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Abstract

We give a complete solution to the G-closure problem for mixtures of two well

ordered possibly anisotropic conductors. Both the G-closure with fixed volume fractions

and the full G-closure are computed. The conductivity tensors are considered in a fixed

frame and no rotations are allowed.

1 Introduction

The problem of describing all possible composites obtainable by mixing more than one
material has been studied for many years and by many authors. The homogeneous composite
material is in general anisotropic, and is characterized by its tensor of effective parameters.
The set of all such tensors is called the G-closure, and the problem of describing this set
is called the G-closure problem. Depending on the number, quantity and nature of the
materials to be mixed we obtain different G-closure problems. This article solves one of
them.

The G-closure problem was first addressed by Murat and Tartar [9] and independently by
Lurie and Cherkaev [4], [5] generalizing the pioneering works of Hashin and Shtrikman [2].
The papers [4], [5], [9] completely solved the G-closure problem for two isotropic components
using the method of compensated compactness (later renamed the translation method by
Milton [6]). This article follows the approach of Kohn and Milton in [3] adapted to the case
of anisotropic component materials.

Our main result is that the G-closure of two conductors with conductivity tensors A and
B (A < B) mixed in fixed volume fractions θA, θB (θA+θB=1) consists of all tensors C∗

satisfying the “trace bounds” (6) and the “Wiener bounds ” (5) (see Theorem 3). Both of
these bounds are well-known. The former bounds first appeared in their present form in [7],
formulas (5.18),(5.20). The later were first derived by Wiener in 1912 [10]. By showing that
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these bounds characterize the G-closure, we are demonstrating that no better bounds are
possible.

We also derive an expression for the full G-closure , i.e. the set of all composite conduc-
tivities obtainable when the volume fractions are not restricted (see (18)).

This paper is exclusively concerned with the case of two well-ordered conductivity tensors
(A < B), not necessarily simultaneously diagonal. Analogous results have recently been
obtained by Nesi, when A and B are simultaneously diagonal but not well-ordered [8].

2 Composite materials and the trace bounds

The goal of this section is a self-contained treatment of the trace bounds. We first describe
the precise mathematical setting we will be dealing with. We consider two conductors with
conductivities A and B — symmetric positive definite n × n matrices with A < B in the
sense of quadratic forms. There is no other restriction on A and B. Consider a composite
made of these two conductors mixed in volume fractions θA, θB (0 < θA < 1, θB = 1− θB).
By a composite we mean a conducting material with conductivity at point x

C(x) = AχA(x) + BχB(x); (1)

here χA(x) and χB(x) are the indicator functions of the sets occupied by materials A and
B respectively, with

χA(x) + χB(x) = 1.

Notice in formula (1) that we don’t allow any rotation of the materials. Suppose our com-
posite has fine scale structure. Mathematically this means that C(x) is a rapidly oscillating
function varying on a length scale ε. Then we will write C(x/ε) instead of C(x), where C(y)
is now a function varying on a length scale of order 1. It is sufficient to consider only the
periodic composites, i.e. composites for which C(y) is periodic with period cell Q, by results
from the theory of G-convergence. For each ε we have the elliptic equation of electrostatics
for the potential uε(x) in the open bounded domain Ω ⊂ Rn occupied by the composite:

∇ · (C(x/ε)∇uε(x)) + f(x) = 0

uε|∂Ω= 0,

where f is a suitable function (f ∈ L2(Ω) will do). We want to study the behavior of its
unique solution uε(x) as ε → 0. It can be proved [1] that uε(x) ⇀ u0(x) in H1(Ω) where
u0 satisfies the homogenized equation:

∇ · (C∗∇u0(x)) + f(x) = 0

u0|∂Ω= 0

where C∗ is a constant symmetric tensor called the effective conductivity tensor. Moreover
C∗ can be characterized as follows:

(C∗ξ, ξ) = inf
φ

–
∫

Q(C(y)(ξ + ∇φ), ξ + ∇φ)dy (2)
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where (·, ·) denotes the scalar product in Rn; –
∫

Q
means 1

Vol(Q)

∫
Q

and the inf is taken over

all Q-periodic H1(Q) functions φ with mean value zero. Notice that C∗ in fact does not
depend neither on the function f nor on the region Ω. Formulas (1) and (2) are all we will
need to study the effective conductivity of the composites. For a more detailed treatment
see [1].

Our goal is to describe the set of all possible tensors C∗ which can be obtained by varying
the microstructure, that is, by varying the choice of χA(x) in (1). The idea is to prove some
bounds on C∗ then to show those bounds are optimal in the sense that any tensor satisfying
the bounds arises as a C∗ for some microstructure. In order to establish the bounds we use
the variational formula (2) for C∗. Substituting φ =const in (2) we get an upper bound for
C∗:

C∗ ≤ M

where
M = AθA + BθB (3)

is the arithmetic mean. Similarly from the dual variational principle we get

C∗ ≥ H

where
H = (A−1θA + B−1θB)−1 (4)

is the harmonic mean. The bounds

H ≤ C∗ ≤ M (5)

are called the Wiener bounds. They are very simple but unfortunately they are not optimal.
We therefore need the “trace bounds”:

Theorem 1 The effective conductivity C∗ satisfies

Tr(A(C∗ − A)−1) ≤
1

θB
Tr(A(B − A)−1) + θA

θB

Tr(B(B − C∗)−1) ≤
1

θA
Tr(B(B − A)−1) − θB

θA





(6)

Proof. We begin by adding and subtracting (γ(ξ+∇φ), ξ+∇φ) — the energy of a “reference
medium” with constant conductivity tensor γ — on the right of (2):

(C∗ξ, ξ) = inf
φ

–
∫

Q[((C(x) − γ)(ξ + ∇φ), ξ + ∇φ) + (γ(ξ + ∇φ), ξ + ∇φ)]dx (7)

Here γ must be a positive definite symmetric matrix. It should satisfy γ < A if we seek a
lower bound and γ > B if we seek an upper bound. Now we follow the approach of Kohn-
Milton in [3] for deriving bounds on effective conductivity. We will emphasize only the
differences. We proceed exactly as in [3] to get the Hashin-Shtrikman variational principle
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for the anisotropic case. We obtain for the lower bound after the dualization of the first
term on right hand side of (7)

((C∗ − γ)ξ, ξ) = sup
σ

–
∫

Q[2(σ, ξ) − ((C(x) − γ)−1σ, σ) − (σ, Γγσ)]dx (8)

with 0 < γ < A. And for the upper bound

((C∗ − γ)ξ, ξ) = inf
σ

–
∫

Q[2(σ, ξ) − ((C(x) − γ)−1σ, σ) − (σ, Γγσ)]dx (9)

with γ > B. In both formulas the sup(inf) is taken over L2(Q) vector fields σ, and the
operator Γγ : L2(Q, Rn) → L2(Q, Rn) is defined by

Γγσ = −∇φ (10)

where φ is the unique (mean value zero) periodic solution of

∇ · γ∇φ = −∇ · σ (11)

Notice that if γ, A and B are all scalar then (8) and (9) coincide with formulas (3.14) and
(3.16) of [3] respectively. Then making a customary substitution σ = ηχB for lower bound
(σ = ηχA for upper bound) and then optimizing explicitly in ξ we obtain bounds on C∗:

θB
2(C∗ − γ)−1 ≤ θB(B − γ)−1 + FB

γ

θA
2(C∗ − γ)−1 ≥ θA(A − γ)−1 + FA

γ

where FA
γ is the matrix of “geometric parameters” defined by

(FA
γ η, η) = –

∫
Q(ηχA, Γγ(ηχA))dx (12)

where η ∈ Rn. Again as in [3] we prove that

Tr(γFA
γ ) = θA(1 − θA) = θAθB

This is most easily seen in the case when Q is a unit cube, by using the Fourier series
decomposition on Q. By Parseval’s identity applied to (12), and using the definition of Γγ

(10), (11), we obtain:

FA
γ =

∑

k 6=0

k ⊗ k

(γk, k)
|χ̂A(k)|2,

where χ̂A(k) are the Fourier coefficients of the function χA(x). The result then follows easily.
Now using the fact that

T1 ≥ T2 ⇒ γ1/2T1γ
1/2 ≥ γ1/2T2γ

1/2 ⇒ Tr(γT1) ≥ Tr(γT2)

for any two matrices T1 and T2, we get the general trace bounds for anisotropic case:

Tr(γ(C∗ − γ)−1) ≤
1

θB
Tr(γ(B − γ)−1) +

θA

θB
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Tr(γ(γ − C∗)−1) ≤
1

θA
Tr(γ(γ − A)−1) −

θB

θA

Letting γ ↑ A in the first inequality and γ ↓ B in the second one we get the optimal trace
bounds (6).

Q. E. D.

The above argument is valid only for the case A ≤ B. In the non-well-ordered case one
should use more powerful translation method (for treatment see [8]).

In (6) the first inequality represents a lower bound on C∗ while the second one represents
an upper bound. It is convenient for later use to rewrite these bounds in a different way:

Tr(A(C∗ − A)−1) ≤ Tr(A(M − A)−1) + θA
θB

Tr(B(B − C∗)−1) ≤ Tr(B(B − M)−1) − θB
θA





(13)

This is equivalent to (6) because one can check that

θB(B − A) = M − A.

We now turn to the attainability of the trace bounds. In what follows we assume that
the period cell Q is a unit cube in Rn. Any other case is easily reduced to this one by a
similarity transform. The statement below and its proof are due to L. Tartar [9]. We repeat
Tartar’s argument for the sake of completeness.

Theorem 2 If a symmetric matrix C with A < C ≤ M achieves equality in one of the
bounds (6) then it is attainable by some composite.

Proof. The idea of the proof is to describe a class of microstructures whose conductivities are
easy to compute explicitly and rich enough to achieve any matrix satisfying the conditions
of the theorem. Such a class is the family of laminates. We start with the rank-1 lamination
formula. Consider a composite where materials A and B are arranged in layers orthogonal
to a vector e1 . In this case C∗ satisfies the relations ([9], Proposition 3):

θB(C∗ − A)−1 = (B − A)−1 + θA
e1 ⊗ e1

(Ae1, e1)

θA(C∗ − B)−1 = (A − B)−1 + θB
e1 ⊗ e1

(Be1, e1)





(14)

We may now layer this composite with the material A in layers orthogonal to e2. Let us
denote the relative volume fractions of material A in the whole composite used in each
step as ρ1 and ρ2 respectively (ρ1 + ρ2 = 1) and let the volume fraction of A in the whole
composite be θA. Then a brief calculation shows that C∗ satisfies

θB(C∗ − A)−1 = (B − A)−1 + θA

2∑

i=1

ρi
ei ⊗ ei

(Aei, ei)
.
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If we repeat the process m times, each time layering the resulting composite with material
A, then we obtain a composite with C∗ satisfying ([9], Proposition 4)

θB(C∗ − A)−1 = (B − A)−1 + θA

m∑

i=1

ρi
ei ⊗ ei

(Aei, ei)
, (15)

where ρi ∈ [0, 1] and
∑m

i=1 ρi = 1. It is easy to show that varying the volume fractions ρi

at each step but keeping θA fixed we can get composites satisfying (15) with an arbitrary
admissible set {ρi} and arbitrary vectors {ei}. Notice that for m = n the matrix

T =

n∑

i=1

ρi
ei ⊗ ei

(Aei, ei)

can be any symmetric positive semidefinite matrix with the property

Tr(AT ) = 1.

In fact if

A1/2TA1/2 =

n∑

i=1

µi(vi ⊗ vi)

is orthonormal eigendecomposition of A1/2TA1/2 then we may set

ρi = µi

and take ei such that
A1/2ei

‖ A1/2ei ‖
= vi

Now let C satisfy conditions of the theorem. Consider the matrix

T =
θB

θA
(C − A)−1 −

1

θA
(B − A)−1

Notice that since C > A, the condition T ≥ 0 is equivalent to the condition C ≤ M . Also
the condition that C achieves equality in the lower bound (6) is exactly the condition

Tr(AT ) = 1.

Therefore there exists a laminate (of rank n, in general) with effective conductivity C∗ such
that

θB(C∗ − A)−1 − (B − A)−1 = θB(C − A)−1 − (B − A)−1,

which yields C = C∗. The attainability of the lower bound is proved. The upper bound is
treated similarly.

Q. E. D.

Let G̃ be the set of all symmetric second order tensors described by the above bounds ,
and let G represent the G-closure of (A, B, θA, θB). Our task is to show that G̃ = G.
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3 Attainability of G̃.

In this section we prove the main result of the paper: G = G̃. But first we need some simple
algebraic properties of the trace bounds with respect to rank-1 perturbations. We start with
some technical lemmas from linear algebra. Let A and B be symmetric n×n matrices with
A < B in the sense of quadratic forms. Let

X = X(λ, e) = A + λe ⊗ e, λ > 0.

When λ is small then X < B. As λ increases X also increases and at some moment
B − X(λ, e) ceases to be positive definite.

Lemma 1 The first value of λ when B − X ceases to be positive definite is

λ(e) =
1

((B − A)−1e, e)

Proof. When λ = λ(e), ∃y ∈ Rn \ {0} such that ((B−X)y, y) = 0 but B−X is still positive
semidefinite. Therefore Xy = By or

λ(e)(e, y)e = (B − A)y

y = λ(e)(e, y)(B − A)−1e

The last relation implies that (e, y) 6= 0 since y 6= 0. Taking the inner product with e gives

(e, y) = λ(e)(e, y)((B − A)−1e, e).

Since (e, y) 6= 0 we get

λ(e) =
1

((B − A)−1e, e)
.

Lemma 2 Let A < C < B. Then Tr(A(C + λe ⊗ e − A)−1) is a decreasing function and
Tr(B(B − C − λe ⊗ e)−1) is an increasing function of λ on the intervals of continuity.

Proof. From the well-known formula

(C + λe ⊗ e)−1 = C−1 −
λ

1 + λ(C−1e, e)
C−1e ⊗ C−1e

we obtain

Tr(A(C + λe ⊗ e − A)−1) = Tr(A(C − A)−1) − λ
((C − A)−1A(C − A)−1e, e)

1 + λ((C − A)−1e, e)
(16)

Tr(B(B − C − λe ⊗ e)−1) = Tr(B(B − C)−1) + λ
((B − C)−1B(B − C)−1e, e)

1 − λ((B − C)−1e, e)
(17)
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from which the result follows easily. Note that if λ is such that A < C + λe ⊗ e < B then
from Lemma 1 we conclude that λ ∈ (λ′, λ′′) where

λ′ = −
1

((C − A)−1e, e)
, λ′′ =

1

((B − C)−1e, e)

and therefore both functions are continuous and monotone there.
Now we are ready to prove the main result of the article.

Theorem 3 Every matrix C in the set G̃ (defined by the inequalities (5), (6)) is attainable
as a composite mixture of conductors A and B in the volume fractions θA, θB.

Proof. The proof is by induction in r =rank(M − C). Case r = 0 (i.e. C = M) can not
occur as is vividly seen from (13). Let’s prove the statement for r = 1. Suppose C0 ∈ G̃ and

C0 = M − λ0e ⊗ e, λ0 > 0

Let
Y = Y (λ) = M − λe ⊗ e.

As λ decreases from λ0 to 0 then by monotonicity (Lemma 2) there exists λ1 ∈ (0, λ0] such
that

C1 = Y (λ1) = M − λ1e ⊗ e

achieves equality in the upper trace bound. (We use here the fact that Y (0) = M does
not satisfy the trace bounds.) Since C0 ∈ G̃ and C1 ≥ C0 it is clear that C1 satisfies all
the conditions of Theorem 2. Therefore C1 is attained, say by a composite q1. Now let λ
increase from λ0 to λ∗ = 1/((M − A)−1e, e). (Notice that λ∗ > λ0. In fact

Y (λ0) = C0 ∈ G̃ ⇒ Y (λ0) > H > A,

whereas by Lemma 1, Y (λ∗) − A is singular). From (16) we see that

Tr(A(Y (λ) − A)−1) → +∞asλ ↑ λ∗.

So, by monotonicity (Lemma 2) ∃λ2 ∈ [λ0, λ
∗) such that

C2 = Y (λ2) = M − λ2e ⊗ e

achieves equality in the lower trace bound. It is easy to see that C2 satisfies all the conditions
of the Theorem 2; so it is attained, say by a composite q2. If we now layer composites q1

and q2 with layers orthogonal to e adjusting appropriately the relative volume fractions of
q1 and q2, we can obtain a composite with conductivity tensor exactly equal to C0 (this is
most easily seen from formulas (14)). Thus the statement is proved for r = 1 . (After a
more subtle analysis it can be shown that λ1 = λ2 = λ0, but this is not essential here.)

Now assume that the statement is proved for r = 1, 2, 3, . . . , k. Let’s prove it for r = k+1.
Again, we suppose C0 ∈ G̃ with r =rank(M − C0) = k + 1. Since r > 1, ∃e 6= 0 such that
(Me, e) > (C0e, e), e ∈ L⊥ with L = {ξ : Mξ = C0ξ}. Consider

Z = Z(λ) = C0 + λe ⊗ e.
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As λ increases from 0 there could be two possibilities: either rank(M − Z) becomes less
than k + 1 while Z still satisfies trace bounds or, else Z will achieve equality in the upper
trace bound. (By Lemma 2 the lower trace bound and the condition Z > A will always
be satisfied.) In the latter case by Theorem 2 and in the former case by the induction
hypothesis, there exists λ1 ≥ 0 such that

C1 = Z(λ1) = C0 + λ1e ⊗ e

is attainable by composite w1. Now as λ decreases from 0 then rank(M −Z) can not change
and by Lemma 2 the upper trace bound and condition Z < B will always be satisfied. So
we may proceed exactly as for r = 1, except that now λ varies on the interval [0, λ̄) where

λ̄ =
1

((C0 − A)−1e, e)
.

As before we obtain a matrix

C2 = Z(λ2) = C0 − λ2e ⊗ e, λ2 ∈ [0, λ̄)

which satisfies the conditions of Theorem 2 and therefore is attained by a composite w2.
Then we layer w1 and w2 together to obtain C0. This completes the induction. So, we have
proved that G = G̃.

Q. E. D.

We remark that the set G = G̃ is convex because the functions Tr(B(B − C)−1) and
Tr(A(C − A)−1) are convex in C. This is easily established using the matrix version of
inequality between harmonic mean and arithmetic mean, which can be proved by the method
of simultaneous diagonalization.

What we have described here is the G-closure of two materials mixed in fixed volume
fractions. This enables us to describe the full G-closure, i.e. the set of all possible effective
tensors one can get mixing two given materials. Obviously it is the union of all sets G
described above when θA ranges from 0 to 1. To describe the set analytically we can view
trace bounds in the form (6) as bounds on two independent numbers Tr(B(B −C∗)−1) and
Tr(A(C∗ − A)−1). We need then take into account only the upper of the Wiener bounds
and the condition C∗ ≥ A by virtue of Theorem 2. It is then quite easy to show that the
full G-closure is described as follows:

B ≥ C∗ ≥ A

Tr(B(B − C∗)−1)Tr(A(C∗ − A)−1) ≤ Tr(A(B − A)−1)Tr(B(B − C∗)−1)+
Tr(B(B − A)−1)Tr(A(C∗ − A)−1) + n − 1

(C∗ − A)Tr(A(C∗ − A)−1) + C∗ − B ≤ (B − A)Tr(A(B − A)−1)





(18)

Indeed, if C∗ satisfies these relations then C∗ ∈ G(θ0, A, B), where

θ0 =
Tr(A(C∗ − A)−1) − Tr(A(B − A)−1)

1 + Tr(A(C∗ − A)−1)
.
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Conversely if C∗ ∈ G(θA, A, B) for some θA then one can check that θ0 ≤ θA and thus
the above inequalities hold. In 2-D and for isotropic materials the above formulas give the
familiar picture of the full G-closure.
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