

PHYS4702 Intro Quantum Mechanics II HW#9 Due 29 Oct 2024

This homework assignment is due at the start of class on the date shown. Please submit a PDF of your solutions to the Canvas page for the course.

(1) This problem is a review of concepts we have studied so far, including last semester.

- (a) Find the matrix representations of S_x , S_y , and S_z in the $|s, m\rangle$ basis for $s = 1$.
- (b) A spin-1 particle with magnetic moment $\vec{\mu} = -\gamma\vec{S}$ is placed in a static magnetic field $\vec{B} = B\hat{z}$. The particle is in the $+\hbar$ eigenstate of S_y at $t = 0$. Find the normalized state vector as a function of time.
- (c) Calculate $\langle S_x \rangle$, $\langle S_y \rangle$, $\langle S_z \rangle$ as a function of time. Explain why this what you expect.

(2) You've heard of the "energy-time" uncertainty principle $\Delta E \Delta t \geq \hbar/2$, but time is not an observable, so this doesn't really make any sense. Show, however, that if you define Δt in terms of some time-independent observable Q as $\Delta t = \Delta Q / |d\langle Q \rangle / dt|$, then you can derive this relationship. Why is this a reasonable definition of Δt ?

(3) A tritium atom is a hydrogen atom where the nucleus ${}^3\text{H}$ is one proton bound to two neutrons. The nucleus is radioactive and decays to a ${}^3\text{He}$ nucleus, while emitting an electron with about 10 keV kinetic energy.

- (a) Compare the time it takes the electron to leave the atom with the inverse of the frequency between the ground and first excited state of the ${}^3\text{He}$ ion. Use this to justify the use of the "sudden approximation."
- (b) Calculate the probability that the ${}^3\text{He}$ ion ends up in the electronic ground state.

You might be curious to look up something called the KATRIN experiment.

(4) & (5) Magnetic resonance is induced by the Hamiltonian $H = -\vec{\mu} \cdot \vec{B}$ where

$$\vec{B} = B_0\hat{z} + B_1(\cos \omega t \hat{x} + \sin \omega t \hat{y})$$

is a magnetic field consisting of a static component with magnitude B_0 in the z -direction, and a rotating component with magnitude B_1 in the xy -plane. Write $\vec{\mu} = -\gamma\vec{S}$ for spin operator \vec{S} . Assume a spin-1/2 system and use the $|\pm\hat{z}\rangle$ basis.

- (a) For the interaction picture state $|\alpha; t\rangle_I = c_1(t)|+\hat{z}\rangle + c_2(t)|-\hat{z}\rangle$, find the two coupled differential equations for $c_1(t)$ and $c_2(t)$ in terms of $\omega_0 \equiv \gamma B_0$ and $\omega_1 \equiv \gamma B_1$.
- (b) Assuming the initial state is $|\alpha\rangle = |+\hat{z}\rangle$, derive Rabi's Formula for the transition probability for magnetic resonance, namely

$$|\langle -\hat{z} | \alpha; t \rangle|^2 = \frac{\omega_1^2}{(\omega_0 - \omega)^2 + \omega_1^2} \sin^2 \left(\frac{\sqrt{(\omega_0 - \omega)^2 + \omega_1^2}}{2} t \right)$$

- (c) Make a plot of the maximum transition probability versus ω for $B_0/B_1 = 1000$.