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Abstract

We provide a complete characterization of a subclass of weakly associative means of pos-
itive operators in the class of symmetric Kubo-Ando means. This class, which includes the
geometric mean, was first introduced and studied in L. Molnár, Characterizations of certain
means of positive operators, Linear Algebra Appl. 567 (2019) 143-166, where he gives a
characterization of this subclass (which we call the Molnár class of means) in terms of the
properties of their representing operator monotone functions. Molnár’s paper leaves open
the problem of determining if the geometric mean is the only such mean in that subclass.
Here we give a negative answer to this question by constructing an order-preserving bijec-
tion between this class and a class of real measurable odd periodic functions bounded in
absolute value by 1/2. Each member of the latter class defines a Molnár mean by an explicit
exponential-integral representation. From this we are able to understand the order structure
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of the Molnár class and construct several infinite families of explicit examples of Molnár
means that are not the geometric mean. Our analysis also shows how to modify Molnár’s
original characterization so that the geometric mean is the only one satisfying the requisite
set of properties.

Keywords: Arithmetic-harmonic-geometric means, Kubo-Ando means, operator monotone
functions, Herglotz-Nevanlinna functions, Molnár class of means
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1 Introduction
In this paper, following [24], we adopt the following notations:

• H always denotes a complex Hilbert space.

• B(H) - the set of all bounded linear operators on H .

• B(H)+ - the set of all positive semidefinite operators in B(H).

• B(H)++ - the set of all invertible operators in B(H)+.

• I denotes the identity operator on H .

• The order relation A ≤ B for A,B ∈ B(H)+ means B − A ∈ B(H)+ [i.e., ≤ is the
Loewner order on B(H)+].

• We write An ↓ A if (An) is a monotonically decreasing sequence in B(H)+, i.e., A1 ≥
A2 ≥ . . ., and An converges strongly to A in B(H).

Following [17] (see also [14] and [29, Chap. 36 and 37]), a binary operation

σ : B(H)+ ×B(H)+ → B(H)+, (A,B) 7→ σ(A,B) =: AσB

is called a connection1 on B(H)+ if the following requirements are fulfilled:

(I) (Joint Monotonicity) A ≤ C and B ≤ D imply AσB ≤ CσD;

(II) (Transformer Inequality) C(AσB)C ≤ (CAC)σ(CBC);

(III) (Upper Semicontinuity) An ↓ A and Bn ↓ B imply AnσBn ↓ AσB.

Moreover, a connection σ is called a mean (or, more precisely, a Kubo-Ando mean) or symmetric,
respectively, if

(IV) (Normalization) IσI = I;

(V) (Permutation Symmetry) AσB = BσA, ∀A,B ∈ B(H)+.

1The term comes from the study of connections of elements in an electrical network [3, 4].
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In particular, a symmetric Kubo-Ando mean is any binary operation σ on B(H)+ satisfying (I)-
(V).

Three important examples of symmetric Kubo-Ando means (which motivated the axiomatic
approach of [17] to positive operator means) are the arithmetic mean ∇, harmonic mean !, and
geometric mean # (see also [27, 18, 5] and the recent survey [19]) which, for allA,B ∈ B(H)++,
are given by:

A∇B =
1

2
(A+B); (1.1)

A!B = 2
(
A−1 +B−1

)−1
; (1.2)

A#B = A1/2(A−1/2BA−1/2)1/2A1/2. (1.3)

The values of these means at non-invertible elements of B(H)+ can be determined from (III) by
passing to the limit of monotonically decreasing sequences from B(H)++ (see, e.g., [17]). For
instance, ifA,B ∈ B(H)+ then the formula forA∇B is still (1.1), whereas ifA ∈ B(H)++, B ∈
B(H)+ then the formula for A#B is still (1.3). But in general, if A,B ∈ B(H)+ then (1.2) and
(1.3) become

A!B = 2 lim
n→∞

(
A−1

n +B−1
n

)−1
, (1.4)

A#B = lim
n→∞

A1/2
n (A−1/2

n BnA
−1/2
n )1/2A1/2

n ,

for any two sequences (An), (Bn) in B(H)++ such that An ↓ A and Bn ↓ B.
Aside from the factor of 2, the right hand side of (1.4) has been given the name ‘parallel

sum.’ More precisely, the parallel sum is denoted by : and gives another well-known example of
a connection:

A : B =
1

2
A!B, for A,B ∈ B(H)+. (1.5)

The concept of the parallel sum was introduced for positive semidefinite matrices in [3] and
extended to bounded (positive semidefinite) linear operators in [4] (see also [17, 25]).

As shown in [17], there is an important relationship between connections, Loewner’s theory
on operator-monotone functions, and the properties of a special class of analytic functions called
Herglotz functions [13, 12, 30] (also called Nevanlinna [2, 21], Herglotz-Nevanlinna [6, 22, 23,
26], Pick [7, 8, 11, 9], or R-functions [31, 32, 33, 15], [16, Appendix]). Let us briefly elaborate
on this.

First, a function f is called a Herglotz function if f : C+ → C+ ∪ R is analytic, where
C+ = {z ∈ C : Im z > 0} denotes the open upper half-plane. Next, let us introduce the
following notation.

Notation 1. Let OM+ denote2 the class of all analytic functions f : C \ (−∞, 0] → C satisfying
f(x) ≥ 0 if x ∈ R with x > 0 and Im f(z) ≥ 0 if z ∈ C with Im z > 0.

2The restrictions of functions in OM+ \ {0} to the complex upper half-plane is denoted by S([−∞, 0]) in
[16, Appendix, Sec. 4]. The functions in this class, and therefore, in OM+ \ {0}, have an exponential-integral
representation [16, Appendix, Sec. 5] that will play an important role in our paper.
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In particular, if f ∈ OM+ then its restriction f |C+ : C+ → C+ ∪ R to C+ is a Herglotz
function. Next, a function

f : (0,∞) → [0,∞)

is called a (positive) operator monotone function if, for every Hilbert space H ,

A,B ∈ B(H)++, A ≤ B ⇒ f(A) ≤ f(B),

where f is defined on B(H)+ by the functional calculus for self-adjoint operators on H [28, 30].
A deep result of Loewner [20] (see also [11, 29]) says that every positive operator monotone func-
tion g has a unique analytic continuation to a function f ∈ OM+ [or, equivalently, f(x) = g(x)
for all x > 0] and conversely. Given this correspondence between positive operator monotone
functions and the elements of OM+, we will abuse notation throughout the rest of this paper and
not distinguish them unless necessary.

More precisely, the map f 7→ f |(0,∞) sending f ∈ OM+ to its restriction f |(0,∞) : (0,∞) →
[0,∞) is a bijection of OM+ onto the class of positive operator monotone functions. Further-
more, the map m 7→ f , defined by

f(z) = a+ bz +

∫
(0,∞)

z(1 + λ)

z + λ
dm(λ), for z ∈ C \ (−∞, 0], (1.6)

where a = m({0}) and b = m({∞}), establishes a bijection between the class of finite (positive)
Borel measures on [0,∞] onto this class OM+ of functions.

Now a result of [17] says that positive operator monotone functions are in a bijective cor-
respondence with connections, whereby a positive operator monotone function f gives rise to a
connection σ = σf on B(H)+ by the formula

AσB = A1/2f(A−1/2BA−1/2)A1/2,

for all B ∈ B(H)+, A ∈ B(H)++ which is extended uniquely to all B(H)+ by property (III).
Conversely, function f can be recovered from a connection σ by the formula

f(x)I = Iσ(xI), for x > 0. (1.7)

The function f is called the representing function of σ. Furthermore, if H is infinite dimensional
then by a deep result of [17], each and every connection σ on B(H)+ arises in this way, i.e.,
σ = σf for a unique operator monotone function f . Moreover, by [17, Theorem 3.4] (see also
[17, Lemma 3.1]) it is known that, in terms of the representation (1.6),

AσB = aA+ bB +

∫
(0,∞)

1 + λ

λ
[(λA) : B]dm(λ), for A,B ∈ B(H)+,

where a = m({0}), b = m({∞}), : denotes the parallel sum as def. by (1.5), and this establishes
a bijection, m 7→ σ, between the class of finite (positive) Borel measures on [0,∞] onto the class
of connections.
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For instance, by (1.7) and [17, Corollary 4.2], it is known that a representing function f
corresponding to a connection σ that is a mean or symmetric is one which satisfies, respectively,

f(1) = 1; f(x) = xf

(
1

x

)
, for x > 0.

For example, the representing functions f∇, f!, f# of the arithmetic mean ∇, harmonic mean !,
and geometric mean #, respectively, are given by

f∇(x) =
1

2
(1 + x); (1.8)

f!(x) =
2x

1 + x
; (1.9)

f#(x) =
√
x. (1.10)

A natural question arises that was considered by Kubo-Ando [17, Sec. 4 and 5] and, more
recently, by L. Molnár [24]: What properties of a symmetric Kubo-Ando mean σ = σf char-
acterize it as the arithmetic mean ∇, harmonic mean !, or geometric mean #? Equivalently, in
terms of representing functions f (or, equivalently, on operator monotone functions f ), what are
necessary and sufficient conditions that guarantee f ∈ {f∇, f!, f#}?

To address this question, L. Molnár [24] considered an algebraic characterization of those
means in terms of a weak form of an associativity law of a binary operation on B(H)++. His
main results in this regard can be summarized as follows (see [24, Theorems 6 and 8]).

Theorem 2 (L. Molnár). LetH be a complex Hilbert space with dimH ≥ 2 and σ be a symmetric
Kubo-Ando mean on B (H)++ with representing operator monotone function f . Assume that
there exists a continuous strictly increasing and surjective function g : (0,∞) → (0,∞) such
that the operation

⋄ : (A,B) 7→ g (AσB) , for A,B ∈ B (H)++

is either associative, i.e.,

(A ⋄ C) ⋄B = A ⋄ (C ⋄B) , ∀A,B,C ∈ B (H)++ , (1.11)

or satisfies the weaker form of associativity

(A ⋄ I) ⋄B = A ⋄ (I ⋄B) , ∀A,B ∈ B (H)++ . (1.12)

If (1.11) is satisfied then σ is the arithmetic or harmonic mean. On the other hand, if it satisfies
(1.12) then either we have g (f (x)) = x, x > 0 [meaning thatA⋄I = I ⋄A = A, A ∈ B (H)++]
or we have one of the following three possibilities:

(a) there is a positive scalar c ̸= 1 such that f (c2x) = cf (x), for x > 0;

(b) σ is the arithmetic mean;

(c) σ is the harmonic mean.
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He also proves (see [24, pp. 160-161]) the following partial converse of this theorem.

Theorem 3 (L. Molnár). If σ is a symmetric Kubo-Ando mean with representing operator mono-
tone function f such that (a), (b), or (c) is true in Theorem 2 then there is a continuous strictly
increasing and surjective function g : (0,∞) → (0,∞) with g ̸= f−1 such that the operation
⋄ : (A,B) 7→ g (AσB), A,B ∈ B (H)++ satisfies (1.12).

This motivates the following definition of a special class of positive operator means consid-
ered by L. Molnár.

Definition 4 (Molnár mean). A symmetric Kubo-Ando mean σ is called a Molnár mean if its
representing function f has property (a) in Theorem 2. The set of all Molnár means will be
called the Molnár class of means.

Notice that the geometric mean # is a Molnár mean with representing function f#. Because
of this, L. Molnár [24, p. 161] posed the following problem, which we have rephrased in terms
of Definition 4.

Problem 5 (L. Molnár). Is the geometric mean # the only Molnár mean?

In [24, p. 161], L. Molnár says the following, in regard to the question above, which motivated
our paper: “However, we still do not know if the answer to the question is positive or negative.
If it were affirmative, then we would get an interesting common characterization of the three
fundamental operator means, the arithmetic, harmonic and geometric means.” We are able to
answer his question (in the negative) by proving the following theorem:

Theorem 6. There are infinitely many Molnár means.

The main goal of our paper is to prove this and, furthermore, to completely characterize the
class of Molnár means in terms of their representing functions, which we do with Theorems 16
and 17. These theorems are stated and proved in Section 3; our approach is illustrated graph-
ically in Fig. 1. Finally, we delve deeper into the order structure of the the Molnár class (see
Theorem 19) and give several infinite families of fully explicit nontrivial Molnár means in Sec-
tion 4. We conclude the paper by a modification of Molnár’s original characterization so that the
geometric mean is the only one satisfying the requisite set of properties (see Theorem 20).

2 Characterization of the Molnár class of means
In this section we completely characterize the Molnár class of means in terms of their representing
functions. The next lemma is an important first step in this regard (whose proof is immediate
from our discussion above) and motivates the definition that follows. Also, as mentioned in the
introduction, we will abuse notation and not distinguish between elements of OM+ and positive
operator monotone functions, unless necessary.

Lemma 7. A connection σ with representing function f (i.e., σ = σf ) is a Molnár mean if and
only if all of the following statements hold:

(i) f ∈ OM+;
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Figure 1: A Molnár mean σ = σf corresponds to a representing function f ∈ Mc for some
c ∈ (1,∞). As represented in the transition from (a) to (b) in the figure, by using the invertible
transform w = log z (with inverse z = ew) from C \ (−∞, 0] onto the strip D = {w ∈ C :
| Imw| < π} = R × (−π, π), the analytic functions f ∈ Mc are mapped bijectively onto the
analytic functions S ∈ Wp via Wp(f) = log f(ew) − w/2, where p = 2 log c. Then using the
exponential representation ofOM+\{0} functions from [16] we obtain the explicit representation
of the class Wp and, perforce, of Mc.

(ii) f(1) = 1;

(iii) xf(1/x) = f(x), for x > 0;

(iv) there exists a positive scalar c ̸= 1 such that f (c2x) = cf (x), for x > 0.

Definition 8 (Molnár class of functions). A function f having properties (i)-(iv) in Lemma 7 will
be called a Molnár function. For a positive scalar c ̸= 1, we say f is a Molnár function of type c
if it is a Molnár function and f(c2x) = cf(x), for x > 0. The set of all Molnár functions of type
c will be denoted by Mc and the Molnár class of functions is M ≡ ∪c∈(0,∞)\{1}Mc.

As a consequence of the following lemma, to characterize the Molnár means class M, we
need to consider only c ∈ (1,∞).

Lemma 9. For any positive scalar c ̸= 1,

Mc = M1/c.

In particular,

M = ∪c∈(1,∞)Mc = ∪c∈(0,1)Mc.

Proof. Let c be a positive scalar c ̸= 1. If f(c2x) = cf(x) for all x > 0 then x > 0 implies
c−2x > 0 and hence f(x) = f(c2(c−2x)) = cf(c−2x) so that f((c−1)2x) = c−1f(x) for all
x > 0.
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Next, we denote the principal branches of the logarithm and the square root by log(·) and
√
·,

respectively, i.e.,

log(z) = log |z|+ iArg(z), Arg(z) ∈ (−π, π), z ∈ C \ (−∞, 0],
√
z = e

1
2
log(z), z ∈ C \ (−∞, 0].

Now have some preliminary results.

Lemma 10. Let f ∈ OM+ \ {0}. Then

f(z) = f(z) and f(z) ̸= 0, if z ∈ C \ (−∞, 0].

In addition,

0 ≤ Arg f(z) ≤ Arg z < π, if Im z > 0. (2.1)

Proof. Let f ∈ OM+ \ {0}. First, as f(x) = f(x) for all x > 0, it follows by analyticity that
f(z) = f(z) for all z ∈ C \ (−∞, 0]. Next, it follows from the integral representation (1.6)
of f that f(x) > 0 for all x > 0. It also follows from the open mapping principle that, since
ℑ(f(z)) ≥ 0 for all z ∈ C+, then either f(z) is a positive constant, or ℑ(f(z)) > 0, for all
z ∈ C+. Inequality (2.1) is proved by invoking a dual connection (cf. [17, Corollary 4.3] and [14,
p. 194]) f⊥ ∈ OM+ \ {0}, defined by:

f⊥(z) =
z

f(z)
, for z ∈ C \ (−∞, 0].

As f, f⊥ ∈ OM+ \ {0}, then the compositions log ◦f and log ◦f⊥ are analytic functions on
C \ (−∞, 0] satisfying (log ◦f⊥)(x) = log(x) − log f(x) for all x > 0. By analyticity this
implies log ◦f⊥ = log− log ◦f on C \ (−∞, 0] so that

0 ≤ Im[log f⊥(z)] = Im(log z)− Im[log f(z)] = Arg z − Arg f(z)

for every z ∈ C+, proving inequalities (2.1).

Lemma 11. If f ∈ OM+ \ {0} then the function S : D → C defined by

S(w) = log f(ew)− 1

2
w, for w ∈ D, (2.2)

D = {w ∈ C : −π < Imw < π}, (2.3)

is analytic on D and satisfies

| ImS(w)| ≤ 1

2
Imw, if 0 ≤ Imw < π, (2.4)

f(z) =
√
zeS(log z), for z ∈ C \ (−∞, 0]. (2.5)

Conversely, if S : D → C is an analytic function satisfying (2.4) then the function f : C \
(−∞, 0] → C defined by (2.5) is in OM+ \ {0} and S is given in terms of f by (2.2).
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Proof. (⇒): Let f ∈ OM+ \ {0}. Then by Lemma 10, f : C \ (−∞, 0] → C is an analytic
function with range f(C \ (−∞, 0]) ⊆ C \ (−∞, 0] so that the function z 7→ log f(z) is analytic
on the domain C \ (−∞, 0]. Next, the function w 7→ ew is analytic on the domain D with range
eD = C \ (−∞, 0]. It follows that the composition of functions w 7→ log f(ew) is well-defined
and analytic on D. From this it follows immediately that the function S : D → C defined by
(2.2), (2.3) is analytic on D and satisfies (2.5). Also, if Imw = 0 then w ∈ D and since f(x) ≥ 0
for x > 0, then by (2.2) we have ImS(w) = Arg f(eRew) = 0. To complete the proof of (2.4),
we note that by the hypotheses on f it follows from Lemma 10 that 0 ≤ Arg f(z) ≤ Arg z < π
if Im z > 0 and since

Arg ew = Imw, Im ew = eRew sin(Imw) > 0, if 0 < Imw < π,

it follows that

−1

2
Imw ≤ ImS(w) = Arg f(ew)− 1

2
Imw ≤ 1

2
Imw, if 0 < Imw < π,

which proves (2.4).
(⇐): Conversely, suppose S : D → C is an analytic function [where D is defined by (2.3)]

satisfying (2.4). Let f : C \ (−∞, 0] → C be the function defined by (2.5). As log z and
√
z

are analytic on the domain C \ (−∞, 0] with log z ∈ D for z ∈ C \ (−∞, 0] then it follows that
f : C \ (−∞, 0] → C is analytic and cannot be the zero function since f(z) =

√
zeS(log z) ̸= 0

for all z in the domain of f . Next, (2.4) implies that S(log x) ∈ R for x > 0 so that f(x) =√
xeS(log x) > 0 for x > 0. Also, (2.4) implies that for Im z > 0 we have

0 ≤ Im

[
S(log z) +

1

2
log z

]
≤ Im log z = Arg z < π (2.6)

and hence

f(z) =
√
zeS(log z) = eS(log z)+

1
2
log z,

Im f(z) = eRe[S(log z)+ 1
2
log z] sin

{
Im

[
S(log z) +

1

2
log z

]}
≥ 0.

Now to complete the proof, it remains only to prove that the function S : D → C is given in
terms of f by the formula (2.2). It follows by (2.5) that there exists a constant m ∈ Z such that

log f(z) = S(log z) +
1

2
log z + i2πm, for z ∈ C \ (−∞, 0]. (2.7)

This implies that

2πm+ Im

[
S(log z) +

1

2
log z

]
= Im log f(z) = Arg f(z), for z ∈ C \ (−∞, 0].

As we know that if Im z > 0 then (2.6) holds and Arg f(z) ∈ [0, π), this implies m = 0. Hence,
from (2.7) it follows that

log f(ew) = S(log ew) +
1

2
log ew = S(w) +

1

2
w, for w ∈ D,

which proves equality (2.2). This completes the proof.
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Lemma 12. Let f ∈ OM+ \ {0} and denote by S : D → C the corresponding function defined
by (2.2). Then the following statements are true:

(i) f(1) = 1 if and only if S(0) = 0.

(ii) f(x) = xf(1/x), for x > 0 if and only if S(−w) = S(w), for w ∈ D.

(iii) If c ∈ (1,∞) then f (c2x) = cf (x), for x > 0 if and only if S(w + 2 log c) = S(w), for
w ∈ D [i.e., S is periodic with a period 2 log c], in which case

lim
x→0+

f(x) = 0.

Proof. (i): If f(1) = 1 then S(0) = log f(e0)− 1
2
(0) = log 1 = 0. Conversely, if S(0) = 0 then

f(1) =
√
1eS(log 1) = eS(0) = 1.

(ii): Suppose f(x) = xf(1/x) for all x > 0. If w ∈ R then

S(−w) = log f(e−w)− 1

2
(−w) = log[e−wf(ew)] +

1

2
w

= log[f(ew)] + log[e−w] +
1

2
w = log[f(ew)]− 1

2
w = S(w).

It follows that S(w) = S(−w) for all w ∈ D, since functions S(w) and S(−w) are analytic in D
and agree on R ⊂ D. Conversely, suppose that S(w) = S(−w) for all w ∈ D. Then, for every
x > 0,

xf(1/x) = x
√
x−1eS(log(x

−1)) =
√
xeS(− log x) =

√
xeS(log x) = f(x).

(iii): Let c ∈ (1,∞). Suppose f (c2x) = cf (x) for all x > 0. If w ∈ R then

S(w + 2 log c) = log f(ew+2 log c)− 1

2
(w + 2 log c)

= log f(c2ew)− log c− 1

2
w = log[cf(ew)]− log c− 1

2
w

= log c+ log f(ew)− log c− 1

2
w = S(w).

It follows that S(w+2 log c) = S(w) for all w ∈ D, since functions S(w) and S(w+2 log c) are
analytic in D and agree on R ⊂ D. Conversely, suppose S(w + 2 log c) = S(w) for all w ∈ D.
Then, for every x > 0,

f(c2x) =
√
c2xeS(log(c

2x)) = c
√
xeS(log x+2 log c) = c

√
xeS(log x) = cf(x).

Thus, in particular, if this is the case, then the restriction S|R : R → R is a continuous periodic
function on R, implying it is bounded, so that x 7→ eS(log x) is a bounded function on (0,∞) and
therefore,

lim
x→0+

f(x) = lim
x→0+

√
xeS(log x) = 0.

(For alternative proof of the fact limx→0+ f(x) = 0, cf. [24, pp. 160-161].) This completes the
proof.
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These results motivate the following definition and proposition.

Definition 13 (W-functions). Let D = {w ∈ C : −π < Imw < π}. An analytic function
S : D → C having the properties:

(i) | ImS(w)| ≤ 1
2
Imw, if 0 ≤ Imw < π,

(ii) S(0) = 0,

(iii) S(−w) = S(w) for all w ∈ D,

(iv) there exists a scalar p > 0 such that S(w + p) = S(w) for all w ∈ D,

will be called a W-function with period p. The set of all W-functions with period p will be
denoted by Wp and the class of all W-functions is W = ∪p∈(0,∞)Wp.

Proposition 14. For each f ∈ M, denote by Sf the function S defined by (2.2) and (2.3). Then
the map

W : M → W,

W (f) = Sf , f ∈ M

is a bijection from M onto W such that

f ∈ Mc ⇔ Sf ∈ Wp,

where c ∈ (1,∞), p ∈ (0,∞) are related by the formula:

p = 2 log c.

In particular, the restriction map Wp defined by

Wp = W |Mc : Mc → Wp,

Wp(f) = W (f) = Sf , f ∈ Mc

is a bijection from Mc onto Wp.

Proof. The proof of this proposition follows immediately from Definitions 8 and 13 and Lemmas
7, 11, and 12.

3 Explicit characterization of Wp

The goal of this section is to characterize the class of all Wp-functions explicitly. Before we do
this, we will need the following well-known collection of results (see, for instance, [7, 8, 13, 10,
30]) on the relationship between Herglotz functions and their boundary values.
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Theorem 15 (Herglotz integral representation). If a ∈ R, b ≥ 0, and µ is a positive Borel measure
on R such that

∫
R(1 + λ2)−1µ(λ) <∞ then

h(z) = a+ bz +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ), z ∈ C+.

is a Herglotz function. The map (a, b, µ) 7→ h defines a bijection between the class of all such
triples and the set of all Herglotz functions. In particular, the triple (a, b, µ) can be recovered
from the Herglotz function h by the formulas

a = Reh(i), b = lim
η↑∞

h(iη)

iη
,

1

2
µ({λ1}) +

1

2
µ({λ2}) + µ((λ1, λ2)) =

1

π
lim
ε↓0

∫ λ2

λ1

Imh(λ+ iε)dλ, (λ1, λ2) ⊆ R.

Moreover, h(z) has finite normal limits limε↓0 h(λ + iε) for Lebesgue a.e. λ ∈ R and the abso-
lutely continuous (ac) part µac of the measure µ with respect to the Lebesgue measure on R has
density function (i.e., Radon-Nikodym derivative)

dµac(λ)

dλ
=

1

π
lim
ε↓0

Imh(λ+ iε), for Lebesgue a.e. λ ∈ R.

Furthermore, this latter statement is also true if we replace the normal limit to λ by the limit to λ
in any (non-tangential) circular sector in the upper-half plane.

Our next result is an integral representation that shows that the class Wp can be parametrized
by all measurable, real-valued, odd, periodic functions bounded by 1/2 in absolute value.

Theorem 16. If Ψ ∈ L∞(R) is a real-valued, odd, p-periodic function with ∥Ψ∥∞ ≤ 1/2 then

S(w) =
1

2

∫
R

Ψ(λ) sinh
(
w
2

)
dλ

cosh
(
λ
2

)
cosh

(
w−λ
2

) , w ∈ D (3.1)

is a function belonging to Wp. The map Ψ 7→ S defines a bijection between the class of all such
functions in L∞(R) (with equality in the sense of the || · ||∞ norm) and the set Wp. In particular,
if S ∈ Wp then Ψ can be uniquely recovered by the formula:

Ψ(λ) =
1

π
lim

µ→π−
ImS(λ+ iµ), for Lebesgue a.e. λ ∈ R. (3.2)

Proof. We start with the exponential representation of a function f ∈ OM+ \ {0} from [16,
Appendix, Sec. 5] (see also [7, 13]): There exists scalar C and function ϕ ∈ L∞((0,∞)) such
that for every z ∈ C \ (−∞, 0],

f(z) = Ceg(z), C > 0, g(z) =

∫ ∞

0

(
t

1 + t2
− 1

t+ z

)
ϕ(t)dt, 0 ≤ ϕ(t) ≤ 1. (3.3)

12



We observe that if z ̸∈ R then

|Im g(z)| = | Im z|
∫ ∞

0

ϕ(t)dt

|t+ z|2
<

∫
R

| Im z|dt
|t+ z|2

= π.

Thus, for all z ∈ C \ (−∞, 0],

S(log z) = log f(z)− 1

2
log z = logC − 1

2
log z + g(z).

Observing that ∫ ∞

0

(
t

1 + t2
− 1

t+ z

)
dt = log z,

we obtain

S(log z) = logC +

∫ ∞

0

(
t

1 + t2
− 1

t+ z

)
ψ(t)dt, ||ψ||∞ ≤ 1

2
, (3.4)

where ψ(t) = ϕ(t) − 1/2. For S to be in Wp we also need S(0) = 0, S(−w) = S(w) and
S(w + p) = S(w). Clearly, S(0) = 0 is equivalent to

logC = −
∫ ∞

0

(
t

1 + t2
− 1

t+ 1

)
ψ(t)dt.

Hence,

S(log z) =

∫ ∞

0

(
1

1 + t
− 1

t+ z

)
ψ(t)dt =

∫ ∞

0

(z − 1)ψ(t)

(t+ 1)(t+ z)
dt,

and S(−w) = S(w) is equivalent to∫ ∞

0

(z − 1)ψ(t)

(t+ 1)(t+ z)
dt =

∫ ∞

0

(1− z)ψ(t)

(t+ 1)(zt+ 1)
dt. (3.5)

Making a change of variables s = 1/t in the integral on the right-hand side in (3.5), and denoting
ψ̃(s) = ψ(1/s), equation (3.5) becomes∫ ∞

0

ψ(t)

(t+ 1)(t+ z)
dt = −

∫ ∞

0

ψ̃(s)

(s+ 1)(z + s)
ds,

which implies ψ(t) = −ψ̃(t) = −ψ(1/t) for a.e. t ∈ (0,∞) (by Theorem 15). Hence, writing

S(log z) =

∫ 1

0

(z − 1)ψ(t)

(t+ 1)(t+ z)
dt+

∫ ∞

1

(z − 1)ψ(t)

(t+ 1)(t+ z)
dt,

and changing the variable of integration s = 1/t in the second term, we obtain

S(log z) =

∫ 1

0

(z − 1)ψ(t)

(t+ 1)(t+ z)
dt−

∫ 1

0

(z − 1)ψ(s)

(s+ 1)(1 + zs)
ds.

13



Equivalently, we can write, using partial fraction decomposition,

S(log z) =

∫ 1

0

(
2

t+ 1
− 1

t+ z
− z

1 + tz

)
ψ(t)dt. (3.6)

Finally, S(w + p) = S(w) is equivalent to∫ 1

0

(
1

t+ z
+

z

1 + tz

)
ψ(t)dt =

∫ 1

0

(
1

t+ c2z
+

c2z

1 + tc2z

)
ψ(t)dt,

where p = 2 log c. Putting everything on one side, we obtain∫ 1

0

(
1

t+ c2z
+

c2z

1 + tc2z
− 1

t+ z
− z

1 + tz

)
ψ(t)dt = 0, ∀z ∈ C \ (−∞, 0]. (3.7)

To understand (3.7) we want to rewrite it, so that each term above is a Cauchy-type integral. We
accomplish this by changing variables t = c2s in the first term, and t = c−2s, in the second.
Then, upon switching z to −z, we obtain the following identity on C \ [0,∞):

F (z) := F1(z) + F2(z) = 0,

where

F1(z) =

∫ 1

0

ψ(c2s)χ[0,c−2](s)− ψ(s)

s− z
ds, F2(z) =

∫ c2

0

ψ(sc−2)− ψ(s)χ[0,1](s)

s− z−1
ds.

It now follows from this (and by Theorem 15) that for a.e. x ∈ (0,∞):

0 =
1

π
lim
y↓0

ImF (x+ iy) =


ψ(xc2)− ψ(x), x ∈ (0, c−2),

−ψ(x)− ψ((c2x)−1), x ∈ (c−2, 1),

ψ(x−1)− ψ((c2x)−1), x ∈ (1,∞).

(3.8)

Now define Ψ(λ) = ψ(eλ) for λ ∈ R. Then, writing p = 2 log c, we obtain from (3.8) that the
following equations hold for a.e. λ ∈ R:

Ψ(λ+ p) = Ψ(λ), λ < −p,
Ψ(λ) = −Ψ(−λ− p), −p < λ < 0,

Ψ(−λ) = Ψ(−λ− p), λ > 0.

(3.9)

Recalling that ψ(x) = −ψ(1/x), for a.e. x > 1, we obtain Ψ(λ) = −Ψ(−λ) for a.e. λ > 0. It
follows that Ψ ∈ L∞(R) is a real-valued, odd, p-periodic function with ∥Ψ∥∞ ≤ 1/2. Finally,
by substituting in z = ew, w ∈ D into (3.5) and changing variables t = eλ, we arrive at the
representation (3.1) for S(w).

We now claim that any such function Ψ(λ) implies that F (z) = 0 for all z ∈ C \ [0,∞).
Indeed, changing variables under the integral s = eλ, we obtain

F (z) =

∫ 0

−∞

Ψ(λ+ p)χ(−∞,−p)(λ)−Ψ(λ)

1− e−λz
dλ+

∫ p

−∞

Ψ(λ− p)−Ψ(λ)χ(−∞,0)(λ)

1− e−λz−1
dλ.
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Using the properties of the function Ψ(λ) we obtain

F (z) = −
∫ 0

−p

Ψ(λ)

1− e−λz
dλ+

∫ p

0

Ψ(λ)

1− e−λz−1
dλ

Changing variables λ = −λ′ in the first integral and using the fact that Ψ(λ) is odd, we obtain

F (z) =

∫ p

0

Ψ(λ)

(
1

1− eλz
+

1

1− (eλz)−1

)
dλ =

∫ p

0

Ψ(λ)dλ.

Since Ψ(λ) is odd and p-periodic we have∫ p

0

Ψ(λ)dλ =

∫ p/2

−p/2

Ψ(λ)dλ = 0.

This proves the claim. We can also conclude from this that for any Ψ ∈ L∞(R) which is a
real-valued, odd, p = 2 log c-periodic function such that ||Ψ|||∞ ≤ 1/2, the function

f(z) =
√
z exp

{
(z − 1)

∫
R

Ψ(λ)

(1 + eλ)(1 + e−λz)
dλ

}
, z ∈ C \ (−∞, 0] (3.10)

is in the class Mc and the function S(w) given by (3.1) belongs to Wp.
Finally, given S(w) in Wp we can compute the corresponding spectral function Ψ(λ) = ψ(eλ)

using the representation (3.4):

−S(log(−z)) = − logC +

∫ ∞

0

(
1

t− z
− t

1 + t2

)
ψ(t)dt, z ∈ C \ [0,∞).

Then it follows from this (by Theorem 15) that

ψ(x) =
−1

π
lim
η→0+

ImS(log(−xeiη)) = −1

π
lim
η→0+

ImS(log x+i(η−π)) = 1

π
lim
η→0+

ImS(log x+i(π−η))

for a.e. x ∈ (0,∞), where we also used the identity S(w) = S(w) for all w ∈ D. Hence,

ψ(x) =
1

π
lim

µ→π−
ImS(iµ+ log x) (3.11)

for a.e. x ∈ (0,∞), from which formula (3.2) now follows.

Theorem 16 shows that all classes Mc, c > 1 have infinitely many members. However, the
integral representation (3.1) does not permit us to exhibit functions in Mc, or equivalently, in Wp,
explicitly. This is remedied by our next result.

Theorem 17. Suppose

Ψ(λ) =
∞∑
n=1

Bn sin(anλ) (3.12)

is a Fourier series of a real, odd, p = 2π/a-periodic function Ψ(λ), satisfying |Ψ(λ)| ≤ 1/2.
Then, the corresponding function S ∈ Wp in (3.1) is given by the Fourier series

S(w) = π
∞∑
n=1

Bn
1− cos(awn)

sinh(aπn)
= 2π

∞∑
n=1

Bn

sin2
(
awn
2

)
sinh(aπn)

. (3.13)
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Proof. We begin with the observation that the functions Sn(w) = An(1 − cos(awn)), n ∈ N,
are entire, even, p = 2π/a-periodic, and satisfy Sn(0) = 0. Thus, Sn ∈ Wp, if we can show that
Sn(w) has property (i) in Definition 13. We compute

ℑSn(w) = An sin(aλn) sinh(aµn), w = λ+ iµ.

Since sinh(aµn) is convex on µ ∈ [0, π] we have

sinh(aµn) ≤ sinh(aπn)

π
µ.

Since, sin(aµn) is an odd function of µ, we conclude that

|ℑSn(w)| ≤ |An|
sinh(aπn)

π
|ℑw|.

Thus, choosing An = π/(2 sinh(aπn)), we obtain Sn ∈ Wp. Formula (3.2) gives

Ψn(λ) =
1

2 sinh(aπn)
lim

µ→π−
sin(aλn) sinh(aµn) =

1

2
sin(aλn).

By linearity of the representation (3.1) we conclude that if Ψ is given by (3.12), then the corre-
sponding S(w) must be given by (3.13). By Theorem 16, if |Ψ(λ)| ≤ 1/2, then S ∈ Wp.

4 Conclusions
From our results, we are able to make several important conclusions. One is a corollary of
Theorem 17 that provides a sequence of explicit non-geometric Molnár means, corresponding to
Ψ(λ) = ±(1/2) sin(πλ/ log c):

fn(x) =
√
x exp

π sin2
(

πn log x
2 log c

)
sinh

(
π2n
log c

)
 ∈ Mc, n ∈ Z \ {0}, (4.1)

or recalling that the Molnár class M is the union of all Mc, the family

fα(x) =
√
x exp

{
π sin2(α log x)

sinh(2πα)

}
∈ M, α ∈ R \ {0}. (4.2)

Second, we observe that any real, odd, p-periodic function Ψ(λ), satisfying |Ψ(λ)| ≤ 1/2 is
uniquely determined by its restriction to the half-period interval (0, p/2). Using the symmetries
of Ψ(λ), we can rewrite the exponential-integral representation (3.10) as

f(z) =
√
z exp

{∫ p/2

0

Ψ(λ)Ep(λ; z)dλ

}
, Ψ ∈ B(0, 1/2) ⊆ L∞(0, p/2), (4.3)
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where for each fixed z ∈ C \ (−∞, 0],

Ep(λ; z) =
∑
n∈Z

(z − 1)2(eλ+pn − 1)

(eλ+pn + 1)(z + eλ+pn)(z + e−(λ+pn))
, (4.4)

and where B(0, 1/2) ⊆ L∞(0, p/2) denotes the closed ball centered at 0 and radius 1/2 in the
Banach space L∞(0, p/2). It is evident from formula (4.4) that λ 7→ Ep(λ; z) is an odd elliptic
function with periods p and 2πi and three poles at πi, ± log(−z) modulo periods in each period
cell with residues 2, −1 and −1, respectively, provided these three points don’t have congruent
pairs modulo periods, i.e., z ̸= epk/2, k ∈ Z. The classical theory of elliptic functions gives the
decomposition of Ep(λ;x) in terms of the Weierstrass ζ-functions (see, e.g., [1, §14])

Ep(λ; z) = 2ζ(λ+ iπ)− ζ(λ+ iπ + log z)− ζ(λ+ iπ − log z), x > 0, (4.5)

where ζ(u) is the Weierstrass ζ-function with periods p and 2πi. This formula shows that
Ep(λ; z) = 0, when z = epk, k ∈ Z. If z = ep/2ekp = cekp, k ∈ Z, then Ep(λ; z) has only
two poles at πi and πi + p/2 in the rectangle of periods. The residues at these poles are 2 and
−2, respectively. Therefore,

Ep(λ; c) =
2
√
mK ′(m)

π
sn

(
K ′(m)λ

π
,m

)
, e

2πK(m)

K′(m) = c, (4.6)

where sn(u,m) is a Jacobi elliptic sine function, K(m) is a complete elliptic integral of the first
kind, and K ′(m) = K(1 − m). Formula (4.6) was obtained by matching the poles at iK ′ and
2K + iK ′ of the Jacobi elliptic sine to the poles of Ep(λ; c) and rescaling the residues ±1/

√
m

of sn(u,m) at the poles to match the residues ±2 of Ep(λ; c). The parameter m defined by
the second equation in (4.6) was chosen to match the ratio of the two periods of sn(u,m) and
Ep(λ; c).

Lemma 18. When z ̸= epk/2, k ∈ Z, the elliptic function λ 7→ Ep(λ; z) has exactly three simple
zeros at λ = 0, p/2 and p/2+πi. Moreover, the Fourier coefficients of the sine series of Ep(λ; z)
regarded as an odd p-periodic function of λ are

Sn(w) =

∫ p/2

0

Ep(λ; e
w) sin

(
2πnλ

p

)
dλ = 2π

sin2
(

πnw
p

)
sinh

(
2π2n
p

) . (4.7)

Proof. Since Ep(λ; z) has exactly 3 poles, it must have exactly 3 zeros, counting multiplicity, in
the period rectangle. Moreover, by the Liouville theorem the sum of all three zeros, counting
multiplicity, must be equal to the sum of poles, i.e., to πi, modulo periods. If Ep(λ; z) has a
single zero λ0 of multiplicity 3, then λ0 = 0, since Ep(λ; z) is an odd function. But then, the sum
of all zeros would be 0 ̸= πi. If Ep(λ; z) has a double-zero at 0 and a simple zero at λ1 ̸= 0,
then, by the Liouville theorem, λ1 = πi modulo periods, which is impossible, since πi is a pole
of Ep. If 0 is a simple zero and λ1 is a double zero, then −λ1 must also be a double zero (Ep

is an odd function of λ). Therefore, −λ1 must be congruent to λ1, and we must have 2λ1 = 0
modulo periods. But then the sum of all zeros 0 + λ1 + λ1 = 2λ1 = 0 ̸= πi modulo periods.
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Figure 2: Graphs of the minimal and the maximal elements of Mc relative to f#(x) =
√
x for

c = e10, corresponding to p = 20. All other functions in Mc, such as f1, given by (4.1) with
n = 1, are sandwiched between fmin and fmax.

Hence, Ep(λ; z) must have three distinct simple zeros: 0, λ1 and λ2. Since Ep is odd, −λ1 is also
a zero of Ep. It is therefore must be congruent to either λ1 or λ2. In the latter case λ1 + λ2 = 0
modulo periods, and the sum of all zeros will be 0 + λ1 + λ2 = 0 ̸= πi modulo periods. This
contradiction shows that −λ1 must be congruent to λ1. Therefore, −λ2 must be congruent to λ2.
Hence we have 2λ1 = 2λ2 = 0 and λ1 + λ2 = πi, modulo periods. Equation 2λ = 0 has only
3 nonzero solutions in the period rectangle: λ = p/2, λ = iπ, and λ = p/2 + iπ. This gives
λ1 = p/2 and λ2 = πi+ p/2, since πi is a pole.

Formula (4.7) is an immediate consequence of Theorem 17 that says that Ψ(λ) =
1

2
sin

(
2πnλ

p

)
corresponds to S(w) = π

sin2(πwn
p )

sinh(2π2n)
, and (4.7) follows.

Theorem 19 (Order structure of the Molnár class). The parametrization

L∞(0, p/2) ⊇ B(0, 1/2) ∋ Ψ 7→ f ∈ Mc (4.8)

is order-preserving, and therefore any f ∈ Mc lies between the minimal and the maximal ele-
ments of Mc (see Fig. 2):

fmin(x) =
√
xe−

1
2

∫ p/2
0 Ep(λ;x)dλ ≤ f(x) ≤

√
xe

1
2

∫ p/2
0 Ep(λ;x)dλ = fmax(x). (4.9)

Moreover,

fmin(x) =

√
x√

m+ 1

(
dn

(
K ′(m) log x

π
,m

)
+
√
mcn

(
K ′(m) log x

π
,m

))
∈ Mc, (4.10)

fmax(x) =
x

fmin(x)
=

(
√
m+ 1)

√
x

dn
(

K′(m) log x
π

,m
)
+
√
mcn

(
K′(m) log x

π
,m

) ∈ Mc, (4.11)
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where cn(u,m) and dn(u,m) are the Jacobi elliptic cosine and elliptic delta functions, and
m ∈ (0, 1) is the unique solution of 4πK(m)/K ′(m) = p = 2 log c. We also have

inf
f∈M

f(x) = f!(x), sup
f∈M

f(x) = f∇(x). (4.12)

where f∇ and f! are defined in (1.8) and (1.9), respectively.

Proof. Lemma 18 implies that Ep(λ;x), x > 0, x ̸= ekp, k ∈ Z, is real and does not change sign
on λ ∈ (0, p/2). Moreover, Ep(λ;x) > 0, x > 0, x ̸= ekp, since sin(2πλ/p) > 0 on (0, p/2) and
formula (4.7) shows that

∫ p/2

0

Ep(λ;x) sin

(
2πλ

p

)
dλ = 2π

sin2
(

π log x
p

)
sinh

(
2π2

p

) > 0,

when x ̸= ekp, k ∈ Z. This implies that the parametrization (4.8) is order-preserving.
Using the expansion

1

2
=

∞∑
n=1

2 sin
(

2π(2n+1)x
p

)
π(2n+ 1)

, x ∈ (0, p/2),

corresponding to the odd p-periodic extension of Ψ(λ) = 1/2 on (0, p/2), we obtain

S∗(w) :=
1

2

∫ p/2

0

Ep(λ; e
w)dx =

∞∑
n=0

2

π(2n+ 1)

∫ p/2

0

Ep(λ; e
w) sin

(
2π(2n+ 1)λ

p

)
dλ.

Using formula (4.7) we obtain

S∗(w) =
∞∑
n=0

2
(
1− cos

(
2π(2n+1)w

p

))
(2n+ 1) sinh

(
2π2(2n+1)

p

) .
We observe that

S ′
∗(w) =

4π

p

∞∑
n=0

sin
(

2π(2n+1)w
p

)
sinh

(
2π2(2n+1)

p

) .
It remains to notice that the Fourier sine series coefficients of S ′

∗(w) are exactly the Fourier sine
series coefficients of (1/2)Ep(w; c). We conclude, using formula (4.6), that

S ′
∗(w) =

1

2
Ep(w; c) =

√
mK ′(m)

π
sn

(
K ′(m)w

π
,m

)
,

where m ∈ (0, 1) is the unique solution of 4πK(m)/K ′(m) = p. Therefore,

S∗(w) =

∫ w

0

S ′
∗(v)dv =

√
m

∫ K′(m)w
π

0

sn(u,m)du.
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Figure 3: f∇ and f! are the limits of fmax and fmin, respectively, as c→ ∞. The plots of fmax/f#
and fmin/f# for p = 10, 15, 20, 25 are shown.

Using the antiderivative formula given in [1, p. 215] we obtain

S∗(w) = log

 √
m+ 1

dn
(

K′(m)w
π

,m
)
+
√
mcn

(
K′(m)w

π
,m

)
 ,

This proves formulas (4.10) and (4.11). In particular, fmin and fmax, m ∈ (0, 1) are two other
explicit infinite families of representing functions of non-geometric means in M. Their plots for
p = 20, relative to f#, given by (1.10) are shown in Fig. 2.

Since
lim

m→1−
cn(u,m) = lim

m→1−
dn(u,m) =

1

coshu
,

we compute

lim
m→1−

fmax(x) =
x+ 1

2
= f∇(x), lim

m→1−
fmin(x) =

x

f∇(x)
= f!(x). (4.13)

According to [17, Theorem 4.5], the arithmetic mean is the maximum of all symmetric means,
while the harmonic mean is the minimum. Since all Molnár means are symmetric, and in view
of (4.9) and (4.13), we have

f!(x) ≤ inf
f∈M

f(x) = inf
c>1

min
f∈Mc

f(x) = inf
m∈(0,1)

fmin(x) ≤ f!(x), (4.14)

f∇(x) ≥ sup
f∈M

f(x) = sup
c>1

max
f∈Mc

f(x) = sup
m∈(0,1)

fmax(x) ≥ f∇(x). (4.15)

Therefore, all inequalities in (4.14) and (4.15) are equalities, and (4.12) is established. Fig. 3
illustrates this observation.

Finally, we conclude the paper with a version of Lemma 7 that uniquely characterizes the
geometric mean.
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Theorem 20 (Characterization of the geometric mean). A connection σ with representing func-
tion f (i.e., σ = σf ) is a geometric mean # if and only if all of the following statements hold:

(i) f ∈ OM+;

(ii) f(1) = 1;

(iii) xf(1/x) = f(x), for x > 0;

(iv) there exist two logarithmically incommensurate positive scalars c1 ̸= 1, c2 ̸= 1 (i.e., log c1
log c2

̸∈
Q) such that f (c21x) = c1f (x) and f (c22x) = c2f (x), for x > 0.

Proof. Our analysis shows that a connection σ satisfying all conditions of the theorem would
correspond to an odd periodic function Ψ(λ) that has two nonzero incommensurate periods p1 =
2 log c1 and p2 = 2 log c2. Therefore, Ψ(λ) = 0 identically and f(z) =

√
z, corresponding to the

geometric mean #.
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