dx−
∫

∂ΩN

(t(x),y)dS(x), (2.1)

where Ω is a smooth open and bounded domain in R
d, and ∂ΩN is the Neumann part of

the boundary. We assume that the values of y(x) are prescribed on the Dirichlet part
∂ΩD = ∂Ω \ ∂ΩN . Further regularity assumptions will be stated below. We observe that in
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general it is possible to absorb the boundary term into the volume integral by replacing the
energy density with an appropriate more general Lagrangian

E(y) =

∫

Ω

L(x,y(x),∇y(x))dx. (2.2)

To formulate our two notions of local stability (or metastability) we define Var = {u ∈
C1(Ω;Rm) : u(x) = 0, x ∈ ∂ΩD}. The weakly and strongly stable states are defined as
follows.

Definition 2.1. A sequence un ∈ Var is called an admissible weak variation if ‖un‖C1 →
0, as n→ ∞.

Definition 2.2. We say that y(x) is a weak local minimum if for all admissible weak
variations un we have E(y + un) ≥ E(y) when n is sufficiently large.

Definition 2.3. A sequence sn ∈ Var is called an admissible strong variation if ‖sn‖C0 →
0, as n→ ∞.

Definition 2.4. We say that y(x) is a strong local minimum if for all admissible strong
variations sn we have E(y + sn) ≥ E(y) when n is sufficiently large.

2.1 Generalized second variation

Suppose that we are testing stability of a given configuration y ∈ C1(Ω;Rm). We always as-
sume that the energy density L(x,y,F ) is of class C2 on the extended graph {(x,y(x),∇y(x)) :
x ∈ Ω} of y(x). Consider a general (weak or strong) admissible variation2 {gǫ} ⊂ Var. We
can expand the energy increment as follows

∆E(gǫ) = E(y + gǫ)− E(y) = δE(gǫ) + δ2E(gǫ), (2.3)

where

δE(gǫ) =

∫

Ω

{(LF ,∇gǫ) + (Ly, gǫ)}dx.

The second term

δ2E(gǫ) =

∫

Ω

L⋆(x, gǫ,∇gǫ)dx,

where

L⋆(x,u,H) = L(x,y(x) + u,∇y(x) +H)− L(x)− (LF (x),H)− (Ly(x),u),

can be formally interpreted as the “generalized second variation.” Indeed, for the weak
variations of the form

gǫ = ǫu, u ∈ C1(Ω;Rm) ∩ Var, (2.4)

2Variations can either be sequences as in the Definitions 2.1 and 2.3 or continuum families, such as Gǫ,
where the limit as n → ∞ is replaced by the limit as ǫ → 0.
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we have

δ2E(gǫ) =
ǫ2

2

∫

Ω

{(LFF∇u,∇u) + 2(LyF∇u,u) + (Lyyu,u)}dx+ o(ǫ2).

Since the linear term δE(gǫ) in the expansion (2.3) vanishes due to the Euler-Lagrange equa-
tion, the requirement ∆E(gǫ) ≥ 0 implies, for the class of special weak variations (2.4), the
non-negativity of the classical second variation

∫

Ω

{(LFF∇u,∇u) + 2(LyF∇u,u) + (Lyyu,u)}dx ≥ 0 (2.5)

where u ∈ Var is arbitrary. The condition of non-negativity of the generalized second varia-
tion condition can be also specified if we consider a special class of strong variations

gη = ηφ((x− x0)/η), x0 ∈ Ω, φ ∈ C1
0(B1;R

m), (2.6)

where Br denotes the ball of radius r centered at the origin. Then, if ∇y(x) is continuous at
x0, the generalized second variation has the form

δ2E(gη) = ηd
∫

B1

W ◦(∇y(x0),∇φ(z))dz + o(ηd).

Here
W ◦(F ,H) = EL(x0,y(x0),F ,F +H), (2.7)

and
EL(x,y,F ,F ′) = L(x,y,F ′)− L(x,y,F )− (LF (x,y,F ),F ′ − F )

is the classical Weierstrass excess function for the Lagrangian L [132, 49]. We see that
W ◦(F ,H) can be expressed entirely in terms of the localized version of the Lagrangian

W (F ) = L(x0,y(x0),F ), (2.8)

where the dependence on x0 ∈ Ω is suppressed in the notation. We note that if the Lagrangian
L(x,y,F ) comes from the energy of the form (2.1) then our definition of W (F ) differs from
the original W (F ) by at most a linear term, which does not affect any of the subsequent
equations.

The requirement ∆E(gη) ≥ 0 for the class of special strong variations (2.6) is equivalent
to the quasiconvexity at ∇y(x0), [94, 12]:

∫

B1

W ◦(∇y(x0),∇φ(z))dz ≥ 0, (2.9)

for all φ ∈ C1
0(B1;R

m). Notice that the infinitesimal perturbation (2.6) at a point x0 ∈ Ω is
transformed by rescaling (zooming in) into a finite perturbation prescribed on the unit ball.
It is well known that the condition (2.9) does not depend on the support of φ(x) and the
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unit ball B1 can be replaced by any bounded domain in R
d. The smoothness of φ(x) is also

not important, in particular, the condition (2.9) would be unchanged if we require that φ be
of class C∞, or if we allow φ to be merely Lipschitz continuous.

The removal of the linear term in (2.3) is natural since we consider stability of an equi-
librium state and this step is straightforward in the case of weak local minima. For strong
local minima, the removal of the linear term is also useful because finite perturbations in a
small domain create small perturbations outside this domain, and the latter become invisible
if the linear part of the functional is removed. This was first realized by Weierstrass in a one
dimensional setting.

We emphasize that while the quasiconvexity condition (2.9) is domain-local, i.e. it depends
only on the behavior of the deformation y(x) in any neighborhood of the point x0, the
second variation condition (2.5) is domain-global. The two conditions, however, have a non-
trivial intersection that can be achieved either by performing the “localization” u(x) 7→
ηv((x− x0)/η) in (2.5) with v ∈ C1

0(B1;R
m) or by the “weakening” φ(z) 7→ ǫv(z), in (2.9)

with v ∈ C1
0(B1;R

m). Independently of whether we take a limit ǫ → 0 in (2.9) or a limit
η → 0 in (2.5) we obtain

∫

B1

(WFF (∇y(x0))∇v(z),∇v(z))dz ≥ 0 (2.10)

for all v ∈ C1
0(B1;R

m).

2.2 Definitions of spinodal and binodal

The necessary conditions (2.9) and (2.10) of strong and weak stability motivate the following
definitions of spinodal and binodal.

Definition 2.5. The deformation gradient F ∈ M is called weakly locally stable if

∫

B1

(WFF (F )∇v(z),∇v(z))dz ≥ 0 (2.11)

for all v ∈ C1
0(B1;R

m). The set

S = {F ∈ M : F is not weakly locally stable}

is called the spinodal region.

Definition 2.6. The boundary surface Spin = ∂S of the spinodal region is called the spin-
odal.

Definition 2.7. The deformation gradient F ∈ M is called strongly locally stable if

∫

B1

W ◦(F ,∇φ(z))dz ≥ 0, (2.12)
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for all φ ∈ C1
0(B1;R

m). The set

B = {F ∈ M : F is not strongly locally stable} (2.13)

is called the binodal region.

Definition 2.8. The boundary surface Bin = ∂B of the binodal region is called the binodal.

Our goal is to formulate conditions on F under which the inequalities (2.11) and (2.12)
become violated. The spinodal and the binodal regions can be characterized in terms of the
parametric variational inequalities already mentioned in the Introduction which we rewrite
here for convenience

S =

{
F ∈ M : inf

v∈C1
0 (B1;Rm)

∫

B1

(WFF (F )∇v(z),∇v(z))dz < 0

}
, (2.14)

B =

{
F ∈ M : inf

φ∈C1
0 (B1;Rm)

∫

B1

W ◦(F ,∇φ(z))dz < 0

}
. (2.15)

One way to characterize the spinodal and binodal is to compute the infima in (2.14) and
(2.15). The infimum in (2.14) is not hard to compute explicitly. The infimum in (2.15) can
be expressed in terms of the quasiconvex envelope [34]

QW (F ) =
1

|B1|
inf

φ∈C1
0 (B1;Rm)

∫

B1

W (F +∇φ(z))dz, (2.16)

however, the general problem of finding the function QW (F ) is notoriously difficult, except
for the scalar case min(m, d) = 1, where QW = CW is the convex envelope of W (F ).

The crucial observation is that in order to construct the set B it is not necessary to
compute the quasiconvex envelope. The reason is that we do not need to know the value
of the infinum in (2.15) but only its sign which means that the problem is much easier.
In particular, there is a possibility to modify both the functional and the set of admissible
functions in (2.15) without changing the corresponding set B. If such modified variational
problem possesses minimizers, which can then be identified as solutions of the Euler-Lagrange
equation, then the corresponding points on the binodal can also be identified.

2.3 Equivalent variational characterizations

We now make formal definitions of equivalent variational characterizations of the spinodal
and binodal.

Definition 2.9. Let F ⊂ W 1,∞(Rd;Rm) and let I(F ,φ) be a functional on F . We say that
the pair (I,F) bounds the spinodal (binodal) if for every F 6∈ S (F 6∈ B)

inf
φ∈F

I(F ,φ) ≥ 0. (2.17)
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We say that the pair (I,F) characterizes the spinodal (binodal) if, in addition to (2.17),
for every F ∈ S (F ∈ B)

inf
φ∈F

I(F ,φ) < 0. (2.18)

We already know that the pair

F = C1
0(B1;R

m), I(F ,v) =

∫

B1

(WFF (F )∇v(z),∇v(z))dz

characterizes the spinodal, while the pair

F = C1
0(B1;R

m), I(F ,φ) =

∫

B1

W ◦(F ,∇φ(z))dz

characterizes the binodal. Another well-known example of the binodal characterizing pair is
(Y0

c ,Λ
◦) [70], where Y0

c is the space of homogeneous compactly supported gradient Young
measures with zero first moment and Λ◦ is a linear functional on Y0

c defined by

Λ◦(ν) =

∫

M

W ◦(F +H)dν(H), ν ∈ Y0
c . (2.19)

Since none of these characterizations of the binodal is practical, our goal will be to present
other pairs (F , I) that characterize the binodal. As we have already mentioned, we are
interested in finding the spaces F that allow one to characterize the binodal in terms of
computable solutions of a system of PDEs.

We also observe that the notions of pairs characterizing and bounding the binodal may
go beyond a simple extension of a function space. For example, nucleation of a precipitate
containing martensitic twins microstructure in a shape memory alloy [106, 107, 108, 135, 74,
73], suggests that the set F may contain parametrized families of Young measures. Then
the functional I in the pair (F , I) will be derived as a limit of the original functional on the
sequences generating the Young measures.

3 Examples of equivalent problems

In this section we present several examples of spinodal-characterizing, binodal-characterizing
and binodal-bounding pairs that are different from those given in (2.14) and (2.15) and are
better suited for obtaining explicit constraints for the sets Spin and Bin.

3.1 Spinodal

In the case of spinodal, the functional in (2.11) is quadratic, and hence, it is natural to extend
the space C1

0(B1,R
m) to the space

S0 = {v ∈ L2
loc(R

d;Rm) : ∇v ∈ L2(Rd;M)}. (3.1)

12



Then the pair (S0, I0) is spinodal-characterizing, where

I0(F ,φ) =

∫

Rd

(WFF (F )∇v(z),∇v(z))dz ≥ 0, v ∈ S0. (3.2)

Let us show that generically, when d > 1 the associated Euler-Lagrange equation

∇ · (WFF (F )∇v) = 0, v ∈ S0 (3.3)

does not have non-zero solutions. Indeed, taking the Fourier transform of (3.3) we obtain
[125, 121, 111]

A(m;F )v̂(m) = 0,

where the acoustic tensor A(m;F ) at F is defined as the linear map on R
m given by

a 7→ A(m;F )a = (WFF (F )(a⊗m))m. (3.4)

As we can see the L2 function v̂(m)⊗m must be supported on the union of rays Rn, where
|n| = 1 solves detA(n;F ) = 0. Generically, this union is a closed and nowhere dense subset

of Rd, when d > 1. Hence ∇̂v(m) = 0 for a.e. m ∈ R
d, and the problem (3.3) has only

trivial solutions in S0. The reason for non-existence in (3.3) is that the eigenfunctions of the
second order differential operator with constant coefficients are single Fourier modes ei(n,z)a,
where a is an eigenvector of the acoustic tensor and these eigenfunctions do not belong to S0.

The set of functions containing the eigen-modes of the linear operator (3.3) should be
sufficient to characterize the spinodal. One possible choice is the set of functions

FS = {φ((z,n))a : φ ∈ H1(R)}, (3.5)

whose distributional Fourier transform is supported on a single ray Rn.
Observe that the functions from (3.5) decay at infinity only in one direction n and the

quadratic functional in (3.2) is no longer defined. To fix this problem we can approximate
functions (3.5) by a sequence of functions vη ∈ S0 and consider an equivalent functional

I(F ,v) =

∫
Rd(WFF (F )∇v,∇v)dz∫

Rd |∇v|2dz
, v ∈ S0. (3.6)

Indeed, it is obvious that I(F ,v) ≥ 0 for all v ∈ S0 if and only if (3.2) holds. Let ρ(x) be a
smooth compactly supported function then

lim
η→0

I(F , ρ(ηz)φ((z,n))a) = (A(n;F )a,a). (3.7)

This formula follows from the relation

lim
η→0

∫

Rd

(WFF (F )∇vη,∇vη)dz = (A(n;F )a,a)

(∫

R

φ′(t)2dt

)(∫

(Rn)⊥
ρ(u)2dS(u)

)
,

13



where
vη(z) = η

d−1
2 ρ(ηz)φ((z,n))a.

It is now easy to show that the pair (FS, IS) with

IS(F , φ((z,n))a) = (A(n;F )a,a). (3.8)

characterizes the spinodal. The Plancherel’s identity applied to (3.2) implies

∫

Rd

(A(m;F )v̂(m), v̂(m))dm ≥ 0. (3.9)

It is obvious now, that if the acoustic tensor A(n;F ) ≥ 0 in the sense of quadratic forms
for all n ∈ S

d−1, then (3.9) and hence (3.2) holds. Conversely, (3.7) shows that (3.2) implies
non-negativity of the acoustic tensor.

Remark 3.1. Due to the homogeneity of the functional IS we can also write

inf
φ∈FS

IS(F ,φ) = −IndSc(F ) (3.10)

where IndSc(F ) is the indicator function3 of the complement to the spinodal region S.

3.2 Binodal

Here we proceed in parallel with the analysis for the spinodal. We begin by extending the
space of admissible test functions from C1

0(B1;R
m) to the space

S = {φ ∈ W 1,∞(Rd;Rm) : ∇φ ∈ L2(Rd;M)}, (3.11)

for which the integral

I◦(F ,φ) =

∫

Rd

W ◦(F ,∇φ(z))dz (3.12)

is convergent. We emphasize the additional assumption of uniform boundedness of φ and
∇φ in the definition of the space S. From a technical standpoint the assumption φ ∈ S0 is
insufficient to ensure convergence of the integral (3.12).

Interestingly, the phenomenon of cavitation [13, 118], which is outside the scope of this
paper, can be interpreted as existence of unbounded Sobolev test fields φ ∈ W 1,p(Rd;Rm) that
in the hard device can lower the energy of a homogeneous state, which is not in the binodal
region. Thus, examples in [96, 104] feature cavitation for globally polyconvex energies, whose
binodal regions are empty sets.

Theorem 3.2. The pair (S, I◦) characterizes the binodal.

3The indicator function of a set equals to zero on the set and +∞ on its complement.
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Proof. If the inequality (2.12) fails for some φ ∈ C∞
0 (B1;R

m) then the inequality I◦(F ,φ) ≥ 0
also fails, since φ ∈ S, if extended by zero outside of B1.

First we prove I◦(F ,φ) ≥ 0, assuming that (2.12) holds. For eachR > 0 let ηR ∈ C∞
0 (B2R)

be a cut-off function such that ηR takes values between 0 and 1, ηR(x) = 1 for all x ∈ BR

and |∇ηR(x)| ≤ C/R for all x ∈ R
d with constant C independent of R. We extend ηR(x) by

zero to the complement of B2R. The theorem will be proved if we show that for each φ ∈ S
there exists a constant4 c ∈ R

m and a sequence Rk → ∞, such that

lim
k→∞

∫

Rd

W ◦(F ,∇(ηRk
(φ− c))dz =

∫

Rd

W ◦(F ,∇φ)dz, (3.13)

Indeed, if F satisfies (2.12) then
∫

Rd

W ◦(F ,∇(ηRk
(φ− c)))dz =

∫

B2Rk

W ◦(F ,∇(ηRk
(φ− c)))dz ≥ 0

for all k ∈ N, and hence the relation (3.13) implies the inequaltity I◦(F ,φ) ≥ 0.
To prove (3.13) we use the inequality

|W ◦(F ,G+H)−W ◦(F ,G)| ≤ C(|G||H|+ |H|2) (3.14)

that holds for all |G| ≤ M and |H| ≤ M , where the constant C depends on M , F and W .
Taking M = ‖φ‖1,∞, we have

|W ◦(F ,∇(ηR(φ− c)))−W ◦(F , ηR∇φ)| ≤ C

(
1

R
|φ− c||∇φ|+ 1

R2
|φ− c|2

)
,

where the constant C is independent of x and R. Lemma 3.3 below implies there exists a
constant c ∈ R

m and a subsequence Rk, such that

lim
k→∞

∫

Rd

W ◦(F ,∇(ηRk
(φ− c))dz = lim

k→∞

∫

Rd

W ◦(F , ηRk
∇φ)dz.

The inequalityW ◦(F ,H) ≤ C|H|2 holds for all |H| ≤M , where the constant C dependsM .
Using this inequality with M = ‖φ‖1,∞ permits the application of the Lebesgue dominated
convergence theorem, resulting in (3.13).

Now we formulate the Lemma which we needed in Theorem 3.2.

Lemma 3.3. For any φ ∈ S there exists a constant c ∈ R
m, such that

lim
R→∞

∫

AR

{
1

R
|φ− c||∇φ|+ 1

R2
|φ− c|2

}
dx = 0,

where AR = B2R \BR.

4When d ≥ 3 there is a canonical choice of the constant c, such that φ − c ∈ L
2d/d−2(Rd;Rm) (see

Theorem A.1). When d = 1 the choice of the constant is irrelevant. However, when d = 2 there is no
canonical choice of the constant c, which can not be chosen arbitrarily.
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The proof of the lemma is in Appendix A.

Remark 3.4. In the statement of Lemma 3.3 the liminf can be replaced by limit as R → ∞
(as we can see from the proof), except when d = 2. When d = 2, the use of liminf is essential.
Indeed, let φ(x) = u(|x|), where

u(r) = 2 sin(ln ln r) +
cos(ln ln r)

ln r
, r ≥ e. (3.15)

We compute

〈φ〉AR
=

2

3R2

∫ 2R

R

ru(r)dr =
2

3R2
(r2 sin(ln ln r)) |2RR = 2 sin(ln lnR) + o(1),

as R → ∞. We see that 〈φ〉AR
has no limit as R → ∞ and that we can choose any c ∈ [−2, 2]

so that there is a sequence Rk for which 〈φ− c〉ARk
→ 0, as k → ∞.

3.2.1 Localized test functions

While the space S is adequate for test fields produced by compact precipitates, it does
not contain functions of the form (3.5) corresponding to nucleation of slabs. The proof of
equivalence in Theorem 3.2, and especially Lemma 3.3 suggests that the test functions φ
must satisfy

lim
R→∞

∫

AR(h(R))

{
1

h(R)2
|φ− c|2 + |∇φ|2

}
dx

∫

BR

|∇φ|2dx
= 0, (3.16)

for some constant c ∈ R
m, where h(R) is a monotone increasing function, such that h(R)/R →

0, as R → ∞. Here
AR(h) = {x ∈ R

d : R− h < |x| < R}.
Without attempting to achieve the maximal extension, we can simplify the foregoing ex-
position by pointing out that in all of our applications we use only the functions φ(x) for
which

lim
R→∞

∫

AR(h(R))

|∇φ|2dx
∫

BR

|∇φ|2dx
= 0 (3.17)

for every monotone increasing function h(R) = o(R). This property can be restated as a
relative uniform continuity of the function

K(R) =

∫

BR

|∇φ|2dx.
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The notion of relative uniform continuity is the same as the classical notion of uniform
continuity, except the absolute errors are replaced with relative errors. More precisely, K(R)
is relatively uniformly continuous if for every ǫ > 0 there exist δ > 0 such that for any
R1 > R2 > 1 for which (R1−R2)/R1 < δ, we have (K(R1)−K(R2))/K(R1) < ǫ. We can also
restate this property using classical uniform continuity. Observe that the exponential function
converts absolute errors into relative errors. Therefore, the relative uniform continuity of
K(R) is equivalent to the classical uniform continuity of f(x) = lnK(ex) on [0,+∞).

Definition 3.5. We say that the test function φ ∈ W 1,∞(Rd;Rm) is localized if K(R) is
relatively uniformly continuous at infinity and there exists a constant c ∈ R

m, and a monotone
increasing function h(R) = o(R) such that

lim
R→∞

1

K(R)h(R)2

∫

AR(h(R))

|φ− c|2dx = 0. (3.18)

It is easy to see that any localized test function φ satisfies (3.16). One can also construct
radial test functions φ(x) = u(|x|) that satisfy (3.16) but are not localized in the sense of
Definition 3.5.

Remark 3.6. If d = 1 or 2, then the condition (3.18) is a consequence of (3.17) for any
choice of c. If d ≥ 3, then the condition (3.18) is not a consequence of (3.17). Indeed, if
d = 1 we have

1

h(R)2

∫

AR(h(R))

|φ− c|2dx ≤ ‖φ− c‖2∞
h(R)

,

and (3.18) follows as long as h(R) → ∞, as R → ∞. When d = 2, we consider two cases. If

lim
R→∞

K(R) < +∞

then φ ∈ S and (3.18) follows from Lemma 3.7 below. If K(R) → +∞, as R → ∞, then

1

h(R)2

∫

AR(h(R))

|φ− c|2dx ≤ 3π‖φ− c‖2∞
R

h(R)
.

We can now choose h(R) = o(R) that grows sufficiently fast, so that R/(K(R)h(R)) → 0,
along some subsequence Rk → ∞. This is proved formally in Lemma B.1. If d ≥ 3, then the
functions φ(x) = |x|−α satisfy (3.17) but not (3.18), when 0 < α < (d− 2)/2.

The terminology “localized test function” reflects the fact that these functions retain
those features of the original smooth, compactly supported test functions that are essential
for defining the binodal via the localization (2.6). The definition suggests that we may regard
the test function φ (or more precisely, φ − c) as supported on a compact set K ⊂ BR for
a sufficiently large R. This corresponds, via (2.6) to variations supported on a small ball
BηR(x0) ⊂ Ω.
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If we now wish to distinguish between the the binodal and the interior of the binodal
region we need to further restrict our attention to the functions satisfying “zero volume
fraction condition”

lim
R→∞

−
∫

BR

|∇φ|2dx = 0 (3.19)

In the minimization of the blow up functional (3.12), the condition (3.19) represents additional
constraint on the behavior of the test function φ at infinity.

It is now natural to extend the space of admissible test functions from the space S to

S∗ = {φ : φ is localized and satisfies (3.19)} .
Lemma 3.7. S ⊂ S∗.

The proof is in the Appendix B.
It is clear that for φ ∈ S∗ the integral (3.12) does not have to converge. By analogy with

(3.6) we replace it with the normalized functional

I∗(F ,φ) = lim
R→∞

∫

BR

W ◦(F ,∇φ)dx
∫

BR

|∇φ|2dx
. (3.20)

Observe that for any φ ∈ S∗ the functional I∗(F ,φ) is finite, since ∇φ(x) is uniformly
bounded.

Theorem 3.8. The pair (S∗, I∗) characterizes the binodal.

Proof. If the inequality (2.12) fails for some φ ∈ C∞
0 (B1;R

m) then I∗(F ,φ) < 0, since φ ∈ S∗.
Now assume that (2.12) is satisfied. Our goal is to prove that I∗(F ,φ) ≥ 0 for all φ ∈ S∗.
Let us fix φ ∈ S∗. Let h(R) and c ∈ R

m be as in the Definition 3.5. Let ηR(x) be a Lipschitz
cut-off function such that 0 ≤ ηR(x) ≤ 1, ηR(x) = 0, when |x| ≥ R and ηR(x) = 1, when
|x| ≤ R − h(R). In addition we can choose ηR(x) such that |∇ηR(x)| ≤ 1/h(R). We have
due to (3.14)

∫

BR

|W ◦(F ,∇(ηR(φ− c)))−W ◦(F ,∇φ)|dx ≤ C

∫

AR(h(R))

{ |φ− c|2
h(R)2

+ |∇φ|2
}
dx.

Therefore,

I∗(F ,φ) ≥ lim
R→∞

∫
BR
W ◦(F ,∇(ηR(φ− c)))dx∫

BR
|∇φ|2dx ≥ 0.

The theorem is proved.

The next logical step is to write down explicit conditions on φ ∈ S∗ minimizing (3.20).
However, the definition of the functional I∗(F ,φ) makes it difficult to study its minima
by classical variational methods. It is not even clear if the space S∗ is a vector space. It
is then natural to search for subsets of S∗ that are vector spaces on which the functional
I∗(F ,φ) can be represented by a classical variational integral without violating the binodal
characterization property.
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3.2.2 Periodic-decaying test fields

The analysis of spinodal in Section 3.1 suggests to consider the test fields that are periodic (or
constant) in some directions and decaying in the remaining ones. More precisely, we choose
our test functions φ(x) to be in S “along” a k dimensional subspace L of Rd and to have
(d− k) periods in the orthogonal complement L⊥.

More precisely, we assume that

φ(x+ uj) = φ(x), {u1, . . . ,ud−k} ⊂ L⊥ is a basis of periods. (3.21)

Let {e1, . . . , ek} be an orthonormal basis of L and {ek+1, . . . , ed} an orthonormal basis of
L⊥. We define

ψ(t,p) = φ

(
k∑

j=1

tjej +
d∑

j=k+1

pj−kej

)
, t = (t1, . . . , tk) ∈ R

k, p = (p1, . . . , pd−k) ∈ Qd−k,

(3.22)
where Qd−k is the period cell in p variables. We assume that ψ ∈ Sk(Qd−k), where

Sk(Qd−k) = {ψ ∈ W 1,∞(Yk;R
m) : [ψt ψp] ∈ L2(Yk;R

m×d)}, Yk = R
k ×Qd−k.

Hence, we introduce the space of “periodic-decaying” test functions

Ck =
{
φ(x) = ψ(Rx,Qx) : ψ ∈ Sk(Qd−k),

[
R

Q

]
∈ SO(d), Qd−k − a parallelepiped

}
.

The k×d matrix R has rows e1, . . . , ek, while (d−k)×d matrix Q has rows ek+1, . . . , ed.
Observe that the sets Ck are the unions of the family of vector spaces smoothly parametrized
by a finite dimensional manifold Gd,k × GL(d − k,R)/SL(d − k,Z). The first factor is the
Grassmannian of k-dimensional subspaces L ⊂ R

d, while the second factor is the set of all
distinct oriented Bravais lattices in R

d−k. Here GL(n,R) denotes the set of all invertible real
n× n matrices, while SL(n,Z) denotes the set of all n× n matrices with integer components
and determinant equal to 1. Such matrices map the lattice Z

n onto itself.
We remark that in the case k = 1 the functions φ ∈ C1 correspond to the physical idea

of the nucleation of either a homogeneous plate [89, 88, 27] or a composite plate [106, 107,
108, 30] while the case k = d can be viewed as nucleation of a fully localized precipitate
[86, 85, 67, 28, 29].

We also distinguish special subspaces of Ck generated by functions ψ ∈ Sk(Qd−k) that do

not depend on the p variables explicitly. We denote these subspaces by S̃k and C̃k, respectively.

S̃k = {ψ ∈ W 1,∞(Rk;Rm) : ∇ψ ∈ L2(Rk;Rm×k)};

C̃k =
{
φ(x) = ψ(Rx) : ψ ∈ S̃k, R : Rd → R

k, RRT = Ik

}
.

For example, the test functions in C̃1 must have the form

φ(x) = f((n,x)), f ∈ W 1,∞(R;Rm), f ′ ∈ L2(R;Rm), (3.23)
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where n ∈ S
d−1 is constant but arbitrary. In physical terms these test functions correspond

to the nucleation of long and thin platelets.

Theorem 3.9. For any 1 ≤ k ≤ d we have Ck ⊂ S∗ and

I∗(F ,φ) =

∫

Yk

W ◦(F ,ψtR+ψpQ)dpdt

∫

Yk

(|ψt|2 + |ψp|2)dpdt
=

∫

Y

W ◦(F ,∇φ)dx
∫

Y

|∇φ|2dx
, (3.24)

for any φ ∈ Ck, where Y = [RT QT ]Yk = L ×QTQd−k.

The proof is in Appendix C.
Suppose now that A ∈ GL(d− k,R) maps Qd−k onto [0, 1]d−k. If ψ ∈ Sk(Qd−k), then

ψ(t,p) = ψ0(t,Ap),

where ψ0 ∈ Sk([0, 1]
d−k)

def
=S0

k . Since the denominator in (3.24) is always non-negative, the
conclusion of our analysis is that the functional

Jk(F ,ψ,R,Q,A) =

∫

Y 0
k

W ◦(F ,ψt(t,p)R+ψp(t,p)AQ)dpdt (3.25)

defined on S0
k is the desired replacement of the functional in (2.12). Here Y 0

k = R
k× [0, 1]d−k.

Next we show that the spaces Ck contain enough test functions to characterize the binodal.

Theorem 3.10. For any 1 ≤ k ≤ d, any orthogonal splitting [RT QT ] ∈ SO(d) of Rd, and
any A ∈ GL(d− k,R) the pairs (S0

k , Jk) characterize the binodal.

Proof. Theorem 3.9 implies that if for given R, Q and A there exists ψ ∈ S0
k for which

Jk(F ,ψ,R,Q) < 0, then the corresponding function φ(x) = ψ(Rx,AQx) ∈ S∗ satisfies
I∗(F ,φ) < 0. By Theorem 3.8 we conclude that F ∈ B.

Now assume that F ∈ B. Then there exists φ ∈ C1
0(B1;R

m) for which the inequality
(2.12) fails. Let us first extend the function φ(x) by zero to all of Rd. Let us split the space
R

d into an orthogonal sum R
d = RT

R
k ⊕QT

R
d−k. Let ψ0(t,u) = φ(R

T t+QTu). Let Qd−k

be the period cell mapped by A ∈ GL(d − k,R) onto [0, 1]d−k. Let c ∈ Qd−k be the center

of Qd−k and a > 0 be so large that ψ0(t,u) = 0, if u 6∈ a(Qd−k − c). Let ψ̃(t,u) be the

a(Qd−k − c)-periodic extension of ψ0(t,u). Let ψ(t,p) = a−1ψ̃(at, aA−1p). Then ψ ∈ S0
k .

Also

Jk(F ,ψ,R,Q,A) = a−d| detA|
∫

B1

W ◦(F ,∇φ)dz < 0.
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Remark 3.11. We observe that if φ ∈ Ck and λ > 0, then φλ = λφ(x/λ) ∈ Ck, and
∫

Y

W ◦(F ,∇φλ)dx = λd
∫

Y

W ◦(F ,∇φ)dx.

Therefore,
inf
φ∈Ck

Jk(F ,φ) = −IndBc(F ),

where IndBc(F ) is the indicator function of the complement of the binodal region.

If φ ∈ C̃k then the functional Jk reduces to

J̃k(F ,ψ,R) =

∫

Rk

W ◦(F ,∇ψ(t)R)dt. (3.26)

Observe that the pairs (C̃k, J̃k) only bound the binodal, while the pairs (S0
k , Jk) characterize

it.

3.2.3 Laminates

Crossing the binodal may not be detectable by solving the Euler-Lagrange equations in one
of the above problems. For instance, one can show that in the example considered in Sec-
tion 5 with d = 2 there are parts of the binodal that can only be detected by test functions
whose gradient is supported on three specific gradients [56]. To construct such objects we
need sequences of test functions in C1 that converge only weakly. The limiting value of the
functional J1 will then be expressed in terms of the finitely many parameters describing the
geometry and piecewise-constant elastic fields in the limiting configuration.

More precisely, we consider elastic fields described by finitely supported probability mea-
sures [31, 69]

ν =
r∑

j=1

λjδHj
,

r∑

j=1

λj = 1, λj > 0. (3.27)

Given such a measure it is in general difficult to verify if ν is a gradient Young measure.
However, one may easily construct a large class of such Young measures via the process of
lamination [97].

Definition 3.12. Let 1 ≤ j0 ≤ r, s ∈ (0, 1), θ ∈ [0, 1] and {B1,B2} ⊂ M are such that
B1 −B2 is rank-1 and Hj0 = sB1 + (1− s)B2. We say that the probability measure

ν ′ = ν + θλj0(sδB1 + (1− s)δB2 − δHj0
)

is obtained from ν by lamination.

Definition 3.13. A finite rank laminate is a finitely supported probability measure (3.27)
for which there exists a sequence of probability measures ν1, . . . , νm, such that ν1 = δH , νm = ν
and for each k = 1, . . . ,m− 1 the measure νk+1 is obtained from νk by lamination.
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For a measure ν given by (3.27) we define its “center of mass” by

ν̄ =
r∑

j=1

λjHj.

We observe that if ν ′ is obtained from ν by lamination then ν ′ = ν̄. Hence, the matrix H in
the definition of a finite rank laminate Young measure is equal to ν̄.

Theorem 3.14. Suppose ν is a finite rank laminate with ν̄ = a ⊗ n. Then there exists a
sequence {φn} ⊂ C1, such that φn → φ0 uniformly, where φ0(x) is given by

φ0(x) =





a, if (n,x) ≥ 1,

0, if (n,x) ≤ 0,

(n,x)a, if 0 < (n,x) < 1,

(3.28)

and such that

lim
n→∞

J1(F ,φn,R,Q, I) = J(F , ν) =

∫

M

W ◦(F ,H)dν(H) =
r∑

j=1

λjW
◦(F ,Hj), (3.29)

where the 1× d matrix R can be identified with the unit vector n.

The proof of Theorem 3.14 can be found in Appendix D.
We can now define the space

L = {ν − finite rank laminate Young measure, rank(ν̄) = 1}.

Corollary 3.15. The pair (L, J(F , ν)) bounds the binodal.

Proof. If F 6∈ B then J1(F ,φn,R,Q, I) ≥ 0 for any n ≥ 1, where the sequence {φn} is
as in Theorem 3.14. The formula (3.29) then implies that J(F , ν) ≥ 0. Hence, the pair
(L, J(F , ν)) bounds the binodal. Obviously, this result also follows from the fact that any
quasiconvex function is rank-one convex.

4 Characterization of spinodal and binodal

In this section we use our equivalent formulations to derive explicit necessary conditions
characterizing spinodal and bounding the binodal.

4.1 Spinodal

We recall from (3.8) that the deformation gradient F is weakly locally stable if and only if

IS(F , φ((x,n))a) = (A(n;F )a,a) ≥ 0, for all a ∈ R
m, n ∈ S

d−1. (4.1)
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The conditions of weak marginal stability can then be interpreted as the emergence of a 6= 0

and n ∈ S
d−1 such that

IS(F , φ((x,n))a) = 0.

If the above equality is satisfied because F crosses into the spinodal region, then the pair
(a,n) must be minimizing for IS(F , φ((x,n))a). Therefore, the equilibrium equations

∇aIS(F , φ((x,n))a) = 0, (4.2)

∇nIS(F , φ((x,n))a) = 0 (4.3)

must hold.

Remark 4.1. The space FS defined by (3.5) has m + d− 1 degrees of freedom a ∈ R
m and

n ∈ S
d−1. The equation (4.2) describes equilibrium with respect to the variation of the local

values of the field, as in the Euler-Lagrange equation. The equation (4.3) describes equilibrium
with respect to “configurational” degrees of freedom n that describe the large-scale structure of
the field (directions in which φ ∈ FS does not decay at infinity). In this respect it is analogous
to the Noether-Eshelby equation which is usually used to find configuration of singularities,
[100, 42, 43, 91, 49, 62]. Indeed, the lack of proper decay of the field φ(x) can be regarded as
a singularity at infinity.

One can see that equations (4.2)–(4.3) always have a family of trivial solutions (a,n),
characterized by a = 0. Hence, we may regard the problem of finding the non-trivial solutions
of (4.2)–(4.3) as a bifurcation problem. Explicitly, equations (4.2)–(4.3) read

A(n;F )a = 0, A∗(a;F )n = 0, (4.4)

where A∗(a;F ) is the co-acoustic tensor defined as the linear map on R
d given by

m 7→ A∗(a;F )m = (WFF (F )(a⊗m))Ta. (4.5)

Observe that the equations in (4.4) are not independent. There is one relation between the
left-hand sides in (4.4)

(A∗(a;F )n,n) = (A(n;F )a,a).

Equations in (4.4) are also homogeneous in a and n and therefore, they can be regarded
as m + d − 1 constraints on md + (m − 1) + (d − 1) unknowns. As such they describe a
co-dimension 1 surface in M, which we can interpret as “an equation of spinodal”.

While the points on the spinodal satisfy (4.4) the converse need not be true, i.e. some
other points inside the spinodal region may satisfy (4.4). It is possible to reduce the size of
the system (4.4) by eliminating a in the case when rank(A(n)) = m − 1. In that case the
vector a spanning its kernel is determined up to a scalar multiple, or, if we normalize it to
the unit length, up to a sign. Then

cof(A(n)) = αa⊗ a, α = Tr cof(A(n)) 6= 0. (4.6)
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Using Einstein summation convention, the second equation in (4.4) and the first equation in
(4.6) can be written as

WFiαFjβ
aiajnβ = 0, aiaj =

1

α
cof(A(n))ij,

respectively. Hence, we obtain

WFiαFjβ
cof(A(n))ijnβ = 0. (4.7)

We can write (4.7) in index-free notations

(cof(A(n;F )),B(n,η;F )) = 0, Tr cof(A(n;F )) 6= 0. (4.8)

for all η ∈ R
d, if we introduce a bi-linear matrix-valued form

B(n,η;F )ij = WFiαFjβ
(F )nαηβ.

Conversely, if we take η = n in (4.8) we obtain detA(n) = 0. Hence, there exists a 6= 0, such
that the first equation in (4.4) is satisfied. The relation (4.6) also holds, since Tr cof(A(n)) 6=
0. Thus, the second equation in (4.4) and the first equation in (4.8) are equivalent. We
remark that the side condition Tr cof(A(n)) 6= 0 in (4.8) is important, since for generic fully
anisotropic tensors WFF the set {F ∈ M : rank(A(n;F )) ≤ m− 2 for some |n| = 1} has full
dimension, if d ≥ 3. We regard conditions (4.8) and (4.4) as generically equivalent, since at
the spinodal we expect, in the generic case, the single smallest eigenvalue of A(n) to attain
its minimum value of 0.

It turns out that there are no other domain-local constraints on ∇y(x) than ∇y(x) 6∈ S

that follow from stability with respect to weak variations under the assumption of non-
degeneracy of A(n;F ). Indeed, due to [113] and the van Hove’s theorem [125], the homo-
geneous deformation y0(x) = Fx is a weak local minimizer of (2.1) on the unit ball with
Dirichlet boundary conditions, provided A(n;F ) > 0 for all |n| = 1.

Example 4.2.

As a simple illustration, consider the energy [24, 1]

W (F ) = f(Tr ε) + µ

∣∣∣∣ε−
1

d
(Tr ε)I

∣∣∣∣
2

, ε =
1

2
(F + F T ), µ > 0. (4.9)

In this model the acoustic tensor can be written explicitly

A(n) = µ(|n|2I − n⊗ n) +
(
f ′′(Tr ε) + 2µ

(
1− 1

d

))
n⊗ n.

From (4.5) we immediately find that A∗(a) = A(a). The system (4.4) then becomes




µ|n|2a+

(
f ′′(Tr ε) + µ

(
1− 2

d

))
(a,n)n = 0,

µ|a|2n+

(
f ′′(Tr ε) + µ

(
1− 2

d

))
(a,n)a = 0.
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Figure 1: The double-well energy f(θ) from the example in Remark 4.2. Spinodal region is
the projection of the bold part of the graph onto the θ-axis and spinodal points are S1 and
S2.

We see that a must be a scalar multiple of n and the system reduces to

f ′′(Tr ε) + 2µ

(
1− 1

d

)
= 0. (4.10)

The equation (4.8) can be written as

dµd−1

(
f ′′(Tr ε) + 2µ

(
1− 1

d

))
n = 0.

and it is clear that this equation is equivalent to (4.10). The actual spinodal in this example is
the union of hyperplanes of the form Tr ε = θ, where θ is any zero of φ(θ) = f ′′(θ)+2µ(1−1/d),
around which φ(θ) changes sign. The latter condition of transversality has to be imposed
externally, since it is not captured by the equation (4.10). Our general theorems will feature
such external transversality conditions, enabling us to assert the marginal stability of F . If
the function f(θ) has a double-well shape and its second derivative is shaped like a parabola,
then the spinodal and the spinodal region are shown in Figure 1. We see how according to
(4.10) the spinodal lies in the region, where f ′′ < 0.

4.2 Binodal

In this section we consider different explicit characterizations of the binodal. In particular
we distinguish the PDE problem associated with nucleation of classical inclusions from the
algebraic problem associated with nucleation of laminates.

4.2.1 Classical nucleation

To obtain specific constraints on the value of F we need to study necessary conditions of
equilibrium for the functionals Jk, k = 1, . . . , d, defined by (3.25). Before writing these
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conditions it is necessary to identify independent degrees of freedom associated with the
spaces Ck: ψ ∈ S0

k , the subspace L ⊂ R
d, described by the k × d matrix R satisfying

RRT = Ik, and the shape and orientation of the period cells Qd−k described by the matrix
A ∈ GL(d−k,R). As in the case of the spinodal we identify the finite dimensional parameters
R and A as configurational degrees of freedom associated with “singularities at infinity5”
The lack of rank-1 convexity of W (F ) allows the field variable ψ ∈ S0

k to possess additional
configurational degrees of freedom associated with singularities allowed by the Euler-Lagrange
equations at finite x ∈ R

d.
Our next two theorems introduce the classical Euler-Lagrange equations and the config-

urational Noether-Eshelby equations [100, 42, 43, 91, 49, 62].

Theorem 4.3. Assume that for F ∈ Bin there exists 1 ≤ k ≤ d, orientation [RT QT ] ∈
SO(d), a period cell shape Qd−k (i.e. A ∈ GL(d − k,R)) and a non-zero function ψ ∈ S0

k

such that Jk(F ,ψ,R,Q,A) = 0, while

Jk ≥ 0

for all test functions φ ∈ Ck. Then

F +∇φ(x) 6∈ B for a.e. x ∈ R
d, (4.11)

and the test field φ(x) = ψ(Rx,AQx) has to satisfy the Euler-Lagrange and the Noether-
Eshelby equations in R

d {
∇ · P (F +∇φ) = 0,

∇ · P ∗(F +∇φ) = 0,
(4.12)

where P (F ) = WF (F ) and P ∗(F ) = W (F )I −F TP (F ). 6 The optimal orientation and the
period cell shape are determined by the additional conditions

∫

Y

P̂ ∗(∇φ)dx = 0, (4.13)

where P̂ ∗(H) = W ◦(F ,H)I −HTW ◦
H(F ,H).

Proof. By assumption, φ is the minimizer of the functional

φ 7→
∫

Y

Ŵ (∇φ)dx

over all φ ∈ Ck, where
Ŵ (H) = W ◦(F ,H). (4.14)

5 The functions in the much larger space S∗ would possess infinitely many configurational degrees of
freedom at infinity corresponding to the infinite variety of possible asymptotic behaviors of φ ∈ S∗.

6In elasticity theory the tensors P (F ) and P ∗(F ) are called the Piola Kirchhoff tensor and the Eshelby
tensor, respectively.
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The classical optimality conditions [12] then imply (4.11) and (4.12). Indeed,

P̂ (H) = ŴH(H) = P (F +H)− P (F ),

which means that the Euler-Lagrange for the energy density (4.14) coincides with first equa-
tion in (4.12). We also compute

P̂ ∗(H) = P ∗(F +H) + F TP (F +H) +N (H), (4.15)

where
N (H) =HTP (F )− (H ,P (F ))I −W (F )I.

Therefore, the Noether-Eshelby equation ∇ · P̂ ∗(∇φ) = 0 for the energy density (4.14) is
equivalent to the second equation in (4.12), since ∇·N (∇φ) = 0 for any smooth vector field
φ. Finally, (4.11) follows from a simple observation that H is a point of quasiconvexity for

Ŵ if and only if F +H is a point of quasiconvexity for W .
The additional integral constraint (4.13) comes from variations in R, Q and A. If we fix

ψ and A, and vary [RT QT ] ∈ SO(d) we obtain
∫

Y

∇φT P̂ (∇φ)dx ∈ Sym(Rd). (4.16)

Fixing ψ, R and Q and varying A results in
∫

Y

Q∇φT P̂ (∇φ)QTdx = 0. (4.17)

By assumption ∫

Y

W ◦(F ,∇φ)dx =
1

| detA|Jk(F ,ψ,R,Q,A) = 0.

This, together with (4.17) implies
∫

Y

QP̂ ∗(∇φ)QTdx = 0.

Hence, in order to prove the theorem we need to show that
∫

Y

RP̂ ∗(∇φ)QTdx = 0,

∫

Y

RP̂ ∗(∇φ)RTdx = 0,

since, according to (4.16)
∫
Y
P̂ ∗dx ∈ Sym(Rd). The relation (4.13) then follows from

Lemma 4.4 below.

Lemma 4.4. The equations (4.12) imply that
∫

Y

P̂ ∗(∇φ)RTdx = 0. (4.18)

27



The proof is in the Appendix E.
Several remarks are in order. The first remark concerns the necessary condition (4.11).

Definition 4.5. If φ ∈ Ck \ {0} satisfies (4.12) and (4.13), but fails (4.11) then φ is called
a spurious solution.

The failure of quasiconvexity means that it is possible to modify the function φ locally,
such that the modified function still belongs to Ck, but gives a negative value to the functional
Jk. This implies that F ∈ B. In other words, spurious solutions do not correspond to points
F on the binodal. Conversely, if φ ∈ Ck satisfies (4.11), then obviously F 6∈ B.

The Eshelby-Noether equation (4.12)2 is the condition of equilibrium with respect to the
degrees of freedom associated with the singularities of ψ ∈ S0

k . Indeed, in the absence of
singularities a well-know Noether identity [100]

∇ · P ∗(∇φ) = −(∇φ)T∇ · P (∇φ) (4.19)

says that (4.12)2 is a consequence of (4.12)1. If the singularities of ψ ∈ S0
k are smooth surfaces

of jump discontinuity then the PDE (4.12)2 can be replaced with an algebraic equation on
the singular surface Σ [42, 43, 91, 49, 62, 21]

[[P ∗]]n = 0, x ∈ Σ, (4.20)

where [[P ∗]] = P ∗
+ − P ∗

−, is the jump of P ∗(F +∇φ(x)) across Σ. Here n is a unit normal
to Σ. The region into which n points is called the “+” region, while the region from which
n points is called the “−” region. It is well-known, the d algebraic equations (4.20) can be
reduced to a single scalar Maxwell relation [38, 42]

p∗ = [[W ]]− ({{P }}, [[F ]]) = 0, x ∈ Σ, (4.21)

where {{P }} = (P+ + P−)/2, interestingly (4.21) survives even in dynamics [123]. Now, if
all the singularities of φ(x) are smooth surfaces of jump discontinuity the system (4.12) is
equivalent to the system (4.12)1, (4.21). However, while the relation (4.21) will be convenient
in the analysis of the example in Section 5, in the general theory we are not making any as-
sumptions on the nature of singularities of ∇φ(x), and the equation (4.12)2 must be retained
along with (4.12)1.

It is clear that the verification of (4.11) may be difficult without the complete knowledge
of the binodal. Yet, even partial knowledge of the binodal region can be used to demonstrate
that condition (4.11) fails, thereby ruling out some of the spurious solutions of (4.12)–(4.13).
For instance, there are several easy-to-evaluate consequences of (4.11), especially on a smooth
surface of jump discontinuity Σ of ∇φ. These conditions are discussed in detail in [61]. One
important example is the roughening equilibrium equation [58]

[[P (F +∇φ)]]T [[∇φ]]n = 0, x ∈ Σ. (4.22)

This condition and the optimal orientation condition (4.13) are related via a localization
argument. Indeed, consider the pair of fields F± = F +∇φ±(x0) at a point x0 on the surface
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of jump discontinuity. This implies a configuration, where an infinite slab carrying the field
F− is embedded in the infinite space where the field is F+. Such a configuration solves the
(4.12)1 if and only if {

[[F ]] = a⊗ n, for some a ∈ R
m

[[P ]]n = 0,
(4.23)

where n is the normal to the boundary of the slab. It solves (4.12)2 if and only if (4.21) is
satisfied and it satisfies (4.13) if and only if (4.22) holds.

Another consequence of (4.11) is the roughening stability inequality [58]. It is stated as

C±(a,n) =

[
A±(n) B±(a,n) + [[P ]]

B±(a,n)
T + [[P ]]T A∗

±(a)

]
≥ 0 (4.24)

in the sense of quadratic forms on the orthogonal complement of R[a,−n]. Here A±(n) =
A(n;F±), A

∗
±(a) = A

∗(a;F±) and

B±(a,n)m = A(n,m;F±)a = (WFF (F±)(a⊗m))n

is the bilinear form satisfying B±(a,n)n = A±(n)a and BT
±(a,n)a = A∗

±(a)n.
The second remark concerns condition (4.13). Its compact general form comprises two

relations: (4.18), which is a consequence of (4.12), and
∫

Y

P̂ ∗(∇φ)QTdx = 0, (4.25)

which is an algebraic condition of optimality with respect to orientation and period cell shape.
We observe that there is an analogy between equations (4.12), (4.17) and the first equation
in (4.4), and between (4.16) and the second equation in (4.4). Observe that if we dot the first
equation in (4.4) with a we obtain that IS(F , φ((x,n))a) = 0 implying that generically F
must lie in S—the closure of the spinodal region. However, it cannot describe the spinodal
alone. Indeed, if F in the spinodal region is such that the function S

d−1 ∋ n 7→ detA(n;F )
changes sign then there will be an entire neighborhood of F where this is true. Therefore,
for each F with this property we can find n 6= 0 with detA(n;F ) = 0. This shows that
existence of non-trivial solutions of the first equation in (4.4) describes entire subregions of
the spinodal region. The second equation in (4.4) eliminates most of these solutions and
describes a co-dimension 1 surface containing the spinodal.

Our next theorem relates the existence of non-zero solutions to the system (4.12)–(4.13),
i.e. the generalized bifurcation, with the marginal stability of F . More precisely, we show
that generically, the existence of nontrivial solutions implies that F must be either on the
binodal or inside the binodal region. The solutions corresponding to the latter possibility are
“spurious”, and one must use both the partial knowledge of B and computable consequences
of (4.11), (see [61]), in order to eliminate them.

Theorem 4.6. Suppose 1 ≤ k ≤ d and φ ∈ Ck solves (4.12) and satisfies (4.13). Then
Jk(F ,ψ,R,Q,A) = 0.
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The proof is given in the Appendix F

Corollary 4.7. If (4.12) has solution (ψ,R,Q,A) such that ψ 6= 0, and

∂Jk(F ,ψ,R,Q,A)

∂F
6= 0 (4.26)

then F must lie in the closure of B.

The Corollary 4.7 implies that F can not lie in the interior of the complement of B, so
F ∈ Bin. Therefore non-trivial solution of (4.12) corresponds to F ∈ Bin if and only if it is
not spurious.

We give the following definition in order to distinguish parts of the binodal that could be
identified by the test functions from Ck.

Definition 4.8. We say that F belongs to the nucleation set Nk if there exists a funda-
mental domain Y = L×QTQd−k such that the system (4.12) has a non-zero solution φ ∈ Ck
satisfying (4.13).

In Section 5 we show that sometimes the sets Nk can be characterized without a complete
knowledge of the binodal set B.

Example 4.9.

As a simple illustration of a case where binodal can be fully characterized by our method,
consider again the energy (4.9). The Euler-Lagrange equation from (4.12) becomes

µ∆φ+∇
(
f ′(TrF +∇ · φ) + µ(d− 2)

d
∇ · φ

)
= 0. (4.27)

Taking divergence of this equation we obtain

∆Φ′(TrF +∇ · φ) = 0, Φ(θ) = f(θ) +
µ(d− 1)

d
θ2. (4.28)

By assumption, ∇ · φ(x), and hence Φ′(TrF + ∇ · φ(x)) is bounded on R
d. Therefore,

Φ′(TrF +∇ · φ(x)) = const. Taking the curl of (4.27) we obtain

∆(∇φ− (∇φ)T ) = 0

in the sense of distributions. Hence, the boundedness of ∇φ(x) implies that ∇φ− (∇φ)T =
2M , where M is a constant anti-symmetric matrix. Therefore, φ(x) = Mx + ∇h(x) for
some locally integrable function h(x). The boundedness of φ(x) implies thatM = 0. Indeed,
if M 6= 0, there exists a unit vector e1 such that Me1 6= 0. Let e2 = Me1/|Me1|. Then,
the unit vector e2 is orthogonal to e1, by anti-symmetry ofM , and (Me1, e2) = |Me1| > 0.
For any R > 0 let xR(t) = Re1 cos t+Re2 sin t be a closed loop. We conclude that

∣∣∣∣
∫ 2π

0

(φ(xR(t)), ẋR(t))dt

∣∣∣∣ ≤ 2πR‖φ‖∞.
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Figure 2: Common tangent to the graph of the function Φ(θ) from Example 4.9 and its image
on the graph of the function f(θ).

At the same time we have
∫ 2π

0

(∇h(xR(t)), ẋR(t))dt = 0,

∫ 2π

0

(MxR(t), ẋR(t))dt = 2πR2(Me1, e2).

Thus, φ(x) = ∇h(x), while Φ′(TrF + ∆h) = C = const. We claim that C = Φ′(TrF ).
Indeed, if C 6= TrF , then for every x ∈ R

d the number ∇ · φ(x) = ∆h(x) must belong
to a finite set of solutions of the equation Φ′(TrF + η) = C, none of which is zero. Hence,
|∇φ(x)| > δ > 0 for all x ∈ R

d for some positive number δ. But then, condition (3.19)
will not be satisfied. If the graph of function f(θ) has the shape shown in Figure 1 then the
equation

Φ′(TrF + η) = Φ′(TrF ) (4.29)

will either have a unique solution η = 0, or three solutions, two of which η1 and η2 are non-
zero. In the former case the Euler-Lagrange PDE (4.12)1 has only trivial solutions in S∗. In
the latter case condition (4.11) helps us to rule out some of the spurious solutions. Observe
that one of the three solutions of (4.29) is always inside the spinodal region. Hence, assuming
that TrF is not in the spinodal region we only need to consider solutions of the form

∆h = ηχΩ(x), (4.30)

where η is the unique non-zero solution of (4.29) for which TrF + η is not in the spin-
odal region, and Ω is an arbitrary measurable subset of Rd, satisfying “zero volume fraction
condition”

lim
R→∞

|Ω ∩ BR|
|BR|

= 0,

so that the corresponding solution φ satisfy (3.19). In this case any choice of an open and
bounded subset Ω ⊂ R

d provides a solution φ ∈ S to (4.12)1 via the solution h ∈ H2(Rd) of
(4.30).

The equation (4.12)2 is difficult to use directly in this example. Instead we restrict the
class of solutions of the bifurcation system (4.12) only to those, where the set Ω has smooth
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boundary. In this case the equation (4.12)2 can be replaced by the Maxwell relation (4.21)

f(TrF + η)− f(TrF )− f ′(TrF )η + µ

∣∣∣∣[[∇∇h]]− 1

d
[[∆h]]I

∣∣∣∣
2

= 0.

Observe that due to the assumed smoothness of the boundary of ∂Ω and elliptic regularity
we conclude that [[∇∇h]] must be a rank-1 matrix on ∂Ω. Hence, [[∇∇h]] = ηn(x) ⊗ n(x),
x ∈ ∂Ω. Thus, we obtain

f(TrF + η)− f(TrF )− f ′(TrF )η + µη2
(
1− 1

d

)
= 0.

Rewriting this in terms of the function Φ(θ) we obtain

Φ(TrF + η)− Φ(TrF )− Φ′(TrF )η = 0. (4.31)

Equations (4.29) and (4.31) have a geometric interpretation. They say that the straight line
connecting the points (TrF ,Φ(TrF )) and (TrF +η,Φ(TrF +η)) on the graph of Φ(θ) must
be a common tangent at both points. Figure 2 shows that if f(θ) is as shown on Figure 1
then there is a unique common tangent to the graph of Φ(θ), touching it at the points θ = θ1
and θ = θ2. Thus, either TrF = θ1 and ∆h(x) = (θ2 − θ1)χΩ(x), or TrF = θ2 and
∆h(x) = (θ1 − θ2)χΩ(x).

Suppose now that Ω is an arbitrary (d− k)-periodic array of arbitrary smooth inclusions
where

∆h(x) = [[θ]]χΩ(x). (4.32)

Computing Fourier transform in t variables and Fourier coefficients in p variables in (4.32)
we can easily verify that φ ∈ Ck. It remains to verify condition (4.13). We have, after
straightforward calculations, taking into account (4.29) and (4.31)

1

µ
P̂ ∗ =

(
|∇∇h|2 − (∆h)2

)
I + 2

(
∆h∇∇h− (∇∇h)2

)
.

Integration by parts gives
∫

Y

|∇∇h|2dx =

∫

Y

(∆h)2dx,

∫

Y

(∇∇h)2dx =

∫

Y

∆h∇∇hdx.

Therefore, (4.13) is satisfied. Hence, the sets Nk are all the same for all k and are given by

Nk = {F : TrF ∈ {θ1, θ2}},

where θ1, θ2 are determined as θ-coordinates of the two points of common tangency, as shown
in Figure 2. In [60] we show that in this example Bin = Nk. It is also clear that if the graph
of Φ(θ) admits more than one common tangent, then the system (4.12)–(4.13) will also have
spurious solutions corresponding to the interior points of the binodal region.
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4.2.2 Microstructure nucleation

The main difference between the Legendre-Hadamard condition and the quasiconvexity con-
dition is that in the former case the set of test functions (3.5) “exhausts” possible localized
instabilities. This leads to algebraic system (4.8), whose nontrivial solutions signal instability
whenever F crosses the spinodal. Similarly, it may be intuitively appealing to think that
crossing the binodal always manifests itself through the bifurcation in (4.12)–(4.13) in the
class of decaying-periodic fields. However, we know that some points F on the binodal can
be revealed only by studying nucleation of finite rank laminates. In this case the functional

J(F , ν) =
r∑

j=1

λjW
◦(F ,Hj) (4.33)

is non-negative for any finite rank laminate ν, with ν̄ = a⊗ n, while achieving its minimum
value of zero at a specific finite rank laminate, a 6= 0 and n ∈ S

d−1. Finding the corresponding
bounds for the binodal leads to an algebraic problem formulated below.

We recall that on each step of the construction of the measure ν in Definition 3.13 by
means of lamination we introduced free parameters that can be varied in order to minimize
J(F , ν) given by (4.33). The equilibrium equations obtained from such a minimization are
constraints on the matricesHj and weights λj in (3.27) get more and more complicated with
the growth of the rank of the laminate. Below, we exhibit the recursive structure of the
ensuing algebraic system by examining the passage from rank-1 to rank-two laminates.

The rank-1 laminate corresponds to ν1 = δa⊗n. This Young measure is attained on the
special test field φ0 ∈ C̃1 given by (3.28). In that case

J(F , ν1) = J̃1(F ,φ0,n) = W ◦(F ,a⊗ n).

The field value F is marginally stable if the following equations are satisfied





W ◦(F ,a⊗ n) = 0,

∇aW
◦(F ,a⊗ n) = 0,

∇nW
◦(F ,a⊗ n) = 0.

(4.34)

This system places F on the jump set J (see [58]). The second rank laminate ν2 is obtained
from ν1 by means of lamination in the sense of Definition 3.12.

ν2 = (1− θ)δa⊗n + θsδH1 + θ(1− s)δH2 , sH1 + (1− s)H2 = a⊗n, H2 −H1 = b⊗m.

Observe that J(F , ν2) is affine in θ. Hence, it is minimized either at θ = 0 corresponding to
a rank-1 laminate or at θ = 1. The goal of using rank-r laminates is to capture points on
the binodal that cannot be captured using rank-(r − 1) laminates. Therefore, we only need
to consider the case θ = 1. Then

J(F , ν2) = sW ◦(F ,a⊗ n− (1− s)b⊗m) + (1− s)W ◦(F ,a⊗ n+ sb⊗m).
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The field value F is marginally stable when the laminate with s ∈ [0, 1], {a, b} ⊂ R
m \ {0},

and {n,m} ⊂ S
d−1 delivers the global minimum to J(F , ν2), which is equal to 0. Observe

that both s = 0 and s = 1 correspond to rank-1 laminates, and are therefore excluded from
the analysis of rank-2 laminates. Hence, we are interested only in the case when s ∈ (0, 1).
If the minimum of J(F , ν2) is attained at a rank-2 laminate, then the following system of
equations must hold





sW (F1) + (1− s)W (F2)−W (F )− (P (F ),a⊗ n) = 0

W (F2)−W (F1)− (sP (F1) + (1− s)P (F2),F2 − F1) = 0

(sP (F1) + (1− s)P (F2)− P (F ))n = 0

(sP (F1) + (1− s)P (F2)− P (F ))Ta = 0

(P (F2)− P (F1))m = 0

(P (F2)− P (F1))
Tb = 0

(4.35)

where
F1 = F + a⊗ n− (1− s)b⊗m, F2 = F + a⊗ n+ sb⊗m

are the values of the deformation gradient in the internal laminate. There are 2m + 2d
independent equations in (4.35) with 2m+ 2d− 1 unknowns s, a, b, m and n, where n and
m are constrained to be unit vectors. We conclude that the system (4.35) restricts F to a
co-dimension 1 surface corresponding to nucleation of second rank laminates.

Next we observe that
F2 − F1 = b⊗ n. (4.36)

Therefore, in view of either the 5th or the 6th equation in (4.35), we can rewrite the second
equation in (4.35) as the Maxwell relation

W (F2)−W (F1)− (P (F2),F2 − F1) = 0, (4.37)

The system (4.35) can then be decomposed into two systems: the micro-level system and
the macro-level system. The micro-level system consists of the 5th and the 6th equation in
(4.35), as well as (4.36) and (4.37):





W (F2)−W (F1)− (P (F2),F2 − F1) = 0

(P (F2)− P (F1))m = 0

(P (F2)− P (F1))
Tb = 0

F2 − F1 = b⊗ n.

(4.38)

This is exactly the same system as in (4.34) defining the jump set J. In particular, {F1,F2} ⊂
J. The structure of the macro-level system becomes clear if we introduce the notations

F = sF1+(1−s)F2, P = sP (F1)+(1−s)P (F2), W = sW (F1)+(1−s)W (F2). (4.39)
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Then the macro-level system can be written as follows





W −W (F )− (P (F ),F − F ) = 0

(P − P (F ))n = 0

(P − P (F ))Ta = 0

F − F = a⊗ n.

(4.40)

Observe that the system (4.40) has a structure very similar to structure of the system defining
the jump set J, except the energy density W (F ) is replaced by a modified function W (F ).
To define this function we first introduce the set

Ĵ = {sF1 + (1− s)F2 : s ∈ [0, 1], F1,F2 solve (4.38)}.

Next, for F 6∈ Ĵ we assume that W (F ) = W (F ), while for F ∈ Ĵ we define

W (F ) = min
F=sF1+(1−s)F2

{sW (F1) + (1− s)W (F2) : F1,F2 solve (4.38)}. (4.41)

One can see that W (F ) is a Lipschitz continuous function that agrees with W (F ) on the

complement of Ĵ.
We claim now that F is located on the jump set of W (F ), i.e.

W (F ) = W, WF (F ) = P , (4.42)

where F , P and W are given by (4.39). We say that the point F ∈ Ĵ is regular if the
minimum in the definition of W (F ) is achieved at a unique pair F1, F2.

Theorem 4.10. Assume that F 6∈ Ĵ and F ∈ Ĵ is regular, i.e. there are unique values F1,
F2 and s minimizing (4.41). Then, F1 and F2 are on the jump set J of the energy W (F ),
and F and F are on the jump set J of the energy W (F ) if and only if F , F1, F2 and s solve
(4.35).

Proof. By definition of F1, F2 the system (4.38) is satisfied. The system (4.40) places F and
F are on the jump set J of the energy W (F ) if and only if (4.42) holds. To prove (4.42) we

perturb a regular point F within Ĵ. Then, the values F1, F2 and, hence, b and m will also
be smoothly perturbed. Therefore,

δF = δF2 − sδ[[F ]]− (δs)[[F ]],

where [[F ]] = F2 − F1. We also get

δW = (P (F2), δF2)− (δs)[[W ]]− s((P (F2), δF2)− (P (F1), δF1)).

Replacing [[W ]] = W (F2)−W (F1) with (P (F1), [[F ]]) and δF1 with δF2 − δ[[F ]] we obtain

δW = (P (F1), δF ) + (1− s)([[P ]], δF2) = (P (F1), δF ) + (1− s)([[P ]], δF ),
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since
([[P ]], [[F ]]) = ([[P ]], δ[[F ]]) = 0,

due to (4.38). Thus,
WF (F ) = sP (F1) + (1− s)P (F2) = P .

We conclude that the set of field values F for which the system (4.35) has a non-trivial
solutions can be interpreted as the jump set J for W (F ) defined by (4.41). By replacing the
function W (F ) with W (F ), and by iterating this process, we can continue to define higher
order jump sets for laminates of any rank. By analogy with (4.26) we also have a simple
non-degeneracy condition.

Theorem 4.11. If a finite rank laminate ν given (3.27) minimizes J(F , ν) with the minimal
value of zero then F must lie in the closure of B, provided

A(n;F )a 6= 0. (4.43)

Proof. To prove the theorem it is enough to show that (4.43) guarantees that
∂J(F , ν)

∂F
6= 0.

Indeed, we compute

∂J(F , ν)

∂F
= P − P (F )−WFF (a⊗ n) 6= 0, P =

∫

M

P (F +H)dν(H). (4.44)

It is clear that if

ν ′ =
r∑

j=1

λjδH′

j

is a finite rank laminate with ν̄ ′ = 0, then the measure

ν =
r∑

j=1

λjδH′

j+a⊗n

is also a finite rank laminate with ν̄ = a⊗ n. Hence, if H ′
j are fixed, then the function

j(a,n, ν ′) =
r∑

j=1

λjW
◦(F ,H ′

j + a⊗ n)

must be minimized in a. Hence,

0 = ∇aj(a,n, ν
′) = (P − P (F ))n.

Therefore, according to (4.44),

∂J(F , ν)

∂F
n = A(n;F )a.

The theorem is now proved.

36



B1 B2
B1 B2

B̄1 B̄2

Figure 3: Possible relations between the envelopes W (F ) and QW (F ).

Observe that by minimizing j(a,n, ν ′) in n we also obtain

(P − P (F ))Ta = 0, (4.45)

which is the macro-level roughening equilibrium condition (4.40)3. For an example where a
part of the binodal can be captured only via the equations (4.35) we refer to [56].

The fact that the binodal of W (F ) must lie in the closure of the binodal region of
W (F ) is illustrated in Figures 3. The original energy W (F ) is shown by a solid line, the
quasiconvexification—by a dashed line and W (F )—by a dotted line. The left figure illus-
trates the case, where the jump set (points B1 and B2 in the figure) captures the binodal,
without W (F ) necessarily capturing the values of QW (F ). In the vicinity of points B1 and
B2 the dashed and dotted lines may or may not coincide. The right figure shows a different
situation, where the jump set is strictly inside the binodal region, while the binodal (points
B1 and B2 in the figure) can only be delivered by studying other nucleation patterns, for
instance, precipitates of a more general shape or higher rank laminates.

Remark 4.12. By the rank-one convexity of the quasiconvex envelope we have QW (F ) ≤
W (F ) and QW (F ) = QW (F ). The points F corresponding to the non-trivial solutions of
(4.12)–(4.13) with W (F ) replaced by W (F ) can be regarded as unstable to the nucleation of
composite precipitates represented by a continuously varying first rank laminate. The iteration

process W (F ) → W (F ) → W → · · · brings additional flexibility to the binodal detection by
allowing composite precipitates represented by a continuously parametrized rank-r laminates.
Examples of such composite precipitates have been studied in [106, 107, 108, 135, 74, 73].

Example 4.13.

As a simple illustration of a complete characterization of the binodal by studying nucle-
ation of simple laminates, we consider again our test case (4.9). Let us begin with the system
of equations (4.34) describing the jump set. Straightforward calculations show that the third
equation in (4.34) follows from the other two, and that the system can be reduced to the
following one

TrF = θ−, a = [[θ]]n, [[Φ′(θ)]] = 0, [[Φ(θ)]]− [[θ]]{{Φ′(θ)}} = 0,
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where Φ(θ) is given in (4.28). We see that the jump set is characterized in terms of θ = TrF ,
where θ is a point where the tangent line to the graph of Φ(θ) touches the graph at some other
point, see Figure 2. The jump set consists of the surfaces TrF = θ1 and TrF = θ2. This is
the same set of points identified by the nucleation conditions obtained in Section 4.2.1. This
is not surprising, since the analysis in Section 4.2.1 showed that the shape of the precipitate
in this case can be arbitrary, including a slab used for computing the jump set. We also
observe that each F = F− ∈ J can be paired with F+ = F− + [[θ]]n ⊗ n for any unit vector
n.

Now a straightforward calculation gives the formula for W (F )

W (F ) =





W (F ), TrF 6∈ (θ1, θ2)

f(Tr ε) + µ

∣∣∣∣ε−
1

d
(Tr ε)I

∣∣∣∣
2

, TrF ∈ (θ1, θ2),

where

f(Tr ε) =
θ2 − Tr ε

[[θ]]
Φ(θ1) +

Tr ε− θ1
[[θ]]

Φ(θ2)−
µ(d− 1)

d
(Tr ε)2.

One can show that in fact W (F ) = QW (F ) [60], which means that, in this case, studying
simple laminates is sufficient for a complete characterization of the binodal.

5 Bi-quadratic energy

In this section we apply our approach to a nontrivial example where a rather complete picture
of the binodal can be obtained by studying several specific families of test functions. The
spinodal in this example is degenerate, since the loss of rank-1 convexity occurs via an sharp
non-smooth transition from one well to the other. The spinodal in this example can be
identified as the surface of jump discontinuity of WF (F ), rather than via the theory of
Section 4.1.

More specifically we consider the bi-quadratic energy density of the form

W (F ) = min{f+(ε), f−(ε)}, ε =
1

2
(F + F T ), f±(ε) =

1

2
(C±ε, ε) + w±, (5.1)

We assume that the elastic tensors C± are isotropic:

C±ξ = λ±(Tr ξ)I + 2µ±ξ, for any ξ ∈ Sym(Rd),

and elliptic
λ+ + 2µ+ > 0, λ− + 2µ− > 0.

Additionally we assume that

λ± + µ± 6= 0, [[µ]] 6= 0, k[[λ]] + 2[[µ]] 6= 0. (5.2)
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This energy plays an important role both in the mathematical theory of composite materials
[87, 52, 28, 29, 25] and in the modeling of martensitic phase transitions [78, 45, 46].

Even in this piecewise linear example we can not find all solutions to the system (4.12)–
(4.13). However, we can obtain bounds on the binodal by computing in Section 5.1 nucleating

solutions in C̃k, 1 ≤ k ≤ d that have ellipsoidal k-dimensional cross-section. In Section 5.2
we also present an example of a solution in C1 \ C̃1 in 2D.

While the calculations presented below illustrate the general theory of binodal developed
in this paper, their origin lies (at least for positive definite C±) in the literature on optimal
bounds for composite materials, e.g. [50, 51, 7]; the link with the theory of phase transitions
is also well known [87, 55, 52, 25].

5.1 Isolated cylindrical inclusions

The goal of this section is to obtain bounds on the binodal in arbitrary dimensions using
elliptical cylinders as test functions. Expanding on prior work [86, 85, 40, 20, 67, 78, 45, 46]
we can compute the solutions of (4.12) for the bi-quadratic energy (5.1) corresponding to
infinite elliptical cylinders explicitly. The explicit representation of these test functions in
[81, 79, 80] allows us to estimate their decay at infinity and prove that they are in C̃k, so that
our general theory applies. In 2D these solutions can be viewed as limiting cases of composite
strips computed in Section 5.2, as the period p goes to infinity.

For each k ≥ 1 we will look for a solution of the system (4.12) in the form of an elliptical
k-cylinder. We therefore define the sets Nell

k as in Definition 4.8.

Definition 5.1. We say that ε belongs to the elliptical k-cylinder nucleation set Nell
k ,

k = 1, . . . , d, if there exists an elliptical k-cylinder inclusion satisfying (4.12) and (4.13).

Observe that for k = 1 such a cylinder is a plate, while for k = d, it is an ellipsoid.
Moreover, general elliptical k-cylinders can be regarded as ellipsoids with some of the aspect
ratios going to infinity [78, 44] This suggests that in order to map the entire binodal it
is enough to consider only ellipsoids. However, the parts of the binodal identified by the
elliptical cylinders are of the same dimension (md− 1) as the parts of the binodal identified
by the ellipsoids. Thus, for the strategy of passing to the limits in the space of ellipsoid
parameters to succeed one needs to test against arbitrary ellipsoids and then optimize the
explicit results over orientations and aspect ratios, allowing infinite values of the parameters
to capture plates and cylinders. It is a challenging technical problem. Our approach, that
treats elliptical k and r-cylinders as distinct, when k 6= r, has the advantage of identifying
singular optimal shapes directly.

If we align our coordinate system with the cylindrical inclusion in such a way that vectors
e1, . . . , ed are directed along the coordinate axes, then we can write x = (t1, . . . , tk, xk+1, . . . , xd).
The test field φ(x) = ψ(t) and we write the field ε at infinity in the block form

ε =

[
ε0 ET

E ε′

]
,
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where ε0 is a k× k matrix, E is a (d− k)× k matrix and ε′ is a (d− k)× (d− k) matrix. We
also use the notation

λ(t) = λ−(1− χ(t)) + λ+χ(t), µ(t) = µ−(1− χ(t)) + µ+χ(t),

where χ(t) is the characteristic function of the elliptical cylinder. One can see that the label
“+” refers to the materials and fields inside the inclusion, while the label “−” refers to the
materials and fields outside the inclusion. Finally, let C(t) be the local elasticity tensor defined
by its action on an arbitrary strain ξ by

C(t)ξ = λ(t)(Tr ξ)I + 2µ(t)ξ, for any ξ ∈ Sym(Rd).

We observe that the elastic tensor C(t) and the elastic constants λ(t) and µ(t) are piecewise
constant with a jump discontinuity across the boundary of the elliptical k-cylinder.

5.1.1 Euler-Lagrange equations

The isotropy of the materials cause Euler-Lagrange equation in (4.12) to decouple into sepa-
rate PDEs for ψ0(t) = (ψ1(t), . . . , ψk(t)) and ψ

′(t) = (ψk+1(t), . . . , ψd(t)):




∇ · C(t)

(
e(ψ0) + ε0 +

[[λ]]Tr ε′

k[[λ]] + 2[[µ]]
Ik

)
= 0,

∇ · µ(t)(∇ψ′ + 2E) = 0.

(5.3)

The equations (5.3) decouple into equations of elasticity in R
k and an additional generalized

anti-plane shear. The elastic strain field

e(φ) =



e(ψ0)

1

2
(∇ψ′)T

1

2
∇ψ′ 0




is smooth inside and outside of the elliptical k-cylinder

k∑

i=1

t2k
a2k

= 1, (5.4)

but has a jump discontinuity across its boundary. Thus, in the application of the general
theory we may replace the Noether-Eshelby equation (4.12)2 with the Maxwell relation (4.21)
on the boundary of the cylinder.

We know that both e(ψ0) and ∇ψ′(t) are uniform inside the ellipsoid [98]. The values
of these fields are determined uniquely by the fields at infinity and the shape of the ellipsoid
described by the k×k matrix a =diag(a1, . . . , ak). Eshelby [40, 41] has presented the solution
for 3D isotropic ellipsoidal inclusions in the isotropic external medium. We will use the elegant
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formulas that are valid in any dimensions and for general anisotropic media due to Kunin
and Sosnina [80].

Recall the definition of the fourth order tensor KC(n), which is a Fourier space representa-
tion of the fundamental solution for the equations of linear elasticity in the general anisotropic
medium C. Suppose u(t) solves

∇ · Ce(u) = ∇ · τ , t ∈ R
k,

where the symmetric external stress field τ (t) is smooth and compactly supported. Then the
Fourier transform of the strain will satisfy

ê(u)(ω) = KC(ω)τ̂ (ω).

Explicitly,
KC(n)ξ = AC(n)

−1ξn⊙ n,
where AC(n) is the acoustic tensor of C.

Theorem 5.2 (Kunin and Sosnina).

(a) Suppose that u : Rk → R
k satisfies

∇ · C(t)(e(u) + ε∞) = 0

where C(t) = (1 − χ(t))C− + χ(t)C+ and χ(t) is the characteristic function of the
ellipsoid (5.4). Then

ε∞ = ε+ + 〈KC−
(n)〉a[[C]]ε+, (5.5)

where ε+ = e(u+) + ε
∞ is the strain field in the inclusion, and

〈KC−
(n)〉a = −

∫

Sk−1

KC−
(a−1n)dS(n), a = diag(a1, . . . , ak).

(b) Suppose that v : Rk → R
p satisfies

∇ · µ(t)(∇v + e∞) = 0,

where µ(t) = (1− χ(t))µ− + χ(t)µ+. Then

e∞ = e+ +
[[µ]]

µ−
e+〈Γ(n)〉a (5.6)

where e+ = ∇v+ + e∞ is the strain field in the inclusion. Here

〈Γ(n)〉a = −
∫

Sk−1

Γ(a−1n)dS(n), Γ(ω) =
ω ⊗ ω
|ω|2 .
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The proof of part (a) can be found in [80]. Part (b) is proved in exactly the same way
(with simpler calculations). In particular, the explicit formulas for the solution shows that
both ψ0(t) and ψ′(t) are bounded and ∇ψ0 ∈ L2(Rk;Rk×k) and ∇ψ′ ∈ L2(Rk;Rd−k×k).

Hence, the corresponding test function φ ∈ C̃k, and our general theory applies.

Remark 5.3. The tensor 〈KC−
(n)〉a has the property that

S = 〈KC−
(n)〉aC−

is the Eshelby tensor [40] for the ellipsoidal inhomogeneity relating the eigenstrain ε∗ =
[[C−1]]σ+ and the inhomogeneity strain εd = ε+ − ε∞.

Theorem 5.2 provides a relation between the strain at infinity and the uniform field in the
inclusion. For instance, the explicit Fourier space representation of the field in the exterior
of the inclusion can be written as

ê(u)(ω) = −χ̂(ω)KC−
(ω)[[C]]ε+, ∇̂v(ω) = − [[µ]]

µ−
χ̂(ω)e+Γ(ω).

For our purposes, however, we would only need the relations (5.5) and (5.6).

5.1.2 Noether-Eshelby equations

In this problem the Noether-Eshelby equation provides additional conditions only at the
discontinuities of∇φ and reduces to the Maxwell relation (4.21). In [78] Kublanov and Freidin
studied the ellipsoidal inclusions in 3D space that satisfy the Maxwell condition, where they
also computed the Eshelby tensor explicitly for such ellipsoids. Here we generalize some of
their results to elliptical cylinders with arbitrary dimension k of cross-section in R

d.
In [56] we have shown that the Maxwell relation for the energy (5.1) takes the form

[[w]] +
1

2
([[C]]ε+, ε+) +

1

2
(KC−

(n)q+, q+) = 0, (5.7)

where q+ = −[[C]]ε+ and n is the outward unit normal on the boundary of the inclusion. For
isotropic materials C± we can choose the coordinate axes aligned with the ellipsoid’s principal
directions and the generators of the elliptical cylinder. In that case the normal n has the last
d − k components equal to zero, while the first k components form an element of the unit
sphere Sk−1. We will denote this n ∈ S

k−1 for short. It will be convenient to write the matrix
q+ in the block form

q+ =

[
q0 pT

p q′

]
,

where q0 is k × k, p is (d − k) × k and q′ is (d − k) × (d − k). Hence, the Maxwell relation
(5.7) becomes

|q0n|2 + |pn|2
µ−

− (λ− + µ−)(q0n,n)
2

µ−(λ− + 2µ−)
+ [[λ]](Tr ε+)

2 + 2[[µ]]|ε+|2 + 2[[w]] = 0 (5.8)

for all n ∈ S
k−1.
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Lemma 5.4. Let α 6= 0. The function

f(n) = |q0n|2 + |pn|2 − α(q0n,n)
2

is constant on S
k−1 if and only if q0 = q0Ik and pTp = p20Ik. In particular, this implies that

p = 0, if k > d/2.

Proof. Let
f(n) = f1(n) + f2(n)− αf3(n),

where
f1(n) = (q20n,n), f2(n) = (pTpn,n), f3(n) = (q0n,n)

2.

The function f(n) is constant on the sphere Sk−1 if and only if its differential is zero on at any
n ∈ S

k−1. Let n0 be an eigenvector of q0 (and therefore of q20). Then df1(n0) = df3(n0) = 0.
Hence, we must have df3(n0) = 0. Therefore, n0 must be an eigenvector of pTp. Hence, q0
and pTp have a common orthonormal eigen-basis. Suppose, n1 and n2 are orthogonal unit
eigenvectors corresponding to the eigenvalues ν1 and ν2 of q0 and eigenvalues τ1 and τ2 of
pTp. Let φ(θ) = f(n1 cos θ + n2 sin θ). We compute

φ(θ) = (ν21 + τ1) cos
2 θ + (ν2 + τ2) sin

2 θ − α(ν1 cos
2 θ + ν2 sin

2 θ)2.

Now it is easy to see that φ(θ) is constant if and only if ν1 = ν2 and τ1 = τ2. We conclude
that both q0 and pTp must be multiples of the identity, since the pair of eigenvectors was
chosen arbitrarily. Conversely, if q0 = q0Ik and pTp = p20Ik then f(n) = (1− α)q20 + p20.

The assumption (5.2) ensures applicability of the lemma to (5.8). We conclude that

ε+ =



e(ψ+

0 ) + ε0
1

2
(∇ψ′

+)
T +ET

1

2
∇ψ′

+ +E ε′


 =

[
ε+0 Ik ET

+

E+ ε′+

]
, ET

+E+ = E2
0Ik, (5.9)

where the scalars ε+0 and E0 satisfy the Maxwell relation

([[kλ+ 2µ]]ε+0 + [[λ]]Tr ε′)2

λ− + 2µ−
+ [[λ]](ε+0 k + Tr ε′)2 + 2k[[µ]](ε+0 )

2

+
4[[µ]](kµ− + [[µ]])

µ−
E2

0 + 2[[µ]]|ε′|2 + 2[[w]] = 0. (5.10)

Applying Theorem 5.2 to (5.3) and using (5.9) we obtain





ε0 = ε+0 Ik +
ε+0 [[kλ+ 2µ]] + [[λ]]Tr ε′

λ− + 2µ−
〈Γ(n)〉a,

E = E+

(
Ik +

[[µ]]

µ−
〈Γ(n)〉a

)
.

(5.11)
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We note that the explicit expressions for 〈Γ(n)〉a is available for k = 1 (〈Γ(n)〉a = 1), k = 2
(〈Γ(n)〉a = cof(a)/Tra) and k = 3, when it can be expressed in terms of the elliptic integrals.
However, we do not need to know 〈Γ(n)〉a explicitly, we only need the set of diagonal matrices

G = {〈Γ(n)〉a : a = diag(a1, . . . , ak), ai > 0, i = 1, . . . , k}.

Lemma 5.5.

G = {A = diag(A1, . . . , Ak), Ai > 0, i = 1, . . . , k, TrA = 1}.

The proof of the lemma is in the Appendix G.
We now apply Lemma 5.5 by taking the trace of the first equation in (5.11). We obtain

ε+0 =
(λ− + 2µ−)Tr ε0 − [[λ]]Tr ε′

kλ+ + 2kµ− + 2[[µ]]
. (5.12)

The denominator in (5.12) is positive if either [[λ]] > 0 or [[µ]] < 0. It could change sign if
[[λ]] < 0 and [[µ]] > 0. We therefore place the material with larger λ or smaller µ inside the
inclusion. In the well-ordered case (λ+ > λ−, µ+ > µ−) , either material can be placed inside
the inclusion, while in the non well-ordered case only the material with larger λ and smaller
µ can be placed inside.

5.1.3 Optimal orientation

In our example the optimal orientation equation (4.13) becomes

Q

∫

Rk

(C(t)(ε∞ + e(φ))− C−ε
∞)∇ψdt = 0. (5.13)

We can rewrite the left-hand side in (5.13) as the sum of two terms T1 and T2

T1 = Q

∫

Rk

χ(t)([[C]]ε∞)∇ψdt, T2 = Q

∫

Rk

(C(t)e(φ))∇ψdt.

We compute

T1 =
(
2[[µ]]E∇ψ+

0 + [[λ]](Tr ε0 + Tr ε′)∇ψ′
+ + 2[[µ]]ε′∇ψ′

+

) ∫

Rk

χ(t)dt.

T2 =

∫

Rk

{µ(t)∇ψ′∇ψ0 + λ(t)(∇ ·ψ0)∇ψ′}dt.

Using integration by parts we can rewrite T2 as

T2 = −
∫

Rk

ψ′ ⊗∇ · (C(t)e(ψ0))dt+

∫

Rk

∇ · (µ(t)∇ψ′)⊗ψ0dt.
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Using equations (5.3) we get

∇ · (C(t)e(ψ0)) = −∇ · (χ(t)[[C]]ε̂0), ∇ · (µ(t)∇ψ′) = −2[[µ]]∇ · (χ(t)E),

where

ε̂0 = ε0 +
[[λ]]Tr ε′

k[[λ]] + 2[[µ]]
Ik.

Thus, we obtain

T2 =

∫

Rk

χ(t){−∇ψ′([[C]]ε̂0) + 2[[µ]]E(∇ψ0)
T}dt.

Computing [[C]]ε̂0 and combining with T1 we write (5.13) as

Ee(ψ+
0 ) +

1

2
ε′∇ψ′

+ − 1

2
∇ψ′

+ε0 = 0. (5.14)

Substituting the values

e(ψ+
0 ) = ε+0 Ik − ε0,

1

2
∇ψ′

+ = E+ −E,

obtained from (5.9), into (5.14) we get

(ε+0 Ik − ε′)E = E+ε0 − ε′E+. (5.15)

Substituting the second equation in (5.11) into (5.15) we obtain

[[µ]]

µ−
(ε+0 Ik − ε′)E+〈Γ(n)〉a = E+(ε0 − ε+0 Ik).

Applying the first equation in (5.11) and the invertibility of 〈Γ(n)〉a we finally conclude

[(λ−[[µ]]− kµ−[[λ]])ε
+
0 − µ−[[λ]]Tr ε

′]E+ = (λ− + 2µ−)[[µ]]ε
′E+. (5.16)

The equations (5.9) and (5.16) say that, provided E0 6= 0, the k columns of the (d − k) × k
matrix E+/E0 are orthonormal eigenvectors of the (d − k) × (d − k) matrix ε′. All of them
correspond to the same eigenvalue

ν =
(λ−[[µ]]− kµ−[[λ]])ε

+
0 − µ−[[λ]]Tr ε

′

(λ− + 2µ−)[[µ]]
. (5.17)

5.1.4 Explicit bounds

If E0 = 0 thenE+ = 0 and the relation (5.16) is identically satisfied. In that case the equation
for the sets Nell

k introduced in Definition 5.1 is provided by the relation (5.10), which becomes

(λ− + 2µ−)([[kλ+ 2µ]]Tr ε0 + k[[λ]]Tr ε′)2

[[kλ+ 2µ]](kλ+ + 2kµ− + 2[[µ]])
+

2[[λ]][[µ]](Tr ε′)2

[[kλ+ 2µ]]
+ 2[[µ]]|ε′|2 + 2[[w]] = 0. (5.18)
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Equation (5.18) provides a characterization of the union of
(
d
k

)
surfaces in the space of eigen-

values of ε. Different surfaces in this union are obtained by choosing k of the d eigenvalues
of ε forming the diagonal of the k × k diagonal matrix ε0. Another union of

(
d
k

)
surfaces

are obtained by exchanging “+” and “−” subscripts in (5.18). The entire collection of 2
(
d
k

)

surfaces comprises the part of the set Nell
k corresponding to E0 = 0.

If E0 6= 0, then the optimality of orientation condition (5.16) requires ε′ to have k equal
eigenvalues. Together with the relation (5.10) this places ε on a co-dimension k surface in
Sym(Rd). Such surfaces cannot be candidates for the binodal when k > 1 and are therefore
discarded, leaving only the case k = 1. In this case 〈Γ(n)〉a = 1 and the matrices E and E+

are vectors in R
d−1, related via (5.11)

E =
µ+

µ−
E+. (5.19)

If we choose one of the coordinate axes to be aligned with E then, according to (5.16), ε
must have the following structure

ε =




ε0
µ+

µ−
E0 0

µ+

µ−
E0 ν 0

0 0 ε′′


 , (5.20)

where ν is given by (5.17) with k = 1. Writing it in terms of ε0 and ε
′′, using (5.12) we obtain

ν =
(λ−[[µ]]− µ−[[λ]])ε0 − µ+[[λ]]Tr ε

′′

µ+[[λ+ 2µ]] + λ+[[µ]]
. (5.21)

In order to write the equation for Nell
1 in terms of the eigenvalues of ε we introduce the

notation

ε1 =




ε0
µ+

µ−
E0

µ+

µ−
E0 ν


 .

The eigenvalues of ε are split into two groups: the group of d− 2 eigenvalues, comprising the
diagonal of ε′′, and the group containing the two eigenvalues of ε1. It will be convenient to
introduce variables

X =
Tr ε1√

2
, Y 2 =

1

2
((Tr ε1)

2 − 4 det ε1), Z =
Tr ε′′√

2
,

which are well-known functions of the eigenvalues. Then the formula (5.12) becomes

ε+0 =
(µ−[[λ+ 2µ]] + λ−[[µ]])ε0 −

√
2[[λ]][[µ]]Z

µ+[[λ+ 2µ]] + λ+[[µ]]
. (5.22)
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From the equation ε0 + ν = Tr ε1 we find

ε0 =
(µ+[[λ+ 2µ]] + λ+[[µ]])X + µ+[[λ]]Z√

2[[µ]](λ+ + µ+)
. (5.23)

We also have

2E2
0 =

(
µ−
µ+

)2
(
Y 2 −

(
µ+

[[λ+ µ]]X + [[λ]]Z

[[µ]](λ+ + µ+)

)2
)
. (5.24)

If we now substitute (5.21), (5.22) and (5.24) into (5.10), taking into account (5.23), we obtain
a representation for the E0 6= 0 part of Nell

1 in terms of the eigenvalues of ε:

(λ− + µ−)[[λ+ µ]]

λ+ + µ+

X2 + 2
(λ− + µ−)[[λ]]

λ+ + µ+

XZ +
[[λ]](λ− + µ+)

λ+ + µ+

Z2 +
[[µ]]µ−
µ+

Y 2 + [[µ]]|ε′′|2 = −[[w]].

(5.25)
We interpret (5.25) as the union of

(
d
2

)
surfaces. Each of these surfaces is characterized by

two (out of d) eigenvalues corresponding to ε1. Another union of
(
d
2

)
surfaces is obtained

from (5.25) by interchanging “+” and “−” subscripts in the well-ordered case. The entire
collection of 2

(
d
2

)
surfaces comprises the part of the set Nell

1 corresponding to E0 6= 0.
When k > 1 (and hence E0 = 0), we have only used the fact that Tr 〈Γ(n)〉a = 1.

The positive definiteness of 〈Γ(n)〉a gives us the validity domain for the equation (5.18).
Substituting (5.12) into (5.11) and solving for 〈Γ(n)〉a we obtain

(λ− + 2µ−)Ik
kλ+ + 2kµ− + 2[[µ]]

≤ [[kλ+ 2µ]]ε0 + [[λ]](Tr ε′)Ik
[[kλ+ 2µ]]Tr ε0 + k[[λ]]Tr ε′

≤ (λ− + 2µ+ + k[[λ]])Ik
kλ+ + 2kµ− + 2[[µ]]

. (5.26)

This statement is equivalent to the inequalities 0 ≤ 〈Γ(n)〉a ≤ Ik understood in the sense of
quadratic forms.

It is easy to check that the upper bound in (5.26) is a consequence of the lower bound,
due to the fact that

λ− + 2µ−
kλ+ + 2kµ− + 2[[µ]]

> 0,

and we conclude that for k > 1 (5.18) is the equation of Nell
k , provided

[[kλ+ 2µ]]ε0 + [[λ]](Tr ε′)Ik
[[kλ+ 2µ]]Tr ε0 + k[[λ]]Tr ε′

≥ (λ− + 2µ−)Ik
kλ+ + 2kµ− + 2[[µ]]

(5.27)

in the sense of quadratic forms. Equation (5.18) and inequality (5.27) reduce to the results
of Kublanov and Freidin [78], when k = d = 3.

If the materials are well-ordered, we may interchange the materials (i.e. consider an
inclusion of phase “−” in the matrix of phase “+”). In that case the inequalities in (5.26)
and (5.27) are reversed, while the subscripts “+” and “−” are interchanged.

Notice that when k = 1 we have 〈Γ(n)〉a = 1 and there are no extra inequalities in the
case E0 = 0. However, when E0 6= 0, equation (5.24) implies that the values of the variables
(X, Y, Z) must satisfy

|Y | ≥ µ+

∣∣∣∣
[[λ+ µ]]X + [[λ]]Z

[[µ]](λ+ + µ+)

∣∣∣∣ (5.28)

47



This is the range of the validity of equation (5.25).
Let us verify that all solutions to (4.12) satisfy the non-degeneracy condition (4.26) of

Corollary 4.7. An easy calculation shows that

W ◦
ε (ε, e(ψ)) = [[C]]ε+χ(t). (5.29)

Hence, ∂Jk(F ,φ)/∂F = 0 if and only if ε+ = 0. However, ε+ = 0 contradicts (5.10).

Remark 5.6. It will be shown in [56] that the surface patch Nell

2 given by (5.18), (5.26) is
indeed a part of the binodal when d = 2. If we choose F ∈ Nell

2 and the corresponding elliptical
inclusion, then the field ε∞ + e(φ) will stay strictly away from the singular boundaries of the

quadratic energy wells7. Hence, if we choose F̃ 6∈ B sufficiently close to F and solve (5.30)
then the solution will also be a nontrivial solution of (4.12)1, with W (F ) given by (5.1).
Therefore, the “bifurcation” in (4.12)1 alone is not sufficient to obtain any bounds on the
binodal region.

5.2 Interacting cylindrical inclusions

In this section we give an example of the test field φ ∈ C1 \ C̃1 satisfying (4.12)–(4.13).
More specifically, we construct a 1-parameter family of energetically equivalent C1 test fields
interpolating between the C2 test fields (corresponding to elliptical inclusions) and the rank-
two laminates discussed in Section 3.2.3.

5.2.1 Euler-Lagrange equations

We are looking for equilibrium configurations where the materials “+” and “−” occupy com-
plementary subdomains Ω+ and Ω− that are periodic with period 1 in y-direction. We fur-
ther assume that the material “+” occupies a compact subset in the fundamental region
Y1 = R× [−1/2, 1/2] with smooth boundary Σ. The first equation in (4.12) is

∇ ·
(
C(x)e(u)

)
= 0, x ∈ R

2, (5.30)

understood in the sense of distributions. Here

e(u)ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The equation (5.30) can be written as the standard Lamé system in Ω± together with the
interface conditions

[[u]] = 0, [[Ce(u)]]n = 0, x ∈ Σ. (5.31)

7By the regularity of the quasicovex envelope theorem [16] the optimal fields must stay strictly away from
the singularities of W (F ). However, our results cannot guarantee that the field ε∞ + e(φ) is indeed optimal.
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The method of complex potentials [99] allows one to characterize the set of solutions to
(5.30)–(5.31) completely in 2D. Accordingly, the vector u = (u1, u2) ∈ R

2 is written as a
complex number u = u1 + iu2. If u solves the Lamé system then

u(z) = Aφ(z)−B(ψ(z) + zΦ(z)), (5.32)

where

Φ(z) = φ′(z), A =
1

κ
+

1

2µ
, B =

1

2µ
.

Also, any 2×2 matrixM can be written as a pair of complex numbersM = [p, q], according
to the rule

M =

[
p1 −p2
p2 p1

]
+

[
q1 q2

q2 −q1

]
,

where p = p1 + ip2 and q = q1 + iq2. Then, the complex representation of the vector Mv,
v ∈ R

2, is pv + qv̄, and

∇u =

[
∂u

∂z
,
∂u

∂z

]
. (5.33)

Applying (5.33) to (5.32) we obtain ∇u = [AΦ−BΦ,−2BΠ], where

Π(z) =
1

2
(Ψ(z) + zΦ′(z)), Ψ(z) = ψ′(z).

We also obtain

e(u) =

[ℜeΦ(z)
κ

,−Π(z)

µ

]
, σ = [2ℜeΦ(z),−2Π(z)].

The continuity of displacements [[u]] = 0 can be conveniently written in differential form, via
the representation (5.32):

[[AΦ−BΦ]]ż − 2[[BΠ]]ż = 0, (5.34)

where ż is the derivative of the parametrization z(t) of the interface Γ. The continuity of
tractions reads

[[ℜeΦ]]ż + [[Π]]ż = 0, (5.35)

since the complex representation of the unit normal n is −iż/|ż|. In terms of the variables
ż = |ż|eiα , Φ(z) = X and Π(z)e2iα = Y , the system (5.34)–(5.35) can be written as

{
[[AX − BX]]− 2[[BY ]] = 0,

[[ℜeX]] + [[Y ]] = 0.
(5.36)
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5.2.2 Noether-Eshelby equations

Under the assumptions of the smoothness of the interfaces the second equation in (4.12) can
be replaced by the Maxwell relation (4.21), as discussed in Section 4.2.1.

[[W ]]− ({{Ce(u)}}, [[e(u)]]) = 0, x ∈ Σ, (5.37)

which in the X and Y variables we can be written as

[[
2

κ
]]ℜe(X+)ℜe(X−) + [[

2

µ
]]ℜe(Y+Y −) = [[w]]. (5.38)

5.2.3 Optimal orientation

In addition, the necessary condition (4.11), though not computable by itself, implies an easily
verifiable additional condition (4.22), as discussed in Section 4.2.1. It can be written in terms
of X, Y as

[[ℜeX]][[AX −BX]] + 2[[ℜeX]][[BY ]] + [[Y ]][[AX − BX]] + 2[[Y ]][[BY ]] = 0.

If we eliminate [[Y ]] and [[BY ]] by means of (5.36) we obtain

[[ℜeX]][[(A+ B)ImX]] = 0. (5.39)

Hence, there are two possibilities. Either [[ℜeX]] = 0, corresponding to [[σ]] = 0 or [[(A +
B)ImX]] = 0, corresponding to a = λn and [[σ]] = βn⊥ ⊗ n⊥ for some scalars λ and β.

Case [[ℜeX]] = 0. In this case we get





ℜeX+ = ℜeX− = ℜeX,

Y+ = Y− = [[
1

µ
]]−1

(
[[
1

κ
]]ℜeX − i[[

(
1

κ
+

1

µ

)
ImX]]

)
,

[[
1

κ
]][[
1

κ
+

1

µ
]](ℜeX)2 + [[

(
1

κ
+

1

µ

)
ImX]]2 =

1

2
[[
1

µ
]][[w]].

(5.40)

Then, the function

f(z) =




ℜeΦ+(z), z in + region

ℜeΦ−(z), z in − region

is bounded and harmonic on R
2. Hence, it is a constant. We conclude that Φ′

±(z) = 0 and

hence the functions ImX±, and therefore Y± =
1

2
Ψ±(z)ż/ż are constants on Σ. Hence, we

obtain ψ+(z) = 2Y+z + γ+ on Σ. By assumption region “+” contains a compact inclusion D
with smooth boundary. Then we must have Y+ = 0, since

0 =

∫

∂D

ψ+(z)dz = 4iY+|D|. (5.41)
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This contradicts (5.40).
Case [[(A+ B)ImX]] = 0. Then the function

f(z) =





(
1

κ+
+

1

µ+

)
ImΦ+(z), z in + region

(
1

κ−
+

1

µ−

)
ImΦ−(z), z in − region

must be both bounded and harmonic. Therefore, it is constant. Hence, Φ±(z) is constant
in the “±” region. We can assume without loss of generality, that Φ−(z) is a real constant.
Hence, Φ+(z) is also a real constant. It follows from (5.36) that Y± are constants on Σ. By
assumption, region “+” contains a compact inclusion D, then we must have Y+ = 0 due to
(5.41). Hence, from (5.36) we get

ℜeX+ =
κ+(κ− + µ−)

κ−(κ+ + µ−)
ℜeX−,

while

X− = ℜeΦ−(z) =
1

4
Trσ∞ =

1

2
κ−Tr ε∞.

Substituting these relations into (5.38) we get

(Tr ε∞)2 =
−2[[w]](µ− + κ+)

[[κ]](κ− + µ−)
. (5.42)

Hence, in terms of Tr ε∞ we obtain

ψ+(z) = 0, φ+(z) =
κ+(κ− + µ−)Tr ε∞

2(κ+ + µ−)
z, φ−(z) =

1

2
(Tr ε∞)κ−z. (5.43)

We also have

ψ−(z) = cz + γ, z ∈ Σ, c =
µ−[[k]]Tr ε∞
κ+ + µ−

. (5.44)

The parameter γ is locally constant on Σ and can be chosen to be zero if Σ is connected.
Observe that the trivial solution u = ε∞x corresponds to the complex potentials

φ(z) =
1

2
(Tr ε∞)κ−z, ψ(z) = bz, b = µ−(ε

(22)
∞ − ε(11)∞ − 2iε(12)∞ ).

Hence, the function p(z) = ψ−(z)− bz must be i-periodic. Thus,

ψ−(z + i) = ψ−(z) + bi. (5.45)

It is now easy to verify that the as yet unused condition (4.13) holds automatically for

any solution of the Lamé system satisfying (5.43). In fact, we have P̂ ∗(z) = 0 for all z.
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1
1

2α

−planeζ−planez

z=w( )ζ

Figure 4: Conformal mapping of the exterior of the periodic array of slits onto the exterior
of the periodic array of inclusions.

5.2.4 Optimal shapes

We are now in a position to look for i-periodic structure of inclusions satisfying (5.43) and
(5.44). The analysis here is an adaptation of the analysis in [126, 127, 128, 129, 54] for the case
of simply-periodic array of inclusions. Following [26, 54], we map the exterior of a periodic
array of slits in the ζ plane conformally onto the region “−” in the z plane (see Figure 4).
More precisely, let z = w(ζ) map the i-periodic array of slits

Mn = {z = x+ in : x ∈ [−α, α]}, n ∈ Z

of length 2α (to be determined) in the ζ plane to the i-periodic array of inclusions with
smooth boundary in the z plane. The map w must satisfy the following conditions:

w(ζ + i) = w(ζ) + i (5.46)

At the endpoints of the slits w(ζ) = O(
√
ζ − ζn) as ζ → ζn, where ζn = ±α+in is an endpoint

of the slit Mn, on account of the smoothness of the boundary of the inclusion in the z plane.
Let us now substitute z = w(ζ) in (5.44) and differentiate along the slit. Using notation

Ψ(ζ) = Ψ−(w(ζ)) we obtain:

Ψ(ζ)w′(ζ) = cw′(ζ), ζ ∈M. (5.47)

We can represent (5.47) using the following trick of Cherepanov [26]: Consider two analytic
functions F and G chosen such that

F ′(ζ) = −Ψ(ζ)w′(ζ) + cw′(ζ), (5.48)

G′(ζ) = −Ψ(ζ)w′(ζ)− cw′(ζ). (5.49)

Then (5.47) becomes
ℜeF ′(ζ) = 0, ζ ∈Mn,

ℑmG′(ζ) = 0, ζ ∈Mn.

}
(5.50)
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Besides (5.50) the analytic functions F and G have the following properties: they are i-
periodic, since both Ψ(ζ) and w(ζ) are, and at the endpoints ζn of the slits Mn

F ′(ζ) = O(
1√

ζ − ζn
) and G′(ζ) = O(

1√
ζ − ζn

) as ζ → ζn; (5.51)

also F ′ and G′ are single valued and have no other singularities. Once such functions are
found, using (5.48), (5.49) we can easily reconstruct w(ζ) and Ψ(ζ). The result is

w(ζ) =
1

2c
(F (ζ)−G(ζ)) + C0, (5.52)

where C0 is an arbitrary constant of integration, and

Ψ(ζ) = −cF
′(ζ) +G′(ζ)

F ′(ζ)−G′(ζ)
. (5.53)

Now let’s construct the functions F and G. Consider the function [26]

v(ζ) =

√
cosh(2πζ)− 1

cosh(2πζ)− λ
, λ = cosh(2πα). (5.54)

We claim that v(ζ) has the following properties:

1. v(ζ) is single valued analytic function in the exterior of the periodic array of slits
{Mn : n ∈ Z};

2. v(ζ) is i-periodic;

3. v(ζ) = O( 1√
ζ−ζn

) as ζ → ζn, and v is bounded everywhere else;

4. ℜe(v(ζ)) = 0 on Mn.

To justify the claim we choose the branch of the square root such that
√
1 = 1, with the

branch cut along the negative real axis. Then the function v(ζ) has a branch cut wherever

cosh(2πζ)− 1

cosh(2πζ)− λ
< 0. (5.55)

This is equivalent to the condition that cosh(2πζ) ∈ (1, λ), which is satisfied only along the
cuts Mn (this is how the function (5.54) was constructed). Thus, properties 1 and 4 are
proved. Property 2 follows from the i-periodicity of cosh(2πζ). And property 3 follows from
the fact that points ζn are simple points for cosh(2πζ) (the derivative 2π sinh(2πα) 6= 0).

We look for the functions F ′ and G′ in the form
{
F ′ = r1v(ζ) + id1,

G′ = ir2v(ζ) + d2,
(5.56)
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where rj , dj ∈ R are constants to be determined. It is easy to see that equations (5.50) are
satisfied, as is the condition (5.51). In order to recover F and G from the above formulas we
have to use the function

V (ζ) =

∫ ζ

i/2

v(z)dz. (5.57)

This function is single valued in the exterior of the periodic system of the slits because∮
ΓR
v(ζ)dζ = 0, where ΓR is a rectangle with vertexes ±R± i/2. Indeed, the function v(ζ) is

even and i-periodic. Therefore,
∫ R

−R

v(x− i/2)dx = −
∫ −R

R

v(x+ i/2)dx, i

∫ 1/2

−1/2

v(R + iy)dy = −i
∫ −1/2

1/2

v(−R + iy)dy.

The i-periodicity of v(ζ) implies that V (ζ + i)− V (ζ) is independent of ζ. Therefore,

V (ζ + i)− V (ζ) = lim
R→∞

i

∫ 1/2

−1/2

v(R + iy)dy = i. (5.58)

The periodicity condition (5.46) together with formulas (5.52), (5.56) and (5.58) implies

d1 = r2, r1 − d2 = 2c.

So that

w(ζ) = rV (ζ) + (1− r)ζ, r =
r1 − ir2

2c
. (5.59)

Thus by (5.53)
ψ2(w(ζ)) = −c(rV (ζ) + (r − 1)ζ) + const. (5.60)

Now using the translation law (5.45) for the potential ψ− we obtain:

r =
1

2
(1− q), q =

b

c
. (5.61)

We need to place further restriction on the value of parameter r (i.e. on ε∞) so that the map
w(ζ) given by (5.59) maps the exterior of the i-periodic array of slits {Mn : n ∈ Z} one-to-one
and onto the exterior of the i-periodic array of inclusions Dn = w(Mn). A necessary condition
for univalence of w(ζ) is that w′(ζ) 6= 0. In other words v(ζ) 6= (r − 1)/r. The principal
branch of the square root in (5.54) can take any value in the right half-plane ℜev ≥ 0. Hence,
we require that ℜe((r − 1)/r) < 0. In other words |r − 1/2| < 1/2, or equivalently, |q| < 1,
i.e.

|ε(22)∞ − ε(11)∞ − 2iε(12)∞ |2 < − 2[[w]][[κ]]

(κ+ + µ−)(κ− + µ−)
. (5.62)

It is easy to show that |q| < 1 is also sufficient for univalence. Indeed, we only need to prove
that w(ζ1) 6= w(ζ2) for any ζ1 6= ζ2, such that Im(ζj) ∈ (0, 1), j = 1, 2. Observe that we can
connect the points ζ1 and ζ2 by straight line without crossing any slits. Thus, we can write

w(ζ1)− w(ζ2)

ζ1 − ζ2
= 1− r + r

∫ 1

0

v(tζ1 + (1− t)ζ2)dt
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Figure 5: Periodic array of inclusions for α = 3 and q = −0.4
√
2(1 + i).

If w(ζ1) = w(ζ2) then we must have

∫ 1

0

v(tζ1 + (1− t)ζ2)dt =
r − 1

r
.

However, the left-hand side is in the right half-plane ℜe(v) > 0, while the right-hand side is
in the left half-plane, when |q| < 1. Thus, the map w(ζ) is univalent if and only if (5.62)
holds.

The inequality (5.62) together with (5.42) describes a surface known to be in B, since
the non-degeneracy condition (4.26), that has the form (5.29) in our example, is obviously
satisfied. The surface (5.42), (5.62) coincides with (5.18), (5.27) for d = k = 2.

We compute that for any ξ ∈ [−α, α]

V (ξ + 0i) =
i

π
arccos

(
cosh(πξ)

cosh(πα)

)
.

Therefore the parametric equations of the upper half of the inclusion are

x =
1 + q1

2
ξ − q2

2i
V (ξ), y =

1− q1
2i

V (ξ)− q2
2
ξ, ξ ∈ [−α, α].

where q = q1 + iq2. The parameter α is arbitrary. The structure for α = 3 and q =
−0.4

√
2(1 + i) is pictured in Figure 5.

Now, for simplicity let us examine in more detail the case when the periodic direction is
chosen to be the eigendirection of ε∞. Then b ∈ R, and hence r ∈ (0, 1). The parameter
α > 0 can be chosen arbitrarily. The resulting shapes are different for different values of α,
yet all have the same energy. The equation of the upper half of the inclusion centered at the
origin is

y =
1− q

2π
arccos



cosh

(
2πx
1+q

)

cosh(πα)


 , x ∈

[
−(1 + q)α

2
,
(1 + q)α

2

]
.

When α → 0 the inclusions degenerate into the i-periodic array of small ellipses
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Figure 6: The shape of the component of a periodic array of inclusions for q = −0.8 and
α = 1, 4 and 10.

x2

(1 + q)2
+

y2

(1− q)2
=
α2

4
.

When α → ∞ the structure becomes a periodic array of horizontal layers of thickness r.
However, for each large value α one needs to rescale the structure to keep the width of the
inclusions constant, i.e. we change variables

X =
2x

(1 + q)α
, Y =

2y

(1 + q)α
.

In the new variables the array of inclusions is p-periodic, where

p =
2i

(1 + q)α

is large, while the upper half of the inclusion centered at the origin has the equation

Y =
1

πα

1− q

1 + q
arccos

(
cosh(παX)

cosh(πα)

)
, X ∈ [−1, 1]. (5.63)

When α → ∞ both the period p and the vertical dimensions of the inclusions will go to zero
and the structure will converge to a second rank laminate with inner volume fraction r, which
is also known to permit detection of this part of the binodal.

Figure 6 shows the shapes of single inclusions given by (5.63) for q = −0.8 and α = 1,
4 and 10. For each fixed value α the decay of the elastic fields along the x-direction is
exponential. Therefore, the corresponding test function φ = u− ε∞x is in the space C1.

In summary, for each fixed value ε∞ satisfying (5.42) and (5.62), that are identical to
(5.18), (5.27) for d = k = 2, we found a 1-parameter family of C1 test fields satisfying
(4.12)–(4.13) degenerating into C2 test fields (corresponding to elliptical inclusions) when
α → 0 and to rank-two laminates when α → ∞. In other words, each member of the
solution family identifies exactly the same marginally stable value of ε∞ as the simple elliptical
inclusions, confirming previously obtained bounds. The isotropy and high non-convexity of
this example contributes to the abundance of rank-1 connected pairs F+, F− on the jump
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set [58], described in Section 4.2.2. This in turn provides sufficient flexibility for multiple
structures to identify same marginally stable values of deformation gradients. For more
general energies we expect fewer binodal points to be detectable through classical nucleation.
For example in [53], essentially the same model with anisotropic tensors C± was considered
in 2d. It was shown there that the regime analogous to (5.42), (5.62) can be detected only
by second rank laminates, since the support of the optimal Young measure in (2.19) consists
of specific three points which are inconsistent with classical nucleation.

5.3 Laminates

We have the following equations for ε on a second rank lamination set. The “micro-level”
system is 




[[ε]] = b⊙m
[[Cε]]m = 0

[[Cε]]b = 0

[[w]] +
1

2
([[C]]ε±, ε±) = ∓1

2
(C∓[[ε]], [[ε]]).

(5.64)

while the macro-level system is





sε− + (1− s)ε+ − ε = a⊙ n
(sC−ε− + (1− s)C+ε+ − C±ε)n = 0

(sC−ε− + (1− s)C+ε+ − C±ε)a = 0

[[w]] +
1

2
([[C]]ε, ε) = ∓1

2
(C∓a⊙ n,a⊙ n),

(5.65)

where the upper sign corresponds to the situation when ε lies in the “+” well, while the
lower sign corresponds to the situation when ε lies in the “−” well. The detailed analysis of
this system of equations in 2D shows that by studying laminates one can confirm the bounds
obtained in the analysis of classical nuclei and obtain new bounds inaccessible by the methods
based exclusively on solving the associated PDE problem [56].

6 Conclusions

Marginal stability plays an important role in nonlinear elasticity because the associated min-
imally stable states delineate failure thresholds. In this paper we systematically juxtaposed
the conditions of marginal stability for weak and strong local minimizers in nonlinear elastic-
ity. While the case of weak marginal stability, allowing one to determine the spinodal, can be
studied in full detail, the case of strong marginal stability, bringing about the crucial notion
of the binodal, is much less transparent. The reason is that binodal coincides with the bound-
ary of the typically inscrutable quasiconvexity set. We have shown that in order to locate
the binodal one does not have to solve the difficult minimization problem for a non-convex
integral functional of non-linear elasticity. Instead, one needs to deal with an equivalence
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class of parametric variational inequalities with a possibility that a particular formulation
delivers a tractable characterization. We used this freedom to obtain several characteriza-
tions of the binodal in terms of either PDEs or algebraic equations. In the former case the
test functions are “well-behaved” members of a function space, in the latter they are weakly
convergent sequences of gradients-generating laminate Young measures described by finitely
many parameters. While the proposed explicit characterization is far from being exhaustive,
we obtained a set of bounds which may be useful in applications where one has no hope of
computing the explicit quasiconvex envelopes.
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A Proof of Lemma 3.3

We note that S = W 1,∞(Rd;Rm) ∩ S0. It will be important to use the following embedding
theorem for the space S0

Theorem A.1. Assume that φ ∈ S0 and d ≥ 3. Then there exists a unique constant c ∈ R
m

such that φ− c ∈ L
2d
d−2 (Rd;Rm).

Proof. First, we remark that without loss of generality we may take m = 1. Now recall the
well-known potential theory operators. The Riesz transforms Rj are defined by

F(Rjf)(ξ) = i
ξj
|ξ| f̂(ξ),

where

F(f)(ξ) = f̂(ξ) =

∫

Rd

f(x)e2πi(x,ξ)dx

is the Fourier transform. The operators Rj map L2(Rd) into L2(Rd). The Riesz potential I1
is defined by

F(I1f)(ξ) =
f̂(ξ)

2π|ξ| .

It maps L2(Rd) into L
2d
d−2 (Rd), [117].

If φ were smooth and compactly supported, we would have

φ = I1

(
d∑

j=1

Rj

(
∂φ

∂xj

))
.
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Hence, we define

ψ(x) = I1

(
d∑

j=1

Rj(gj)

)
,

where g = ∇φ ∈ L2(Rd;Rd).
Let η(x) be an arbitrary smooth compactly supported function. By definition of the

distributional derivative we have
∫

Rd

{
gk
∂η

∂xj
− gj

∂η

∂xk

}
dx = −〈φ, ∂2η

∂xk∂xj
〉+ 〈φ, ∂2η

∂xj∂xk
〉 = 0.

By Plancherel’s identity ∫

Rd

(ĝkξj − ĝjξk)η̂dξ = 0.

We conclude that
ĝk(ξ)ξj = ĝj(ξ)ξk (A.1)

for a.e. ξ ∈ R
d. Thus,

−2πiξkψ̂(ξ) =
d∑

j=1

ξkξj ĝj(ξ)

|ξ|2 = ĝk(ξ),

due to (A.1). By Plancherel’s identity

∫

Rd

ψ(x)
∂η

∂xk
dx = 2πi

∫

Rd

ξkψ̂ η̂dξ = −
∫

Rd

ĝk(ξ)η̂dξ = −
∫

Rd

gk(x)η(x)dx.

Therefore, ∇ψ = g = ∇φ as distributions. The theorem is proved.

The proof of Lemma 3.3 proceeds in different ways depending on the dimension d. If
d = 1, then

1

R

∫ 2R

R

|φ||φ′(x)|dx ≤ ‖φ‖∞√
R

(∫ 2R

R

|φ′(x)|2dx
)1/2

→ 0, as R → ∞.

1

R2

∫ 2R

R

|φ(x)|2dx ≤ ‖φ‖2∞
R

→ 0, as R → ∞.

Let d = 2. We estimate

1

R

∫

AR

|φ||∇φ|dx ≤ ‖φ‖∞
√
3π

(∫

AR

|∇φ|2dx
)1/2

→ 0, as R → ∞.

By the Poincaré inequality

∫

AR

|φ(x)− 〈φ〉AR
|2dx ≤ C0R

2

∫

AR

|∇φ|2dx,
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where C0 is the Poincaré constant for A1. The boundedness of φ implies that there exists a
sequence R = Rk such that

lim
k→∞

〈φ〉ARk
= c.

Hence, by the triangle inequality

(∫

AR

|φ− c|2dx
)1/2

≤
(∫

AR

|φ− 〈φ〉AR
|2dx

)1/2

+ |AR|1/2|〈φ〉AR
− c|.

Then,

(
1

R2
k

∫

ARk

|φ− c|2dx
)1/2

≤
(
C0

∫

ARk

|∇φ|2dx
)1/2

+
√
3π|〈φ〉ARk

− c| → 0 as n→ ∞.

Now assume that d ≥ 3. By Theorem A.1 there exists a unique constant c, such that

φ− c ∈ L
2d
d−2 (Rd;Rm). Using the inequality ab ≤ (a2 + b2)/2 we get

1

R

∫

AR

|φ− c||∇φ|dx+
1

R2

∫

AR

|φ− c|2dx ≤ 1

2

∫

AR

|∇φ|2dx+
3

2R2

∫

AR

|φ− c|2dx.

By Hölder inequality

1

R2

∫

AR

|φ− c|2dx ≤
(∫

AR

|φ− c| 2d
d−2dx

) d−2
d

→ 0, as R → ∞.

The lemma is proved.

B Proof of Lemma 3.7

Let us begin with a technical lemma.

Lemma B.1. Suppose α(R) > 0 is such that α(R) → 0, as R → ∞. Then there exists a
monotone increasing function h(R) with h(R)/R → 0, as R → ∞, such that

lim
R→∞

(
R

h(R)

)
α(R) = 0. (B.1)

Proof. We define

h(R) = max
r<R

(
r
√
α(r)

)
.

Then h(R) is monotone increasing and h(R)/R → 0, as R → ∞. Indeed, for any ǫ > 0

h(R) ≤ max
r<ǫR

(
r
√
α(r)

)
+ max

ǫR<r<R

(
r
√
α(r)

)
≤ ǫR

√
α(0) +R

√
α(ǫR).
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Therefore,

lim
R→∞

h(R)

R
≤ ǫ
√
α(0).

Hence, h(R)/R → 0, as R → ∞. By definition of h(R) we have h(R) ≥ R
√
α(R). Therefore,

R

h(R)
≤ 1√

α(R)
.

Thus, (
R

h(R)

)
α(R) ≤

√
α(R) → 0, as R → ∞.

Now let us prove Lemma 3.7. First observe that for any φ ∈ S0

lim
R→∞

∫

BR

|∇φ|2dx = ‖∇φ‖22,

while

lim
R→∞

∫

AR(h(R))

|∇φ|2dx = 0.

Hence, we only need to prove that there exists c ∈ R
m and a monotone increasing function

h(R) = o(R) such that

lim
R→∞

1

h(R)2

∫

AR(h(R))

|φ− c|2dx = 0. (B.2)

Remark 3.6 implies that we need to prove (B.2) for d ≥ 3. In that case, the constant c ∈ R
m

is chosen so that φ − c ∈ L
2d
d−2 (Rd;Rm), which is possible by Theorem A.1. The Hölder

inequality gives us

1

h(R)2

∫

AR(h(R))

|φ− c|2dx ≤ C

(
R

h(R)

) 2(d−1)
d
(∫

AR(h(R))

|φ− c| 2d
d−2dx

) d−2
d

.

By Theorem A.1

α(R) =

(∫

|x|≥R/2

|φ− c| 2d
d−2dx

) d−2
2(d−1)

→ 0, as R → ∞.

We see that in each of the three cases we have a function α(R) → 0, as R → ∞, which is
independent of h(R). The application of Lemma B.1 concludes the proof of Lemma 3.7.
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C Proof of Theorem 3.9

Step 1: Asymptotics of
∫
BR

|∇φ|2dx.
We write x = p+RT t and |x|2 = |p|2 + |t|2. Therefore,

BR ⊂ VR = {x ∈ R
d : x = p+RT t, |t| ≤ R, |p| ≤ R}.

∫

VR

|∇φ|2dx =

∫

{|t|<R}

∫

{|p|<R}
{|ψt|2 + |ψp|2}dtdp.

If we make a change of variables p = Ru we obtain

1

Rd−k

∫

VR

|∇φ|2dx =

∫

{|t|<R}

∫

{|u|<1}
{|ψt(t, Ru)|2 + |ψp(t, Ru)|2}dudt.

Hence,
1

Rd−k

∫

VR

|∇φ|2dx ≤
∫

{|u|<1}

∫

Rk

{|ψt(t, Ru)|2 + |ψp(t, Ru)|2}dtdu.

By the Riemann-Lebesgue lemma we get

lim
R→∞

1

Rd−k

∫

VR

|∇φ|2dx ≤ ωd−k −
∫

Qd−k

∫

Rk

{|ψt(t,p)|2 + |ψp(t,p)|2}dtdp,

where ωn is the volume of the n-dimensional unit ball. Thus,

lim
R→∞

1

Rd−k

∫

BR

|∇φ|2dx ≤ ωd−k −
∫

Qd−k

∫

Rk

{|ψt(t,p)|2 + |ψp(t,p)|2}dtdp.

To get the reverse inequality we write
∫

BR

|∇φ|2dx =

∫

{|t|<R}

∫

{|p|<r(R,t)}
{|ψt|2 + |ψp|2}dpdt,

where r(R, t) =
√
R2 − |t|2. If we make a change of variables p = r(R, t)u we obtain

∫

BR

|∇φ|2dx =

∫

{|t|<R}
r(R, t)d−k

∫

{|u|<1}
{|ψt(t, r(R, t)u)|2 + |ψp(t, r(R, t)u)|2}dudt.

By the Riemann-Lebesgue lemma we get

lim
R→∞

∫

{|u|<1}
{|ψt(t, r(R, t)u)|2+|ψp(t, r(R, t)u)|2}du = ωd−k −

∫

Qd−k

{|ψt(t,p)|2+|ψp(t,p)|2}dp

for a.e. t ∈ R
k. By Fatous’s lemma we get

lim
R→∞

1

Rd−k

∫

BR

|∇φ|2dx ≥ ωd−k

∫

Rk

−
∫

Qd−k

{|ψt(t,p)|2 + |ψp(t,p)|2}dpdt.
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Hence, we obtain the asymptotics of
∫
BR

|∇φ|2dx:

lim
R→∞

1

Rd−k

∫

BR

|∇φ|2dx = ωd−k

∫

Rk

−
∫

Qd−k

{|ψt(t,p)|2 + |ψp(t,p)|2}dpdt. (C.1)

In particular, we get

lim
R→∞

−
∫

BR

|∇φ|2dx ≤ lim
R→∞

ωd

Rd

∫

VR

|∇φ|2dx = 0,

establishing (3.19).
Step 2: Proof of (3.17).

For any h(R) = o(R) we have, using (C.1)
∫

AR(h(R))

|∇φ|2dx
∫
BR

|∇φ|2dx =

∫

BR

|∇φ|2dx−
∫

BR−h(R)

|∇φ|2dx
∫
BR

|∇φ|2dx = 1−
(
1− h(R)

R

)d−k

uR,

where uR → 1, as R → ∞. Thus, (3.17) is proved.
Step 3: Proof of (3.18). We have

∫

AR(h(R))

|φ|2dx ≤
∫

|t|<R

∫

|p|<R

|ψ(t,p)|2dpdt

The periodicity in p variable implies that for any domain Ω ⊂ R
d−k

∫

Ω

|ψ(t,p)|2dp ≤ v(Ω) −
∫

Qd−k

|ψ(t,p)|2dp,

where v(Ω) is the (d− k)-volume of all period cells intersecting Ω. We further estimate that

v(Ω) ≤ |Ω + BM |,

where M is the diameter of the period cell Qd−k. When R > M we obtain

v({|p| ≤ R +M}) ≤ ωd−k(2R)
d−k.

Hence, we get the estimate

lim
R→∞

1

h(R)2

∫

AR(h(R))

|φ|2dx
∫

BR

|∇φ|2dx
≤ 2d−k

‖∇φ‖2L2(Y )

lim
R→∞

1

h(R)2

∫

|t|<R

−
∫

Qd−k

|ψ(t,p)|2dpdt. (C.2)

For convenience we introduce the truncated L2 norm

‖f‖22,R =

∫

BR

∫

Qd−k

|f(t,p)|2dpdt
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Lemma C.1. For every ψ ∈ Sk(Qd−k) there exists a constant c ∈ R
m such that

lim
R→∞

‖ψ − c‖22,R
R2

= 0.

Proof. The proof of the Lemma is different depending on whether k = 1, k = 2 or k ≥ 3.
If k = 1 we can use the assumption of uniform boundedness of ψ and conclude that

‖ψ‖22,R
R2

≤ 2‖ψ‖2∞
R

→ 0, as R → ∞.

If k ≥ 3 then, according to Theorem A.1, for a.e. p ∈ Qd−k there exists a unique vector
c(p) such that ∫

Rk

|ψ(t,p)− c(p)| 2k
k−2 <∞.

However, we need a sharper statement

Lemma C.2. There exists c ∈ R
m such that c(p) = c for a.e. p ∈ Qd−k.

Proof. Let

〈ψ〉Qd−k
(t) =

1

|Qd−k|

∫

Qd−k

ψ(t,p)dp.

The Poincaré inequality implies

‖ψ − 〈ψ〉Qd−k
(t)‖22,R ≤ C‖ψp‖22,R.

Therefore, ‖ψ − 〈ψ〉Qd−k
(t)‖2,R is bounded as R → ∞. Next observe that 〈ψ〉Qd−k

(t) ∈ S as

a function of t. Hence, there exists c ∈ R
m such that 〈ψ〉Qd−k

(t)− c ∈ L
2k
k−2 (Rk). It follows

that

‖c(p)− c‖2,R ≤ ‖c(p)−ψ‖2,R + ‖ψ − 〈ψ〉Qd−k
(t)‖2,R + ‖〈ψ〉Qd−k

(t)− c‖2,R.
Let us apply the Hölder inequality to the first and third term on the left-hand side of the
above inequality.

‖c(p)−ψ‖22,R ≤ CR2

∫

Qd−k

(∫

Rk

|c(p)−ψ| 2k
k−2dt

) k−2
k

dp.

‖〈ψ〉Qd−k
(t)− c‖22,R ≤ CR2|Qd−k|

(∫

Rk

|〈ψ〉Qd−k
(t)− c| 2k

k−2dt

) k−2
k

.

We conclude that

lim
R→∞

1

R2
‖c(p)− c‖22,R < +∞.

However, this would contradict

‖c(p)− c‖22,R = |BR|
∫

Qd−k

|c(p)− c|2dp,

unless c(p) = c for a.e. p ∈ Qd−k.
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We will now establish Lemma C.1 in which the constant vector c is coming from Lemma C.2.
For simplicity of notation ψ(t,p) will now stand for ψ− c. In order to prove Lemma C.1 we
split the t-integral in the definition of ‖ψ‖2,R into the integral over the ball {|t| < ǫR} and
the annulus {ǫR < |t| < R}. Then we apply the same Hölder inequality to both integrals
and obtain the estimate

1

R2

∫

|t|<R

|ψ(t,p)|2dt ≤ ω
k
2
k ǫ

2

(∫

|t|<ǫR

|ψ(t,p)| 2k
k−2dt

) k−2
k

+ ω
k
2
k (1− ǫk)

k
2

(∫

ǫR<|t|<R

|ψ(t,p)| 2k
k−2dt

) k−2
k

.

Lemma C.2 then implies that for a.e. p ∈ Qd−k

lim
R→∞

1

R2

∫

|t|<R

|ψ(t,p)|2dt ≤ ω
k
2
k ǫ

2

(∫

Rk

|ψ(t,p)| 2k
k−2dt

) k−2
k

.

Thus, for a.e. p ∈ Qd−k

lim
R→∞

1

R2

∫

|t|<R

|ψ(t,p)|2dt = 0. (C.3)

By Hölder inequality and Theorem A.1

1

R2

∫

|t|<R

|ψ(t,p)|2dt ≤ ω
2
k

k

(∫

|t|<R

|ψ(t,p)| 2k
k−2dt

) k−2
k

≤ C

∫

Rk

|ψt(t,p)|2dt.

By the Lebesgue dominated convergence theorem ‖ψ‖22,R/R2 → 0, as R → ∞, since the
function

Φ(p) =

∫

Rk

|ψt(t,p)|2dt

is integrable over Qd−k.
The case k = 2 is the most delicate. Let us define

cR(p) = −
∫

|t|<R

ψ(t,p)dt.

Let Rn → ∞ be a strictly monotone sequence such that

lim
n→∞

〈cRn
〉Qd−2

= c

for some vector c ∈ R
m. We claim that

lim
R→∞

‖cR(p)− 〈cR〉Qd−2
‖2dp = 0.

Indeed,

‖cR(p)− 〈cR〉Qd−2
‖22 ≤ C −

∫

|t|<R

∫

Qd−2

|ψ(t,p)− 〈ψ〉Qd−2
(t)|2dpdt.
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Applying the Poincaré inequality for the inner integral we get

‖cR − 〈cR〉Qd−2
‖22 ≤ C −

∫

|t|<R

∫

Qd−2

|ψp(t,p)|2dpdt→ 0, as R → ∞.

We now prove that

lim
n→∞

1

R2
‖ψ(t,p)− c‖22,R = 0.

By triangle inequality we have

‖ψ(t,p)− c‖2,R ≤ ‖ψ − cR(p)‖2,R + ‖cR(p)− 〈cR〉Qd−2
‖2,R + ‖〈cR〉Qd−2

− c‖2,R.

We compute
‖〈cR〉Qd−2

− c‖22,R = |Qd−2|πR2|〈cR〉Qd−2
− c|2.

Hence,

lim
n→∞

1

R2
n

‖〈cRn
〉Qd−2

− c‖22,R = 0.

‖cR(p)− 〈cR〉Qd−2
‖22,R = πR2‖cR − 〈cR〉Qd−2

‖22.
Therefore,

lim
R→∞

1

R2
‖cR(p)− 〈cR〉Qd−2

‖22,R = 0.

Finally, we have

‖ψ − cR(p)‖22,R =

∫

Qd−2

∫

{|t|<ǫR}
|ψ − cR(p)|2dtdp+

∫

Qd−2

∫

{ǫR<|t|<R}
|ψ − cR(p)|2dtdp.

Using the uniform boundedness of ψ for the first term and the Poincaré inequality for the
second term we get

‖ψ − cR(p)‖22,R ≤ Cǫ2R2‖ψ − c‖2∞ +R2Cǫ

∫

Qd−2

∫

{ǫR<|t|<R}
|ψt(t,p)|2dtp.

Thus,

lim
R→∞

1

R2
‖ψ − cR(p)‖22,R ≤ Cǫ2‖ψ − c‖2∞.

The arbitrariness of ǫ > 0 implies that

lim
R→∞

1

R2
‖ψ − cR(p)‖22,R = 0.

Lemma C.1 is proved now.
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Let Rn → ∞ be the monotone increasing sequence for which ‖ψ − c‖2,Rn
/Rn → 0, as

n→ ∞. Let

α(R) =
‖ψ − c‖2,Rn

Rn

, Rn ≤ R < Rn+1.

Then α(R) → 0, as R → ∞. By Lemma B.1 there exists a monotone increasing function
h(R) such that h(R)/R → 0, as R → ∞ and

lim
R→∞

(
R

h(R)

)
α(R) = 0.

Hence,

lim
R→∞

(‖ψ − c‖2,R
h(R)

)2

≤ lim
n→∞

(
Rn

h(Rn)
α(Rn)

)2

= 0.

The estimate (C.2) together with (3.17) now implies (3.18). Thus, we have proved that
Ck ⊂ S∗ for any 1 ≤ k ≤ d.

Step 4: Proof of the formula (3.24). We have

1

Rd−k

∫

BR

W ◦(F ,∇φ)dx =

∫

|u|≤1

∫

|t|≤R
√

1−|u|2
W ◦(F ,ψt(t, Ru)R+ψp(t, Ru)Q)dtdu.

By the Riemann-Lebesgue lemma

lim
R→∞

∫

|u|≤1

∫

Rk

W ◦(F ,ψt(t, Ru)R+ψp(t, Ru)Q)dtdu =

ωd−k −
∫

Qd−k

∫

Rk

W ◦(F ,ψt(t,p)R+ψp(t,p)Q)dtdp.

Thus, in order to finish the proof of the theorem we need to show that

ρ = lim
R→∞

∫

|u|≤1

∫

|t|≥R
√

1−|u|2
W ◦(F ,ψt(t, Ru)R+ψp(t, Ru)Q)dtdu = 0. (C.4)

Recall that φ ∈ W 1,∞(Rd;Rm). Hence, there exists a number C > 0 depending on ‖φ‖1,∞,
but independent of R such that

ρ ≤ C lim
R→∞

∫

|u|≤1

∫

|t|≥R
√

1−|u|2
{|ψt(t, Ru)|2 + |ψp(t, Ru)|2}dtdu.

For any ǫ ∈ (0, 1) we have
∫

|u|≤1

∫

|t|≥R
√

1−|u|2
{|ψt(t, Ru)|2 + |ψp(t, Ru)|2}dtdu = T1(R, ǫ) + T2(R, ǫ),

where

T1(R, ǫ) =

∫

|u|≤1−ǫ

∫

|t|≥R
√

1−|u|2
{|ψt(t, Ru)|2 + |ψp(t, Ru)|2}dtdu
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T2(R, ǫ) =

∫

1−ǫ<|u|≤1

∫

|t|≥R
√

1−|u|2
{|ψt(t, Ru)|2 + |ψp(t, Ru)|2}dtdu.

If |u| ≤ 1− ǫ and |t| ≥ R
√
1− |u|2 then |t| ≥ R

√
ǫ(2− ǫ). In particular, |t| ≥

√
(2− ǫ)/ǫ,

if R > 1/ǫ. Therefore, by the Riemann-Lebesgue lemma

lim
R→∞

T1(R, ǫ) ≤ T∞
1 (ǫ) = ωd−k −

∫

Qd−k

∫

|t|≥
√

(2−ǫ)/ǫ

{|ψt(t,p)|2 + |ψp(t,p)|2}dpdt.

Also, by the Riemann-Lebesgue lemma

lim
R→∞

T2(R, ǫ) ≤ T∞
2 (ǫ) = |{1− ǫ < |u| ≤ 1}| −

∫

Qd−k

∫

Rk

{|ψt(t,p)|2 + |ψp(t,p)|2}dpdt.

We conclude that ρ = 0, since

lim
ǫ→0

T∞
1 (ǫ) = lim

ǫ→0
T∞
2 (ǫ) = 0.

D Proof of Theorem 3.14

We may assume, without loss of generality, that n = e1. By Lemma 3.2 in [97], applied to the
bounded domain Q = [0, 1]d, there exists a sequence of functions un(x) converging uniformly
in Q to u0(x) = x1a and such that ‖∇un‖∞ is a bounded sequence and for all 1 ≤ j ≤ r

lim
n→∞

|{x ∈ Q : dist(∇un(x),Hj) < 1/n}| = λj.

Let pn(x) denote the function defined in the layer 0 < x1 < 1, which is periodic with periods
e2, . . . , ed and equal to un(x) on Q. Finally, we let

vn(x) =





a, if x1 ≥ 1,

0, if x1 ≤ 0,

pn(x), if 0 < x1 < 1,

Clearly, vn(x) → φ0(x) uniformly in R
d. However, the functions vn(x) have jump disconti-

nuities across the surfaces Γj,k = {xj = k, 0 < x1 < 1}, j = 2, . . . , d, k ∈ Z, as well as the
planes Π0 = {x1 = 0} and Π1 = {x1 = 1}. Let ǫn = ‖vn − φ0‖∞. Then ǫn → 0 as n → ∞.
Let

Γ = Π0 ∪ Π1 ∪
(

d⋃

j=1

(⋃

k∈Z
Γj,k

))

be the entire singular set. When n is sufficiently large there is a C∞(Rd) function ηn(x) that
is periodic with periods e2, . . . , ed, which is equal to 0 on Γ and 1 on {x ∈ R

d : dist(x,Γ) >√
ǫn}, and such that ‖∇ηn‖∞ ≤ C/

√
ǫn. It follows that the function

φn(x) = (1− ηn(x))φ0(x) + ηn(x)vn(x)
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is Lipschitz continuous with

‖∇φn‖∞ ≤ ‖∇φ0‖∞ + ‖∇un‖∞ + C
√
ǫn.

Obviously, φn(x) converges uniformly to φ0(x). In addition ∇φn(x) = 0 whenever x1 <
−√

ǫn or x1 > 1 +
√
ǫn. It follows that (3.19) holds. Observe that φn(x) has periods

e2, . . . , ed, since both vn(x) and ηn(x) do. Thus, ψn ∈ S0
1 , where

ψn(t,p) = φn

(
te1 +

d∑

j=2

pjej

)
.

Hence, φn ∈ C1. To finish the proof of the theorem we need to establish (3.29). This is a
consequence of the formula (3.24) and the relation

lim
n→∞

∫

R

(∫

[0,1]d−1

W ◦(F ,∇φn)dx2 . . . dxd

)
dx1 = lim

n→∞

∫

Q

W ◦(F ,∇un)dx = J(F , ν).

E Proof of Lemma 4.4

The lemma is best proved in the (t,p) variables, where instead of [0, 1]d−k periodic field ψ
we use Qd−k periodic field, that we denote ψ as well, so that

φ(x) = ψ(Rx,Qx) ψ(t,p) = φ(RT t+QTp).

In terms of ψ equations (4.12) become





∇t · (P (F +ψtR+ψpQ)RT ) +∇p · (P (F +ψtR+ψpQ)QT ) = 0,

∇t · (RP ∗(F +ψtR+ψpQ)RT ) = ∇p · (ψT
t P (F +ψtR+ψpQ)QT ),

∇p · (QP ∗(F +ψtR+ψpQ)QT ) = ∇t · (ψT
pP (F +ψtR+ψpQ)RT )

(E.1)

while relation (4.18) reads





∫

Rk

∫

Qd−k

RP̂ ∗RTdpdt = 0,

∫

Rk

∫

Qd−k

ψT
p P̂R

Tdpdt = 0,
(E.2)

where
P̂ = P̂ (ψtR+ψpQ) = P (F +ψtR+ψpQ)− P (F ).

Replacing P̂ ∗ by its expression from (4.15) and using equations (E.1) we obtain

∇t · (RP̂ ∗RT ) = ∇p · (ψT
t P̂Q

T )−∇p · (RF TP (F +ψtR+ψpQ)QT ), (E.3)
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since
∇t · (RN (ψtR+ψpQ)RT ) = −∇t · (ψT

t P (F )).

Let

f1(t) =

∫

Qd−k

RP̂ ∗RTdp,

f2(t) =

∫

Qd−k

ψT
p P̂R

Tdp =

∫

Qd−k

ψT
pP (F +ψtR+ψpQ)RTdp.

Integrating (E.3) over Qd−k and using the periodicity we obtain that ∇t ·f1(t) = 0. Similarly,
Integrating the third equation in (E.1) over Qd−k we conclude that∇t ·f2(t) = 0. We estimate

|P̂ ∗| ≤ C(|ψt|2 + |ψp|2), |ψT
p P̂ | ≤ C(|ψt|2 + |ψp|2),

since ψt and ψp are assumed to be uniformly bounded. Then φ ∈ Ck implies that {f1,f2} ⊂
L1(Rk). The statement of the lemma follows from

∫

Rk

f1(t)dt = 0,

∫

Rk

f2(t)dt = 0,

which is a consequence of a simple observation that any L1 divergence-free vector field f(t)

on R
k must satisfy

∫
Rk fdt = 0. Indeed, f ∈ L1 implies that its Fourier transform f̂(ω) is

continuous. ∇ · f = 0 implies that ω · f̂(ω) = 0 for any ω ∈ R
k. Fixing ω 6= 0 we obtain

ω · f̂(ǫω)
|ω| =

ǫω · f̂(ǫω)
|ǫω| = 0.

Passing to the limit as ǫ → 0 and using continuity of f̂(ω) we obtain ω · f̂(0) = 0. Thus

f̂(0) = 0, since ω ∈ R
k \ {0} was arbitrary.

F Proof of Theorem 4.6

When the subspace L described by R is fixed we can simplify our notation by regarding first
k components of x as t and the remaining components as p. Then ∇φ = [ψt,ψp]. We then
have the corresponding splitting of P = [P1,P2] and

P ∗ = W (F + [ψt,ψp])

[
Ik 0

0 Id−k

]
−
[
ψT

t

ψT
p

]
[P1,P2] =

[
P ∗

1 −ψT
t P2

−ψT
pP1 P ∗

2

]
.

Similarly, splitting the t and p components we have

P̂ (H) = [P̂1, P̂2], P̂i = Pi(F + [ψt,ψp])− Pi(F ), i = 1, 2.
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P̂ ∗(H) =

[
P̂ ∗

1 −ψT
t P̂2

−ψT
p P̂1 P̂ ∗

2

]
,

where

P̂ ∗
1 = W ◦(F , [ψt,ψp])Ik −ψT

t P̂1. P̂ ∗
2 = W ◦(F , [ψt,ψp])Id−k −ψT

p P̂2.

Next we use the generalized Calpeyron’s theorem [59] for Ŵ (H):

∫

|t|≤R

∫

Qd−k

Ŵ (∇φ)dpdt = 1

d
(T1 + T2), (F.1)

where

T1 =

∫

|t|=R

∫

Qd−k

{(P̂ ∗
1nt, t)− (ψT

p P̂1nt,p) + (P̂1nt,ψ)}dpdS(t),

T2 =

∫

|t|≤R

∫

∂Qd−k

{(P̂ ∗
2np,p)− (ψT

t P̂2np, t) + (P̂2np,ψ)}dS(p)dt.

Next we observe that
∫

∂Qd−k

ψT
t P̂2npdS(p) = 0,

∫

∂Qd−k

(P̂2np,ψ)dS(p) = 0,

since ψT
t P̂2 and (P̂2)

Tψ are Qd−k-periodic. By divergence theorem we obtain

∫

∂Qd−k

(P̂ ∗
2np,p)dS(p) =

∫

Qd−k

{(∇p · P̂ ∗
2 ,p) + Tr P̂ ∗

2 }dp.

The Noether-Eshelby equation gives

∇p · P̂ ∗
2 = ∇t · (ψT

p P̂1),

We also compute
Tr P̂ ∗

2 = (d− k)Ŵ − Tr (ψT
p P̂2)

Hence, we obtain

T2 = (d− k)

∫

|t|≤R

∫

Qd−k

Ŵ (∇φ)dpdt+ T ′
2,

where

T ′
2 =

∫

|t|=R

∫

Qd−k

(ψT
p P̂1nt,p)dpdS(t)−

∫

|t|≤R

∫

Qd−k

Tr (ψT
p P̂2)dpdt.

Substituting this back into (F.1) we obtain

∫

|t|≤R

∫

Qd−k

Ŵ (∇φ)dpdt = 1

k
(T̂1(R) + T̂2(R)),
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where

T̂1(R) =

∫

|t|=R

∫

Qd−k

{(P̂ ∗
1nt, t) + (P̂1nt,ψ)}dpdS(t),

T̂2(R) = −
∫

|t|≤R

∫

Qd−k

Tr (ψT
p P̂2)dpdt.

We observe that due to (4.17)

lim
R→∞

T̂2(R) = −Tr

(∫

Yk

ψT
p P̂2dpdt

)
= 0.

To finish the proof of the theorem we need to show that T̂1(R) → 0, as R → ∞.

We have |P̂ | ≤ C|∇φ| and |P̂ ∗| ≤ C|∇φ|2, due to the uniform boundedness of ∇φ,
where the constant C depends on φ, but is independent of R. Thus, |T̂1(R)| ≤ CK(R) for
a.e. R > 1, where

K(R) =

∫

|t|=R

∫

Qd−k

{R|∇φ|2 + |φ− c||∇φ|}dpdS(t),

where c ∈ R
m can be chosen arbitrarily. We have, after an application of the Cauchy-Schwartz

inequality

1

R

∫ 2R

R

K(r)dr ≤ 2

∫

R<|t|<2R

∫

Qd−k

|∇φ|2dpdt+‖φ− c‖2,2R
R

(∫

R<|t|<2R

∫

Qd−k

|∇φ|2dpdt
)1/2

.

If k = 1 or k = 2 then the boundedness of φ implies that

lim
R→∞

1

R

∫ 2R

R

K(r)dr = 0. (F.2)

If k ≥ 3 then Lemma C.1 guarantees the choice of the constant c ∈ R
m such that (F.2) holds.

Therefore,
lim
R→∞

K(R) = 0.

Hence, ∣∣∣∣
∫

Y

Ŵ (∇φ)dx
∣∣∣∣ ≤ C lim

R→∞
K(R) = 0.

The theorem is proved.

G Proof of Lemma 5.5

We will prove that G = G0, where

G0 = {A = diag(A1, . . . , Ak), Ai > 0, i = 1, . . . , k, TrA = 1}.
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If we write 〈Γ(n)〉a in components

(〈Γ(n)〉a)ij = −
∫

Sk−1

ninj

aiaj
∑k

s=1 a
−2
s n2

s

dS(n).

we immediately see that G ⊂ G0.
To each a = (a1, . . . , ak) ∈ R

k we associate (without relabeling) the diagonal matrix
a =diag(a1, . . . , ak). Let ∆ = {(a1, . . . , ak) : ai > 0,

∑k
i=1 ai = 1}. Then the smooth map

F (a) = 〈Γ(n)〉a maps ∆ into itself. To prove the reverse inclusion G0 ⊂ G we need to show
that the map F : ∆ → ∆ is surjective. We first show that the differential of the map F is
non-degenerate. This implies, via the inverse function theorem that F (∆) is an open subset
of ∆.

In order to simplify the calculation we first change variables b = a−1/Tr (a−1). Then

F (a) = G

(
a−1

Tra−1

)
, G(b) = −

∫

Sk−1

bn⊗ bn
|bn|2 dS(n).

We compute

dF (a)η = −dG
(
a−1

Tra−1

)
a−1Tr (a−1ηa−1)− a−1ηa−1Tra−1

(Tra−1)2
,

where η is a diagonal trace-free matrix. If

a−1Tr (a−1ηa−1)− a−1ηa−1Tra−1 = 0

then η = λa for some scalar λ. Taking traces we conclude that λ = 0. Hence, the map

η 7→ a−1Tr (a−1ηa−1)− a−1ηa−1Tra−1

(Tra−1)2

is a non-degenerate linear transformation on the space of diagonal trace-free matrices. Hence,
dF is non-degenerate if and only if dG is non-degenerate. We compute explicitly

dGη = 2 −
∫

Sk−1

{
ηn⊙ bn
|bn|2 − bn⊗ bn

|bn|4 (bn,ηn)

}
dS(n),

where η is diagonal and Trη = 0. Suppose dGη = 0 for some non-zero η The Lemma will be
proved if we show that only for η = 0. If this is not the case then we have Tr (ηb−1dGη) = 0.
We compute (using commutativity of the diagonal matrix multiplication)

Tr (ηb−1dGη) = 2 −
∫

Sk−1

|ηn|2|bn|2 − (bn,ηn)2

|bn|4 dS(n).

The Cauchy-Schwartz inequality implies that the integrand is non-negative. For it to be zero
we would need ηn = α(n)bn for almost all n ∈ S

k−1. The equivalent relation b−1ηn =
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α(n)n means that every unit vector is an eigenvector of b−1η. Hence, there is a constant
α0 such that η = α0b. Taking the trace, we obtain α0 = 0 and the non-degeneracy of dG is
proved.

The lemma will follow, if we show that if an → a◦ ∈ ∂∆ and F (an) → f ◦, as n → ∞
then f ◦ ∈ ∂∆. Let 1 ≤ i, j ≤ k be a pair of indexes such that a◦i = 0 and a◦j 6= 0. Such a pair
exists, since a◦ ∈ ∂∆. We claim that f ◦

j = 0, finishing the proof of the lemma. We estimate

Fj(a) ≤ −
∫

Sk−1

a−2
j n2

j

a−2
j n2

j + a−2
i n2

i

dS(n) = −
∫

Sk−1

a2in
2
j

a2in
2
j + a2jn

2
i

dS(n).

Now, by the Lebesgue bounded convergence theorem,

f ◦
j = lim

n→∞
Fj(an) = 0.

Lemma 5.5 is now proved.
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