

PHYS4702 Intro Quantum Mechanics II HW#5 Due 1 Oct 2024

This homework assignment is due at the start of class on the date shown. Please submit a PDF of your solutions to the Canvas page for the course.

(1) In class, we calculated the second order energy shift for a perturbation $v(x) = \varepsilon x$ to a simple harmonic oscillator with potential $V(x) = m\omega^2x^2/2$. Now calculate the first order correction $|0^{(1)}\rangle$ to the ground state ket $|0\rangle$ and use it to determine the ground state expectation value $\langle x \rangle$. Show that your result agrees with the exact calculation to first order.

(2) The matrix representation of some Hamiltonian H is

$$H \doteq \begin{bmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{bmatrix} + \begin{bmatrix} 0 & V & 0 \\ V & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Assuming that E_1 , E_2 , and E_3 are all positive and that $V \ll E_i$ for all E_i ,

- (a) Calculate the exact energy eigenvalues and eigenvectors, and expand to second order in V . What other tacit assumption do you need to make?
- (b) Find the eigenvalues through second order and their eigenvectors to first order using perturbation theory with $E_1 > E_2 \neq E_3$ and $E_1 \neq E_3$. Compare to the exact values.
- (c) Repeat for $E_1 = E_2 \equiv E_0 \neq E_3$. (Just find the eigenvalues, not the eigenvectors.)

(3) A mass m is attached to the end of a massless rigid rod of length a . The other end of the rod is fixed at the origin. The rod rotates in a plane about the origin.

- (a) Find the Hamiltonian and solve the Schrödinger equation in plane polar coordinates (ρ, ϕ) to find the normalized wave functions and their energy eigenvalues.
- (b) Add a perturbation $V(\phi) = V_0 \cos(2\phi)$ and calculate the first order energy shifts in the three lowest energy levels. Be mindful of degeneracies.
- (c) Calculate the second order energy shift of the ground state.

(4) A two-dimensional isotropic harmonic oscillator has potential energy $m\omega^2(x^2 + y^2)/2$.

- (a) Find the energies and degeneracies of the three states with the lowest energies.
- (b) Apply a perturbation $V(x, y) = \varepsilon m\omega^2 xy$, where $\varepsilon \ll 1$, and calculate the first order energy shifts to the three states in (a).
- (c) Solve the problem exactly and compare to the results obtained above.

(5) *This problem is based on material from last semester, and is a “warm up exercise” for what we’ll cover next week.* An atom in an electron has orbital angular momentum \vec{L} and spin angular momentum \vec{S} , which couple to form $\vec{J} = \vec{L} + \vec{S}$.

- (a) Show that \vec{J} obeys the correct angular momentum commutation relations.
- (b) Show that \vec{J}^2 commutes with \vec{L}^2 and \vec{S}^2 .
- (c) Show that \vec{J}^2 does not commute with L_z or S_z .