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Abstract

Understanding asymptotics of gradient components in relation to the symmetrized
gradient is important for the analysis of buckling of slender structures. For circular
cylindrical shells we obtain the exact scaling exponent of the Korn constant as a func-
tion of shell’s thickness. Equally sharp results are obtained for individual components
of the gradient in cylindrical coordinates. We also derive an analogue of the Kirchhoff
ansatz, whose most prominent feature is its singular dependence on the slenderness
parameter, in marked contrast with the classical case of plates and rods.
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1 Introduction

Korn’s inequalities [20, 21] play a central role in the theory of linear and nonlinear elasticity,
and other areas of physics (see the review [16]). In the study of buckling of slender structures

∗Temple University, Philadelphia, PA, yury@temple.edu
†University of Utah, Salt Lake City, UT

1



under compression [15, 6, 13] and more generally in the study of safe loads [2, 7, 9], of fun-
damental importance is the dependence of the Korn constant on parameters of the problem.
With the application to buckling in mind we study the scaling of the Korn constant as a
power of h = t/R, where t is the wall thickness and R is the outer radius of the circular
cylindrical shell. (See [33, 34] for the application of this theory to rods and plates.) Tradi-
tionally, the Korn inequality is proved either for the functions in the orthogonal complement
to the space of infinitesimal motions [20, 21, 10] or for functions vanishing on a portion of
the boundary [19]. However, for the study of buckling and in other contexts one needs to
examine the Korn constant for more general spaces of functions that contain no infinitesimal
motions [18, 35, 8, 13, 30, 23].

In order to obtain an asymptotically sharp estimate of the Korn constant one needs
to provide an “ansatz”: a family of near-minimizers for the variational definition of the
Korn constant and then prove an “ansatz-free” inequality establishing the sharpness of the
ansatz. This program can be completed for both linear and nonlinear versions of the Korn
inequality via a compactness theorem for rods and plates [11], justifying the Kirchhoff ansatz
[17]. However, the compactness does not hold for cylindrical shells and new approaches,
including a new ansatz are needed. The ansatz presented in this paper involves oscillations
on a scale h1/4, intermediate between the macroscopic and the length scale h of the shell
wall. Our method of proof of the ansatz-free bound reduces the first Korn inequality for the
circular cylindrical shell to 2D Korn-type inequalities defined on the cylindrical coordinate
“plane” cross-sections. These Korn-type inequalities can be regarded to be a cross between
the first and second Korn inequalities [32]. They are called weighted Korn’s inequalities in
Nazarov’s work on complex slender bodies [31, 28, 29, 30]. The proof uses the method of
harmonic projections from [19]. The great flexibility of this method was further explored in
[14] with the eventual goal of establishing Korn’s inequalities for more general shells, needed
for quantification of high sensitivity to imperfections of the critical buckling load of axially
compressed circular cylindrical shells.

To apply the buckling theory from [13] we also need constants in the Korn-like inequalities
for gradient components. These inequalities have the form of the first Korn inequality but
with a specific component of the gradient matrix in place of the full gradient. We show that,
perhaps surprisingly, the constants in Korn-like inequalities scale in h differently from the
Korn constant. This phenomenon is a manifestation of a high degree of symmetry in circular
cylindrical shells. With this understanding it is natural that our proof makes full use of that
symmetry through the periodicity in circumferential variable and subsequent recasting of the
problem in terms of Fourier coefficients. We conjecture that the imperfections breaking the
symmetry will also destroy the distinct power laws in the Korn-like inequalities for gradient
components. We believe that this effect is related to the large discrepancy between the
theoretical buckling load [24, 37] and the experimentally observed values [4, 22]. These ideas
are made more precise in our companion paper [12].

This paper is organized as follows. In Section 2 we introduce Korn and Korn-like con-
stants and state our main results for the cylindrical shell. The new oscillatory ansatz is
also derived there. We reduce the ansatz-free Korn inequality for the cylindrical shell to
the two-dimensional Korn-type inequalities in Section 3. These inequalities are proved by
means of the harmonic projection method in Section 4. In Section 5 we go to the Fourier
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space in order to prove our most delicate estimates: the Korn-like inequalities for gradient
components.

2 Korn and Korn-type inequalities for cylindrical shells

Let Ω ⊂ R3 be an open set. Let V be a subspace of W 1,2(Ω;R3) such that W 1,2
0 (Ω;R3) ⊂ V .

We recall that Korn’s constant K = K(V ) is defined by

K(V ) = sup{K ≥ 0 : ∥e(ϕ)∥2 ≥ K∥∇ϕ∥2 for all ϕ ∈ V }, (2.1)

where

e(ϕ) =
1

2

(
∇ϕ+ (∇ϕ)T

)
,

and ∥ · ∥ always denotes the L2 norm on the domain of definition of the function within the
norm symbol. Equivalently,

K(V ) = inf
ϕ∈V

∥e(ϕ)∥2

∥∇ϕ∥2
.

In this paper we consider a family of circular cylindrical shells given in cylindrical coordinates
(r, θ, z) as

Ch = {(r, θ, z) : r ∈ Ih, θ ∈ T, z ∈ [0, L]}, Ih =

[
1− h

2
, 1 +

h

2

]
,

where T is a 1-dimensional torus (circle) describing 2π-periodicity in θ.
Our goal is to examine the asymptotics of the Korn constant K(Vh), as h→ 0, where Vh

is one of the subspaces

V
(1)
h = {ϕ ∈ W 1,2(Ch;R3) : ϕ(r, θ, 0) = 0, ϕr(r, θ, L) = ϕθ(r, θ, L) = 0}, (2.2)

V
(2)
h = {ϕ ∈ W 1,2(Ch;R3) : ϕθ(r, θ, 0) = ϕz(r, θ, 0) = ϕθ(r, θ, L) = ϕz(r, θ, L) = 0}, (2.3)

V
(3)
h = {ϕ ∈ W 1,2(Ch;R3) : ϕz(r, θ, 0) = ϕz(r, θ, L) =

∫ L

0

ϕθ(r, θ, z)dz = 0}. (2.4)

Here we write ϕ = ϕrer + ϕθeθ + ϕzez, where {er, eθ, ez} is the standard orthonormal basis

in cylindrical coordinates. The problem of asymptotic analysis of K(V
(i)
h ), as h → 0, arises

in the theory of buckling of slender bodies [13], applied to circular cylindrical shells in our

companion paper [12]. The space V
(2)
h corresponds to the boundary conditions, where the

bottom of the shell is kept fixed, while the top is allowed only vertical displacements under
the applied forces. Spaces V

(2)
h and V

(3)
h permit the loaded shell to “breathe”, since the

radial displacements are not prescribed at either end. At the top of the shell the vertical
displacement rather than the applied force is prescribed. In our notation the dependence on
L is suppressed, while the essential dependence on h is emphasized.
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In cylindrical coordinates the gradient of ϕ = ϕrer + ϕθeθ + ϕzez, has the form

∇ϕ =


ϕr,r

ϕr,θ − ϕθ

r
ϕr,z

ϕθ,r
ϕθ,θ + ϕr

r
ϕθ,z

ϕz,r
ϕz,θ

r
ϕz,z

 . (2.5)

2.1 Ansatz

The famous Kirchhoff ansatz [17] for columns and plates can be derived by substituting
the quadratic Taylor expansion of a test function ϕ(x, y, z, h), defined on ω × [0, h], at
(z, h) = (0, 0) into e(ϕ) and postulating cancellation of zeroth order terms [13]. This simple
and natural method for obtaining the ansatz for the Korn inequality generates a set of
smooth infinitesimal isometries [36] of the middle surface. In the case of a cylindrical shell
and our boundary conditions, there are no admissible1 smooth infinitesimal isometries, and
hence, this method does not work. We conclude that that the dependence of the ansatz
on (r, h) cannot be regular as h → 0. A typical example of such a nonsmooth behavior is
small scale oscillations as h→ 0, exhibited in optimal design problems [25, 5] or martensitic
phase transitions [1, 3]. Mathematically such an oscillatory behavior could be modelled by
functions of the form (2.7) below. We postulate that the dependence on r is regular:

ϕh(r, θ, z) = uh(θ, z) + (r − 1)vh(θ, z). (2.6)

We substitute this ansatz into (2.5) and obtain the zeroth order term in r − 1:

e(ϕh)(1, θ, z) =


vhr

vhθ + uhr,θ − uhθ
2

vhz + uhr,z
2

vhθ + uhr,θ − uhθ
2

uhθ,θ + uhr
uhz,θ + uhθ,z

2
vhz + uhr,z

2

uhz,θ + uhθ,z
2

uhz,z

 .

In order to obtain the best ansatz for the Korn inequality we have to eliminate all off-diagonal
components in e(ϕh)(1, θ, z), while making sure that it is the off-diagonal components that
are dominant in ∇ϕh(1, θ, z). In fact, we can eliminate all components in e(ϕh)(1, θ, z),
except uhz,z, by setting

vhr = 0, vhθ = −uhr,θ + uhθ , vhz = −uhr,z, uhr = −uhθ,θ, uhz,θ = −uhθ,z.

The last equation can solved by

uhθ = wh
,θ, uhz = −wh

,z.

Hence, we obtain the ansatz that depends on a single function wh(θ, z):

ϕh
r = −wh

,θθ, ϕh
θ = rwh

,θ + (r − 1)wh
,θθθ, ϕh

z = −wh
,z + (r − 1)wh

,θθz.

1Meaning that the infinitesimal isometry could be smoothly extended to Ωh as an element of V
(i)
h .
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In this case

∇ϕh =


0 −wh

,θ − wh
,θθθ −wh

,θθz

wh
,θ + wh

,θθθ

(r − 1)(wh
,θθ + wh

,θθθθ)

r
rwh

,θz + (r − 1)wh
,θθθz

wh
,θθz

−wh
,θz + (r − 1)wh

,θθθz

r
−wh

,zz + (r − 1)wh
,θθzz

 ,

and

e(ϕh) =


0 0 0

0
(r − 1)(wh

,θθ + wh
,θθθθ)

r

(r − 1)(wh
,θz + wh

,θθθz)

2r

0
(r − 1)(wh

,θz + wh
,θθθz)

2r
−wh

,zz + (r − 1)wh
,θθzz

 .

We now assume that the functions wh(θ, z) are “oscillatory” as h→ 0:

wh(θ, z) = W

(
θ

ah
,
z − L/2

bh

)
, θ ∈ [−π, π], z ∈ [0, L], (2.7)

where √
h < ah ≤ 1, h < bh ≤ 1, lim

h→0
ahbh = 0.

Here W (η, ζ) can be any smooth compactly supported function on (−1, 1)2, (For the space

V
(3)
h we need

∫
W (η, ζ)dζ = 0, which can be achieved by usingW,ζ(η, ζ) in place ofW (η, ζ).)

while the function wh(θ, z) is extended as a 2π-periodic function in θ ∈ R. Thus, we obtain

|∇ϕh|2 = O

(
max

{
1

a6h
,

1

a4hb
2
h

,
1

b4h

})
.

|e(ϕh)|2 = O

(
max

{
h2

a6hb
2
h

,
h2

a8h
,
1

b4h

})
,

and

K(Vh) ≤ C min
(a,b)∈[h,1]2

max

{
h2

a6b2
,
h2

a8
,
1

b4

}
max

{
1

a6
,

1

a4b2
,
1

b4

} .
It is a matter of simple analysis to show that the minimum is achieved at a = 4

√
h, b = 1,

giving K(Vh) ≤ Ch
√
h. Thus, we have proved the following theorem.

Theorem 2.1 (Ansatz). Let

V 0
h = V

(1)
h ∩V (2)

h ∩V (3)
h = {ϕ ∈ W 1,2(Ch;R3) : ϕ(r, θ, 0) = ϕ(r, θ, L) = 0,

∫ L

0

ϕ(r, θ, z)dz = 0}.
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Then there exist an absolute constant C0 such that

K(V 0
h ) ≤ C0h

√
h. (2.8)

This is established via the ansatz
ϕh
r (r, θ, z) = −W,ηη

(
θ
4√
h
, z
)

ϕh
θ (r, θ, z) = r 4

√
hW,η

(
θ
4√
h
, z
)
+ r−1

4√
h
W,ηηη

(
θ
4√
h
, z
)
,

ϕh
z (r, θ, z) = (r − 1)W,ηηz

(
θ
4√
h
, z
)
−

√
hW,z

(
θ
4√
h
, z
)
,

(2.9)

where the function W (η, z) is a smooth compactly supported function on (−1, 1)×(0, L) such

that
∫ L

0
W (η, z)dz = 0 for all η, while the function ϕh(θ, z) is extended as a 2π-periodic

function in θ ∈ R.

We remark that inequality (2.8) holds for each V
(i)
h , since V 0

h ⊂ V
(i)
h , i = 1, 2, 3.

2.2 Ansatz-free lower bounds

Theorem 2.2 (Ansatz free lower bound). There exist a constant C(L) depending only on
L such that

K(V
(i)
h ) ≥ C(L)h3/2, i = 1, 2, 3. (2.10)

The proof is conducted in two steps. In Section 3 we reduce inequality (2.10) to the
Korn-type inequalities in two-dimensional that can be regarded as refined versions of the
two-dimensional Korn inequality. In Section 4 these two-dimensional Korn-type inequalities
are proved, establishing Theorem 2.2.

The intended application of these inequalities to buckling of cylindrical shells requires
that we also estimate the L2 norms of the individual components of the gradient matrix (2.5)
in terms of ∥e(ϕ)∥2. We first observe that the inequalities

∥(∇ϕ)rr∥2 ≤ ∥e(ϕ)∥2, ∥(∇ϕ)θθ∥2 ≤ ∥e(ϕ)∥2, ∥(∇ϕ)zz∥2 ≤ ∥e(ϕ)∥2

are obvious, as are the inequalities

∥(∇ϕ)θr∥ = 2∥e(ϕ)rθ −
1

2
(∇ϕ)rθ∥ ≤ 2∥e(ϕ)rθ∥+ ∥(∇ϕ)rθ∥ ≤ 2∥e(ϕ)∥+ ∥(∇ϕ)rθ∥,

∥(∇ϕ)zr∥ = 2∥e(ϕ)rz −
1

2
(∇ϕ)rz∥ ≤ 2∥e(ϕ)rz∥+ ∥(∇ϕ)rz∥ ≤ 2∥e(ϕ)∥+ ∥(∇ϕ)rz∥,

∥(∇ϕ)zθ∥ = 2∥e(ϕ)θz −
1

2
(∇ϕ)θz∥ ≤ 2∥e(ϕ)θz∥+ ∥(∇ϕ)θz∥ ≤ 2∥e(ϕ)∥+ ∥(∇ϕ)θz∥.

The task is, therefore, to estimate the ratios ∥(∇ϕ)rθ∥/∥e(ϕ)∥, ∥(∇ϕ)rz∥/∥e(ϕ)∥, and
∥(∇ϕ)θz∥/∥e(ϕ)∥.
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Theorem 2.3. There exists a constant C(L) depending only on L such that for any ϕ ∈
V

(1)
h ∪ V (2)

h ∪ V (3)
h we have

∥(∇ϕ)rθ∥2

∥e(ϕ)∥2
≤ C(L)

h
√
h
, (2.11)

∥(∇ϕ)θz∥2

∥e(ϕ)∥2
≤ C(L)√

h
, (2.12)

∥(∇ϕ)rz∥2

∥e(ϕ)∥2
≤ C(L)

h
. (2.13)

We observe that inequality (2.11) is an immediate consequences of the Korn inequality
(2.10). The other two inequalities are proved in Section 5. The remarkable feature of
inequalities (2.11)–(2.13) is the presence of 3 distinct scaling laws for different components
of the gradient. This is a consequence of the high degree of symmetry possessed by the
circular cylindrical shell. We conjecture that deviations from the perfect symmetry will
“mix” the three cylindrical components producing a single scaling exponent determined by
the Korn constant. Another important observation is that ansatz (2.9) exhibits the scaling
laws given by the upper bounds for all 3 ratios in Theorem 2.3.

3 Reduction to two-dimensional Korn-type inequali-

ties

In this section we give the proof of Theorem 2.2 modulo two-dimensional Korn-type inequal-
ities, which constitute the technical core of our method. The argument in this section splits
naturally into a sequence of successive steps.
Step 1. In this step we prove that one can replace ∇ϕ and e(ϕ) in Theorem 2.2 by

A =

 ϕr,r ϕr,θ − ϕθ ϕr,z

ϕθ,r ϕθ,θ + ϕr ϕθ,z

ϕz,r ϕz,θ ϕz,z

 , and Asym =
1

2
(A+AT ),

respectively. The justification is based on a simple observation that

∥e(ϕ)−Asym∥2 ≤ ∥∇ϕ−A∥2 ≤ h2∥A∥2. (3.1)

Indeed, if we can prove that ∥A∥2 ≤ Ch−3/2∥Asym∥2, then

∥A∥2 ≤ Ch−3/2∥Asym∥2 ≤ Ch−3/2(∥e(ϕ)∥2 + h2∥A∥2),

and therefore (1− C
√
h)∥A∥2 ≤ Ch−3/2∥e(ϕ)∥2. Thus, for sufficiently small h we also have

∥A∥2 ≤ Ch−3/2∥e(ϕ)∥2,

concluding that

∥∇ϕ∥2 ≤ 2∥∇ϕ−A∥2 + 2∥A∥2 ≤ 2(h2 + 1)∥A∥2 ≤ Ch−3/2∥e(ϕ)∥2.
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Step 2. In order to prove the Korn inequality for A we need to estimate the quantities

G2
12 = ∥ϕθ,r∥2 + ∥ϕr,θ − ϕθ∥2, G2

13 = ∥ϕr,z∥2 + ∥ϕz,r∥2, G2
23 = ∥ϕz,θ∥2 + ∥ϕθ,z∥2

in terms of

E2
12 = ∥ϕθ,r + ϕr,θ − ϕθ∥2, E2

13 = ∥ϕr,z + ϕz,r∥2, E2
23 = ∥ϕz,θ + ϕθ,z∥2,

E2
11 = G2

11 = ∥ϕr,r∥2, E2
22 = G2

22 = ∥ϕθ,θ + ϕr∥2, E2
33 = G2

33 = ∥ϕz,z∥2.

Estimate for G23. This estimate is the simplest to make. Integration by parts, using the
boundary conditions ϕθ = 0 at z = 0 and z = L, common to the spaces V

(1)
h and V

(2)
h , and

the boundary conditions ϕz = 0 at z = 0 and z = L for V
(3)
h , combined with the periodicity

in θ, gives
|(ϕz,θ, ϕθ,z)| = |(ϕz,z, ϕθ,θ)| ≤ ∥ϕz,z∥∥ϕθ,θ∥ ≤ E33(E22 + ∥ϕr∥),

where (f, g) denotes the inner product of f and g in L2(Ch). It follows that

G2
23 = E2

23 − 2(ϕz,θ, ϕθ,z) ≤ E2
23 + E2

22 + E2
33 + 2E33∥ϕr∥ ≤ 2∥Asym∥(∥Asym∥+ ∥ϕr∥). (3.2)

Estimate for G13. It would seem that the most natural way to estimate G13 is by the Korn
inequality on the rectangle Ih × [0, L] [18]:

∥e(Φ)∥2 ≥ Ch2∥∇Φ∥2, (3.3)

where
Φ(r, z) = (ϕr(r, θ0, z), ϕz(r, θ0, z))

for each fixed θ0, since ϕz(r, θ0, 0) = 0. However, inequality (3.3) is incapable of delivering
the correct scaling law h3/2 of the three-dimensional Korn constant, and, hence, a more
delicate estimate than (3.3) is required.

Theorem 3.1 (First (and a half) Korn inequality). There exists a constant C0(L) > 0
depending only on L, such that, if the vector field ϕ = (u, v) ∈ H1(Ih × [0, L];R2) satisfies
v(x, 0) = 0, x ∈ Ih in the sense of traces, then for any h ∈ (0, 1) and any L > 0

∥∇ϕ∥2 ≤ C0(L)∥e(ϕ)∥
(
∥u∥
h

+ ∥e(ϕ)∥
)
. (3.4)

The theorem is proved in Section 4. We emphasize that there are no boundary conditions
imposed on u(x, y). Applying Theorem 3.1 to the vector field Φ(r, z) for every θ0 and
integrating the resulting inequality in θ0 over [0, 2π] we obtain, via the Cauchy-Schwartz
inequality for the product term

G2
13 ≤ C(L)

(
E2

11 + E2
13 + E2

33 +
∥ϕr∥
h

(E11 + E13 + E33)

)
≤ C(L)∥Asym∥

(
∥Asym∥+

∥ϕr∥
h

)
.

(3.5)
Estimate for G12. The estimate for G12 requires an even more delicate Korn-type inequality
for rectangles than the estimate for G13.
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Theorem 3.2. Suppose that the vector field ϕ = (u, v) ∈ H1(Ih × [0, 2π];R2) satisfies
ϕ(x, 0) = ϕ(x, 2π) in the sense of traces. Then

∥u∥2 ≤ ∥e∗∥2 + 2∥G∗∥∥v∥+ 2∥v∥2, (3.6)

where

G∗ =

[
u,x u,y − v

v,x v,y + u

]
, e∗ =

1

2
(G∗ +GT

∗ ).

In addition, there exist absolute numerical constants σ > 0 and C0 > 0, such that for any
h ∈ (0, σ)

∥G∗∥2 ≤ C0

(
∥e∗∥2 + ∥e∗∥

∥u∥
h

+ ∥v∥2
)
. (3.7)

The theorem is proved in Section 4.
We apply inequality (3.7) to the vector field

Φ(r, θ) = (ϕr(r, θ, z0), ϕθ(r, θ, z0)) (3.8)

for every z0 ∈ [0, L]. Integrating the resulting inequality in z0 and using the Cauchy-Schwarz
inequality for the product term, we obtain

G2
12 ≤ C0

(
∥Asym∥2 + ∥Asym∥

∥ϕr∥
h

+ ∥ϕθ∥2
)
.

We estimate via the 1D Poincaré inequality and (3.2)

∥ϕθ∥2 ≤
L2

π2
∥ϕθ,z∥2 ≤

L2

π2
G2

23 ≤
2L2

π2
(∥Asym∥2 + ∥Asym∥∥ϕr∥). (3.9)

Thus, there exists a constant C(L) ≤ C0(L
2(σ + 1) + 1) such that

G2
12 ≤ C(L)∥Asym∥

(
∥Asym∥+

∥ϕr∥
h

)
. (3.10)

Combining inequalities (3.2), (3.5) and (3.10) we obtain the three-dimensional Korn-type
inequality

∥A∥2 ≤ C1(L)∥Asym∥
(
∥ϕr∥
h

+ ∥Asym∥
)
. (3.11)

It is now clear that in order to prove the Korn inequality (2.10) we need to estimate ∥ϕr∥.
Estimate for ∥ϕr∥. The estimate for ∥ϕr∥ is based on inequality (3.6) in Theorem 3.2
applied to the vector field Φ, given by (3.8). Integrating the resulting inequality in z0, and
using the Cauchy-Schwarz inequality for the product term we obtain

∥ϕr∥2 ≤ ∥Asym∥2 + 2∥A∥∥ϕθ∥+ 2∥ϕθ∥2 ≤ ∥Asym∥2 + ϵ2∥A∥2 +
(
2 +

1

ϵ2

)
∥ϕθ∥2

9



for any ϵ > 0. The small parameter ϵ ∈ (0, 1) will be chosen later to optimize the resulting
inequality. By the “Poincaré inequality” (3.9) we obtain for sufficiently small ϵ

∥ϕr∥2 ≤
(
L2

ϵ2
+ 1

)
∥Asym∥2 + ϵ2∥A∥2 + L2

ϵ2
∥Asym∥∥ϕr∥.

Therefore,

∥ϕr∥2 ≤ 2

(
L2

ϵ2
+ 1

)2

∥Asym∥2 + 2ϵ2∥A∥2.

Thus,

∥ϕr∥ ≤
√
2

((
L2

ϵ2
+ 1

)
∥Asym∥+ ϵ∥A∥

)
. (3.12)

Substituting this inequality into (3.11), we conclude that there is a constant C(L), depending
only on L, such that

∥A∥2 ≤ C(L)

(
1

hϵ2
+
ϵ2

h2

)
∥Asym∥2.

We now choose ϵ = h1/4 to minimize the upper bound:

∥A∥2 ≤ C(L)

h
√
h
∥Asym∥2, (3.13)

which, due to Step 1 completes the proof of Theorem 2.2, modulo Theorems 3.1 and 3.2.

Corollary 3.3. Inequality (3.11) remains valid if A is replaced by ∇ϕ, i.e.,

∥∇ϕ∥2 ≤ C(L)∥e(ϕ)∥
(
∥ϕr∥
h

+ ∥e(ϕ)∥
)
. (3.14)

Proof. Combining inequalities (2.10) and (3.1) we get

(1− C(L)h1/4)∥Asym∥ ≤ ∥e(ϕ)∥ ≤ (1 + C(L)h1/4)∥Asym∥, (3.15)

which together with (3.11) implies (3.14).

4 Korn and Korn-type inequalities in two dimensions

In this section our goal is to prove Theorems 3.1 and 3.2. We begin with an auxiliary lemma
that will be essential in the proof of both theorems.

Lemma 4.1. Suppose that the vector field ϕ(x, y) = (u(x, y), v(x, y)) ∈ H1(Ih × [0, p];R2)
satisfies u(x, 0) = u(x, p) in the sense of traces. Then there exists a constant C0(p) depending
only on p such that for any α ∈ [−1, 1], any h ∈ (0, 1) and any p > 0

∥Gα∥2 ≤ C0(L)∥eα∥
(
∥u∥
h

+ ∥eα∥
)
, (4.1)
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where

Gα = Gα(ϕ) =

[
u,x u,y

v,x v,y + αu

]
, eα = eα(ϕ) =

1

2
(Gα(ϕ) + (Gα(ϕ))T ).

We emphasize that there are no boundary conditions imposed on v(x, y). If α = 0, and
p = L then inequality (4.1) reduces to (3.4). However, the assumed boundary conditions in
Lemma 4.1 and Theorem 3.1 do not match. If α = 1, p = π, then the boundary conditions
in Lemma 4.1 and Theorem 3.2 are the same and inequalities (4.1) and (3.7) are similar, but
not identical. These small discrepancies will be rectified in the proof of the lemma.

Proof. Following the argument of Kondratiev and Oleinik in [19], one can assume, without
loss of generality, that u is harmonic. Indeed, suppose w(x, y) solves{

∆w(x, y) = 0, (x, y) ∈ Ω

w(x, y) = u(x, y), (x, y) ∈ ∂Ω,
(4.2)

where Ω = Ih × [0, p]. Then ∇w is the Helmholtz projection of ∇u onto the space of
divergence-free fields in L2(Ω;R2), and the following bounds hold:

Lemma 4.2. Let Ω = Ih × [0, p] and ϕ = (u, v) ∈ H1(Ω;R2). If w(x, y) is defined by (4.2),
then for any α ∈ [−1, 1], any h ∈ (0, 1), and any p > 0

∥∇u−∇w∥ ≤ πK0∥eα∥, ∥u− w∥ ≤ K0h∥eα∥, K0 =
1

π

(√
2 +

1

π

)
. (4.3)

Proof. Using the idea that the Laplacian can be expressed in terms of partial derivatives of
components of the symmetrized gradient [19] we compute, using the fact that w is harmonic,

∆(u− w) = ∆u = (eα11 − eα22),x + 2(eα12),y + αeα11,

in the sense of distributions. Here eαij denote the Cartesian components of eα. Then, since
u− w ∈ H1

0 (Ω), we have

∥∇(u− w)∥2 =
∫
Ω

{(eα11 − eα22)(u− w),x + 2eα12(u− w),y + αeα11(w − u)}dxdy.

By the Cauchy-Schwarz inequality we get

∥∇(u− w)∥2 ≤ ∥eα∥(
√
2∥∇(u− w)∥+ |α|∥u− w∥).

By the Poincaré inequality∫
Ih

|u− w|2dx ≤ h2

π2

∫
Ih

|(u− w),y|2dx.

Hence,

∥u− w∥ ≤ h

π
∥∇(u− w)∥,

and (4.3) follows.

11



Next we prove a Korn-like inequality for harmonic functions.

Lemma 4.3. Suppose w ∈ H1(Ih × [0, p]) is harmonic and satisfies w(x, 0) = w(x, p) in the
sense of traces. Then

∥w,y∥2 ≤
2
√
3

h
∥w∥∥w,x∥+ ∥w,x∥2. (4.4)

Proof. By the method of separation of variables

w(x, y) =
∑
n∈Z

(Ane
2πnx

p +Bne
− 2πnx

p )e
2πnyi

p

in H1(Ih × [0, p]). Therefore,

∥w∥2 = ph
∑
n∈Z

{
ψ

(
2πnh

p

)(
|An|2e

2πnh
p + |Bn|2e

−2πnh
p

)
+ 2ℜe(AnBn)

}
, ψ(x) =

sinh(x)

x
.

In the expansions of w,x and w,y we simply replace An and Bn with 2πnAn/p, −2πnBn/p
and 2πinAn/p, 2πinBn/p, respectively:

∥w,x∥2 = 4ph
∑
n∈Z

π2n2

p2

{
ψ

(
2πnh

p

)(
|An|2e

2πnh
p + |Bn|2e

−2πnh
p

)
− 2ℜe(AnBn)

}
,

∥w,y∥2 = 4ph
∑
n∈Z

π2n2

p2

{
ψ

(
2πnh

p

)(
|An|2e

2πnh
p + |Bn|2e

−2πnh
p

)
+ 2ℜe(AnBn)

}
,

Denoting

an = Ane
πnh
p , bn = Bne

−πnh
p , τn =

2πnh

p

we simplify the above expressions:

∥w∥2

h2
= 4ph

∑
n∈Z

π2n2

τ 2np
2
{(ψ(τn)− 1)(|an|2 + |bn|2) + |an + bn|2},

∥w,y∥2 = 4ph
∑
n∈Z

π2n2

p2
{(ψ(τn)− 1)(|an|2 + |b2n|) + |an + bn|2},

∥w,x∥2 = 4ph
∑
n∈Z

π2n2

p2
{(ψ(τn)− 1)(|an|2 + |bn|2) + |an − bn|2},

Obviously,

∥w,y∥2 − ∥w,x∥2 = 16ph
∑
n∈Z

π2n2

p2
ℜe(anbn) ≤ 16ph

∑
n∈P

π2n2

p2
ℜe(anbn),
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where P = {n ∈ Z : ℜe(anbn) > 0}. Next we estimate

∥w∥2

h2
≥ 4ph

∑
n∈P

π2n2

τ 2np
2
{(ψ(τn)− 1)(|an|2 + |bn|2) + |an + bn|2}

≥ 8ph
∑
n∈P

π2n2

τ 2np
2
(ψ(τn) + 1)ℜe(anbn).

Similarly,

∥w,x∥2 ≥ 8ph
∑
n∈P

π2n2

p2
(ψ(τn)− 1)ℜe(anbn).

Now we have

∑
n∈P

π2n2

p2
ℜe(anbn) =

∑
n∈P

(
πn

p

√
(ψ(τn)− 1)ℜe(anbn)

)πn

p

√
ℜe(anbn)
ψ(τn)− 1

 .

Applying the Cauchy-Schwarz inequality we obtain∑
n∈P

π2n2

p2
ℜe(anbn) ≤

√∑
n∈P

π2n2

p2
(ψ(τn)− 1)ℜe(anbn)

√∑
n∈P

Ψ(τn)
π2n2

τ 2np
2
(ψ(τn) + 1)ℜe(anbn),

where

Ψ(τ) =
τ 2

ψ(τ)2 − 1
=

τ 4

sinh2(τ)− τ 2
.

The function Ψ(τ) is monotone decreasing on (0,+∞), and hence,

Ψ(τn) ≤ Ψ(τ1) ≤ Ψ(0) = 3.

Therefore,

∥w,y∥2 − ∥w,x∥2 ≤
2
√
Ψ(τ1)

h
∥w∥∥w,x∥, (4.5)

and inequality (4.4) follows.

We remark that inequality (4.4) is sharp, since

w(x, y) = cosh

(
π

p

(
x− h

2

))
sin

(
πy

p

)
turns inequality (4.5) into an equality.

We can now finish the proof of Lemma 4.1. By the triangle inequality and Lemma 4.2
we get

∥Gα∥2 = ∥eα∥2 + 1

2
∥v,x − ϕ,y∥2 = ∥eα∥2 + 1

2
∥(v,x + ϕ,y)− 2(ϕ,y − w,y)− 2w,y∥2 ≤

∥eα∥2 + 3

2
∥ϕ,y + v,x∥2 + 6∥ϕ,y − w,y∥2 + 6∥w,y∥2 ≤ (4 + 6π2K2

0)∥eα∥2 + 6∥w,y∥2.
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We estimate ∥w,y∥ by means of Lemma 4.3. By the triangle inequality and Lemma 4.2

∥w∥ ≤ ∥u∥+ ∥u− w∥ ≤ ∥u∥+K0h∥eα∥,

∥w,x∥ ≤ ∥ϕ,x∥+ ∥w,x − ϕ,x∥ ≤ (1 + πK0)∥eα∥.
Therefore,

∥w,y∥2 ≤
2
√
3(1 + πK0)

h
∥u∥∥eα∥+ (1 + πK0)(1 + (2

√
3 + π)K0)∥eα∥2.

Thus, using somewhat arbitrary integer overestimation, we obtain

∥Gα∥2 ≤ 100∥eα∥
(
∥u∥
h

+ ∥eα∥
)
. (4.6)

The proof of Lemma 4.1 is complete.

Proof of Theorem 3.1. Theorem 3.1 follows from Lemma 4.1 via the even-odd ex-
tension method, whereby we define the new displacement ϕ̃ = (ũ, ṽ, ) on the rectangle
Ih × [−p, p], where ũ and ṽ are extensions of u and v such that

ũ(x, y) =

{
u(x, y) if y ∈ [0, p]

u(x,−y) if y ∈ [−p, 0]
ṽ(x, y) =

{
v(x, y) if y ∈ [0, p]

−v(x,−y) if y ∈ [−p, 0]
.

We observe that due to the boundary condition v(x, 0) = 0, the extension ϕ̃ is an H1(Ih ×
[−p, p]) vector field, while ũ(x,−p) = ũ(x, p). Moreover,

∇ϕ̃(x, y) =



[
u,x(x, y) u,y(x, y)

v,x(x, y) v,y(x, y)

]
if y ∈ [0, p],[

u,x(x,−y) −u,y(x,−y)
−v,x(x,−y) v,y(x,−y)

]
if y ∈ [−p, 0].

Therefore, setting Ω̃ = Ih × [−p, p] we get,

∥∇ϕ̃∥2
L2(Ω̃)

= 2∥∇ϕ∥2L2(Ω), ∥e(ϕ̃)∥2
L2(Ω̃)

= 2∥e(ϕ)∥2L2(Ω).

It is also clear that ∥ũ∥2
L2(Ω̃)

= 2∥u∥2L2(Ω). An application of Lemma 4.1 to the vector field ϕ̃

in the domain Ω̃ completes the proof.
Proof of Theorem 3.2. Let ϕ̃(x, y) = (u(x, y), (1− x)v(x, y)), and let

G̃ = Gα(ϕ̃)|α=1, ẽ =
1

2
(G̃+ G̃T ).

We compute

G∗ = G̃+

[
0 −v

v + xv,x xv,y

]
, ẽ = e∗ +

 0 −x
2
v,x

−x
2
v,x −xv,y

 .
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Thus we immediately obtain that

∥G∗∥2 ≤ 6(∥G̃∥2 + ∥v∥2 + h2(∥v,x∥2 + ∥v,y∥2). (4.7)

and
∥ẽ∥ ≤ ∥e∗∥+ h(∥v,x∥+ ∥v,y∥). (4.8)

We also estimate

∥v,x∥ ≤ ∥G∗∥, ∥v,y∥ ≤ ∥v,y + u∥+ ∥u∥ ≤ ∥e∗∥+ ∥u∥. (4.9)

Now we apply Lemma 4.1 to the vector field ϕ̃ and α = 1, and obtain

∥G̃∥2 ≤ C0∥ẽ∥
(
∥u∥
h

+ ∥ẽ∥
)
.

Therefore, by (4.7) and (4.8) we obtain

∥G∗∥2 ≤ C0

(
∥e∗∥2 + ∥e∗∥

∥u∥
h

+ ∥u∥(∥v,x∥+ ∥v,y∥) + ∥v∥2 + h2(∥v,x∥2 + ∥v,y∥2)
)
.

Applying inequalities (4.9) to the terms containing ∥v,x∥ and ∥v,y∥ we obtain

∥G∗∥2 ≤ C0

(
∥e∗∥2 + ∥e∗∥

∥u∥
h

+ ∥u∥∥G∗∥+ ∥u∥2 + ∥v∥2 + h2∥G∗∥2
)
.

When h2 < 1/(2C0) we get the inequality

∥G∗∥2 ≤ C0

(
∥e∗∥2 + ∥e∗∥

∥u∥
h

+ ∥u∥∥G∗∥+ ∥u∥2 + ∥v∥2
)
.

We also have

C0∥u∥∥G∗∥ ≤ 1

2
∥G∗∥2 +

C2
0

2
∥u∥2.

Thus, we obtain

∥G∗∥2 ≤ C0

(
∥e∗∥2 + ∥e∗∥

∥u∥
h

+ ∥u∥2 + ∥v∥2
)
. (4.10)

To finish the proof of the theorem we write ∥u∥2 using integration by parts and periodic
boundary conditions:

∥u∥2 = (u, u+ v,y) + (u,y − v, v) + ∥v∥2.
Thus,

∥u∥2 ≤ ∥u∥∥e∗∥+ ∥G∗∥∥v∥+ ∥v∥2,
and using 2∥u∥∥e∗∥ ≤ ∥u∥2 + ∥e∗∥2 we obtain (3.6). Applying this inequality to the ∥u∥2
term in (4.10) we obtain

∥G∗∥2 ≤ C0

(
∥e∗∥2 + ∥e∗∥

∥u∥
h

+ ∥G∗∥∥v∥+ ∥v∥2
)
.

from which Theorem 3.2 follows.
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Remark 4.4. In the proofs of all of the Korn and Korn-like inequalities, the vanishing of
ϕz(r, θ, L) was never used. Hence,

c(L)h3/2 ≤ K(V ∗
h ) ≤ C(L)h3/2, (4.11)

where
V ∗
h = {ϕ ∈ W 1,2(Ch;R3) : ϕθ(r, θ, 0) = ϕz(r, θ, 0) = ϕθ(r, θ, L) = 0}.

5 Korn inequality for gradient components

The goal in this section is to prove Korn-like inequalities (2.12) and (2.13) for gradient com-
ponents. While inequalities (2.11)–(2.13) bear a formal resemblance to the Korn inequality
(2.10), the distinct scaling exponents in (2.12)–(2.13) are a consequence of the high degree
of metric symmetry in the structure. By contrast, our methods in Sections 3 and 4 exploited
only the topological and smooth structures of the cylindrical shell. Not surprisingly, then,
the proof of (2.12) and (2.13) is based on exact calculations in Fourier space, rather than on
various integral inequalities, as in the proof of (2.10). In fact, the natural periodicity in θ is
not sufficient, and we need the periodicity in z variable as well. The boundary conditions in
V

(1)
h , V

(2)
h and V

(3)
h permit us to achieve this goal in the same way as was done in proof of

Theorem 3.1 in Section 4. For V
(1)
h we extend ϕr and ϕθ as odd and ϕz as an even function

in z ∈ [−L,L], while for V
(2)
h and V

(3)
h we extend ϕr and ϕθ as even functions and ϕz as

odd. We remark that the periodic extension method cannot be applied to the boundary
conditions in the definition of space V ∗

h . To fix ideas we conduct the proof for the space

V
(1)
h . The proofs for V

(2)
h and V

(3)
h are obtained by switching the sine and cosine series in

the z variable. Denoting the periodic extensions without relabeling, we expand the vector
field ϕ(r, θ, z) in Fourier series in (θ, z):

ϕ(r, θ, z) =
∞∑

m=0

∑
n∈Z

ϕ(m,n)(r, θ, z), (5.1)

where

ϕ
(m,n)
r = ϕ̂r(r;m,n) sin

(πmz
L

)
einθ, ϕ̂r(r;m,n) =

1

πL

∫ 2π

0

∫ L

0

ϕr sin
(πmz

L

)
einθdzdθ

ϕ
(m,n)
θ = ϕ̂θ(r;m,n) sin

(πmz
L

)
einθ, ϕ̂θ(r;m,n) =

1

πL

∫ 2π

0

∫ L

0

ϕθ sin
(πmz

L

)
einθdzdθ

ϕ
(m,n)
z = ϕ̂z(r;m,n) cos

(πmz
L

)
einθ, ϕ̂z(r;m,n) =

1

πL

∫ 2π

0

∫ L

0

ϕz cos
(πmz

L

)
einθdzdθ.

We observe that in cylindrical coordinates

∇ϕ(r, θ,−z) = −

 −ϕr,r(r, θ, z) −ϕr,θ(r,θ,z)−ϕθ(r,θ,z)

r
ϕr,z(r, θ, z)

−ϕθ,r(r, θ, z) −ϕθ,θ(r,θ,z)+ϕr(r,θ,z)

r
ϕθ,z(r, θ, z)

ϕz,r(r, θ, z)
ϕz,θ(r,θ,z)

r
−ϕz,z(r, θ, z)


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Therefore, it is sufficient to prove inequalities (2.12) and (2.13) for functions of the form

ϕ(m,n)(r, θ, z) =
(
fr(r) sin

(πmz
L

)
, fθ(r) sin

(πmz
L

)
, fz(r) cos

(πmz
L

))
einθ.

Indeed,

∥ϕr,z∥2 = πL
∞∑

m=1

∑
n∈Z

∥ϕ(m,n)
r,z ∥2 ≤ πL

∞∑
m=0

∑
n∈Z

C(L)

h
∥e(ϕ(m,n))∥2 = C(L)

h
∥e(ϕ)∥2,

with the similar bound for ∥ϕθ,z∥. Observe that ϕ(m,n) ∈ V
(1)
h or V

(2)
h , provided ϕ ∈ V

(1)
h or

V
(2)
h , respectively. Therefore, Theorem 2.2 and Corollary 3.3 are applicable to such functions.

We now fix m ≥ 1 and n ∈ Z, and for simplicity of notation we use ϕ = (ϕr, ϕθ, ϕz) instead

of ϕ(m,n) = (ϕ
(m,n)
r , ϕ

(m,n)
θ , ϕ

(m,n)
z ). Notice that if ∥ϕr∥ ≤ 3∥e(ϕ)∥, then Corollary 3.3 implies

that

∥ϕr,z∥2 ≤ ∥∇ϕ∥2 ≤ C(L)

h
∥e(ϕ)∥2,

and (2.13) is proved. Let us now prove inequality (2.13) under the assumption that ∥ϕr∥ >
3∥e(ϕ)∥. In that case inequalities (3.2) and (3.14) become

∥ϕz,θ∥2 + ∥ϕθ,z∥2 ≤
8

3
∥e(ϕ)∥∥ϕr∥ (5.2)

and

∥∇ϕ∥2 ≤ C(L)

h
∥e(ϕ)∥∥ϕr∥, (5.3)

respectively. We estimate

n2∥ϕr∥2 = ∥ϕr,θ∥2 ≤ 2∥ϕr,θ − ϕθ∥2 + 2∥ϕθ∥2 ≤ 2∥∇ϕ∥2 + 2L2

π2
∥ϕθ,z∥2 ≤ C(L)∥∇ϕ∥2,

where the Poincaré inequality has been used for ϕθ. Applying inequality (5.3) we obtain

n2∥ϕr∥2 ≤ C(L)∥∇ϕ∥2 ≤ C(L)

h
∥e(ϕ)∥∥ϕr∥.

Thus,

n2∥ϕr∥ ≤ C(L)

h
∥e(ϕ)∥. (5.4)

We next estimate

∥ϕr∥2 ≤ 2∥ϕr + ϕθ,θ∥2 + 2∥ϕθ,θ∥2 ≤ 2∥e(ϕ)∥2 + 2n2∥ϕθ∥2,

and
m2π2

L2
∥ϕθ∥2 = ∥ϕθ,z∥2 ≤

8

3
∥e(ϕ)∥∥ϕr∥,

due to (5.2). Combining the last two inequalities we obtain

∥ϕr∥2 ≤ 2∥e(ϕ)∥2 + 16L2n2

3m2π2
∥e(ϕ)∥∥ϕr∥. (5.5)
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By our assumption ∥e(ϕ)∥2 < ∥ϕr∥2/9. We use this inequality to estimate the first term on
the right-hand side of (5.5) and obtain

∥ϕr∥ ≤ 12L2n2

m2π2
∥e(ϕ)∥. (5.6)

Finally, multiplying (5.4) and (5.6) we get

m2∥ϕr∥2 ≤
C(L)

h
∥e(ϕ)∥2,

and (2.13) is proved. To prove (2.12) we utilize (3.2) to get,

∥ϕθ,z∥2 ≤ G2
12 ≤ 2∥Asym∥(∥Asym∥+ ∥ϕr∥). (5.7)

Choosing ϵ = 4
√
h in (3.12) and applying (3.13) to the resulting inequality, we obtain

∥ϕr∥ ≤ C(L)∥Asym∥√
h

.

Substituting now the last inequality into (5.7) we get

∥ϕθ,z∥≤
C(L)√
h

∥Asym∥2.

Invoking inequality (3.15), gives

∥ϕθ,z∥2 ≤
C(L)√
h

∥e(ϕ)∥2,

for sufficiently small h. This completes the proof for the case ϕ ∈ V
(1)
h . If ϕ ∈ V

(2)
h ∪ V (3)

h

we repeat the same proof changing sines to cosines in the expansion (5.1).
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