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Abstract

We generalize the classical Legendre-Hadamard conditions by using quadratic extensions of the energy

around a set of two configurations and obtain new algebraic necessary conditions for nonsmooth strong

local minimizers. The implied bounds of stability are easily accessible as we illustrate on a nontrivial

example where quasiconvexification is unknown.

1 Introduction

Readily computable, algebraic Legendre-Hadamard (LH) conditions play a crucial role in delimiting stability
boundaries for weak local minima in the Calculus of Variations [9]. In the study of strong local minima
they have been deemed rather useless because the corresponding stability bounds obtained at points of
regularity are usually too crude. In this paper we show that if LH conditions are appropriately generalized
at points of reduced regularity, they may be quite useful in establishing stability bounds for strong local
minimizers as well. To illustrate the idea we consider in full detail the simplest case when reduced regularity
is associated with the presence of static jump discontinuities. In elasticity theory those would be phase
boundaries associated with solid-solid phase transformations [2] or the boundaries of shear bands associated
with localization phenomena in softening materials [16, 20, 21]. Having these applications in mind we use
the language of hyperelasticity theory throughout the paper.

The principle of minimum energy, underlying the idea of elastic stability [25], points towards the study
of strong local minimizers of the energy functional

E(y) =

∫

Ω

W (∇y(x))dx−
∫

∂Ω

t(x) · ydS(x), (1.1)

where Ω ⊂ R
d is an open and bounded domain, the map y : Ω → R

m, satisfying appropriate boundary
conditions, is the “deformation”, and the stored energy density function W (F ) is of class C2 on the space
M of all m× d matrices.

Suppose that for a given minimizer y(x) of (1.1), the value of its gradient at a regular point x is F (x).
It is well known that F (x) should be inside the domain of quasiconvexity [1] of the energy density W (F ).
However this condition is non-algebraic [18] and is usually impossible to check. We also know that F (x)
should satisfy the Legendre-Hadamard (LH) condition which is not sufficient, but easy to check. The question
discussed in this paper is whether the algebraic conditions of LH type can be formulated for singular points
x that lie on the surface of jump discontinuity of F (x), where the deformation gradient takes two values
F+(x) and F−(x). While such singularity can be regarded as the simplest, it is generic in applications where
the energy density function is not rank-one convex [17, 15]. We need to mention that algebraic conditions of
other types have been also found for surfaces of jump discontinuity [13, 23, 10]. The interrelations between
those conditions and the new ones found here warrant an examination which is beyond the scope of the
present discussion.

The origin of the classical LH conditions is the Weierstrass inequality localized around a given gradient F
(one phase configuration) [15, 6] and the challenge is to generalize the corresponding localization procedure for
the case of two gradients F+ and F− (two-phase configuration). The resulting LH type algebraic conditions
will then depend simultaneously on the second order Taylor expansions of W (F ) around F+ and F−. In
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order to go beyond separate LH conditions at F+ and F− we exploit the existing rank-one connections
between the neighborhoods of F+ and F− and use the fact that both gradients F± must lie on the boundary
of the domain of quasiconvexity [11]. This allows us to obtain a new algebraic inequality that is shown to
be strictly stronger than the one based on the conventional Weierstrass condition. We present a nontrivial
example where the exact stability limits requiring the knowledge of the quasi-convexification of the energy
are unknown and our algebraic results are the sharpest computable stability bounds.

The paper is organized as follows. In Section 2 we recall the derivation of the classical LH conditions
for single-phase configurations and present a set of algebraic equations imposed by stationarity for the two-
phase configurations. In Section 3 we discuss our first generalization of the LH conditions for two-phase
configurations when the quadratic extension of the energy is built around only one of the two gradients. In
Section 4 we introduce continuous families of equilibrated two phase configurations known as laminates and
show how such families can be used to obtain new LH type conditions based on the simultaneous linearization
of the energy around two gradients. The example considered in Section 5 illustrates the gap between the new
and the known necessary conditions. Our conclusions are summarized in Section 6, where we also mention
the possibility of extending the proposed technique to singularities of higher co-dimensionality involving
more than two deformation gradients. Several technical results are presented in the form of Appendices.

2 Preliminaries

We say that F lies in the binodal region [12] if QW (F ) < W (F ), where QW (F ) is the quasiconvex envelope
of W (F ) [5]. A consequence of quasiconvexity is the Weierstrass convexity condition [19], that says that
W (F ) must be convex along rank-one lines passing through F . This condition can be formulated as the
nonnegativity of the Weierstrass excess function

ω(u,v;F ) = W (F + u⊗ v)−W (F )− 〈WF (F ),u⊗ v〉 ≥ 0, ∀u ∈ R
m, v ∈ R

d. (2.1)

Physically, this condition can be interpreted as stability with respect to the nucleation of an infinite com-
patible slab, e.g., [8, 4]. We observe that if (2.1) holds for F , then u = 0, v = 0 is the point of minimum
of ω(u,v) and that by construction ∇(u,v)ω(0, 0;F ) = 0. The Hessian of ω(u,v;F ) at u = 0, v = 0 must
be nonnegative semidefinite which is equivalent [14] to nonnegative semidefiniteness of the acoustic tensor
of W (F )

A(m;F ) ≥ 0, ∀m ∈ R
d, |m| = 1, (2.2)

understood in the sense of quadratic forms. This condition is called the Legendre-Hadamard (LH) condition,
and the acoustic tensor A(m;F ) is the quadratic form

A(m;F )b · b = 〈WFF (F )(b⊗m), b⊗m〉. (2.3)

Consider now the boundary of validity of (2.1). At the point where F crosses this boundary ω(u,v;F ) =
0. This can happen in one of two ways. Either, we deal with the existing zero at u ⊗ v = 0, while an
eigenvalue of the acoustic tensor becomes negative, or we encounter a new zero u ⊗ v = a ⊗ n, where
|n| = 1. Physically, the instability in the former case is local in phase space, corresponding to the formation
inside the homogeneous phase F of a slab, whose normal m is the direction for which the eigenvalues of
A(m;F ) become negative, and whose deformation gradient is infinitesimally close to F . The instability
in the latter case is global in phase space, corresponding to the nucleation inside the homogeneous phase
F = F− of a slab representing a genuinely new “phase” with the gradient F+ = F + a⊗ n, where the unit
vector n is normal to the slab.

In the case of local instability the corresponding boundary in the F space is contained in the codimension
1 variety [12], defined by the system

detA(m;F ) = 0, ∇m detA(m;F ) = 0, (2.4)

where each point is equipped with its own value of m, satisfying (2.4). When the instability is global and F

crosses the boundary of validity of (2.1), while ω(a,n;F ) = 0, for some a 6= 0, |n| = 1, the function ω(u,v;F )
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is still nonnegative, and, hence, is minimized by u = a, v = n. It follows that ∇(u,v)ω(a,n;F ) = 0, and
that the corresponding Hessian at u = a, v = n must be nonnegative semidefinite. Denoting

P± = WF (F±), L± = WFF (F±),

we obtain the stationarity condition

∇(u,v)ω(a,n;F ) = ([[P ]]n, [[P ]]Ta) = (0, 0), [[P ]] = P+ − P−.

This means that at the points of the surface bounding the region of F -space where the Weierstrass condition
is satisfied the following system of equations must hold





[[F ]] = a⊗ n,

ω(a,n;F−) = [[W ]]− 〈P−, [[F ]]〉 = 0,

[[P ]]n = 0,

[[P ]]Ta = 0.

(2.5)

Observe, that the system (2.5) is symmetric with respect to F+, F−, since [[W ]] − 〈P−, [[F ]]〉 differs from
[[W ]]− 〈P+, [[F ]]〉 by 〈[[P ]], [[F ]]〉, which is zero, due to either of the last two equations in (2.5). It is therefore
customary to write the second equation in (2.5), known as the Maxwell condition, in a symmetric form

p∗ = [[W ]]− 〈{{P }}, [[F ]]〉 = 0, {{P }} =
1

2
(P+ + P−). (2.6)

The two values F± of the deformation gradient at a jump discontinuity of the gradient of a strong local
minimizer must satisfy the system of equations (2.5), which defines a codimension 1 variety J in the F -space,
called the jump set. The system (2.5) can be viewed as a generalization of the Weierstrass-Erdmann corner
conditions. The last equation in (2.5), obtained in [11], is not a part of the original Weierstrass-Erdmann
system, derived for the scalar case where the last two equations coincide.

3 Stability conditions with one phase fixed

To find stable two-phase configurations we need to search among marginally stable states at the boundary of
validity of the Weierstrass test (2.1) because strict rank-one-convexity (Weierstrass stability) excludes jump
discontinuities1 [17, 6]. Such marginally stable states F+ are located on the jump set and have the property
that nucleation of layers of F− is not only energy neutral, but infinitesimal variations in the shear vector
and the normal of the layer are felt only to the second order in energy [11]. A straightforward approach to
stability of two-phase configurations is to look for conditions ensuring that such variations cannot decrease
the energy.

Suppose that either F+ or F− is about to fail (2.1). The Hessian of ω(u,v;F±) at u = a, v = n is a
quadratic form Q± on R

m ⊕ R
d

Q±(ξ,η) = ±[[P ]]η · ξ +
1

2
〈L±(a⊗ η ± ξ ⊗ n),a⊗ η ± ξ ⊗ n〉.

Its nonnegativity is equivalent to the nonnegative semidefiniteness of (m+ d)× (m+ d) matrix

C± =

[
A± ±(B± + [[P ]])

±(B± + [[P ]])T A∗
±

]
, (3.1)

where m× d matrices B±, d× d symmetric matrices A∗
±, and m×m symmetric matrices A± are given by

B±η · ξ = 〈L±(a⊗ η), ξ ⊗ n〉, A∗
±η · η = 〈L±(a⊗ η),a⊗ η〉, A±ξ · ξ = 〈L±(ξ ⊗ n), ξ ⊗ n〉.

1Microstructure based metastable states would also be disallowed, if the microstructure contains phase boundaries like a
finite rank laminate.
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Therefore the region of rank one convexity must be contained within the part of the jump set satisfying

C± ≥ 0, in the sense of quadratic forms. (3.2)

Inequalities (3.2), first obtained in [11], can be simplified if the acoustic tensor A± is nonsingular. In that
case, minimizing Q±(ξ,η) in ξ we obtain

min
ξ∈Rm

Q±(ξ,η) = B±η · η, η ∈ R
d,

where
B± = A∗

± − (B± + [[P ]])TA−1
± (B± + [[P ]]) ≥ 0. (3.3)

4 Stability of laminates

A more nuanced approach is to consider families of marginally stable two-phase configurations in the im-
mediate neighborhood of the selected gradients F+ and F−. One consequence of equations (2.5) is that the
line joining (F+,W (F+)) and (F−,W (F−)) is tangent to the graph of W (F ). Points on that line can be
interpreted as laminates with variable volume fraction of the limiting phases F+ and F− . This line also
represents an upper bound for the quasiconvex envelope, since its direction is rank-one. We can now consider
laminates combining phases F ′

+, F
′
−, satisfying (2.5) and lying in the vicinity of F+, F−. The corresponding

rank-one lines form a lined surface under the following non-degeneracy condition.

Definition 4.1. We say that the pair of point F± ∈ J, satisfying (2.5) is non-degenerate if the acoustic
tensor A± is nonsingular and the quadratic forms B± vanish only on the scalar multiples of n.

Knowing that the classical LH conditions were obtained from variations whose gradients were supported
in the vicinity of a single deformation gradient F we can now extend this idea to the two-phase configurations
and consider energy variation along the non-degenerate family of laminates F ′

+, F
′
−. Even if F± ∈ J is a

non-degenerate pair, a neighborhood of F− (or F+) in J may be comprised of several C1 components.

Lemma 4.2. Suppose F± ∈ J is a non-degenerate pair in the sense of Definition 4.1 and J− ⊂ J is relatively
open C1 manifold, containing F−. Then there exists a corresponding relatively open C1 manifold J+ ⊂ J,
containing F+, such that

(i) The vectors N± = L±[[F ]]− [[P ]] are normal to J± at F±.

(ii) There exist ǫ± > δ > 0, such that for every F ′
± ∈ J± ∩ B(F±, δ) there exists a unique F ′

∓ ∈ J∓ ∩
B(F∓, ǫ∓) satisfying (2.5).

(iii) Straight line segments {tF ′
+ + (1 − t)F ′

− : t ∈ (0, 1)}, where either F ′
+ ∈ J+ ∩ B(F+, δ) or F ′

− ∈
J− ∩B(F−, δ) foliate an open subset O of M.

The proof can be found in Appendix A. Lemma 4.2 can be used to construct an upper bound W (F ),
F ∈ O, for the quasiconvex envelope of W (F ), formed by laminates:

W (F ) = tW (F ′
+) + (1− t)W (F ′

−), F ∈ O, F = tF ′
+ + (1− t)F ′

−. (4.1)

We also recall that tangency of the rank-one lines to the graph of W (F ) leads to the equations

W (F±) = W (F±), WF (F±) = WF (F±). (4.2)

The function W (F ), F ∈ O, will be called the laminate envelope of W (F ).
If we now assume that F± belongs to the domain of quasiconvexity, i.e., W (F±) = QW (F±), then the

function ∆(F ) = W (F )−QW (F ) attains its minimum value 0 at F±. Hence,

QW (F±) = W (F±), QWF (F±) = WF (F±). (4.3)
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Therefore, the inequality W (F ) ≥ QW (F ) for all F ∈ O, together with (4.2) and (4.3) implies that
WFF (F±) ≥ QWFF (F±) in the sense of quadratic forms2. Recalling that acoustic tensors of quasiconvex
functions are nonnegative semidefinite, we obtain the desired LH type condition.

Theorem 4.3. If F± satisfying (2.5) are stable, then the acoustic tensor of the laminate envelope W (F )
must be nonnegative semidefinite at F±.

The ensuing algebraic inequalities, representing the new necessary condition for stability of the states on
the boundary of validity of the Weierstrass test, can be stated explicitly if F± ∈ J is a non-degenerate pair
in the sense of Definition 4.1. Then the acoustic tensor of W (F ) is given by

Alam
± (m) = A±(m)− N±m⊗N±m

A±(n)a · a . (4.4)

Formula (4.4) is a consequence of the formula for WFF , derived in Appendix B. In the typical case when
the acoustic tensor A(m;F ) of W (F ) is strictly positive definite (for all |m| = 1) on the jump set 3 one can
reduce the nonnegativity of Alam

± (m) to a pair of scalar inequalities

A±(m)−1N±m ·N±m

A±(n)a · a ≤ 1. (4.5)

The new conditions (4.5) constitute the main result of this paper.
To show that inequalities (4.5) are stronger than (3.3) we observe that when m = n, the inequality (4.5)

becomes equality and can be restated as the property that the function

f±(m) = A±(m)−1N±m ·N±m

achieves its maximal value A±(n)a ·a at m = n. It is easy to check that equations (2.5) imply ∇f±(n) = 0.
We also compute

∇∇f±(n) = −B±.

Thus, the condition of nonpositivity of the Hessian ∇∇f±(n) is the same as (3.3). We conclude that (4.5),
or equivalently,

max
|m|=1

f±(m) = f±(n) (4.6)

implies (3.3).
In the next Section we present a detailed study of an example showing that the new conditions (4.6) can

be strictly stronger than the known conditions (3.3).

5 An example

To illustrate our general results we now consider a class of “Hadamard materials” [22, 3, 7, 24]

W (F ) =
1

2
|F |2 + h(d), F ∈ {F ∈ M : detF > 0}, d = detF , (5.1)

where h(d) is smooth, but nonconvex. While the explicit expression for QW (F ) is apparently unknown,
various LH type algebraic conditions of stability, discussed in this paper, can be computed explicitly. This
will allow us to compare them at a quantitative level.

2In this inequality QWFF (F±) is understood as a limiting value of QWFF (F ), F ∈ O.
3It holds in every nontrivial example of which we are aware.
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5.1 The classical LH condition

We compute
P (F ) = WF (F ) = F + h′(d)cofF = F + dh′(d)F−T ,

L(F )H = WFF (F )H = H +

(
h′′(d) +

h′(d)

d

)
〈cofF ,H〉cofF − h′(d)

d
(cofF )HT cofF ,

A(m;F ) = I + h′′(d)cofFm⊗ cofFm.

Spinodal region, defined as the region of failure of the classical (single phase) LH condition is then

S = {F : h′′(detF )cof(F TF ) < −I}. (5.2)

It will be convenient to formulate the classical LH condition in terms of the maximal eigenvalue µ of Ĝ =
cof(F TF ) and d = detF :

h′′(d)µ+ 1 ≥ 0. (5.3)

5.2 The jump set

We can now solve explicitly the system (2.5) for (5.1). We have F+ = F− + a⊗ n, so that

d+ = d− + cofF−n · a, d± = detF±. (5.4)

[[P ]]n = a+ λcofF−n, λ = [[h′]].

[[P ]]Ta = |a|2n+ λcofF T
−a. (5.5)

Substituting a = −λcofF−n into the last equation in (2.5) we obtain, taking (5.5) into account, that n

must be an eigenvector of Ĝ−. Let µ− denote the corresponding eigenvalue. Then cofF−n ·a = −λµ−, and
hence, formula (5.4) for d+ becomes [[d]] = −λµ−. Interchanging + and − we conclude that µ− = µ+ = µ,

i.e., n is a common eigenvector of both Ĝ+ and Ĝ−, corresponding to the same eigenvalue µ. Eliminating
λ from

λ = [[h′]], [[d]] = −λµ

we obtain
[[h′]]

[[d]]
= − 1

µ
(5.6)

We compute

p∗ = −1

2
[[h′]][[d]] + [[h]]− h′(d−)[[d]] = [[h]]− {{h′}}[[d]] = 0. (5.7)

Traditionally this condition is interpreted geometrically as equality of the areas of the two regions between
the secant line joining (d−, h

′(d−)) and (d+, h
′(d+)) and the graph of h′(d). However, such geometric

interpretation requires h(d) to have the “double-well” shaped graph.

Definition 5.1. We will say that the function h(d) has the double-well shape if the following 3 properties
are satisfied.

(i) There exists d0 > 0, such that h′(d) is concave on (0, d0) and has a local maximum there,

(ii) h′(d) is convex on (d0,+∞) and has a local minimum there

(iii) lim
d→0+

h′(d) = −∞.
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Figure 1: Equal area property (5.7) defining the function d+ = D(d−).

If h(d) has double-well shape in the sense of Definition 5.1, then the equal area condition (5.7) defines a
one-to-one correspondence d+ = D(d−), see Fig. 1. In this case equation (5.6) represents the jump set as

the surface in the µ-space of eigenvalues of Ĝ. We compute

cofF+ =
1

d−
cofF−(d−I − λµ(I − n⊗ n)).

Therefore,
a = −λcofF−n = −λcofF+n,

Ĝ+ =
1

d2−
(d−I − λµ(I − n⊗ n))Ĝ−(d−I − λµ(I − n⊗ n)). (5.8)

Hence, Ĝ+ has the same eigenvectors as Ĝ−. One of them is n, corresponding to their common eigenvalue
µ. The remaining eigenvalues µ±

k , k = 2, . . . , n (corresponding to eigenvectors orthogonal to n) are related
by the formula

µ+
k

d2+
=

µ−
k

d2−
, k ≥ 2. (5.9)

5.3 Stability conditions with one phase fixed

We now examine stability of the part of the jump set, satisfying

A±a · a = λ2µ(1 + h′′(d±)µ) > 0,

so that (3.2) has the form (3.3). We compute

B± = λ2

(
µI −

(
1± λµ

d±

)2

Ĝ±(I − n⊗ n)

)
.

Recalling that λµ = −[[d]], we obtain

B± = λ2

(
µI − d2∓

d2±
Ĝ±(I − n⊗ n)

)
.

We see that B± has the same eigenvectors as Ĝ±. If uk is an eigenvector of Ĝ± corresponding to an
eigenvalue µ±

k , then, according to (5.9), the corresponding eigenvalue of B± will be

β± = λ2(µ− µ∓
k ).

We conclude that (3.3) is equivalent (under the assumption that d+ > d−) to

µ′
+ ≤ µ, µ′

− ≤ µ
d2−
d2+

, (5.10)

where µ′
± is the second largest eigenvalue of Ĝ±.
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5.4 Stability of laminates

The double-well shape of h(d), in the sense of Definition 5.1, implies that the tangent line at d = d+ (respec-
tively d−) to the graph of h′(d) lies below (respectively above) the graph of h′(d) at d = d− (respectively
d+), provided d+ > d−. Taking (5.6) into account, this statement is equivalent to 1 + h′′(d±)µ > 0. It
follows that the acoustic tensor A(m;F ) is strictly positive definite for every unit vector m on the part of
the jump set, satisfying (5.10). Therefore, the LH condition for laminates reduces to (4.6). We compute

f±(m) = A±(m)−1N±m ·N±m =
λ2

|m|2

(
Ĝ±Q±m ·Q±m− h′′(d±)(Ĝ±Q±m ·m)2

|m|2 + h′′(d±)Ĝ±m ·m

)
.

where

Q± = (1 + µh′′(d±))I ± λµ

d±
(I − n⊗ n).

Let us write m = xn+m⊥, where m⊥ ⊥ n. Then

|m|2 = x2 + |m⊥|2, Q±m = q±xn+ θ±m⊥, Ĝ±Q±m = q±µx+ θ±Ĝ±m⊥,

where

q± = 1 + µh′′(d±), θ± = q± ± λµ

d±
= µh′′(d±) +

d∓
d±

.

Hence,

f±(m) =
λ2

1 + t

(
q2±µt+ θ2±ν± − h′′(d±)(q±µt+ θ±ν±)

2

1 + t+ h′′(d±)(µt+ ν±)

)
,

where

t =
x2

|m⊥|2
, ν± = ν±(m⊥) =

Ĝ±m⊥ ·m⊥

|m⊥|2
.

Using a symbolic algebra program we compute

γ±(m) = f±(m)− f±(n) = λ2

q±t

[
ν±

(
1± λµ

d±

)2
− µ

]
+ ν±(θ

2
± − q±µh

′′(d±))− q±µ

(1 + t)(1 + t+ h′′(d±)(µt+ ν±))
.

Observe that ν± is a positive number that does not exceed the second largest eigenvalue µ′
± of Ĝ±. Hence,

according to (5.10),

ν±

(
1± λµ

d±

)2

− µ = ν±
d2∓
d2±

− µ ≤ µ′
∓ − µ ≤ 0.

It follows that the numerator of γ±(m) is a decreasing function of t on [0,+∞). Observing that the classical
LH condition guarantees that the denominator of γ±(m) is both positive and increasing on t ∈ [0,+∞), we
conclude that γ±(m) is a decreasing function of t. Hence, it will be nonpositive for all t ≥ 0 if and only if
γ±(m⊥) ≤ 0, which is equivalent to

µ′
±(θ

2
± − q±µh

′′(d±))− q±µ ≤ 0,

where µ′
± is the second largest eigenvalue of Ĝ±. Returning to the original notations we rewrite this inequality

as follows
1

µ′
±

≥ (h′′(d±) + µ−1d∓/d±)
2

µ−1 + h′′(d±)
− h′′(d±). (5.11)

Taking relation (5.9) into account we conclude that in our example the new LH-type condition (4.6) is
equivalent to

d2±
µ′
±

≥ max

{
(h′′(d+)d+ + µ−1d−)

2

µ−1 + h′′(d+)
− d2+h

′′(d+),
(h′′(d−)d− + µ−1d+)

2

µ−1 + h′′(d−)
− d2−h

′′(d−)

}
. (5.12)
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5.5 Quartic energy

The foregoing analysis shows that energy (5.1) results in essentially two-dimensional problem, i.e., the
constraints on the jump set refer only to the largest eigenvalue µ (and its eigenvector n) and the second

largest eigenvalue µ′
± of Ĝ±. Hence, without loss of generality, we assume n = 2. In order to visualize

various stability condition discussed in this paper we take

h(d) =
1

4d0
((d0 − d)2 − 1)2, d0 > 1.

The coefficient 1/4d0 is chosen because it simplifies calculations and results in more transparent formulas.
Obviously, the convexification of h(d) agrees with h(d) whenever d 6∈ (d∗−, d

∗
+), where d∗± = d0 ± 1. The

curves d = d∗± are the outer thin solid lines shown in blue in Fig. 2. We compute

h′(d) =
1

d0
((d− d0)

3 − (d− d0)), h′′(d) =
1

d0
(3(d− d0)

2 − 1), D(d) = 2d0 − d.

Let µ and µ′ be the larger and the smaller eigenvalues of Ĝ = cof(F TF ), respectively. Since n = 2, µ and
µ′ are also squares of singular values of F . Hence, d =

√
µµ′. Thus, the LH condition (5.3) becomes

µ

d0
(3(
√

µµ′ − d0)
2 − 1) + 1 ≥ 0. (5.13)

We can solve this inequality for µ′ explicitly. If µ ∈ (0, d0), then (5.13) will be satisfied for all 0 < µ′ ≤ µ.
If µ ≥ d0, then either

µ′ ≤ 1

µ

(
d0 −

√
1− d0/µ√

3

)2

, µ ≥ d0 (5.14)

or

µ ≥ µ′ ≥ 1

µ

(
d0 +

√
1− d0/µ√

3

)2

, µ ≥ d0
2

+

√(
d0
2

)2

+
1

3
. (5.15)

The curves (5.14), (5.15) bounding the region of failure of the classical LH condition (elastic spinodal) are
the inner thin solid lines shown in magenta in Fig. 2.

Using our formulas for h′(d) and D(d) we obtain simple equations for the jump set

−d0
µj

= (
√
µ1µ2 − d0)

2 − 1, j = 1, 2.

The union of the curves j = 1 and j = 2 constitutes the jump set, shown in Fig. 2 as bold solid lines. They
differ by the interchange of µ1 and µ2. Therefore, it suffices to study stability of the part of the jump set,
given by one of them, which we can write, without loss of generality, as

−d0
µ

= (
√

µµ′ − d0)
2 − 1.

Solving for µ′ we obtain

µ′ = µ′
± =

1

µ

(
d0 ±

√
1− d0

µ

)2

, µ ≥ d0. (5.16)

The part of the jump set corresponding to the plus sign in (5.16) is shown in red and lies both below the part
corresponding to the minus sign (shown in black) and below the lower part of the elastic spinodal (shown in
magenta). Inequality (5.10) is equivalent to the constraint

µ ≥ µ0 =
d0
2

+

√(
d0
2

)2

+ 1 (5.17)
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µ

0 1 2 3

µ
′

0

0.5

1

1.5

2

2.5

3

3.5

Figure 2: Jump set for h(d) = ((d− 2)2 − 1)2/8 and various algebraic stability bounds

for the equation in (5.16), meaning that the parts of the curves (5.16) corresponding to µ ∈ [d0, µ0) are
unstable. The corresponding stability limits are is indicated in Fig. 2 by the vertical and horizontal dotted
lines, delimiting the sector corresponding to the unstable part of the phase space.

Finally, writing equation (5.16) of the jump set as

d± = d0 ±
√

1− d0
µ
, (5.18)

we compute

µh′′(d±) =
2µ

d0
− 3.

Hence, (5.11) can be written as

µ

µ′
±

≥ 2



√

µ

d0
− 1∓ 1

√
d0µ±

√
µ
d0

− 1




2

− 2µ

d0
+ 3.

Only the “bottom” sign choice gives us new information for µ ∈ [µ0, 3d0/2):

µ′
− ≤ µ


2



√

µ

d0
− 1 +

1
√
d0µ−

√
µ
d0

− 1




2

− 2µ

d0
+ 3




−1

, µ ∈
[
µ0,

3d0
2

)
. (5.19)

We remark that µ0 < 3d0/2 only when d0 > 2/
√
3. The boundaries of validity of inequalities (5.12) are

shown in Fig. 2 by dashed vertical and horizontal lines.

6 Conclusions

The main idea behind our general approach is to probe quasi-convexity by considering approximate mini-
mizers of a certain type. At the first step, detailed in this paper, we select a pair of gradients F± satisfying
(2.5) and construct the laminate envelope W (F ). Then we use a quadratic expansion around the selected
gradients to obtain the generalized LH conditions (4.5). At the next step we would need to search for
F+ = F3 satisfying (2.5), where F− = tF+ + (1− t)F−, and F± ∈ J achieve equality in (4.5) for some unit
vector m 6= ±n. At the same time W (F ) and its derivatives in (2.5) are replaced by W (F ), using formulas

(4.2). This gives us the secondary laminate envelope W (F ) and we would need to use again a quadratic
expansion around the selected triple of gradients to obtain new generalized LH conditions. The process
can be continued utilizing local information about W (F ) at the set of gradients F1, . . . ,FN . It will result
in progressively tighter bounds on the quasiconvex envelope, see also [12]. In this procedure, the selection
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of the gradients F1, . . . ,FN is a global step while probing their infinitesimal stability is a local step. By
approximating the energy in this way, we can obtain a set of algebraic bounds for strong local minima that
can be interpreted as generalized LH conditions. In this paper we limited ourselves only to the first step of
this iterative scheme involving only two gradients F1,F2 and demonstrated in detail how that approach can
generate new explicit bounds.
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A Geometry of the jump set

A.1 Normal to the jump set

Suppose F−(s) ∈ J− is a smooth curve passing through F− at s = 0. We would like to show by the implicit
function theorem that there are smooth curves a(s), n(s) passing through a and n at s = 0 and satisfying





(WF (F−(s) + a(s)⊗ n(s))−WF (F−(s)))n(s) = 0,

(WF (F−(s) + a(s)⊗ n(s))−WF (F−))
Ta(s) = 0,

W (F−(s) + a(s)⊗ n(s))−W (F−(s))−WF (F−(s))n(s) · a(s) = 0.

(A.1)

Differentiating equations (A.1) with respect to s at s = 0 we obtain




A+ȧ+ (B+ + [[P ]])ṅ+ ([[L]]Ḟ−)n = 0,

(B+ + [[P ]])T ȧ+A∗
+ṅ+ ([[L]]Ḟ−)

Ta = 0,

−1

2
(A+a, ȧ)−

1

2
(A∗

+n, ṅ) + ([[P ]]− {{L}}[[F ]], Ḟ−) = 0.

(A.2)

We now solve the first two equations in (A.2) for ȧ, ṅ. We obtain the system

C+

[
ȧ

ṅ

]
= −

[
([[L]]Ḟ−)n

([[L]]Ḟ−)
Ta

]
, (A.3)

where C± is given by (3.1). Observe that
[

([[L]]Ḟ )n

([[L]]Ḟ−)
Ta

]
·
[

a

−n

]
= 0.
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By the non-degeneracy assumption the right-hand side of (A.3) is orthogonal to the null-space of C+. Thus,
(A.3) has a solution. This solution is determined uniquely by the property ṅ · n = 0, since the vector
[0,n] does not belong to (R[a,−n])⊥. Thus, there is a well defined operator denoted C

−1
+ : (R[a,−n])⊥ →

(R[0,n])⊥ with the property C+(a,n)(C
−1
+ z) = z for any z ∈ (R[a,−n])⊥. We can write

[
ȧ

ṅ

]
= −C

−1
+

[
([[L]]Ḟ−)n

([[L]]Ḟ−)
Ta

]
.

Substituting this into the third equation in (A.2) we obtain

1

2

[
A+(n)a

A∗
+(a)n

]
· C−1

+

[
([[L]]Ḟ−)n

([[L]]Ḟ−)
Ta

]
+ ([[P ]]− {{L}}[[F ]], Ḟ−) = 0. (A.4)

Observe that C+ is a symmetric matrix and that

[
A+a

A∗
+n

]
·
[

a

−n

]
= 0.

Therefore, [
A+a

A∗
+n

]
· C−1

+

[
([[L]]Ḟ−)n

([[L]]Ḟ−)
Ta

]
= C

−1
+

[
A+a

A∗
+n

]
·
[

([[L]]Ḟ−)n

([[L]]Ḟ−)
Ta

]
.

We easily compute

C
−1
+

[
A+a

A∗
+n

]
=

[
a

0

]
.

Hence, equation (A.4) becomes

(
1

2
[[L]][[F ]] + [[P ]]− {{L}}[[F ]], Ḟ−

)
= 0.

In other words, (N−, Ḟ−) = 0, where
N− = L−[[F ]]− [[P ]]. (A.5)

A.2 Foliation of the simple laminate region

Now, suppose that F− varies over an open subset G of J− that is sufficiently small, so that due to the
non-degeneracy assumption, the functions a(F−) and n(F−) are well-defined and smooth on G. Let us show
that the line segments joining F− and F+ = F−+a(F−)⊗n(F−) foliate an open subset of M, as F− ranges
over G. We have a map F : G× [0, 1] → M given by

F = F− + ta(F−)⊗ n(F−). (A.6)

If G is sufficiently small then the only possibility that the map F is not injective is for F to be locally
non-injective, i.e., for dF (F−, t) to be singular for some t ∈ [0, 1]. If this is the case, then there exists
Ḟ− ∈ TF−

J− and t ∈ [0, 1] such that

Ḟ− + t(ȧ⊗ n+ a⊗ ṅ) = a⊗ n,

where [ȧ, ṅ] solves (A.3). If (A.6) is satisfied then there exist u ∈ R
m and η ∈ R

d such that

Ḟ− = u⊗ n+ a⊗ η, u+ tȧ = λa, η + tṅ = (1− λ)n (A.7)
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for some λ ∈ R. Substituting (A.7) into (A.3) we obtain

C̃t

[
u

η

]
=

[
A+(n)a

A∗
+(a)n

]
, C̃t = (1− t)C+ + tC−.

The solution [u,η] is determined up to a multiple of [a,−n]. However, any choice of solution [u,η] gives
one and the same value Ḟ− in (A.7). We therefore, write

[
u

η

]
= C̃

−1
t

[
A+(n)a

A∗
+(a)n

]
,

where the inverse of the positive semidefinite matrix C̃t is computed on (R[a,−n])⊥, where it is positive
definite by assumption of local stability. The resulting Ḟ− has to belong to TF−

J−, therefore (Ḟ−,N−) = 0,
i.e.,

q(t) =

(
C̃

−1
t

[
A+(n)a

A∗
+(a)n

]
,

[
A−(n)a

A∗
−(a)n

])
= 0. (A.8)

Let us show that (A.8) is impossible. We observe that

q(0) = (A−(n)a,a) > 0, q(1) = (A+(n)a,a) > 0.

For any t ∈ (0, 1) we have

C̃t > tC− > 0,

where the inequality is strict on (R[a,−n])⊥. Therefore,

tC̃−1
t < C

−1
− . (A.9)

We have

C̃t

[
a

n

]
= 2(1− t)

[
A+(n)a

A∗
+(a)n

]
+ 2t

[
A−(n)a

A∗
−(a)n

]
.

Therefore, [
a

n

]
− λ

[
a

−n

]
= 2(1− t)C̃−1

t

[
A+(n)a

A∗
+(a)n

]
+ 2tC̃−1

t

[
A−(n)a

A∗
−(a)n

]
,

where λ ∈ R is chosen such that the left-hand side is in (R[a,−n])⊥. Taking inner product with [A−(n)a,A
∗
−(a)n]

we obtain

(A−(n)a,a) = (1− t)q(t) + t

(
C̃

−1
t

[
A−(n)a

A∗
−(a)n

]
,

[
A−(n)a

A∗
−(a)n

])
.

By (A.9) we have

(A−(n)a,a) < (1− t)q(t) +

(
C

−1
−

[
A−(n)a

A∗
−(a)n

]
,

[
A−(n)a

A∗
−(a)n

])
= (1− t)q(t) + (A−(n)a,a).

Thus, q(t) > 0 for all t ∈ [0, 1]. It follows that G = F (G× (0, 1)) is an open subset of M.

B Formula for the second derivative of W (F ).

Let F0 ∈ O and let F (s) be any curve in O passing through F0 when s = 0. Then, for sufficiently small s
there exist unique F−(s) ∈ J, a(s) ⊗ n(s) and t(s) ∈ (0, 1), such that F (s) = t(s)F+(s) + (1 − t(s))F−(s)
and (2.5) holds, where F+(s) = F−(s)+a(s)⊗n(s) ∈ J. Let ξ = Ḟ (0). In the calculations below dot over a
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symbol denotes derivative in s at s = 0, while a symbol without an argument s refers to s = 0. For example,
a denotes a(0).

Differentiating (4.1) at s = 0 we obtain

〈WF (F0), ξ〉 = t〈P+, Ḟ+〉+ (1− t)〈P−, Ḟ−〉 − ṫ[[W ]]. (B.1)

To compute Ḟ± we need to express F±(s) in terms of F (s) and a(s)⊗ n(s):

F−(s) = F (s)− t(s)a(s)⊗ n(s), F+(s) = F (s) + (1− t(s))a(s)⊗ n(s). (B.2)

Differentiating in s at s = 0 we get

Ḟ+ = ξ − ṫ[[F ]] + (1− t)[[Ḟ ]], Ḟ− = ξ − ṫ[[F ]]− t[[Ḟ ]], (B.3)

where [[Ḟ ]] is just a compact form of
[[Ḟ ]] = a⊗ ṅ+ ȧ⊗ n. (B.4)

Substituting (B.3) into (B.1) we obtain

〈WF (F0), ξ〉 = 〈tP+ + (1− t)P−, ξ〉+ ṫ{[[W ]]− 〈tP+ + (1− t)P−, [[F ]]〉}+ t(1− t)〈[[P ]], [[Ḟ ]]〉.

Using equations (2.5) we conclude that

WF (F (s)) = t(s)WF (F+(s)) + (1− t(s))WF (F−(s)). (B.5)

Differentiating (B.5) at s = 0 and using (B.3) we see that

WFF (F0)ξ = Ltξ − ṫNt + t(1− t)[[L]][[Ḟ ]]. (B.6)

where we use the shorthand Xt = tX+ + (1− t)X−.
In order to express ȧ, ṅ and ṫ in terms of ξ we differentiate the last two equations in (2.5) at s = 0 and

obtain

C̃t

[
ȧ

ṅ

]
− ṫ

[
[[A]]a

[[A∗]]n

]
= −

[
([[L]]ξ)n

([[L]]ξ)Ta

]
(B.7)

Differentiating the Maxwell relation we obtain 〈N±, Ḟ±〉 = 0 (which is expressing the fact that N± are
orthogonal to the jump set at F±). Using (B.3) to eliminate Ḟ± we obtain

ṫA−(n)a · a = 〈N−, ξ〉 − t〈N−, [[Ḟ ]]〉, ṫA+(n)a · a = 〈N+, ξ〉+ (1− t)〈N+, [[Ḟ ]]〉.

We combine the two relations into a more symmetric form by multiplying the first equation by 1 − t, the
second one by t and adding:

ṫ =
〈Nt, ξ〉+ t(1− t)〈[[N ]], [[Ḟ ]]〉

Ata · a .

Substituting this formula into (B.6) and (B.7) we obtain

〈WFF ξ, ξ〉 = 〈Ltξ, ξ〉 −
〈Nt, ξ〉2
Ata · a − t(1− t)

(
〈[[L]]ξ, [[Ḟ ]]〉 − 〈Nt, ξ〉〈[[N ]], [[Ḟ ]]〉

Ata · a

)
, (B.8)

and

D(t)

[
ȧ

ṅ

]
= −

[
([[L]]ξ)n

([[L]]ξ)Ta

]
+

〈Nt, ξ〉
Ata · a

[
[[A]]a

[[A∗]]n

]
, (B.9)

respectively, where

D(t) = C̃t −
t(1− t)

Ata · a

[
[[A]]a

[[A∗]]n

]
⊗
[

[[A]]a

[[A∗]]n

]
. (B.10)
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Hence,

〈WFF (F0)ξ, ξ〉 = 〈Ltξ, ξ〉 −
〈Nt, ξ〉2
Ata · a + t(1− t)D(t)−1Z(t) ·Z(t), (B.11)

where

Z(t) = −
[

([[L]]ξ)n

([[L]]ξ)Ta

]
+

〈Nt, ξ〉
Ata · a

[
[[A]]a

[[A∗]]n

]
.

In the last term of (B.11) D(t)−1Z(t) is understood in the orthogonal complement to [a,−n]. This is justified
by the following lemma.

Lemma B.1. Assume that F± is a non-degenerate pair in the sense of Definition 4.1. Assume that (3.2)
holds. Then D(t) is a positive-definite self-adjoint operator on V = (R[a,−n])⊥.

Proof. It is obvious that D(t) is self-adjoint and that D(t)[a,−n] = 0. Thus, D(t) is a self-adjoint operator

on V . By assumption of non-degeneracy, C̃t is a positive-definite self-adjoint operator on V . Thus, in order
to prove the lemma we need to show that

C̃
−1
t X ·X <

Ata · a
t(1− t)

, X =

[
[[A]]a

[[A∗]]n

]
(B.12)

for every t ∈ [0, 1].
We observe that

C̃t

[
a

n

]
= 2

[
Ãta

Ã∗
tn

]
.

We have

X =
1

t

([
A+a

A∗
+n

]
−
[

Ãta

Ã∗
tn

])
.

Hence,

C̃
−1
t X ·X =

Ãta · a− 2A+a · a+ C̃
−1
t Y+ · Y+

t2
,

where

Y+ =

[
A+a

A∗
+n

]
.

When t = 0 or 1, the statement is obvious. For t ∈ (0, 1) we have

C̃t > (1− t)C+,

in the sense of quadratic forms on V , so that

C̃
−1
t Y+ · Y+ <

1

1− t
C

−1
+ Y+ · Y+ =

A+a · a
1− t

.

Thus, we obtain

C̃
−1
t X ·X <

Ata · a
t(1− t)

,

as required.

Finally, let us show that the acoustic tensor of W (F ) at F0 = tF+ + (1− t)F− is nonnegative whenever
it is nonnegative at both F+ and F−. Indeed, the last term in (B.11) is nonnegative, by Lemma B.1. It
remains to observe that the function

φ(t) = 〈Ltξ, ξ〉 −
〈Nt, ξ〉2
Ata · a
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is concave in t, which we can see by differentiating φ(t) twice:

φ′′(t) = −2(〈N+, ξ〉A−a · a− 〈N−, ξ〉A+a · a)2
(Ata · a)3 .

Thus, φ(t) attains its minimum at t = 0 or t = 1. Setting t = 0 and 1 in (B.11) we obtain

WFF (F±) = L± − N± ⊗N±

A±a · a . (B.13)

Formula (4.4) now follows easily from (B.13).
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