
PHYS5701 Quantum Mechanics I Spring 2018 HW #2

Due at 5pm to the Grader on Thursday 8 Feb 2018

(1) Starting with a momentum operator p having eigenstates |p0
i, define an infinitesimal

boost operator B(dp0
) that changes one momentum eigenstate into another, that is

B(dp0
)|p0

i = |p0
+ dp0

i

Show that the form B(dp0
) = 1 + iW · dp0

, where W is Hermitian, satisfies the unitary,

associative, and inverse properties that are appropriate for B(dp0
). Use dimensional analysis

to express W in terms of the position operator x, and show that the result satisfies the

canonical commutation relations [xi, pj] = ih̄�ij. Derive an expression for the matrix element

hp0
|x|↵i in terms of a derivative with respect to p0

of hp0
|↵i.

(2) For a wave function hx0
|↵i = A(x0

�a)2(x0
+a)2eikx

0
for �a  x0

 a and zero otherwise,

(a) Find the constant A.
(b) Find the expectation values hxi, hpi, hx2

i, and hp2i.
(c) Find the expectation values h(�x)2i and h(�p)2i, and compare their product to that

for a Gaussian wave packet.

(3) Construct the unitary transformation U , as a sum over outer products of kets with bras,

that transforms the spin-1/2 |Sz;±i basis into the |Sy;±i. Your result should be in terms

of the states |±i = |Sz;±i. Write the matrix representation of U in the |Sz;±i and show

that matrix multiplication gives you the correct transformation.

(4) An electron sits in a uniform static magnetic field B in the ẑ-direction, and is prepared

at time t = 0 in an eigenstate of the spin projection operator S · n̂ where n̂ =
1p
2
x̂ +

1p
2
ẑ.

Assuming the initial state eigenvalue is +h̄/2, find the expectation values hSxi, hSyi, and

hSzi as a function of time. Explain why the answers are what you expect physically.

(5) Derive Equation (2.1.65) in

the textbook. Then use the

figure on the right, taken from

Phys. Rev. D 95 (2017) 072006

(showing a neutrino disappear-

ance measurement, similar to

that shown in Figure 2.2 in the

textbook) to estimate the mix-

ing angle ✓ and mass-square-

di↵erence �m2
for this oscilla-

tion mode. You are welcome to

look up the paper to check your

answer.

below 1.3 MeV was binned identically to method A, and
the shift of the estimated value of Δm2

ee observed by
method A was reproduced. Alternatively, increasing the
systematic uncertainty of the finely binned energy spectrum
below 1.3 MeV also resolved the discrepancies. These
observations indicated that the combined modeling of the
large systematics at low energies, including relative energy
scale differences and energy loss in the IAV, was insuffi-
cient for the case of a finely binned low-energy spectrum.
In contrast, the results had negligible dependence on the
choice of binning above 1.3 MeV. Variations were ≲0.1σ
for Δm2

ee, while those for sin2 2θ13 were even smaller.
For illustrative purposes, the spectral distortion shown in

Fig. 38 can be displayed as the ν̄e survival probability
versus L=Eν. The probability of ν̄e disappearance for each
bin in the prompt positron energy spectrum was given by
the observed signal divided by the prediction assuming no
oscillation, after subtraction of background. The prediction
includes corrections to the absolute reactor ν̄e flux as
constrained by the observation. An average ν̄e energy
hEνi was estimated for each bin in the prompt positron
spectra from the model of the detector response previously
discussed. Given that it was not possible to determine the
reactor of origin for each ν̄e interaction, an effective
baseline Leff was determined for each experimental hall,
according to Eq. (56). Figure 40 shows the observed ν̄e
survival probability as a function of effective baseline Leff
divided by the average antineutrino energy hEνi. Almost
one full oscillation cycle was sampled, given the range of
L=Eν values which were measured. The data from all three
experimental halls were consistent with the three-flavor
oscillation hypothesis.
The confidence regions for Δm2

ee versus sin2 2θ13 are
shown in Fig. 41. The confidence regions were obtained
using the change of the χ2 value relative to that of the best
fit, Δχ2 ¼ χ2 − χ2min, as a function of sin2 2θ13 and jΔm2

eej.
All other model parameters were profiled during the
determination of the value of Δχ2. The confidence regions
are defined as Δχ2 less than 2.30 (68.27% C.L.), 6.18
(95.45% C.L.), and 11.83 (99.73% C.L.). The one-dimen-
sional distribution of Δχ2 is also provided for each
individual parameter, where the alternate parameter has
been profiled. A table of Δχ2 values as a function of
sin2 2θ13 and jΔm2

eej is provided as Supplemental
Material [40].
The precision of this measurement of θ13 was limited by

statistics, although systematic uncertainty from differences
of the ν̄e efficiency between detectors and predicted reactor
flux also contributed significantly. For jΔm2

eej, statistical
and systematic uncertainties were approximately equal in
size. The largest systematic uncertainty arose from poten-
tial variation in the energy calibration of the far-versus-near
detectors, which was well characterized using multiple
redundant low-energy radioactive sources. Systematic
uncertainty from ν̄e interactions in the IAValso contributed.

FIG. 40. Measured reactor ν̄e spectral distortion, displayed as
the oscillation survival probability versus Leff=Eν. The effective
propagation distance Leff was estimated for each hall based on the
distribution of reactors contributing to the signal [see Eq. (56)].
The average true ν̄e energy hEνi was determined for each bin in
the observed prompt positron spectrum based on the model of the
detector response. The ν̄e survival probability was given by the
observed signal in each bin divided by the prediction assuming no
oscillation. The measurement sampled ν̄e survival over almost
one full cycle, demonstrating distinct evidence in support of
neutrino flavor oscillation.

FIG. 41. Confidence regions of sin2 2θ13 and jΔm2
eej from a

combined analysis of the prompt positron spectra and rates. The
1σ, 2σ, and 3σ two-dimensional confidence regions are estimated
using Δχ2 values of 2.30 (red), 6.18 (green), and 11.83 (blue)
relative to the best fit. The upper panel provides the one-
dimensional Δχ2 for sin2 2θ13 obtained by profiling jΔm2

eej (blue
line), and the dashed lines mark the corresponding 1σ, 2σ, and 3σ
intervals. The right panel is the same, but for jΔm2

eej, with
sin2 2θ13 profiled. The point marks the best estimates, and the
error bars display their one-dimensional 1σ confidence intervals.
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