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Abstract

In this paper we present the exhaustive and non-redundant list of all microstructure-
independent relations for effective conductivity of fiber-reinforced composites with Hall
effect. Our results are independent of the number of constituents and the degree of
their anisotropy. We use this to apply our results to both polycrystals and two-phase
composites. Our tool is the general theory of exact relations for composite materials
developed in collaboration with Graeme Milton and Daniel Sage.

1 Introduction

In [14] Graeme Milton, Daniel Sage and the author have developed a general theory (see
also [21, Chapter 17] for a compact account) that has the power to identify every single
microstructure-independent relation for effective tensors of composites in a wide variety of
physical contexts, regardless of the number of constituent materials or the degree of their
anisotropy. This theory has been applied to polycrystalline composites in [10] to 2D con-
ductivity and elasticity, in [15] to 3D elasticity and 2D and 3D piezo-electricity, and in [14]
to 3D pyro-electricity, thermo-electricity, thermo-elasticity and thermo-piezo-electricity. In
[11] the theory has been applied in the non-polycrystalline case of 2D conductivity with Hall
effect. In this paper we report on the results of a massive research effort1 [12] that builds on
[11] and applies the general theory to fiber-reinforced conducting composites with Hall effect.
In this case the number of (infinite families of) solutions to the equations of general theory
is overwhelming. Nevertheless, thanks to the efforts of the three REU teams, led by the
author, all of the solutions have been computed, organized and reduced to a small number of

1This worked spanned 3 Summers and involved 14 talented undergraduates under the NSF funded program
“Research Experience for Undergraduates” (REU).
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fundamental facts, presented in this paper. Here we apply our exact results to two examples:
a polycrystal and a two-phase composite.

In the framework of the homogenization theory for periodic composites [2, 16, 21], the
microstructure of a fiber-reinforced conducting composite is described mathematically by an
L∞ function L(x) taking values in the set of 3 × 3 positive-definite matrices and defined on
a 2D period cell Q = [0, 1]2. The anti-symmetric part of the local conductivity matrix L is
due to the assumed presence of the magnetic field h and the non-vanishing 3 × 3 matrix of
Hall coefficients R, introduced in [7]. If C denotes the symmetric part of L, then the current
density j produced inside such a material by the electric field e is given by

j = Ce + (Rh) × e. (1.1)

If the magnetic field h is weak, both the conductivity tensor C and the Hall tensor R can
be assumed to be independent of the magnetic field. If the magnetic field is strong then the
dependence of C on h can not be neglected. Indeed, our formulas indicate that even if C and
R do not depend on h originally, the effective tensor C∗ of a composite may exhibit strong
dependence on h, when |h| is large.

Suppose that the periodic composite occupies a domain Ω ⊂ R
3. Then the conductivity of

the material at the point (x1, x2, x3) ∈ Ω is assumed to be equal to L(x/ǫ), where x = (x1, x2),
the function L(x) is extended doubly-periodically to R

2 with period cell Q = [0, 1]2, and
a small parameter ǫ is a typical length scale of the periodic microstructure in the plane
transversal to the fibers.

The independence of the microstructure of x3 makes it convenient to represent all tensors
in block form separating directions that are parallel and transversal to the fibers. Thus, we
write

L =

[
Λ p

q α

]
,

where Λ is the 2 × 2 positive definite matrix of the transversal conductivity; α > 0 is the
conductivity along the fibers and p and q are R

2 vectors linking fields along and across the
fibers.

The general cell problem for periodic conducting composites is

Div(L(Grad(φ) + ξ̂)) = 0, (1.2)

where Div and Grad operators are divergence and gradient, respectively, in (x1, x2, x3) and

ξ̂ ∈ R
3 is an arbitrary vector. It is not difficult to show that the independence of L(x) from

the x3 variable implies that the solution φ of (1.2) is also independent of x3. In that case we
may rewrite the cell problem (1.2) in terms of the block-components of L(x):

∇ · (Λ(x)(∇φ + ξ) + ξ3p(x)) = 0, (1.3)

where ξ ∈ R
2, (ξ, ξ3) = ξ̂ and ∇· and ∇ are the divergence and gradient operators, re-

spectively, in x = (x1, x2). The solution to (1.3) can be conveniently written in terms of the
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generalized Helmholtz projection operator ΓΛ on L2(Q; R2). The action of ΓΛ on an arbitrary
function f ∈ L2(Q; R2) is defined by

ΓΛf = ∇ψ,

where ψ(x) is the unique (up to an additive constant) Q-periodic solution of

−∇ · Λ(x)∇ψ = ∇ · f(x).

We may also extend the definition of ΓΛ from L2(Q; R2) to L2(Q; End(R2)). The action of
ΓΛ on an arbitrary function F ∈ L2(Q; End(R2)) is defined by

(ΓΛF )ξ = ΓΛ(Fξ)

for any ξ ∈ R
2.

If φ(x) solves (1.3) then it depends linearly on ξ̂, and therefore,

∇φ = (ΓΛΛ)ξ + ξ3(ΓΛp). (1.4)

In general, the effective tensor L∗ is defined by its action on an arbitrary vector ξ̂ by

L∗ξ̂ =

∫

bQ

L(Grad(φ) + ξ̂)dx1dx2dx3. (1.5)

Recall that neither L nor φ depend on x3. Therefore, we get

L∗ξ̂ =

[
Λ∗ξ + ξ3p

∗

(q∗, ξ) + ξ3α
∗

]
=

[
〈Λ(x)∇φ〉 + 〈Λ〉ξ + ξ3〈p〉

〈(q(x),∇φ)〉 + (〈q〉, ξ) + ξ3〈α〉

]
, (1.6)

where 〈·〉 denote the average over the period cell Q. Here and elsewhere in the paper we
use the inner product notation (·, ·) to denote the dot product of two vectors or matrices.
Substituting (1.4) into (1.6) and equating coefficients at ξ and ξ3, we obtain

Λ∗ = 〈Λ〉 + 〈ΛΓΛΛ〉, p∗ = 〈p〉 + 〈ΛΓΛp〉,
α∗ = 〈α〉 + 〈(ΓΛp, q)〉, q∗ = 〈q〉 + 〈ΛT ΓΛT q〉.

(1.7)

Suppose that we have made a composite with two materials with conductivity tensors
L1 and L2. Suppose also that we know the volume fraction of each material, i.e. we know
the average 〈L〉. If nothing else is known about the microstructure of the composite, what
can we tell about the possible values of the effective conductivity? This problem is called
the G-closure problem [18, 25]. Generically, the supplied information about the composite
constrains the effective tensor to lie in a bounded region of the tensor space described by a set
of inequalities. Occasionally, when the conductivity tensors of constituents satisfy a special
relation, or possess a special symmetry, the effective tensor has to satisfy an equation that is
independent of the microstructure. In this case we speak of exact relations.
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Another situation covered by our theory is the relations between effective tensors of two
composites that are made with different materials but share the same microstructure. If
there exists a function Φ mapping 3× 3 positive-definite matrices into 3× 3 positive-definite
matrices such that (Φ(L(x)))∗ = Φ(L∗) then we say that the map Φ describes a link.2

In the next section we list a non-redundant set of all links and exact relations for fiber-
reinforced composites with Hall effect. Even though our list is not particularly long, the
total number of ways in which various facts on the list can be combined to produce new
exact relations and links is staggering. Most (but not all) facts on our list could be easily
proved directly from equations (1.7). This is not the point. It is the reverse operation—
generating a complete non-redundant set of exact relations and links in the present context
that is possible only through the application of the general theory of exact relations. In this
connection we must mention the work of Bergman and Strelniker, who extended the ideas
of duality of Dykhne [9], Keller [17], Mendelson [19] and Milton [20] and obtained new links
and new exact reactions in the context of two-component composites [4, 3, 5, 23, 24] and
three-component composites [6] (see also [1]).

2 Exact relations and links

The first three items below are links (first two are infinite families of links) of the form
L′ = Φ(L) described above. The maps Φ corresponding to these links are given explicitly.

1. Let S =

[
0 −1

1 0

]
and Ψ(Λ) =

(Λ − r0S)T

det(Λ − r0S)
. Then the link is

Λ′ = τ0Ψ(Λ) − r′
0
S,

p′ = p′

0
+ µ0Ψ(Λ)(p − p0)

⊥,

q′ = q′

0
+ ν0Ψ(Λ)T (q − q0)

⊥,

α′ = α0 + µ0ν0

τ0

{
(Ψ(Λ)(p − p0)

⊥, (q − q0)
⊥) − α

}
,

(2.1)

where a⊥ = Sa = (−a2, a1). Here r0, r′
0
, τ0, µ0, ν0, α0 are arbitrary constants and p0,

q0, p′

0
, q′

0
are arbitrary vectors in R

2.

2.
Λ′ = τ0Λ + r′

0
S,

p′ = Λp0 + µ0p − p′

0
,

q′ = ΛT q0 + ν0q − q′

0
,

α′ = τ−1

0
{µ0ν0α + µ0(p, q0) + ν0(q,p0) + (Λp0, q0)} − α0,

(2.2)

The link (2.2) is a limiting case of the link (2.1), when some of the parameters in (2.1)
go to infinity.

2More generally, a link is a relation between some of the components of (Φ(L(x)))∗ and Φ(L∗).
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3. The effective tensor L∗ enjoys the “transpose symmetry”, [22, Proposition 2],

(LT )∗ = (L∗)T . (2.3)

4. Λ∗ depends only on Λ(x) and not on p, q or α. It is computed as an effective con-
ductivity of the 2D periodic composite with local conductivity Λ(x). Also, p∗ depends
only on Λ(x) and p(x).

5. If the constituents of the fiber-reinforced composite do not exhibit transversal Hall
effect, i.e. Λ(x) = σ(x) is symmetric, then

[
σ p + q

q α

]∗

=

[
σ∗ p∗ + q∗

q∗ α∗

]
, (2.4)

where [
σ p

q α

]∗

=

[
σ∗ p∗

q∗ α∗

]
.

6. If p(x) = p0 then
p∗ = p0, α∗ = 〈α〉. (2.5)

7. If Λ(x)e0 = j0 then
Λ∗e0 = j0, (q∗,e0) = (〈q〉,e0). (2.6)

8. If Λ(x) = Λ0 then
Λ∗ = Λ0, p∗ = 〈p〉, q∗ = 〈q〉. (2.7)

The properties (2.1) and (2.2) are not immediately readable off the formulas (1.7), even
though (2.2) can be proved by substituting the expressions for Λ′, p′, q′ and α′ into (1.7).
The remaining microstructure-independent relations are easy to prove using formulas (1.7).
However, it is not clear how starting with (1.7) one can generate all items on our list.

The transpose symmetry (2.3) is a consequence of the easily proved property of the oper-
ator ΓΛ:

〈(ΓΛp, q)〉 = 〈(ΓΛT q,p)〉.
The properties in item 4 above and (2.4) are clearly readable off (1.7). However, (1.7) con-
tains a bit more microstructure-independent information than (2.4). Namely, it is the linear
dependence of p∗ on p, in the case when Λ(x) is not symmetric and the dependence of α∗

on 〈α〉 that do not follow from item 4 and (2.4). In order for our theory of exact relations to
pick up these properties, we should have considered links between three uncoupled problems.

Finally, the properties (2.5) and (2.6) follow from (1.7) and the fact that ΓΛp0 = 0, while
The property (2.7) follows from (1.7) and the relation 〈ΓΛp〉 = 0.
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3 Example: a polycrystal

Suppose that the ohmic conductivity of a single crystal is C0 and the Hall tensor, defined in
(1.1) is R0. If the magnetic field h is weak, it is reasonable to assume, as we argued in the
Introduction, that tensors C0 and R0 are independent of h. Then, if we rotate the crystal,
but not the magnetic field, by a rotation Q̂ ∈ SO(3), the ohmic conductivity of the crystal

will be Q̂C0Q̂
T and its Hall tensor Q̂R0Q̂

T . Assume that the polycrystalline texture Q̂(x)
has cylindrical symmetry. In other words

Q̂(x) =

[
Q(x) 0

0 1

]
,

where Q(x) ∈ SO(2) for each x ∈ Q. For general h the formula (1.1) gives a complicated
expression for the local Hall conductivity L(x). However, if the magnetic field h is directed

along the fibers, the formula for L(x) simplifies and we obtain L(x) = Q̂(x)L0Q̂(x)T , where
L0 is defined by its action on an arbitrary vector e ∈ R

3,

L0e = C0e + (R0h) × e.

If

L0 =

[
Λ0 p0

q0 α0

]
,

then

L(x) =

[
Q(x)Λ0Q(x)T Q(x)p0

Q(x)q0 α0

]
,

Let us first apply the link (2.2) to this situation. The goal is to choose parameters in
(2.1) such that Λ′(x) is symmetric. Suppose that the decomposition of Λ0 into symmetric
and antisymmetric parts is Λ0 = σ0 + r0S then choosing in (2.2) r′

0
= −r0, τ0 = µ0 = ν0 = 1

with remaining parameters set to zero we obtain

L∗ =

[
σ∗ + r0S p∗

q∗ α∗

]
,

where the blocks above are computed from the homogenization problem

[
σ(x) p(x)

q(x) α0

]∗

=

[
σ∗ p∗

q∗ α∗

]
. (3.1)

Combining the link in item 4 on page 5 with links (2.2) and (2.4), we conclude that σ∗ can
be computed from 2D homogenization of σ(x) = Q(x)σ0Q(x)T , and also that there exists a
linear map P : R

2 → R
2, that depends only on σ0 and the texture Q(x) of the polycrystal,

such that p∗ = Pp0. The transpose symmetry (2.3) implies that q∗ = Pq0. Finally, the third
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equation in (1.7) implies that there exists a bilinear form B depending only on σ0 and Q(x),
such that α∗ = α0 +(Bp0, q0). The transpose symmetry (2.3) implies that the matrix B must
be symmetric. It follows that without loss of generality we may study the homogenization of

Σ(x) =

[
σ(x) p(x)

p(x) α0

]
.

Observe that the link (2.1) with τ0 = µ0 = ν0 = det σ0 and all other constants set to zero
transforms Σ(x) into Σ′(x) of the same form, where p0 is changed into σ0p

⊥

0
and α0 is

changed into
α′ = (σ0p

⊥

0
, q⊥

0
) − α0 det σ0.

Combining the link (2.1) with the representation

Σ∗ =

[
σ∗

Pp0

Pp0 α0 + (Bp0,p0)

]

we conclude after a bit of manipulation that

(B,σ0) = det P − 1, σ∗cof(P) = Pσ0, (3.2)

where cof(P) is the cofactor matrix for P. The second equation in (3.2) has a general solution
of the form

P = (σ∗)1/2ϕ(z)σ
−1/2

0
, z ∈ C,

where ϕ : C → End(R2) is given by

ϕ(z) =

[
a −b

b a

]
, z = a + ib. (3.3)

Assume now that additionally the polycrystalline texture is statistically isotropic in the
transversal plane. In that case σ∗ must be isotropic. Hence, σ∗ =

√
det σ0I. Also, if we

rotate each crystallite by a fixed in-plane rotation Q0, it should not change the effective tensor
of the composite because the texture Q0Q(x) is also statistically isotropic in the transversal
plane. Hence PQ0 = P and QT

0
BQ0 = B for every Q0 ∈ SO(2). Therefore, P = 0 and,

according to (3.2),

B = − I

Tr σ0

.

Hence

L∗ =





√
det σ0I + r0S 0

0 α0 −
(p0, q0)

Tr σ0



 .
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4 Example: a two phase composite

Let us apply our exact relations to a two-phase fiber-reinforced composite. Let

Lj =

[
σj + rjS pj

qj αj

]
, j = 1, 2.

Recall that the upper left 2 × 2 block of L∗ is determined by the 2D homogenization
problem. Now, we may use the 2D Hall effect link of Milton [20] (who was enlarging upon
the work of Dykhne [8]) Λ′ = τ0Ψ(Λ) − r′

0
S, where Ψ(Λ) is defined in (2.1). Separating

symmetric and antisymmetric parts we get

σ′ = τ0

σ

(r0 − r)2 + det σ
, r′ = τ0

r0 − r

(r0 − r)2 + det σ
− r′

0
. (4.1)

Formula (4.1) with r0 = r′
0

= 0 has been derived much earlier by Mendelson [19]. We now
use (4.1) to reduce the 2D Hall effect homogenization problem to standard conductivity. We
need to choose constants τ0, r0 and r′

0
such that r′ = 0 when r = r1 and r = r2. We see that

without loss of generality, we may choose τ0 = 1, while

r0 − r1

(r0 − r1)2 + det σ1

=
r0 − r2

(r0 − r2)2 + det σ2

= r′
0
. (4.2)

We easily see that (4.2) reduces to a quadratic equation for r0 that has two distinct real
roots, unless r1 = r2. We may select either root, since the results are independent of the
choice.3 Then Milton’s link (4.1) maps a composite made with conductors Λj = σj + rjS to
a composite made with conductors

σ′

j =
σj

(r0 − rj)2 + det σj

, j = 1, 2.

Let Σ(σ1,σ2) denote the effective conductivity function of the 2D composite made with
materials σ1 and σ2. This function depends on the microstructure of the composite. Let
Σ∗ = Σ(σ′

1
,σ′

2
). The upper left 2 × 2 block Λ∗ = σ∗ + r∗S of the effective tensor L∗ of the

original 3D composite is then determined from the relations

σ∗

(r0 − r∗)2 + det σ∗
= Σ∗,

r0 − r∗

(r0 − r∗)2 + det σ∗
= r′

0
.

We find that

σ∗ =
Σ∗

(r′
0
)2 + detΣ∗

, r∗ = r0 −
r′
0

(r′
0
)2 + detΣ∗

. (4.3)

Our next step is to determine p∗ and q∗. The idea is to use the link (2.2) to map our
original composite to the one with p(x) = 0 and q(x) = 0. Let us first assume that Λ1 −Λ2

3It is not easy to see, but ultimately, the independence of the choice of root in (4.2) boils down to
Mendelson’s link [19], or (4.1).
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is an invertible matrix. In (2.2) we choose τ0 = 1, r′
0

= 0, µ0 = ν0 = 1 and p0 and q0 such
that

Λ1p0 + p1 = Λ2p0 + p2 = p′

0
, ΛT

1
q0 + q1 = ΛT

2
q0 + q2 = q′

0
.

In other words,

p0 = (Λ1 − Λ2)
−1(p2 − p1), q0 = (Λ1 − Λ2)

−T (q2 − q1). (4.4)

Then
p∗ = (Λ1 − Λ∗)p0 + p1 = (Λ2 − Λ∗)p0 + p2,

q∗ = (Λ1 − Λ∗)T q0 + q1 = (Λ2 − Λ∗)T q0 + q2,
(4.5)

And the first volume fraction relation implies that (α′)∗ = 〈α′〉. Therefore,

α∗ = 〈α〉 + (〈p〉 − p∗, q0) = 〈α〉 + (〈q〉 − q∗,p0) = 〈α〉 − ((〈Λ〉 − Λ∗)p0, q0). (4.6)

The formulas (4.3)–(4.6) have been derived earlier in a series of papers by Bergman and
Strelniker [4, 5, 23] and Bergman, Li and Strelniker [3].

If Λ1 − Λ2 is singular, then we have two cases. Either Λ1 = Λ2 = Λ0 or there exists
a unit vector e0 and a non-zero vector d0 such that Λ1 − Λ2 = d⊥

0
⊗ e⊥

0
, in other words,

Λ1e0 = Λ2e0 (and ΛT
1
d0 = ΛT

2
d0). If Λ1 = Λ2 = Λ0 then Λ∗ = Λ0 and, according to

(2.7), we have p∗ = 〈p〉 and q∗ = 〈q〉. Surprisingly, α∗ depends on the microstructure in the
essential way (unless of course p(x) = p0 or q(x) = q0). It is possible to express α∗ in terms
of the second derivatives of the 2D effective conductivity function Σ(σ1,σ2):

α∗ = 〈α〉 +
1

2
(σ−1

0
Σ′′(1)σ−1

0
(p1 − p2), q1 − q2),

where Σ(t) = Σ∗(σ0, tσ0) and σ0 is the symmetric part of Λ0. We can obtain this formula
from (4.3)–(4.6) by considering a composite made with materials L1 and L2(t), where Λ2(t) =
tΛ0 and computing a limit, as t → 1 (using that Σ′(1) = θ2σ0).

Consider now the remaining case when Λ1 −Λ2 = d⊥

0
⊗ e⊥

0
. Then Λ∗ −Λ2 = λ∗d⊥

0
⊗ e⊥

0
.

Then, according to (2.3) and (2.6), we have

(p∗,d0) = (〈p〉,d0), (q∗,e0) = (〈q〉,e0).

The remaining components of the effective tensor can be expressed only in terms of the
derivatives of the function Σ(σ1,σ2), by considering a perturbed composite, where Λ2 is
replaced with Λ2 + td0 ⊗ e0 and passing to the limit as t → 0 in the formulas (4.3)–(4.6).
The explicit formulas are complicated and we do not list them here.

As an example, consider a periodic array of fibers with volume fraction θ and conductivity
Lf = σ1I + Bf embedded in a matrix with conductivity Lm = σ2I + Bm, where

Bf =

[
r1S −a1

a1 0

]
, Bm =

[
r2S −a2

a2 0

]
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are 3× 3 skew-symmetric matrices of Hall effect-induced conductivity. Assume also that the
cross-section of the fibers have the square-symmetric Vigdergauz shape [26, 27, 28] (see also
[13]). Then Σ∗ = ς(σ′

1
, σ′

2
)I, where

ς(σ1, σ2) = σ2

σ2 + σ1 + (σ1 − σ2)θ

σ2 + σ1 − (σ1 − σ2)θ
(4.7)

and
σ′

j =
σj

(r0 − rj)2 + σ2

j

, j = 1, 2,

with r0—a solution of (4.2).
Then the effective conductivity L∗ has the form

L∗ =

[
σ∗I + r∗S p∗

q∗ α∗

]
,

where

σ∗ = σ2 + (σ1 − σ2)ℜeτ + (r1 − r2)Imτ, r∗ = r2 +
r1 − r2

θ
|τ |2,

p∗ = −a2 + ϕ(τ)(a2 − a1), q∗ = a2 − ϕ(τ)(a2 − a1),

α∗ = θσ1 + (1 − θ)σ2 +
1 − θ

2σ2

ℜeτ |a2 − a1|2,

τ =
2θσ2

σ2 + σ1 + (σ2 − σ1)θ + i(1 − θ)(r2 − r1)
,

where the map ϕ is given by (3.3). We observe that if σj are independent of the magnetic
field h and Bj depend on h linearly, the effective ohmic conductivity and effective Hall tensor
both depend on h in a non-linear manner. Hence, the assumption that in (1.1) the tensors
C and R are independent of h is reasonable only in the weak magnetic field limit.

If the magnetic field is weak, the components of Bj, j = 1, 2 are small. Hence, neglecting
expressions that are quadratic in small quantities we see that the Hall effect does not influence
the normal effective conductivity of the composite:

σ∗ = ς(σ1, σ2), α∗ = θσ1 + (1 − θ)σ2.

The components of the anti-symmetric part B∗ to the effective conductivity are given by

r∗ =
τ 2

0

θ
r1 +

(
1 − τ 2

0

θ

)
r2, a∗ = τ0a1 + (1 − τ0)a2,

where

τ0 =
ς(σ1, σ2) − σ2

σ1 − σ2

=
2θσ2

σ2 + σ1 + (σ2 − σ1)θ
.

It is easy to check that 0 ≤ τ0 ≤
√

θ with equalities only at θ = 0 and 1.
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5 The general theory

We conclude the paper by a brief description of the general theory of exact relations [11, 14]
that was used to obtain the results described in Section 2. General theory tells us that exact
relations are in one-to-one correspondence with subspaces Π ⊂ End(R3) such that

P1 ∗A P2 =
1

2
(P1AP2 + P2AP1) ∈ Π (5.1)

for all {P1,P2} ⊂ Π and all A ∈ A, where

A =

{[
A 0

0 0

]
: AT = A, Tr A = 0

}
. (5.2)

The multiplication in (5.1) makes Π into a Jordan algebra. The new twist here is that Π is a
Jordan algebra with respect to an infinite family of multiplications parameterized by A ∈ A.

In addition to the exact relations we have a way of recognizing when the relations involving
volume averages are also present. These additional relations appear when the derived Jordan
ideal Π2 defined by

Π2 = Span{PAP : P ∈ Π, A ∈ A} ⊂ Π

is strictly smaller than Π. For example, the exact relation p∗ = p0 corresponds to

Π =

{[
K 0

v ρ

]
: K ∈ End(R2), v ∈ R

2, ρ ∈ R

}
.

Π2 =

{[
K 0

v 0

]
: K ∈ End(R2), v ∈ R

2

}
6= Π.

Therefore this exact relation admits additional relations involving volume fractions. The
number of such relations is equal to the co-dimension of Π2 in Π. In our example, we should
have one additional relation. It is α∗ = 〈α〉, resulting in (2.5).

Now let us turn to the links between exact relations. The links are nothing more than the
exact relations for the two uncoupled Hall-conductivity problems. As such, they correspond
to subspaces Π̂ ⊂ V = End(R3) ⊕ End(R3) that satisfy

P̂ ÂP̂ ∈ Π̂ (5.3)

for all P̂ ∈ Π̂ and all Â ∈ Â, where Â = {[A,A] : A ∈ A}. We can construct all subspaces

Π̂ satisfying (5.3) from the list of all solutions Π of (5.1), provided we also understand their

Jordan algebra structure. For any solution Π̂ of (5.3), let Π1 and Π2 be its canonical projec-
tions onto the first and the second copy of End(R3) in V , respectively, and let the Jordan
ideals I1 ⊂ Π1 and I2 ⊂ Π2 be the kernels of these canonical projections. The pairs (I1, Π1)
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and (I2, Π2) arise from a subspace Π̂, if and only if the factor algebras Π1/I1 and Π2/I2 are
isomorphic. Conversely, if we have found an isomorphism Φ : Π1/I1 → Π2/I2, then

Π̂ = {[P1,P2] ∈ Π1 ⊕ Π2 : [[P2]] = Φ([[P1]])} (5.4)

solves (5.3), where [[Pi]] is the equivalence class in Πi/Ii containing Pi, i = 1, 2.
The equivalence classes in Πi/Ii can be labeled by elements of I⊥

i —the orthogonal com-
plement of Ii in Πi, i = 1, 2. Then the map Φ can be thought of as an isomorphism between
I⊥

1
and I⊥

2
.

For example, item 4 on page 5 says in part that p∗ depends on Λ(x) and p(x), but not
on q(x) or α(x). This link corresponds to the following subspace

Π̂ =

{[[
K u

v ρ

]
,

[
K u

0 0

]]
: K ∈ End(R2), u,v ∈ R

2, ρ ∈ R

}

Here, Π1 = End(R3), I2 = {0},

I1 =

{[
0 0

v ρ

]
: v ∈ R

2, ρ ∈ R

}
, Π2 =

{[
K u

0 0

]
: K ∈ End(R2), u ∈ R

2

}
.

Observe that Π2 = I⊥

1
and Φ here is the resulting natural isomorphism Π1/I1

∼= I⊥

1
∼= Π2

∼=
Π2/I2.

Another example with highly non-trivial Φ corresponds to the links (2.1) and (2.2). Here
Π1 = Π2 = End(R3) and I1 = I2 = {0}. While,

Φ(P ) = XPY , X =




cos θ − sin θ 0
sin θ cos θ 0
a1 a2 a3



 , Y =




cos θ − sin θ b1

sin θ cos θ b2

0 0 b3



 ,

where θ and a, b ∈ R
3 are parameters.

In the Summer of 2002 the first group of 5 REU undergraduates (see footnote 1 on
page 1) have found all solutions of (5.1). These solutions came in 22 infinite families, some
of them complicated. In the Summer of 2003 the next group of 4 students translated most
solutions into exact relations. They have also computed additional volume fraction relations,
corresponding to non-trivial derived ideals, as explained above. At the same time they also
made further progress on understanding the algebraic structure of solutions. In the Summer of
2004 the final group of 5 students have identified all the ideals and pairs of isomorphic factor-
algebras, in the process bringing in the complete understanding of the algebraic structure of
solutions. This new understanding permitted the author to simplify and streamline many
tedious steps of the analysis of the previous years. It has also made possible the completion
of the analysis: translation of the subspaces Π̂ into the physical language of links and removal
of the redundant information. The complete description of all calculations is submitted for
publication elsewhere and is available as a preprint on the author’s web page.
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