
SI and CGS Units in Electromagnetism

Jim Napolitano

December 28, 2017

Two divergent systems of units established themselves over the course of the 20th century. One system, known as
SI (from the French Le Système International d’Unités), is rooted in the laboratory. It gained favor in the engineering
community and forms the basis for most undergraduate curricula. The other system, called Gaussian, is aesthetically
cleaner and is much favored in the theoretical physics community. We use the Gaussian system in this book, as do
most graduate level physics texts on Quantum Mechanics and other subjects.

The SI system is also known as MKSA (for meter, kilogram, second, Ampere), and the Gaussian system is some-
times called1 CGS (for centimeter, gram, second). For problems in mechanics, the difference is trivial, amounting only
to some powers of ten. The difficulty comes when incorporating electromagnetism. As discussed below, SI incorpo-
rates a fourth base unit, the Ampere, which implies that charge and other electromagnetic quantities are dimensionally
distinct between the SI and Gaussian systems. This one point is the source of all the confusion.

In other words, although we can write that a meter is equal to 100 centimeters, the SI unit of charge, called the
Coulomb, is not equal to any number of electrostatic units (esu), the Gaussian unit of charge. The two kinds of charges
literally have different physical meanings. They should probably have different names, but historically they are both
called “charge.” Similar comments apply to electric current, electric and magnetic fields, the electric potential, and
so on. This why you see factors like ε0 and µ0 appear in SI formulas, whereas factors of c are common in Gaussian
formulas.

This appendix gives an explanation for how these two systems of units diverge when it comes to electromagnetism.
It also shows how physical quantities such as force and energy can be used to relate electromagnetic quantities between
the two systems. For a more detailed discussion, see “On Electric and Magnetic Units and Dimensions”, by R. T. Birge,
The American Physics Teacher, 2(1934)41. (This journal is now called the American Journal of Physics.) See also the
articles in the issue American Journal of Physics 3(2005) on pages 90, 102, and 171.

Electricity, Magnetism, and Electromagnetism: A Review

Electricity and magnetism are not separate phenomena. They are different manifestations of the same phenomenon,
called electromagnetism. You need to incorporate special relativity to see how electricity and magnetism are united,
and there were some decades between Maxwell and Einstein. Consequently, it was quite some time after they were
separately established, that electricity and magnetism were realized to be just different ways that electromagnetism
can exert a force.

The starting place for an “electric” force is Coulomb’s Law. If some number of electrons is added to, or removed
from, an object, then it acquires a “charge” q. A force appears between two charged objects separated by some
distance. This force is proportional to the product of the charges, and inversely proportional to the square of the
distance between them. That is,

F = kE
q1q2

d2 (1)

Here kE is an arbitrary constant of proportionality; without describing what we mean by “charge,” we can say no more
about it.

1Some authors distinguish between Gaussian and CGS by including a factor of 4π in Gauss’ Law.
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A “magnetic” force appears between two wires, each of which carries something called a “current.” For two long,
parallel wires, the force per unit length is proportional to the product of the currents and inversely proportional to the
perpendicular separation of the wires. That is,

F
L
= kM

I1I2

d
(2)

As with the electric force, kM is a generic constant of proportionality which depends on what we mean by “current.”

Today we understand that (1) and (2) are two different manifestations of “electromagnetism.” A “current” is in
fact a flow of “charge,” and the theory of electromagnetism tells us that

2kE = c2kM (3)

In other words, if we make a choice for kE , then (3) specifies kM and vice versa.

The essential point is that the SI and Gaussian systems make different choices for kE or kM . Other choices will
lead to other systems of units, but we won’t be discussing them here. There are also variations on whether or not to
combine factors of 4π into various quantities, but we are not going to distinguish between them in this appendix.

The SI System: Inventing a Unit for Current

The SI system is based on (2). People learned how to make current, well before we understood it in terms of charge.
Perhaps for these reasons, a new base unit, the ampere (A), was created. One Ampere is the amount of current flowing
in each of two long, parallel wires, separated by one meter, such that the force between the wires is 2× 10−7 N/m.
We write

kM =
µ0

2π
SI (4)

where µ0 ≡ 4π×10−7 N
A2 (5)

(The factor of 4π turns out to be handy to cancel out integrations over the unit sphere.)

This quantity µ0 turns out to describe the magnetic properties of the vacuum. It shows up, for example, in the
inductance of a loop of wire surrounding empty space. This is all forced upon us by the invention of the Ampere.
Some books refer to µ0 as the “permeability of free space.”

Equations (3) and (4) tell us how to write Coulomb’s Law (1) in the SI system. We have

kE =
c2

2
kM =

µ0c2

4π
SI (6)

= 8.99×109 N ·m2

(A · s)2 (7)

This form of Coulomb’s Law shows that charge, in the SI system, has units Amperes×seconds (A · s). This is defined
to be the Coulomb (C). SI furthermore defines the quantity

ε0 ≡
1

µ0c2 (8)

called the “permittivity of free space.” It is another property of the vacuum, showing up, for example, as the capacitance
of parallel plates separated by empty space. It is, as with µ0, forced upon us by the choosing a new base unit for current.
Thus, combining (1), (6), and (8), we write Coulomb’s Law in SI as

F =
1

4πε0

q1q2

d2 SI (9)

which is the form presented in introductory physics textbooks that use the SI convention.
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The Gaussian System: No New Base Units

In the Gaussian system, we take the point of view that no new base units are necessary. We write

kE = 1 Gaussian (10)

that is, a dimensionless number. In other words, Coloumb’s Law (1) is simply

F =
q1q2

d2 Gaussian (11)

The unit of charge in the Gaussian system is derived in terms of centimeters, grams, and seconds. It is called the
electrostatic unit (esu), or sometimes the statcoulomb, and is simply2

esu≡
√

dyne · cm2 = g1/2 · cm3/2/s (12)

In this case, the magnetic force between wires is just (2) with (3), namely

F
L
=

2
c2

I1I2

d
CGS (13)

The Gaussian system is not without its sources of confusion. Some authors use (13) to define a unit of current, the
statampere, which gives 2 dynes/cm of force between two long parallel wires separated by 1 cm. Note that this is not
the same as one esu/s, something called the “absolute ampere” or “abampere.” The statampere and abampere differ
by a factor of 2.998×1010, although they have the same dimensions, namely those of the esu/s = g1/2 · cm3/2/s2.

Converting between SI and CGS

It should now be clear to you that the units of charge and current have different dimensions between SI and Gaussian,
and this is why everyone encounters confusion when converting between one system and the other.

Of course, all of this boils down to experiment. You make a measurement, and use some equations (whether they
are Gaussian or SI) to interpret the result. We’ll take the point of view of Coulomb’s Law as a starting point, and the
classic work by Millikan3 to measure the charge on a single electron, a (negative) quantity that we traditionally call
−e. The modern best value for his measurement is e = 4.8032042×10−10 esu.

So let’s start by giving ourselves the problem of expressing the charge on an electron in Coulombs. This is easy.
Let eesu equal the dimensionless number 4.8032042×10−10. The force between two electrons separated by one meter
is 10−4e2

esu dyne = 10−9e2
esu N. So, in SI

10−9e2
esu N =

1
4πε0

e2

(1 m)2 =
µ0

4π

c2e2

(1 m)2 = 10−7c2
SIe

2
C N (14)

where eC is the electron charge in Coulombs, and cSI ≡ 2.998× 108, is yet another dimensionless number. Then
eC = eesu/10cSI = 1.602× 10−19. This procedure is obviously valid regardless of the charge on an electron. We
therefore write

qC = qesu/10cSI = qesu/2.998×109 (15)

as a general conversion between charge in the CGS system to that in SI. That is, one Coulomb represents a much larger
amount of charge (i.e. very many more electrons) than one esu, by a factor of 10cSI.

The trick here was to recognize that the numerical difference between Coulombs and esu is absorbed by the factor
c2 in (14). This is not to say that Coulombs and esu differ by the dimensions of velocity. One cannot equate Coulombs
to esu without some conversion factor that explicitly cancels out the base unit Amperes.

2Recall that the unit of force in CGS is called the dyne≡ g · cm/s2 = 10−5 N.
3This experiment was a tour de force, which Millikan carried out systematically and carefully over two decades. For a culmination of this

work, see his paper “The Most Probable 1930 Values of the Electron and Related Constants” in Phys. Rev. 35(1930)1231. He determined the value
e = (4.770±0.005)×10−10 esu.
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We can extend from here. Consider the units of electric potential, defined by

1 Joule = 1 Volt ·C SI
1 erg = 1 statvolt · esu Gaussian

therefore 1 Volt ·C = 107 statvolt · esu (16)

since one Joule equals 107 ergs. (I like this way of writing things because it means I can use the “=” sign. Energy
is energy, whether Gaussian or SI.) Now thinking again in terms of number of electrons, we know that one Coulomb
corresponds to 10cSI times as much charge as an esu. So we write, now having to abandon a strict equality,

1 Volt ·10cSI ⇐⇒ 107 statvolt (17)
or 1 statvolt ⇐⇒ 299.8 Volt (18)

In other words, in practical terms, one statvolt is the same as 300 volts. Perhaps here is a reason that SI is more
popular with electricians and engineers. We always prefer to use numbers on the order of unity when doing practical
work. One volt is a reasonable potential difference from a human perspective, but 300 volts would give you a rather
significant shock. So, if we worked in Gaussian, practical electronics would be discussed in terms of “millistatvolts”,
a somewhat unwieldy term.

The same thing works symbolically, of course. To go from Gaussian to SI we need to insert the factor µ0c2/4π =
1/4πε0 in front of Coulomb’s law, and rederive things. So, wherever we encounter a value of charge q in a Gaussian
equation, we replace it with q/

√
4πε0. (The trivial conversions from centimeters and grams to meters and kilograms

are irrelevant symbolically.) Similarly, any values of current I get replaced by cI
√

µ0/4π .

You can easily check that these substitutions turn (11) into (9), and (13) into (2) w/(4). For a different example,
the electric field E = limq0→0 F/q0 gets multiplied by

√
4πε0 leaving (of course) the force for a charge in an electric

field F = qE unchanged.

Now let’s try going the other way, namely SI to Gaussian, with the Lorentz force law, namely

F = qE+qv×B SI (19)

We know that the first term on the right is unchanged. In the second term, replace q with q
√

4πε0 = q
√

4π/µ0/c,
but what about the B field? A study of electromagnetism leads to Ampere’s Law, which relates magnetic fields and
currents. Indeed, steady currents give rise to static magnetic fields according to

∇∇∇×B =
4π

c
j Gaussian (20a)

∇∇∇×B = µ0 j SI (20b)

where j is the current density. To go from CGS to SI, j gets multiplied by c
√

µ0/4π , so equations (20) tell us to
multiply B by

√
4π/µ0. So, getting back to (19) we multiply the second term by

√
4π/µ0/c for q and

√
µ0/4π for

B. (Remember, we are going from SI to CGS.) We therefore arrive at the Lorentz force law

F = qE+q
v
c
×B Gaussian (21)

An important lesson in this last example is that in going from SI to Gaussian, the magnetic field changes its
dimensions differently than does the electric field. Indeed, (19) shows that in SI, the dimensions of E are the dimensions
of B multiplied by the dimensions of velocity. On the other hand, (21) shows that in the Gaussian system, E and B
have the same dimensions. Pedagogically, this is an advantage that the Gaussian system has over SI.

For a final example, let’s express the magnetic moment in Gaussian units, which is the starting point for this book.
In your introductory physics class, which most likely used SI units, you defined the magnetic moment µ = IA for a
current I moving in a closed loop that enclosed an area A . You also learned that the potential energy for such a current
loop in a magnetic field B was −µµµ ·B, which of course must be the same expression as in the Gaussian system. We
already know that I→ c

√
µ0/4πI and B→

√
4π/µ0B. Therefore, in order to keep the same expression for potential

energy, the definition of magnetic moment in Gaussian units must be µ = IA /c.
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