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These notes are meant to complement the discussion in Modern Quantum Mechanics Third
Edition, Section 4.1. Equation references are to those in that textbook.

Symmetry Operators

Consider some unitary operator S which turns an arbitrary state |«) into a different state
|8). That is, Sla) = |3) which of course implies that (3] = (a|ST. We refer to S as a
“symmetry operator”, or just “symmetry”, if the expectation value of the Hamiltonian H is
the same for |a) and |3). In other words

(alHl|a) = (B|H|B) = (a|STHS]a)

Since |«) is arbitrary, this means that H is unchanged by what mathematicians call a “sim-
ilarity transformation” based on S, that is

S'tHS = H SO HS = SH

and the two operators commute. This should jive with your intuition about what a “sym-
metry” should mean. Different Hamiltonians, of course, are likely to have different, if any,
symmetries.

Conserved Quantities

In classical mechanics, you learned that a symmetry of the Hamiltonian (or Lagrangian)
implied that there was some conserved quantity associated with it. That wasn’t so easy to
prove, but it is simple to prove in quantum mechanics.

A measurable quantity in quantum mechanics corresponds to some Hermitian operator.
Consider the case of a continuous symmetry S = S(\) where A is some continuous parameter.
Then you know that we can associate a Hermitian operator G, called the “generator”, with
the unitary operator S using Weyl’s trick, namely

S(d)\) =1-— %Gd)\

where dA is infinitesimal. Therefore the similarity transformation implies that
(1 + %Gd)\) H (1 - %GdA) —H+ %(GH ~HG)dN=H so |G, H=0

Recalling the Heisenberg Equation of Motion (2.93) for observables in the Heisenberg picture,
namely

Y- ie.m
dt — ih
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it is clear that the observables associated with the generator of a symmetry operator are
conserved quantities.

For a discrete symmetry where S is also Hermitian, then the similarity transformation prop-
erty directly implies that S corresponds to some conserved quantity. Parity is the usual
example.

Degeneracies

If different eigenstates of the Hamiltonian have the same energy, then we refer to those states
as degenerate. We will now show that a symmetry of a Hamiltonian implies that there will
be degenerate eigenstates.

The proof is simple. Suppose H|n) = E,|n), so that |n) is an eigenstate of the Hamiltonian
with energy eigenvalue E,. Typically the state |n') = S|n) is a different state than |n), but

Hn'y = HS|n) = SH|n) = E,|n’)

so the state |n') is degenerate with |n).

This is an extremely important concept. Experimentally, when eigenstates are discovered
that have the same (or very close) energies, this points to some symmetry (perhaps only ap-
proximate) of the Hamiltonian. Great strides have been made in understanding the physical
universe by observing degeneracies in nature and then building a theory that incorporates
a symmetry to explain them. In this class, we will spend some time on the hydrogen atom,
showing where the degeneracies are and what symmetries give rise to them, and then how
small perturbations can break those symmetries.

Example: Translational Symmetry

You know that the translation operator in three dimensions is 7 (@) = exp(—ip’- d/h). For
the free particle Hamiltonian H = p?/2m, this clearly satisfies T(@)H = HT(d), so the
free particle Hamiltonian is translationally invariant. Indeed, the generator of translations,
namely p, obviously commutes with this Hamiltonian.

Unfortunately, we cannot illustrate degeneracies with this symmetry operator and Hamilto-
nian because there aren’t any. Indeed, an energy eigenstate |p”’), that has energy eigenvalue
Egz = p"” /2m, is not transformed by 7(@). The Hamiltonian is rotationally invariant, but
that’s a different symmetry operator, which we’ll get to later.

Example: Parity Symmetry

We’ll talk about parity in more detail later in the course, but for now, this is a brief intro-
duction for the sake of illustrating the connection with degeneracy.

Parity means “space inversion.” That is, any position coordinate ¥ becomes —7. We express



this quantitatively by requiring that the expectation value of 7 in any state |a) reverses sign
for the state P|a), where P is the (unitary) parity operator. That is

(| PTFP|a) = —(a|f]a) SO Pirp = -
and we refer to position as “parity odd.” Tt makes sense that P?|a) = |a), so we have
P=pP =P

and the parity operator is Hermitian as well as unitary. It therefore corresponds to an
observable with eigenvalues +1.

Momentum is also parity odd, that is
PipP=—p

This makes sense because, classically, it is just the time derivative of position, but it’s not
hard to formally prove this using the translation operator. It follows directly that pP = —Pp
so for an eigenstate |p’) of momentum, pP|p’) = —p'P|p’), that is P|p”) = | — p”).

Now consider the free particle again, with H = p?/2m. Parity is a symmetry operator, since

1 1 1
TH - T—»'—» - ‘i‘—» X ‘i‘—» :__—» (= :H
PUP = —Plp-pP =5 _PPpP-PpP 2m( p)-(=p)
The energy degeneracy that is created by P is now obvious, since | £p”) are both eigenstates

of the Hamiltonian with the same energy.
Example: Rotational Symmetry

The first two example are pretty simple, but not particularly interesting. Rotational sym-
metry is more interesting, but also a bit more complicated, so let’s take this example slowly.

You've actually seen an important example of degeneracy due to rotational symmetry. The
Hamiltonian for a particle in a central potential, like the hydrogen atom or the isotropic
harmonic oscillator, has eigenvalues that depend on [ and some principle quantum number
n, but not m. Therefore, for any [, there is a 2/ + 1 degeneracy.

You know that the unitary operator that describes rotations about an axis n through an
angle ¢ is

D(#, ¢) = exp (—z’ﬁ ;i‘]qb)

where the generator J has the commutation relations of angular momentum. This is not a
generally useful expression because it can only be expressed in a simple Taylor expansion if
we stick to the component J, = n - J, so we can’t write things in terms of the Cartesian




components. However, it does show clearly that rotation is a symmetry operator for any
term in a Hamiltonian proportional to J 2.

In fact, although we didn’t prove it in class, a consistent definition of a vector operator is
one that obeys the same commutation relations with J. In this way, you can show that any
term that is the square of some vector, for example p?, is also rotationally invariant.

An important, but simple, physical example of this is the so-called “rigid rotor” Hamiltonian.
An object with moment of inertia I and angular momentum L has the Hamiltonian

L? I(1+1)h?
H_E SO El——2[

are the energy eigenvalues, and each energy level has a 2] + 1 degeneracy. This kind of
situation appears in nature in many places. For example, see the discussion of the HCI
molecule in Townsend, Section 9.7. (The molecule also vibrates, and the two degrees of
freedom are coupled.)

Nuclei provide more examples. The energy levels of °Dy, for example, show a clear ro-
tational pattern with | = 0,2,4,6,8 before other degrees of freedom creep in. (This is a
“symmetric rotor” so only even values of [ are possible. Do you see why? Think about par-
ity.) If you want to see these energy levels, try exploring the ENSDF database at Brookhaven
National Laboratory.

Now let’s see how the rotation operator creates degenerate states. The operator D(n, ¢) is
hard to decompose into Cartesian operators, but you know it will be some messy infinite
expression involving Ji, along with J,, and these will change the m values of the states.

More simply, though, just think about what the rotation operator does. For spin-1/2, for
example, it can be used to turn a | 1) state into | |) state. That is, it turns one eigenstate
of J, into another eigenstate of J,, changing the value of m but leaving j unchanged. We
haven’t explicitly written down the rotation operator for j > 1/2, but the principle would
be the same.



