
Hamiltonian for a Charged Particle in an Electromagnetic Field

Jim Napolitano

December 27, 2017

We will often need to know the Hamiltonian for a particle with mass m and charge q moving while in the presence
of a static electric field E(x) and static magnetic field B(x). We know that the equation of motion is given by the
Lorentz force law, namely

mẍ = qE+
1
c

qẋ×B (1)

We can derive the Hamiltonian from the Lagrangian, but it is not obvious how to build the Lagrangian when there is
no obvious “potential energy” function for a charged particle in a magnetic field.

Our approach1 will be to start with the conjecture that the correct Lagrangian is given by

L (x, ẋ) =
1
2

mẋ2 −qφ(x)+
q
c

ẋ ·A(x) (2)

where φ and A are the standard electrostatic and magnetic vector potentials, that is

E(x) =−∇∇∇φ(x) and B(x) = ∇∇∇×A(x), (3)

and then show that Lagrange’s Equations lead us to (1). We have

0 =
d
dt

∂L

∂ ẋi
− ∂L

∂xi

=
d
dt

[
mẋi +

q
c

Ai(x)
]
+q

∂φ

∂xi
− q

c
ẋ · ∂A

∂xi

= m(ẍ)i +q(∇∇∇φ)i +
q
c

[
d
dt

Ai(x)− ẋ · ∂A
∂xi

]
(4)

The first time on the right of (4) is just the left hand side of (1), and the second term on the right of (4) is just the first
term on the right hand side of (1). It therefore remains to evaluate

ẋ · ∂A
∂xi

− d
dt

Ai(x) = ∑
j

ẋ j
∂A j

∂xi
−∑

j

∂Ai

∂x j
ẋ j = ∑

j
ẋ j

(
∂A j

∂xi
− ∂Ai

∂x j

)
(5)

and show that it equals (ẋ×B)i = (ẋ× (∇∇∇×A))i. We can use the totally antisymmetric symbol εi jk to write the cross
product of two vectors as (a×b)i = ∑ j ∑k εi jkakbk. Therefore

(ẋ×B)i = ∑
j
∑
k

εi jkẋ j

(
∑

l
∑
m

εklm
∂Al

∂xm

)
= ∑

j
ẋ j ∑

l
∑
m

∑
k

εki jεklm
∂Al

∂xm
(6)

where εi jk = εki j because the indices are rearranged by an even number of exchanges. We then make use of the theorem
∑k εki jεklm = δilδ jm −δimδ jl to write

(ẋ×B)i = ∑
j

ẋ j ∑
l

∑
m
(δilδ jm −δimδ jl)

∂Al

∂xm
= ∑

j
ẋ j

(
∂Ai

∂x j
−

∂A j

∂xi

)
(7)

1One can derive this Lagrangian from first principles of relativity and electromagnetism, but we will leave that approach to an advanced course
on classical or quantum field theory.
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which is the same as (5). This proves our conjecture that (2) is the correct Lagrangian.

We can now use definitions from classical mechanics to derive the Hamiltonian H (p,x) from (2). First we
determine the canonical momentum p from

pi ≡
∂L

∂ ẋi
= mẋi +

q
c

Ai(x) (8)

Then we construct the Hamiltonian using the Legendre transformation

H = ∑
i

ẋi pi −L

=
1
m

(
p− q

c
A
)
·p− 1

2
m

1
m2

(
p− q

c
A
)2

+qφ − q
c

1
m

(
p− q

c
A
)
·A

=
1

2m

(
p− q

c
A
)2

+qφ (9)

It is important to note that the canonical momentum p is not equal to mẋ in this case.
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