

PHYS4702 Intro Quantum Mechanics II HW#2 Due 10 Sep 2024

This homework assignment is due at the start of class on the date shown. Please submit a PDF of your solutions to the Canvas page for the course.

(1) The quaternions i , j , and k are defined as $i^2 = j^2 = k^2 = -1$ and $ijk = -1$. Show that

- (a) $ijk = kij = jki$
- (b) $ij = k$, $ki = j$, and $jk = i$
- (c) $ik = -ki$

(2) Use quaternions as $SU(2)$ matrices to rotate a 3D vector of length a in the z -direction about the x -axis by an angle ϕ , and explain why you get the answer you expected.

(3) Prove that (quantum mechanically) $\vec{L} \cdot \vec{M} = 0$ where the Runge-Lenz vector \vec{M} is defined in Problem (5) of HW #1. (Hint: You can show that the two terms in \vec{M} each give zero for the inner product.)

(4) This problem concerns the vector operators $\vec{N} \equiv (-m/2E)^{1/2} \vec{M}$, $\vec{I} = (\vec{L} + \vec{N})/2$, and $\vec{K} = (\vec{L} - \vec{N})/2$ that we defined in class.

- (a) Inventing a fourth spatial dimension and writing $N_i = r_i p_4 - r_4 p_i$, prove that \vec{N} has the same commutation relations with \vec{L} that we derived in class, that is $[N_i, L_j] = i\hbar\epsilon_{ijk}N_k$ and $[N_i, N_j] = i\hbar\epsilon_{ijk}L_k$.
- (b) Show that \vec{I} and \vec{K} satisfy the usual angular momentum commutation relations as two independent operators, that is $[I_i, I_j] = i\hbar\epsilon_{ijk}I_k$, $[K_i, K_j] = i\hbar\epsilon_{ijk}K_k$, and $[I_i, K_j] = 0$.

(5) The isotropic harmonic oscillator in 2D has the Hamiltonian

$$H = \frac{1}{2m}\vec{p}^2 + \frac{1}{2}m\omega^2\vec{r}^2 = \frac{1}{2m}(p_x^2 + p_y^2) + \frac{1}{2}m\omega^2(x^2 + y^2)$$

Write this in terms of the annihilation and creation operators a_x , a_x^\dagger , a_y , and a_y^\dagger . Define the operators $K_+ = \hbar(a_x^\dagger a_y + a_y^\dagger a_x)$, $K_- = i\hbar(a_x^\dagger a_y - a_y^\dagger a_x)$, and $K_0 = \hbar(a_x^\dagger a_x - a_y^\dagger a_y)$. Then

- (a) Show that K_\pm and K_0 are Hermitian and find their commutators with the Hamiltonian.
- (b) Show that the commutators of K_\pm and K_0 with each other are the algebra of $SU(2)$.
- (c) In the (two-dimensional) subspace of states with $E = 2\hbar\omega$ find the matrix representations of K_\pm and K_0 . What are these matrices? (You've seen them before.)