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In July 1925 Heisenberg published a paper that ushered in the new era of quantum mechanics. This
epoch-making paper is generally regarded as being difficult to follow, partly because Heisenberg
provided few clues as to how he arrived at his results. We give details of the calculations of the type
that Heisenberg might have performed. As an example we consider one of the anharmonic oscillator
problems considered by Heisenberg, and use our reconstruction of his approach to solve it up to
second order in perturbation theory. The results are precisely those obtained in standard quantum
mechanics, and we suggest that a discussion of the approach, which is based on the direct
calculation of transition frequencies and amplitudes, could usefully be included in undergraduate
courses on quantum mechanics. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Heisenberg’s paper of July 19251 on ‘‘Quantum-
mechanical reinterpretation of kinematic and mechanical
relations,’’2,3 was the breakthrough that quickly led to the
first complete formulation of quantum mechanics.4–6 Despite
its undoubtedly crucial historical role, Heisenberg’s approach
in this paper is not generally followed in undergraduate
quantum mechanics courses, in contrast, for example, to Ein-
stein’s approach in the teaching of relativity. Indeed Heisen-
berg’s paper is widely regarded as being difficult to under-
stand and of mainly historical interest today. For example,
Weinberg7 has written that ‘‘If the reader is mystified at what
Heisenberg was doing, he or she is not alone. I have tried
several times to read the paper that Heisenberg wrote on
returning from Heligoland, and, although I think I under-
stand quantum mechanics, I have never understood Heisen-
berg’s motivations for the mathematical steps in his paper.
Theoretical physicists in their most successful work tend to
play one of two roles: they are eithersagesor magicians... It
is usually not difficult to understand the papers of sage-
physicists, but the papers of magician-physicists are often
incomprehensible. In this sense, Heisenberg’s 1925 paper
was pure magic.’’

There have been many discussions aimed at elucidating
the main ideas in Heisenberg’s paper of which Refs. 3 and
8–18 represent only a partial selection.19 Of course, it may
not be possible to render completely comprehensible the
mysterious processes whereby physicists ‘‘jump over all in-
termediate steps to a new insight about nature.’’20 In our
opinion, however, one of the main barriers to understanding
Heisenberg’s paper is a more prosaic one: namely, he gave
remarkably few details of the calculations he performed.

In Sec. II we briefly review Heisenberg’s reasoning in set-
ting up his new calculational method. Then we present in
Sec. III the details of a calculation typical of those we con-
jecture that he performed. Our reconstruction is based on the

assumption that, having formulated a method that was ca-
pable of determining the relevant physical quantities~the
transition frequencies and amplitudes!, Heisenberg then ap-
plied it to various simple mechanical systems, without any
further recourse to the kind of ‘‘inspired guesswork’’ that
characterized the old quantum theory. Surprisingly, this point
of view appears to be novel. For example, MacKinnon10 and
Mehra and Rechenberg11 have suggested that Heisenberg ar-
rived at the crucial recursion relations@see Eqs.~33!–~36! in
Sec. III B# by essentially guessing the appropriate generali-
zation of their classical counterparts. We are unaware of any
evidence that can settle the issue. In any case, our analysis
shows that it is possible to read Heisenberg’s paper as pro-
viding a complete~if limited! calculational method, the re-
sults of which are consistent with those of standard quantum
mechanics. We also stress both the correctness and the prac-
ticality of what we conjecture to be Heisenberg’s calcula-
tional method. We hope that our reappraisal will stimulate
instructors to include at least some discussion of it in their
undergraduate courses.

II. HEISENBERG’S TRANSITION AMPLITUDE
APPROACH

A. Quantum kinematics

Heisenberg began his paper with a programmatic call21,22

to ‘‘discard all hope of observing hitherto unobservable
quantities, such as the position and period of the electron,’’
and instead to ‘‘try to establish a theoretical quantum me-
chanics, analogous to classical mechanics, but in which only
relations between observable quantities occur.’’ As an ex-
ample of such latter quantities, he immediately pointed to the
energiesW(n) of the Bohr stationary states, together with
the associated Einstein–Bohr frequencies23

v~n,n2a!5
1

\
@W~n!2W~n2a!#, ~1!
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and noted that these frequencies, which characterize the ra-
diation emitted in the transitionn→n2a, depend on two
variables. An example of a quantity he wished to exclude
from the new theory is the time-dependent position coordi-
natex(t). In considering what might replace it, he turned to
the probabilities for transitions between stationary states.

Consider a simple one-dimensional model of an atom con-
sisting of an electron undergoing periodic motion, which is
the type of system studied by Heisenberg. For a state char-
acterized by the labeln, the fundamental frequencyv(n),
and the coordinatex(n,t), we can representx(n,t) as a Fou-
rier series

x~n,t !5 (
a52`

`

Xa~n!eiav(n)t, ~2!

where a is an integer.24 According to classical theory, the
energy emitted per unit time~the power! in a transition cor-
responding to theath harmonicav(n) is25

2S dE

dt D
a

5
e2

3pe0c3 @av~n!#4uXa~n!u2. ~3!

In the quantum theory, however, the transition frequency cor-
responding to the classicalav(n) is, in general, not a simple
multiple of a fundamental frequency, but is given by Eq.~1!,
so thatav(n) is replaced byv(n,n2a). Correspondingly,
Heisenberg introduced the quantum analogue ofXa(n), writ-
ten ~in our notation! asX(n,n2a).27 Furthermore, the left-
hand side of Eq.~3! has to be replaced by the product of the
transition probability per unit time,P(n,n2a), and the
emitted energy\v(n,n2a). Thus Eq.~3! becomes

P~n,n2a!5
e2

3pe0\c3 @v~n,n2a!#3uX~n,n2a!u2.

~4!

It is the transition amplitudesX(n,n2a) which Heisenberg
took to be ‘‘observable;’’ like the transition frequencies, they
depend on two discrete variables.28

Equation~4! refers, however, to only one specific transi-
tion. For a full description of atomic dynamics~as then con-
ceived!, we need to consider all the quantitiesX(n,n
2a)exp@iv(n,n2a)t#. In the classical case, the terms
Xa(n)exp@iav(n)t# may be combined to yieldx(t) via Eq.
~2!. But in the quantum theory, Heisenberg wrote29 that a
‘‘similar combination of the corresponding quantum-
theoretical quantities seems to be impossible in a unique
manner and therefore not meaningful, in view of the equal
weight of the variablesn andn2a @that is, in the amplitude
X(n,n2a) and frequencyv(n,n2a)] ... However, one
may readily regard the ensemble of quantitiesX(n,n
2a)exp@iv(n,n2a)t# as a representation of the quantity
x(t)... . ’’ This way of representingx(t), that is, as we would
now say, by a matrix, is the first of Heisenberg’s ‘‘magical
jumps,’’ and surely a very large one. Representingx(t) in
this way seems to be the sense in which Heisenberg consid-
ered that he was offering a ‘‘reinterpretation of kinematic
relations.’’

Heisenberg immediately posed the question: how is the
quantityx(t)2 to be represented? In classical theory, the an-
swer is straightforward. From Eq.~2! we obtain

@x~ t !#25(
a

(
a8

Xa~n!Xa8~n!ei (a1a8)v(n)t. ~5!

We setb5a1a8, and rewrite Eq.~5! as

@x~ t !#25(
b

Yb~n!eibv(n)t, ~6!

where

Yb~n!5(
a

Xa~n!Xb2a~n!. ~7!

Thus @x(t)#2 is represented classically~via a Fourier series!
by the set of quantitiesYb(n)exp@ibv(n)t#, the frequency
bv(n) being the simple combination@av(n)1(b
2a)v(n)#. In quantum theory, the corresponding represen-
tative quantities must be written asY(n,n2b)exp@iv(n,n
2b)t#, and the question is what is the analogue of Eq.~7!?

The crucial difference in the quantum case is that the fre-
quencies do not combine in the same way as the classical
harmonics, but rather in accordance with the Ritz combina-
tion principle:

v~n,n2a!1v~n2a,n2b!5v~n,n2b!, ~8!

which is consistent with Eq.~1!. Thus in order to end up with
the particular frequencyv(n,n2b), it seems ‘‘almost nec-
essary’’ ~in Heisenberg’s words30! to combine the quantum
amplitudes in such a way as to ensure the frequency combi-
nation Eq.~8!, that is, as

Y~n,n2b!eiv(n,n2b)t5(
a

X~n,n2a!eiv(n,n2a)t

3X~n2a,n2b!eiv(n2a,n2b)t,

~9!

or

Y~n,n2b!5(
a

X~n,n2a!X~n2a,n2b!, ~10!

which is Heisenberg’s rule for multiplying transition ampli-
tudes. Note particularly that the replacementsXa(n)
→X(n,n2a), and similarly forYb(n) andXb2a(n) in Eq.
~7!, produce a quite different result.

Heisenberg indicated the simple extension of the rule
given in Eq. ~10! to higher powers@x(t)#n, but noticed at
once31 that a ‘‘significant difficulty arises, however, if we
consider two quantitiesx(t),y(t) and ask after their product
x(t)y(t)... Whereas in classical theoryx(t)y(t) is always
equal toy(t)x(t), this is not necessarily the case in quantum
theory.’’ Heisenberg used the word ‘‘difficulty’’ three times
in referring to this unexpected consequence of his multipli-
cation rule, but it very quickly became clear that the non-
commutativity~in general! of kinematical quantities in quan-
tum theory was the essential new idea in the paper.

Born recognized Eq.~10! as matrix multiplication~some-
thing unknown to Heisenberg in July 1925!, and he and Jor-
dan rapidly produced the first paper4 to state the fundamental
commutation relation~in modern notation!

x̂p̂2 p̂x̂5 i\. ~11!

Dirac’s paper followed soon after,5 and then the paper of
Born, Heisenberg, and Jordan.6
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The economy and force of Heisenberg’s argument in
reaching Eq.~10! is remarkable, and it is at least worth con-
sidering whether presenting it to undergraduates might help
them to understand the ‘‘almost necessity’’ of non-
commuting quantities in quantum theory.

B. Quantum dynamics

Having identified the transition amplitudesX(n,n2a)
and frequenciesv(n,n2a) as the observables of interest in
the new theory, Heisenberg then turned his attention to how
they could be determined from the dynamics of the system.
In the old quantum theory, this determination would have
been done in two stages: by integration of the equation of
motion

ẍ1 f ~x!50, ~12!

and by determining the constants of the periodic motion
through the ‘‘quantum condition’’

R pdq5 R mẋ2dt5J~5nh!, ~13!

where the integral is evaluated over one period. In regard to
Eq. ~12!, Heisenberg wrote32 that it is ‘‘very natural’’ to take
the classical equation of motion over to quantum theory by
replacing the classical quantitiesx(t) and f (x) by their ki-
nematical reinterpretations,33 as in Sec. II A~or, as we would
say today, by taking matrix elements of the corresponding
operator equation of motion!. He noted that in the classical
case a solution can be obtained by expressingx(t) as a Fou-
rier series, substitution of which into the equation of motion
leads~in special cases! to a set of recursion relations for the
Fourier coefficients. In the quantum theory, Heisenberg
wrote that32 ‘‘we are at present forced to adopt this method
of solving equation Eq.~12! @his Eq. ~H11!# ... since it was
not possible to define a quantum-theoretical function analo-
gous to the@classical# function x(n,t). ’’ In Sec. III we shall
consider the simple example~the first of those chosen by
Heisenberg! f (x)5v0

2x1lx2, and obtain the appropriate re-
cursion relations in the classical and the quantum cases.

A quantum-theoretical reinterpretation of Eq.~13! is simi-
larly required in terms of the transition amplitudesX(n,n
2a). In the classical case, the substitution of Eq.~2! into
Eq. ~13! gives

R mẋ2dt52pm (
a52`

`

uXa~n!u2a2v~n!5nh, ~14!

using Xa(n)5@X2a(n)#* . Heisenberg argued that Eq.~14!
appeared arbitrary in the sense of the correspondence prin-
ciple, because the latter determinedJ only up to an additive
constant~times h). He therefore replaced Eq.~14! by the
derivative form@Eq. ~H15!#

h52pm (
a52`

`

a
d

dn
~auXa~n!u2v~n!!. ~15!

The summation can alternatively be written as over positive
values of a, replacing 2pm by 4pm. In another crucial
jump, Heisenberg then replaced the differential in Eq.~15!
by a difference, giving

h54pm(
a50

`

@ uX~n1a,n!u2v~n1a,n!2uX~n,n

2a!u2v~n,n2a!#, ~16!

which is Eq.~H16! in our notation.34 As he later recalled, he
had noticed that ‘‘if I wrote down this@presumably Eq.~15!#
and tried to translate it according to the scheme of dispersion
theory, I got the Thomas-Kuhn sum rule@Eq. ~16!35,36#. And
that is the point. Then I thought, That is apparently how it is
done.’’37

By ‘‘the scheme of dispersion theory,’’ Heisenberg re-
ferred to what Jammer38 calls Born’s correspondence rule,
namely39

a
]F~n!

]n
↔F~n!2F~n2a!, ~17!

or rather to its iteration to the form40

a
]F~n,a!

]n
↔F~n1a,n!2F~n,n2a!, ~18!

as used in the Kramers–Heisenberg theory of dispersion.41,42

It took Born only a few days to show that Heisenberg’s quan-
tum condition, Eq.~16!, was the diagonal matrix element of
Eq. ~11!, and to guess43 that the off-diagonal elements of
x̂p̂2 p̂x̂ were zero, a result that was shown to be compatible
with the equations of motion by Born and Jordan.4

At this point it is appropriate to emphasize that Heisen-
berg’s transition amplitudeX(n,n2a) is the same as the
quantum-mechanical matrix element^n2aux̂un&, whereun&
is the eigenstate with energyW(n). The relation of Eq.~16!
to the fundamental commutator Eq.~11! is discussed briefly
in Appendix A.

Heisenberg noted44 that the undetermined constant still
contained in the quantitiesX of Eq. ~16! @assuming the fre-
quencies known from Eq.~12!# would be determined by the
condition that a ground state should exist, from which no
radiation is emitted@see Eqs.~51! and~52! below#. He there-
fore summarized the state of affairs thus far by the
statement44 that Eqs.~12! and ~16! ‘‘if soluble, contain a
complete determination not only of frequencies and energy
values, but also of quantum-theoretical transition probabili-
ties.’’ We draw attention to the strong claim here: that he has
arrived at a new calculational method, which will completely
determine the observable quantities. Let us now see in detail
how this method works, for a harmonic oscillator perturbed
by an anharmonic force of the formlx2 per unit mass.45

III. HEISENBERG’S CALCULATIONAL METHOD
AND ITS APPLICATION TO THE ANHARMONIC
OSCILLATOR

A. Recursion relations in the quantum case

The classical equation of motion is

ẍ1v0
2x1lx250. ~19!

We depart from the order of Heisenberg’s presentation and
begin by showing how—as he stated—Eq.~19! leads to re-
cursion relations for the transition amplitudesX(n,n2a).
The (n,n2a) representative46 of the first two terms in Eq.
~19! is straightforward, being

@2v2~n,n2a!1v0
2#X~n,n2a!eiv(n,n2a)t, ~20!
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while that of the third term is, by Eq.~10!,

l(
b

X~n,n2b!X~n2b,n2a!eiv(n,n2a)t. ~21!

The (n,n2a) representative of Eq.~19! therefore yields47

@v0
22v2~n,n2a!#X~n,n2a!1l(

b
X~n,n2b!

3X~n2b,n2a!50, ~22!

which generates a recursion relation for each value ofa (a
50,61,62,...). Forexample, fora50 we obtain

v0
2X~n,n!1l@X~n,n!X~n,n!1X~n,n21!X~n21,n!

1X~n,n11!X~n11,n!1¯] 50. ~23!

No general solution for this infinite set of nonlinear algebraic
equations seems to be possible, so, following Heisenberg, we
turn to a perturbative approach.

B. Perturbation theory

To make the presentation self-contained, we need to dis-
cuss several ancillary results. Heisenberg began by consider-
ing the perturbative solution of the classical equation~12!.
He wrote the solution in the form

x~ t !5la01a1 cosvt1la2 cos 2vt1l2a3 cos 3vt

1¯1la21aa cosavt1¯ , ~24!

where the coefficientsaa , and v, are to be expanded as a
power series inl, the first terms of which are independent of
l:48

a05a0
(0)1la0

(1)1l2a0
(2)1¯ , ~25a!

a15a1
(0)1la1

(1)1l2a1
(2)1¯ , ~25b!

and

v5v01lv (1)1l2v (2)1¯ . ~26!

We substitute Eq.~24! into Eq. ~12!, use standard trigono-
metric identities, and equate to zero the terms that are con-
stant and which multiply cosvt, cos 2vt, etc., to obtain

l$v0
2a01 1

2 a1
21@l2~a0

21 1
2 a2

2!1¯#%50, ~27a!

~2v21v0
2!a11@l2~a1a212a0a1!1¯#50, ~27b!

l$~24v21v0
2!a21 1

2 a1
21@l2~a1a312a0a2!1¯#%

50, ~27c!

l2$~29v21v0
2!a31a1a21@l2~a1a412a0a3!1¯#%

50, ~27d!

where the dots stand for higher powers ofl. If we drop the
terms of orderl2 ~and higher powers!, and cancel overall
factors ofl, Eq. ~27! becomes~for lÞ0 anda1Þ0)

v0
2a01 1

2 a1
250, ~28a!

~2v21v0
2!50, ~28b!

~24v21v0
2!a21 1

2 a1
250, ~28c!

~29v21v0
2!a31a1a250, ~28d!

which is the same as Eq.~H18!.49 The lowest order inl
solution is obtained from Eq.~28! by settingv5v0 , and
replacing eachaa by the corresponding one with a super-
script (0) @see Eq.~25!#.

In the quantum case, Heisenberg proposed to seek a solu-
tion analogous to Eq.~24!. Of course, it is now a matter of
using the representation ofx(t) in terms of the quantities
X(n,n2a)exp@iv(n,n2a)t#. But it seems reasonable to as-
sume that, as the indexa increases from zero in integer
steps, each successive amplitude will~to leading order inl!
be suppressed by an additional power ofl, as in the classical
case. Thus Heisenberg suggested that, in the quantum case,
x(t) should be represented by terms of the form

la~n,n!, a~n,n21!cosv~n,n21!t,

la~n,n22!cosv~n,n22!t,...,

la21a~n,n2a!cosv~n,n2a!t,..., ~29!

where, as in Eqs.~25! and ~26!,

a~n,n!5a(0)~n,n!1la(1)~n,n!1l2a(2)~n,n!1¯ ,
~30!

a~n,n21!5a(0)~n,n21!1la(1)~n,n21!

1l2a(2)~n,n21!1¯ , ~31!

and

v~n,n2a!5v (0)~n,n2a!1lv (1)~n,n2a!

1l2v (2)~n,n2a!1¯ . ~32!

As Born and Jordan pointed out,4 some use of correspon-
dence arguments has been made here in assuming that asl
→0, only transitions between adjacent states are possible.
We shall return to this point in Sec. III C.

Heisenberg then simply wrote down what he asserted to be
the quantum version of Eq.~28!, namely50

v0
2a~n,n!1 1

4 @a2~n11,n!1a2~n,n21!#50 ~33!

2v2~n,n21!1v0
250, ~34!

@2v2~n,n22!1v0
2#a~n,n22!1 1

2 @a~n,n21!

3a~n21,n22!] 50, ~35!

@2v2~n,n23!1v0
2#a~n,n23!1 1

2 a~n,n21!

3a~n21,n23!1 1
2 a~n,n22!a~n22,n23!50. ~36!

The question we now address is how did Heisenberg arrive at
Eqs.~33!–~36!?

We shall show that these equations can be straightfor-
wardly derived from Eq.~22! using the ansatz~29!, and we
suggest that this is what Heisenberg did. This seems to be a
novel proposal. Tomonaga8 derived Eq.~22! but then dis-
cussed only thel→0 limit, that is, the simple harmonic
oscillator, a special case to which we shall return in Sec.
III C. The only other authors, to our knowledge, who have
discussed the presumed details of Heisenberg’s calculations
are51 Mehra and Rechenberg.11 They suggest that Heisenberg
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guessed how to ‘‘translate,’’ ‘‘reinterpret,’’ or ‘‘reformulate’’
~their words! the classical equation~28! into the quantum
ones, Eqs.~33!–~36!, in a way that was consistent with his
multiplication rule, Eq.~10!. Although such ‘‘inspired guess-
work’’ was undoubtedly necessary in the stages leading up to
Heisenberg’s paper,1 it seems more plausible to us that by the
time of the paper’s final formulation, Heisenberg realized
that he had a calculational method in which guesswork was
no longer necessary, and in which Eqs.~33!–~36!, in particu-
lar, could be derived.

Unfortunately, we know of no documentary evidence that
directly proves~or disproves! this suggestion, but we think
there is some internal evidence for it. In the passage to which
attention was drawn earlier,44 Heisenberg asserted that his
formalism constituted a complete method for calculating ev-
erything that needs to be calculated. It is difficult to believe
that Heisenberg did not realize that his method led directly to
Eqs. ~33!–~36!, without the need for any ‘‘translations’’ of
the classical relations.

To apply the ansatz of Eq.~29! to Eq. ~22!, we need to
relate the amplitudesX(n,n2a) to the corresponding quan-
tities la21a(n,n2a). We first note that in the classical
case,

Xa~n!5X2a* ~n!, ~37!

becausex(t) in Eq. ~2! has to be real. Consider, without loss
of generality, the casea.0. Then the quantum-theoretical
analogue of the left-hand side of Eq.~37! is X(n,n2a), and
that of the right-hand side isX* (n2a,n) ~see Ref. 27!.
Hence the quantum-theoretical analogue of Eq.~37! is

X~n,n2a!5X* ~n2a,n!, ~38!

which is nothing but the relation̂ n2aux̂un&5^nux̂un
2a&* for the Hermitian observablex̂. Although X(n,n
2a) can in principle be complex~and Heisenberg twice dis-
cussed the significance of the phases of such amplitudes!,
Heisenberg seems to have assumed~as is certainly plausible!
that in the context of the classical cosine expansion in Eq.
~24! and the corresponding quantum terms in Eq.~29!, the
X(n,n2a)’s should be chosen to be real, so that Eq.~38!
becomes

X~n,n2a!5X~n2a,n!, ~39!

that is, the matrix with elements$X(n,n2a)% is symmetric.
Consider a typical term of Eq.~29!,

la21a~n,n2a!cos@v~n,n2a!t#

5
la21

2
a~n,n2a!@eiv(n,n2a)t1e2 iv(n,n2a)t#

5
la21

2
a~n,n2a!@eiv(n,n2a)t1eiv(n2a,n)t#, ~40!

usingv(n,n2a)52v(n2a,n) from Eq.~1!. If we assume
that a(n,n2a)5a(n2a,n) as discussed for Eq.~39!, we
see that it is consistent to write

X~n,n2a!5
la21

2
a~n,n2a! ~a.0! ~41!

and in general

X~n,n2a!5
l uau21

2
a~n,n2a! ~aÞ0!. ~42!

The casea50 is clearly special, withX(n,n)5la(n,n).
We may now write out the recurrence relations Eq.~22!

explicitly for a50,1,2,..., in terms ofa(n,n2a) rather than
X(n,n2a). We shall include terms up to and including
terms of orderl2. For a50 we obtain

l$v0
2a~n,n!1 1

4 @a2~n11,n!1a2~n,n21!#1l2@a2~n,n!

1 1
4 ~a2~n12,n!1a2~n,n22!!] %50. ~43!

We note the connection with Eq.~27a!, and that Eq.~43!
reduces to Eq.~33! when thel2 term is dropped and an
overall factor ofl is canceled. Similarly, fora51 we obtain

~2v2~n,n21!1v0
2!a~n,n21!1l2$a~n,n!a~n,n21!

1a~n,n21!a~n21,n21!1 1
2 @a~n,n11!

3a~n11,n21!1a~n,n22!a~n22,n21!#%50 ~44!

@see Eq.~27b!#. For a52 we have

l$~2v2~n,n22!1v0
2!a~n,n22!1 1

2 a~n,n21!

3a~n21,n22!1l2@a~n,n!a~n,n22!1a~n,n22!

3a~n22,n22!1 1
2 a~n,n11!a~n11,n22!

1 1
2 a~n,n23!a~n23,n22!] %50 ~45!

@see Eq.~27c!#. For a53 @see Eq.~27d!# we obtain

l2$~2v2~n,n23!1v0
2!a~n,n23!1 1

2 @a~n,n21!

3a~n21,n23!1a~n,n22!a~n22,n23!]

1l2@a~n,n!a~n,n23!1a~n,n23!a~n23,n23!

1 1
2 a~n,n11!a~n11,n23!1 1

2 a~n,n24!

3a~n24,n23!] %50. ~46!

If we drop the terms multiplied byl2, Eqs.~43!–~46! reduce
to Eqs.~33!–~36!. This appears to be the first published deri-
vation of the latter equations.

In addition to these recurrence relations which follow
from the equations of motion, we also need the perturbative
version of the quantum condition Eq.~16!.52 We include
terms of orderl2, consistent with Eqs.~43!–~46!, so that Eq.
~16! becomes

h

pm
5a2~n11,n!v~n11,n!2a2~n,n21!v~n,n21!

1l2@a2~n12,n!v~n12,n!2a2~n,n22!

3v~n,n22!#. ~47!

We are now ready to obtain the solutions.

C. The lowest-order solutions for the amplitudes and
frequencies

We begin by considering the lowest-order solutions in
which all l2 terms are dropped from Eqs.~43! to ~47!, and
all quantities (a’s andv’s! are replaced by the corresponding
ones with a superscript(0) @compare Eqs.~30!–~32!#.53 In
this case, Eq.~44! reduces to

@2~v (0)~n,n21!!21v0
2#a(0)~n,n21!50, ~48!
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so that assuminga(0)(n,n21)Þ0, we obtain

v (0)~n,n21!5v0 ~49!

for all n. If we substitute Eq.~49! into the lowest-order ver-
sion of Eq.~47!, we find

h

pmv0
5@a(0)~n11,n!#22@a(0)~n,n21!#2. ~50!

The solution of this difference equation is

@a(0)~n,n21!#25
h

pmv0
~n1constant!, ~51!

as given in Eq.~H20!.53 To determine the value of the con-
stant, Heisenberg used the idea that in the ground state there
can be no transition to a lower state. Thus

@a(0)~0,21!#250, ~52!

and the constant in Eq.~51! is determined to be zero. Equa-
tion ~51! then gives~up to a convention as to sign!

a(0)~n,n21!5bAn, ~53!

where

b5~h/pmv0!1/2. ~54!

Equations~49! and ~53! were Heisenberg’s first results,
and they pertain to the simple~unperturbed! oscillator. We
can check Eq.~53! against the usual quantum mechanical
calculation via

a(0)~n,n21!52X(0)~n,n21!520^n21ux̂un&0 , ~55!

where the statesun&0 are unperturbed oscillator eigenstates.
It is well known that54

0^n21ux̂un&05S \

2mv0
D 1/2

An, ~56!

which agrees with Eq.~53!, using Eq.~54!. A similar treat-
ment of Eq.~43! leads to

a(0)~n,n!52
b2

4v0
2 ~2n11!. ~57!

Turning next to Eq.~45!, the lowest-order form is

~2@v (0)~n,n22!#21v0
2!a(0)~n,n22!

1 1
2 a(0)~n,n21!a(0)~n21,n22!50. ~58!

Because the combination law Eq.~8! must be true for the
lowest-order frequencies, we have

v (0)~n,n22!5v (0)~n,n21!1v (0)~n21,n22!52v0 ,
~59!

where we have used Eq.~49!, and in general

v (0)~n,n2a!5av0 ~a51,2,3,...!. ~60!

If we use Eqs.~53!, ~59!, and~60!, we obtain

a(0)~n,n22!5
b2

6v0
2 An~n21!. ~61!

A similar treatment of Eq.~46! yields

a(0)~n,n23!5
b3

48v0
4 An~n21!~n22!. ~62!

Consideration of the lowest-order term in Eq.~22! leads to

a(0)~n,n2a!5Aa

ba

v0
2(a21)A n!

~n2a!!
, ~63!

whereAa is a numerical factor depending ona; Eq. ~63! is
equivalent to Eq.~H21!.

It is instructive to comment on the relation of the above
results to those that would be obtained in standard quantum-
mechanical perturbation theory. At first sight, it is surprising
to see nonzero amplitudes for two-quantum@Eq. ~61!#, three-
quantum@Eq. ~62!#, or a-quantum@Eq. ~63!# transitions ap-
pearing at lowest order. But we have to remember that in
Heisenberg’s perturbative ansatz, Eq.~29!, the a-quantum
amplitude appears multiplied by a factorla21. Thus, for
example, the lowest order two-quantum amplitude is really
la(0)(n,n22), not justa(0)(n,n22). Indeed, such a transi-
tion is to be expected precisely at orderl1 in conventional
perturbation theory. The amplitude is^n22ux̂un& where, to
orderl,

un&5un&01
1

3
ml(

kÞn

0^kux̂3un&0

~n2k!\v0
uk&0 . ~64!

The operator x̂3 connects un&0 to un13&0 ,un11&0 ,un
21&0 , and un23&0 , and similar connections occur for0^n
22u, so that a nonzeroO(l) amplitude is generated in̂n
22ux̂un&.

It is straightforward to check that Eq.~61! is indeed cor-
rect quantum-mechanically, but it is more tedious to check
Eq. ~62!, and distinctly unpromising to contemplate checking
Eq. ~63! by doing a conventional perturbation calculation to
ordera21. For this particular problem, the improved pertur-
bation theory represented by Eq.~29! is clearly very useful.

After having calculated the amplitudes for this problem to
lowest order, Heisenberg next considered the energy. Unfor-
tunately he again gave no details of his calculation, beyond
saying that he used the classical expression for the energy,
namely

W5 1
2 mẋ21 1

2 mv0
2x21 1

3 mlx3. ~65!

It seems a reasonable conjecture, however, that he replaced
each term in Eq.~65! by its corresponding matrix, as dis-
cussed in Sec. II A. Thusx2, for example, is represented by
a matrix whose (n,n2a) element is

(
b

X~n,n2b!X~n2b,n2a!eiv(n,n2a)t, ~66!

according to his multiplication rule, Eq.~10!. A similar re-
placement is made forx3, and ẋ2 is replaced by

(
b

iv~n,n2b!X~n,n2b!eiv(n,n2b)t

3 iv~n2b,n2a!X~n2b,n2a!eiv(n2b,n2a)t

5(
b

v~n,n2b!v~n2a,n2b!X~n,n2b!

3X~n2b,n2a!eiv(n,n2a)t, ~67!

using v(n,m)52v(m,n). The total energy is represented
by the matrix with elements

W~n,n2a!eiv(n,n2a)t. ~68!
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It follows that if energy is to be conserved~that is, time-
independent! the off-diagonal elements must vanish:

W~n,n2a!50. ~aÞ0!. ~69!

The terma50 is time-independent, and may be taken to be
the energy in the staten. The crucial importance of checking
the condition Eq.~69! was clearly appreciated by Heisen-
berg.

To lowest order inl, the last term in Eq.~65! may be
dropped. Furthermore, referring to Eq.~29!, the only
l-independent terms in theX-amplitudes are those involving
one-quantum jumps such asn→n21, corresponding in low-
est order to amplitudes such asX(0)(n,n21)5 1

2a
(0)(n,n

21). It then follows from Eqs.~66! and ~67! that the ele-
mentsW(n,n), W(n,n22) andW(n,n12), and only these
elements, are independent ofl when evaluated to lowest
order. In Appendix B we show thatW(n,n22) vanishes to
lowest order, andW(n,n12) vanishes similarly. Thus, to
lowest order inl, the energy is indeed conserved~as Heisen-
berg noted!, and is given@using Eq.~66! and Eq.~67! with
a50 andb561] by

W~n,n!5 1
2 m@v (0)~n,n21!#2@X(0)~n,n21!#2

1 1
2 m@v (0)~n11,n!#2@X(0)~n11,n!#2

1 1
2 mv0

2@X(0)~n,n21!#21 1
2 mv0

2

3@X(0)~n11,n!#2

5~n1 1
2!\v0 , ~70!

where we have used Eqs.~49!, ~53!, and~54!. Equation~70!
is the result given by Heisenberg in Eq.~H23!.

These lowest order results are the only ones Heisenberg
reported for thelx2 term. We do not know whether he car-
ried out higher-order calculations for this case or not. What
he wrote next55 is that the ‘‘more precise calculation, taking
into account higher order approximations inW, a, v will
now be carried out for the simpler example of an anharmonic
oscillator ẍ1v0

21lx350.’’ This case is slightly simpler be-
cause in the expression corresponding to the ansatz~29! only
the odd terms are present, that is,a1 ,la3 ,l2a5 , etc.

The results Heisenberg stated for thelx3 problem include
terms up to orderl in the amplitudes, and terms up to order
l2 in the frequencyv(n,n21) and in the energyW. Once
again, he gave no details of how he did the calculations. We
believe there can be little doubt that he went through the
algebra of solving the appropriate recurrence relations up to
order l2 in the requisite quantities. As far as we know, the
details of such a calculation have not been given before, and
we believe that it is worth giving them here, as they are of
both pedagogical and historical interest. In the following sec-
tion we shall obtain the solutions for thelx2 term ~up to
orderl2) which we have been considering, rather than start
afresh with thelx3 term. The procedure is the same for both.

Before leaving the lowest order calculations, we address a
question that may have occurred to the reader. Given that, at
this stage in his paper, the main results actually relate to the
simple harmonic oscillator rather than to the anharmonic
one, why did Heisenberg not begin his discussion of toy
models with the simplest one of all, namely the simple har-
monic oscillator? And indeed, is it not possible to apply his
procedure to the simple harmonic oscillator without going

through the apparent device of introducing a perturbation,
and then retaining only those parts of the solution that sur-
vive as the perturbation vanishes?

For the simple harmonic oscillator, the equation of motion
is ẍ1v0

2x50, which yields

@v0
22v2~n,n2a!#X~n,n2a!50 ~71!

for the amplitudesX and frequenciesv. It is reasonable to
retain the quantum condition, Eq.~16!, because this condi-
tion is supposed to hold for any force law. If we assume that
the only nonvanishing amplitudes are those involving adja-
cent states~because, for example, in the classical case only a
single harmonic is present56!, then becauseX(n,n21)
5 1

2a(n,n21), Eqs.~16! and ~71! reduce to Eqs.~50! and
~48!, respectively, and we quickly recover our previous re-
sults. This is indeed an efficient way to solve the quantum
simple harmonic oscillator.57 For completeness, however, it
would be desirable not to have to make the adjacent states
assumption. Born and Jordan4 showed how this could be
done, but their argument is somewhat involved. Soon there-
after, of course, the wave mechanics of Schro¨dinger and the
operator approach of Dirac provided the derivations used
ever since.

D. The solutions up to and includingl2 terms

We now turn to the higher order corrections for thelx2

term. Consider Eq.~44! and retain terms of orderl. We set
@see Eqs.~25! and ~26!#

v~n,n21!5v01lv (1)~n,n21!, ~72!

a~n,n21!5a(0)~n,n21!1la(1)~n,n21!, ~73!

and find

2lv0v (1)~n,n21!a(0)~n,n21!50, ~74!

so that

v (1)~n,n21!50. ~75!

If we consider Eq.~44! up to terms of orderl2 and employ
Eqs.~53!, ~57!, and~61! for the zeroth-order amplitudes, we
obtain theO(l2) correction tov(n,n21) @see Eq.~26!#:

v (2)~n,n21!52
5b2

12v0
3 n. ~76!

The corresponding corrections toa(n,n21) are found
from the quantum condition Eq.~16!. To orderl we set

a~n11,n!5a(0)~n11,n!1la(1)~n11,n!, ~77!

as in Eq.~73!, and find

An11a(1)~n11,n!2Ana(1)~n,n21!50. ~78!

Equation~78! has the solutiona(1)(n,n21)5constant/An,
but the conditiona(1)(0,21)50 @see Eq.~52!# implies that
the constant must be zero, and so

a(1)~n,n21!50. ~79!

In a similar way, we obtain to orderl2

An11a(2)~n11,n!2Ana(2)~n,n21!5
11b3

72v0
4 ~2n11!,

~80!

which has the solution
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a(2)~n,n21!5
11b3

72v0
4 nAn. ~81!

We now find the higher order corrections toa(n,n) by
considering Eq.~43!. We obtaina(1)(n,n)50 and

a(2)~n,n!52
b4

72v0
6 ~30n2130n111!. ~82!

Similarly, we find from Eq.~45! a(1)(n,n22)50 and

a(2)~n,n22!5
3b4

32v0
6 ~2n21!An~n21!, ~83!

where we have used

v (2)~n,n22!5v (2)~n,n21!1v (2)~n21,n22!

52
5b2

12v0
3 ~2n21!. ~84!

These results suffice for our purpose. Ifn is large, they agree
with those obtained for the classicallx2 anharmonic oscil-
lator using the method of successive approximations.58

As an indirect check of their quantum mechanical validity,
we now turn to the energy evaluated to orderl2. Consider
first the (n,n) element of 1

2mv0
2x̂2. This matrix element is

given to orderl2, by

1

2
mv0

2H 1

4
@~a(0)~n,n21!!21~a(0)~n,n11!!2#

1
l2

4
@4~a(0)~n,n!!212a(2)~n,n21!a(0)~n21,n!

12a(2)~n,n11!a(0)~n11,n!1~a(0)~n,n22!!2

1~a(0)~n,n12!!2#J 5
1

2
mv0

2Fb2

2 S n1
1

2D
1

5b4l2

12v0
4 ~n21n111/30!G . ~85!

Similarly, using Eq.~67! up to orderl2, with a50, the

(n,n) element of1
2mẋ̂2 is found to be

1

2
mv0

2Fb2

2 S n1
1

2D2
5b4l2

24v0
4 ~n21n111/30!G . ~86!

Finally we consider the (n,n) element of the potential energy
1
3ml x̂3. To obtain the result to orderl2, we need to calculate
the (n,n) element ofx̂3 only to orderl. If we use

x̂3~n,n!5(
a

(
b

X~n,n2a!X~n2a,n2b!

3X~n2b,n!, ~87!

we find that there are no zeroth-order terms, but twelve terms
of order l @recall that amplitudes such asX(n,n) and
X(n,n22) each carry one power ofl#. We evaluate these
terms using Eqs.~53!, ~57!, and~61!, and obtain

2
5ml2b4

24v0
2 ~n21n111/30! ~88!

for this term in the energy. If we combine Eqs.~85!, ~86!,
and ~88!, we obtain the energy up to orderl2,

W~n,n!5S n1
1

2D\v02
5l2\2

12mv0
4 ~n21n111/30!, ~89!

a result59 that agrees with classical perturbation theory when
n is large,60 and is in agreement with standard second-order
perturbation theory in quantum mechanics.61

As mentioned, Heisenberg did not give results for thelx2

term beyond zeroth order. He did, however, give the results
for thelx3 term up to and includingl2 terms in the energy,
andl terms in the amplitudes. By ‘‘the energy’’ we mean, as
usual, the (n,n) element of the energy matrix, which as
noted in Sec. III C is independent of time. We also should
check that the off-diagonal elementsW(n,n2a) vanish@see
Eq. ~69!#. These are the terms that would~if nonzero! carry a
periodic time-dependence, and Heisenberg wrote62 that ‘‘I
could not prove in general that all periodic terms actually
vanish, but this was the case for all the terms evaluated.’’ We
do not know how many off-diagonal termsW(n,n2a) he
evaluated, but he clearly regarded their vanishing as a crucial
test of the formalism. In Appendix B we outline the calcula-
tion of all off-diagonal terms for thelx2 term up to orderl,
as an example of the kind of calculation Heisenberg probably
did, finishing it late one night on Heligoland.63

IV. CONCLUSION

We have tried to remove some of the barriers to under-
standing Heisenberg’s 1925 paper by providing the details of
calculations of the type we believe he performed. We hope
that more people will thereby be encouraged to appreciate
this remarkable paper.

The fact is that Heisenberg’s ‘‘amplitude calculus’’ works,
at least for the simple one-dimensional problems to which he
applied it. It is an eminently practical procedure, requiring no
sophisticated mathematical knowledge to implement. Be-
cause it uses the correct equations of motion and incorpo-
rates the fundamental commutator, Eq.~11!, via the quantum
condition, Eq. ~16!, the answers obtained are correct, in
agreement with conventional quantum mechanics.

We believe that Heisenberg’s approach, as applied to
simple dynamical systems, has much pedagogical value, and
could usefully be included in undergraduate courses on quan-
tum mechanics. The multiplication rule, Eq.~10!, has a con-
vincing physical rationale, even for those who~like Heisen-
berg! do not recognize it as matrix multiplication. Indeed,
this piece of quantum physics could provide an exciting ap-
plication for those learning about matrices in a concurrent
mathematics course. The simple examples of Eq.~10!, in
equations such as Eq.~22! or the analogous one for thel x̂3

term, introduce students directly to the fundamental quantum
idea that a transition from one state to another occurs via all
possible intermediate states, something that can take time to
emerge in the traditional wave-mechanical approach. The so-
lution of the quantum simple harmonic oscillator, sketched at
the end of Sec III D, is simple in comparison with the stan-
dard methods. Finally, the type of perturbation theory em-
ployed here provides an instructive introduction to the tech-
nique, being more easily related to the classical analysis than
is conventional quantum-mechanical perturbation theory
~which students tend to find very formal!.
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It is true that many important problems in quantum me-
chanics are much more conveniently handled in the wave-
mechanical formalism: unbound problems are an obvious ex-
ample, but even the Coulomb problem required a famous
tour de forceby Pauli.64 Nevertheless, a useful seed may be
sown, so that when students meet problems involving a finite
number of discrete states—for example, in the treatment of
spin—the introduction of matrices will come as less of a
shock. And they may enjoy the realization that the somewhat
mysteriously named ‘‘matrix elements’’ of wave mechanics
are indeed the elements of Heisenberg’s matrices.

APPENDIX A: THE QUANTUM CONDITION, EQ.
„16…, AND x̂ p̂Àp̂x̂Ä i\

Consider the (n,n) element of (x̂ẋ̂2 ẋ̂x̂), which is

(
a

X~n,n2a!iv~n2a,n!X~n2a,n!

2(
a

iv~n,n2a!X~n,n2a!X~n2a,n!. ~A1!

In the first term of Eq.~A1!, the sum overa.0 may be
rewritten as

2 i (
a.0

v~n,n2a!uX~n,n2a!u2 ~A2!

using v(n,n2a)52v(n2a,n) from Eq. ~1! and X(n
2a,n)5X* (n,n2a) from Eq.~38!. Similarly, the sum over
a,0 becomes

i (
a.0

v~n1a,n!uX~n1a,n!u2 ~A3!

on changinga to 2a. Similar steps for the second term of
Eq. ~A1! lead to the result

~ x̂ẋ̂2 ẋ̂x̂!~n,n!52i (
a.0

@v~n1a,n!uX~n1a,n!u2

2v~n,n2a!uX~n,n2a!u2#

52ih/~4pm!, ~A4!

where the last step follows from Eq.~16!. We setp̂5mẋ̂ and
find

~ x̂p̂2 p̂x̂!~n,n!5 i\ ~A5!

for all values of n. Equation ~A5! was found by Born43

shortly after reading Heisenberg’s paper. In further develop-
ments the value of the fundamental commutatorx̂p̂2 p̂x̂,
namelyi\, was taken to be a basic postulate. The sum rule
in Eq. ~16! is then derived by taking the (n,n) matrix ele-

ment of the relation@ x̂,@Ĥ,x̂##5\2/m.

APPENDIX B: CALCULATION OF THE OFF-
DIAGONAL MATRIX ELEMENTS OF THE ENERGY
W„n,nÀa… FOR THE lx2 TERM

We shall show that, foraÞ0, all the elements (n,n2a)

of the energy operator12mẋ̂21 1
2mv0

2x̂21 1
3lmx̂3 vanish up to

orderl. We begin by noting that at any given order inl, only
a limited number of elementsW(n,n21),W(n,n22), . . .

will contribute, because the amplitudesX(n,n2a) are sup-
pressed by increasing powers ofl asa increases. In fact, for
a>2 the leading power ofl in W(n,n2a) is la22, which
arises from terms such asX(n,n21)X(n21,n2a) and
lX(n,n21)X(n21,n22)X(n22,n2a). Thus to orderl,
we need to calculate onlyW(n,n21),W(n,n22),W(n,n
23).

~a! W(n,n21). There are fourO(l) contributions to the
(n,n21) element of12mv0

2x̂2:

1
4 mv0

2l$a(0)~n,n!a(0)~n,n21!1a(0)~n,n21!

3a(0)~n21,n21!1 1
2 @a(0)~n,n11!a(0)~n11,n21!

1a(0)~n,n22!a(0)~n22,n21!#%

52 5
24 mlb3nAn. ~B1!

There are twoO(l) contributions to the (n,n21) element

of 1
2mẋ̂2:

2 1
8 lm$v (0)~n,n11!v (0)~n11,n21!a(0)~n,n11!

3a(0)~n11,n21!1v (0)~n,n22!v (0)~n22,n21!

3a(0)~n,n22!a(0)~n22,n21!%5 1
12 mlb3nAn. ~B2!

There are threeO(l) contributions to the (n,n21) element
of 1

3ml x̂3:

1
24 ml$a(0)~n,n21!a(0)~n21,n!a(0)~n,n21!

1a(0)~n,n21!a(0)~n21,n22!a(0)~n22,n21!

1a(0)~n,n11!a(0)~n11,n!a(0)~n,n21!%

5 1
8 mlb3nAn. ~B3!

The sum of Eqs.~B1!–~B3! vanishes, as required.
~b! W(n,n22). The leading contribution is independent

of l. From the term1
2mv0

2x̂2, it is

1
8 mv0

2a(0)~n,n21!a(0)~n21,n22!, ~B4!

which is canceled by the corresponding term from1
2mẋ̂2.

The next terms areO(l2), for example from the leading
term in the (n,n22) element of13lmx̂3.

~c! W(n,n23). There are twoO(l) contributions from
1
2mv0

2x̂2:

1
8 mv0

2l$a(0)~n,n21!a(0)~n21,n23!

1a(0)~n,n22!a(0)~n22,n23!%

5 1
24 mlb3An~n21!~n22!. ~B5!

There are twoO(l) contributions from1
2mẋ̂2:

2 1
8 ml$v (0)~n,n21!a(0)~n,n21!v (0)~n21,n23!

3a(0)~n21,n23!1v (0)~n,n22!

3a(0)~n,n22!v (0)~n22,n23!a(0)~n22,n23!%

52 1
12 lmb3An~n21!~n22!. ~B6!

There is only oneO(l) contribution from1
3ml x̂3:
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1
24 mla(0)~n,n21!a(0)~n21,n22!a(0)~n22,n23!

5 1
24 lmb3An~n21!~n22!. ~B7!

The sum of Eqs.~B5!–~B7! vanishes, as required.
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