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1. INTRODUCTION

HIS paper presents, from an elementary point of
view, a uni6ed picture of the relativistic single

particle wave mechanics for both spin 0 boson and the
spin ~~A fermion. Most of the results obtained are well
known, but in discussion with many of our colleagues
we have found that there is considerable confusion about
some aspects of relativistic wave mechanics, which
arises mainly in connection with the physical interpre-
tation of the formalism. Textbooks and most papers
generally content themselves with reproducing the
formal mathematical apparatus. Notable exceptions are
the papers by Heitler, ' Kemmer, ' and Sakata and

Taketani on bosons' and by Foldy and Wouthuysen4 on
fermions. However, as far as we know, a systematic
analysis of the similarities and di8erences between the
theory of the boson and that of the fermion has never
been given.

This paper is then frankly pedagogical in nature.
The single particle equations discussed are the Klein-
Gordon equation for spin 0, and the Dirac equation for
spin —,'A. Greatest emphasis is placed on questions of
interpretation. For example, although it is well known
that the Dirac equation gives, within proper limits, a
relativistic wave-mechanical description of a single
electron, we find in the literature the (incorrect!) stater
ment that an analogous formalism does not exist fo-
charged spin zero particles. Another set of questions
deals with the relativistic description of neutral particles
and more generally of charge rnultiplets (e.g. , the s.
meson). Finally there is the very important question of
the relation of one particle relativistic wave mechanics
to the more general and powerful quantum Geld
formalism.

In all these instances it is essential to restate the wave
equation in such a manner as to make the physical
interpretation most transparent. The most signi6cant
element in such an interpretation is the de6nition of a
"single particle" in terms of its wave function. For both
wave equations it is possible to obtain two independent
solutions, one of which has the total charge +e, the
other —e, and these solutions are taken to represent a
single particle of the corresponding charge. However,
the wave equation must be so formulated as to make this
separation into solutions for positive and negative
charge an obvious one, as is, for example, not the case
in the customary statement of the Klein-Gordon equa-
tion using a single complex wave function. In this case
it is best to make the charge degree of freedom more
visible by using a two-component wave function. The
corresponding wave equation is no longer obviously co-
variant for, as might be expected, interpretative discus-
sion is most easily made when time and space coordi-
nates are distinguished.

We use the spin 0 case rather than the spin 2 case to
develop most of our methods principally because this
case does not involve any sects of spin and is thus
much simpler. The relativistic and spin eGects may be

3 Sakata and Taketani, Proc. Phys. Math. Soc. Japan 22, 757
(1940).

4 L. L. Foldy and S. A. Kouthuysen, Phys. Rev. 78, 29 (1950).
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clearly distinguished by then comparing the spin zero
and spin —', cases. This order of development impresses
on the reader the basic similarity of the two cases and
the identical nature of the limitations imposed on the
one particle description.

The discussion of the wave mechanics of spin 0 par-
ticles is given in Sec. 2. Section 3 deals with the spin —,

case. The discussion in each follows parallel routes to
emphasize similarities. In both, the relativistic equa-
tions are derived as generalizations of corresponding
nonrelativistic equation. This generalization is trivial
for the spin 0 case, but for the spin —,

' case leads to a
novel derivation of the Dirac equation. Once the equa-
tions are obtained, a Hamiltonian formulation is made
to give the physical interpretation of the equations. In
each case the relativistic generalization results in adding
an additional degree of freedom to the nonrelativistic
description. This degree of freedom is found to be the
electric charge. Associated phenomena such as the non-
localizability of a particle, "Zitterbewegung" and their
relation to the so-called relativistic corrections (e.g.,
the Darwin term) are discussed. In Sec. 4, the field
theoretic interpretation, in which the wave equations
give the equations of motion for field operators is con-
nected with the particle interpretation of Sec. 2 and
Sec. 3. In particular, the vacuum and one particle state
is carefully defined. The wave functions of the single
particle theory turn out to be matrix elements between
the vacuum and one particle state. With this back-
ground, it is then possible to discuss the theory of the
neutral particle and, in particular, the Majorana abbre-
viation and to formulate the theory of the isotopic spin
one particle. Although we have considered only spin 0
and spin —', particles, the methods we have used could be
employed to discuss the Proca equation for spin 1.

The coordinates x& will as usual be x, y, s, as k goes
from one to three, x4= ict, while xo= ct. Ke also use the
symbol x to represent a vector whose components
are xi,. Four vectors generally will be indicated by a
Greek subscript, e.g., x„=(x~,x4). Similar notation is
used for the momentum and electromagnetic potentials,
A~= (A,A„,A,), A4=+, Ao=&p, where A~ is the vector
potential and p, the scalar.

2. WAVE MECHANICS OF CHARGED
SPIN ZERO PARTICLES

A. The Klein-Gordon Equation'

Our general procedure for obtaining the proper rela-
tivistic equation describing a particle of a given spin
will be to seek the appropriate generalization of the
nonrelativistic equation. For the spin zero particle, the

~ The previously mentioned papers by Heitler, Kemmer, and
Sakata and Taketani were particularly useful here. The Klein-
Gordon equation was proposed by a number of authors: O. Klein,
Z. Physik 37, 895 (1926); V. Fock, Z. Physik 38, 242 (1926) and
39, 226 (1926);J. Kudar, Ann. phys. 81, 632 (1926); W. Gordon,
Z. Physik 40, 117 (1926); and Th. deDonder and H. vanDungen,
Compt. rend. (July, 1926).

nonrelativistic equation for a spin zero particle is the
Schroedinger equation,

1 AB e ' (hB—A~ 1l'=I —.—W IO (2 1)
~-i 2m. i ax, c & i at

where f is the Schroedinger wave function and Aq and

p are the vector and scalar potential for the electro-
magnetic field. This equation is obtained from the non-
relativistic Hamiltonian describing the interaction be-
tween a charged particle and the electromagnetic field,

H (p,r) = 1/2m p (pq —(e/c)A~)'+ & (2.2)

by the well-known substitutions derived, for example,
by transformation theory from the commutation rela-
tions between p and r,

pp~(A/i) (8/&xi), H~ki(8/Bt) . (2.3)

To obtain the relativistic generalization of (2.1) we
need only write the relativistic energy-momentum rela-
tion and make substitutions (2.3). We replace (2.2) by

4 ( e
p I p„—-A„

l
+(mc)'=0,

c
where

p„= (p„p4), p4 ——(i/c)H,

A„= (Ap, A4), A4=&.

(2.4)

(2.5)

where

and

Q„Bj„/Bx„=0,

j„=const'*D„rP —(Dt„f*)fj,
D'„=8/8x„+ (ie/ch)A„

(2 g)

(2.9)

Equation (2.6) is known as the Klein-Gordon equa-
tion. When originally presented, various objections
were raised to its use as a particle equation. Firstly,
the equation of motion (2.6) involved second as well as
first time derivatives. Secondly, the density jo is not
positive definite; hence, j„ is not a particle current
density. These two apparent difhculties are not uncon-
nected. The presence of the second time derivative indi-
cates that P has two degrees of freedom rather than the
single degree of freedom of the Schroedinger equation
(2.1). Pauli and Weisskopf~ showed that there is no
difBculty of interpretation if the Klein-Gordon equation
is regarded as the equation of motion of a field and
quantized in the usual fashion. They demonstrated that

' W. Pauli and V. F. Weisskopf, Helv. Phys. Acta 1, 709 (1934).

On inserting substitutions (2.3) (note p4-+(5/i) (8/Bx4))
in (2.4) we obtain

Q„~D„' ~'+=0, — (2.6)
where

D„=8/Bx„—(ie/Ac) A „and z = mc/A (2.'I).
From (2.6) a current four-vector j„may be obtained

which satisfies the continuity equation,
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the two degrees of freedom of tt correspond to two
diferent possible charge states. The current given by
(2.9) is then not the particle current but rather the
charge current; the fourth component is the charge
density. It is clear that the charge density measures the
diBerence between the number of positive and the
number of negative particles and in consequence will

not be positive-definite. However, it is still possible in
the one particle situation that the density is either
positive or negative definite depending on the sign of
the charge and thus permit a single particle interpreta-
tion of the Klein-Gordon equation. This turns out to be
the case. It is characteristic of all the relativistic
generalizations of particle equations of motion that they
will involve both signs of the charge, although the
original nonrelativistic equation described only a charge
of a given sign.

One of the purposes of the discussion here is to show
that a particle interpretation of the Klein-Gordon
equation (2.6) is possible if the separation of the two
degrees of freedom is made explicit. We expect this form
of the equation to be linear in (B/Bt) and so permit the
determination of a Hamiltonian for the system.

H%' = ih (B+/Bt) (2.10)

To obtain this form it is necessary to resolve P into the
components representing the two degrees of freedom
implied by (2.6). The function%' is then a unicolumnar
matrix formed from these two components.

The obvious first step in such a development is to
introduce &P/Bt as an independent component. Let

f4= e'D4$. — (2.11)

Then the Klein-Gordon equation may be written in a
form equivalent to (2.6) as follows:

D4$+ A/4= 0,

Z» D»V eD44 A= 0— —(2.12)

These equations are already in the Hamiltonian form
(2.10), but the combination f and f4 does not prove to
be convenient because of the asymmetry of (2.12).
Accordingly, we introduce the linear combination,

0'= 1/~2(y+x),
f4= 1/~(y —x)

The equations for p and p are

(2.13)

B. A H~miltonian Form of the
Klein-Gordon Equation

We look for an appropriate%' such that 4 satisfies the
Hamiltonian form for the wave equation:

which may be written more explicitly as

ih(By/Bt) = (1/2m) (h/iV —eA/c)'(y+x)
+ (44+me') y,

ih(Bx/Bt) = —(1/2m) (h/iV e—A/c)'(y+x)
+ (erat

—mc') y. (2.15)

For greater compactness we introduce the two-com-
ponent wave function,

Ex)

together with the associated Pauli matrices,

)0 1~ p 0 1p
71 j 172=

E1 0)
' &-1 oj

'

(2.16)

t'1 Oi

&0 -1) '
)1 Oq

1=
Eo 1J

(2.17)

p=p p X X=+ &3+ (2.19)

j=h/24m[%'*r4(r4+zr2) V%—(V%' )r»(r»+zr2)4 j
—(e/mc)A+ r»(r»+ir»)4 (2.20).

The advantages of using the particular combination
p and p are: First, the density p appears as the diGerence
of two positive definite densities as one would expect in
a theory simultaneously describing particles of both
signs of charge. Secondly, when p and p are used as
components of the wave function, the fundamental
charge symmetry of the relativistic formalism becomes
apparent. This is most easily seen from looking at the
complex conjugate to (2.15):

Bx* 1 (h
]

—&+-~
) (y*+x*)

Bt 2mli c )
+ (mc' —&)x~,

(2.15a)
By* 1 t'h e

-~ —.&+-A
I

(y*+x')
Bt 2m(i c ) —(mc'+ &)y*,

which shows that, if
(v)
Eyj

satisfies the equation

H(e)% = ih(B+/Bt),

there exists a "charge conjugate" wave function

The Hamiltonian in (2.10) is now seen to be

H = (r»+ir») (1/2m) (p eA/c)4+—mc»r»+e4tp. (2.18)

Similarly the current j„may be re-expressed in terms of
4 and O'*. From (2.8), inserting (2.11) and placing the
multiplicative constant equal to ic, we obtain

D4y= (1/2e) Z~ D'(y+X) «—
D4x= —(1/2e) 2» D»'(y+x)+ m

(2.14) (2.21)
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which satisfies the equation H( —e)+.= ih({l+./&&).

H( e) —differs from H(e) by a change of sign of the
electric charge. Notice that if 4 is a positive energy
eigenstate of H(e), the associated%'. is a negative energy
eigenstate of H( e), a—nd vice versa. We see also that

and
p, =0',*7.g%', = —p,

jc=j

(2.22)

(2.23)

j does not change sign because, according to Eq. (2.21),
0', describes a system in which all momenta7 are re-
versed in addition. The important point now is that, in
the limit of e—4, the charge conjugate solution 0' is also
a solution of (2.15) so that its two independent solutions
are 4 and O'.. Moreover, we see from (2.9) and (2.22)
that, if 0 is normalized so that the charge,

f
4*7-3+d'x =~1,

J
(2.24a)

the normalization for the charge conjugate solution is of
opposite sign, vis. ,

({oo(p) l
&i/0 l'p. x—It)

(p)ei//{{P z Ei)—
into the Schroedinger equation (2.15) and obtain

(E™)v/o= (p'/2m) ({/oo+xo),

(E+mc') xo = —(p'/2m) ({o+xo).

There are two possible values for E,

(2.25)

being a polarization density induced by the external
electromagnetic field. The necessity of introducing a
field-dependent definition of vacuum is responsible for
the general inseparability of the system (2.15) into an
equation for positive and an equation for negative
charge.

C. Free-Particle Solutions

Before discussing the physical content of the above
development in more detail, it will be useful to have
available the free-particle solutions of the Schroedinger
equation with Hamiltonian of (2.18) (A„=O). We insert

(2.24b) E=WE, ; E,= L(cp)'+ (mc')'7&

The associated solutions are

(2.26)

Hence for the no field case there is a one-to-one corre-
spondence between the "positive" and "negative" solu-
tions of the wave equation (2.15), the positive solution,
normalized to +1 describing a positive charge, the
negative a negative charge. This correspondence must
survive if an electromagnetic field is introduced.

The main clarification achieved so far is the insight
that the increase of the "degrees of freedom" connected
with the appearance of a second-order time derivative
in the Klein-Gordon equation corresponds to the simul-
taneous description of a particle of either positive or
negative charge; i.e., the value of the charge becomes a
degree of freedom of the system. The solution describing
a particle of positive charge may be normalized to +1;
the charge conjugate solution will automatically be
normalized to (—1) and thus describe a negative charge.

We may well ask whether there is a relativistic equa-
tion describing just one sign of the charge. For free
particles it is possible to transform (2.15) into a form in
which 3Izo uncoupled equations appear, one having posi-
tive, the other negative solutions only. But as soon as
an electromagnetic field is present, this transformation
is no longer possible. We discuss in Sec. 4 the physical
reason for this and find it in the "polarizability of the
vacuum. " The charge density p (2.20) is, in fact, the
actual minus the vacuum charge density, the latter

' For a detailed demonstration use the free-particle solutions
of Sec. 2C, Eqs. (2.25) and (2.27).

'This terminology is an abbreviation for the solutions with
positive and negative normalizations. En the future the phrases
positive and negative charge solutions and positive and negative
solutions will be employed interchangeably.

E=E„

E= —E„

E„+mc'
~p(+)—

2(mc'E )&

+0 Xp
mc' —E„

2 (mc'E„)&.

nzc' —E„
2(mc'E„) &

'q 0' —Xo'= —&.
E„+@ac'

2 (mc'E~) &.

(2.27)

As expected, the "negative" solution (E= E„) is the-
solution charge conjugate to the "positive" solution
(E=E„) so that if the positive solution represents a
particle of positive charge the (—) solution represents
one of negative charge. In the nonrelativistic limit
{oo'+ 1, go+' (p/mc)'. The same holds for go{ & and
pp( ). We also observe the orthogonality relations,

'Po'+'(p)r8'o' '(p) =0='Po' '(p)ro'Po'+'(p) (2 28)

However, 4'0(+) and 4'0( ) are not eigenvectors of the
operator v 3.

The nonrelativistic limit of (2.15) is of interest. For
weak external fields and nonrelativistic velocities g will
be negligible compared to y, since the ratio is of order
(v/c)o. Dropping the small component g in (2.15) and
eliminating the mc' term by putting y(x, t) = rpNR
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Xexp(imc't/ft) yields the usual nonrelativistic Schroed-
inger equation for a +e charge,

8+MR 1
ih = [(h/i) V —(e/c) A j'q tr tt++ q ~~ .(2.29)

Bt 2m

An analogous equation for (q,)~& may be obtained,
only the sign of e is reversed.

D. Oyerators and Exyectation Values

The de6nition of the expectation value of an operator
0 is, as expected from the expression for the normaliza-
tion 4'~T3%, given by

Moreover, since the usual geometrical transformations
of inversion and rotation are independent of T;, it
follows that they are unitary as defined by (2.32)
and (2.34).

The Hamiltonian (2.18) is Hermitian, and, since

T3 —T3) T2 = TBT2T3= T2)

it follows that
(r3+ir2)'= r3+irg.

This result has many immediate consequences. The
time dependence of a wave function is as usual given by

@(t) —e-i' t Ie@(0)

(0)=
I

~%'*r30%'d'x. (2.30)

Since H is Hermitian, the transformation

e—'Ht(A

The principal justification of this definition lies in the
result derived below that it yields operator equations
of motion and other expectation values in complete
accord with the correspondence principle.

Definition (2.30) implies a particular definition of
Hermitivity and unitarity which differs from the non-
relativistic definitions. We define the Hermitian adjoint
0t of an operator 0 by the equation

)t +,*r30%'gPx= I (0%',)*rg%'gPx. (2.31)

0t=T 0T . (2.32)

An operator is Hermitian and will have real expectation
values if

0= Qt. (2.33)

This is not the usual definition of adjoint 0= (Qr)*;
i.e., transpose and complex conjugate used in non-
relativistic theory. The two are related by the equation,

is unitary. The time dependence of any operator is,
therefore, given by (2.34) as

It follows that

0(t)=e' ""0(0)e ' (2.36)

(dQ/dt) = (d/dt) (0). (2.38)

We now see that usual definition of "constant of mo-
tion" holds. The expectation value of an operator 0 is
a constant of the motion if 0 commutes with B.More-
over, any operator which leaves H invariant according
to (2.35) commutes with H. Hence, such operators as
those of rotation and reaction, orbital angular mo-
mentum and parity, respectively, will have expectation
values which are constants of the motion. Another
important result is that the expectation value of the
kinetic energy operator is positive de6nite since

dQ/dt=i/a[a, Q)=i/A[aQ —Qa]. (2.37)

By taking the expectation value of both sides of (2.37),
one obtains an important corollary,

Unitary operators are de6ned so as to preserve the
charge of the state. If Tg+i T2 p--A

2m' c&
then

I 4"r3%'d'x=
~

t(S4)*,r(Sk)d'x= t@*rgtSftd'x.

Hence, for unitarity

Sts= 1 or 8 '=St. (2.34)

From the requirement that matrix elements be pre-
served under transformation S, it follows that the trans-
formed operator 0' is

0'=S-~0S. (2.35)

This result is important since it indicates that the
behavior of operators under various transformations is
identical to that obtained in nonrelativistic theory.

1t ey'
= "4'*ra(ra+~r2)

I p
c )

1t' e

=~ (&*+~*)
I p—Aj(&+~)»&0.

2rptE c )
Hence the energies associated with the free-particle
solutions are positive and indeed equal to E„.

So far the discussion has in nearly every respect
paralleled the discussion for the nonrelativistic situa-
tion. The main diBerence is in the normalization condi-
tion and the corresponding change in the definition of
the Hermitian adjoint to an operator. The equations of
motion of operators and the significance of H as the
time displacement operator remain the same as in the
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nonrelativistic situation. However, there are important
dHFerences from the Schroedinger case beside the nor-
malization to &1 (see (2.26) and (2.27)).

Perhaps the most obvious diBerence between the two
descriptions is embodied in the quite diferent roles
played by the eigenvalues of a given operator. In
Schroedinger theory, the eigenvalues are the expectation
values of the operator for the corresponding eigenstates.
For the spin zero equation this is no longer true. For
example, the Hamiltonian H of (2.18) has, in the free-
particle case, eigenvalues of +E„,but expectation values
of E~ only. Moreover, this value of E„ is sharp in the
sense that the fluctuation vanishes. For the eigen-
states of B,

Hence,

H%„,.=E„.%„,. (o =a1, n=1, 2, .),
with the orthogonality relation

(2.40)

These states are complete since they form all the solu-
tions of the original Klein-Gordon equation.

We therefore may expand any state 0' representing a
particle with a given charge &1 in terms of 0

f
„a,%„„a„,=o ' d x%'~ *rk%' (2..41)

g
%*rk%d'z=Q L(a„,g)' —[a„, kf'7=&1, (2.42)

Pk
sk (rk+zr2) ~

fn
(2.39) depending on whether 0' is a positive or negative state.

The interpretation of this equation is as follows. The
integral ~a„, ~~ gives the relative amount of positive
charge which is spatially distributed according to eigen-
state 4'„~, while ~a„, ~~' gives the relative amount of
negative charge distributed according to state +„, ~. The
total amount of charge is &1.A similar description is
equally valid for the Hamiltonian operator:

The expectation value for a plane wave state is

= (pk/~) ~ q 0+xo~'=e'pk/E„
2

(H)= ~k*rkH@dkz=g oE„.~f4„,*rk%dkx .
ne

a not unexpected result. {A direct evaluation of the
expectation value of jk LEq. (2.20)7 gives the result
(jk)= (ek) for a plane wave, as it should. I On the other
hand, the eigenvalues of the operator eI, are zero since
(rk+irm) =0. This is not inconsistent with the result
obtained for the expectation value of e~ because the
eigenstates of e~ do not form a complete set contrary to
the usual experience in nonrelativistic theory where the
eigenstates of a Hermitian operator do generally form a
complete set. Another way of expressing this result is to
say that v& is not an observable in relativistic spin zero
theory, completeness of eigenstates being necessary for
application of statistical theory. In any event we see
from this example that eigenvalues in this theory no
longer have the direct physical significance they have
in nonrelativistic theory.

Another important di6erence from nonrelativistic
theory is in the statistical interpretation. To dis-
cuss it we need a complete set of states. These are pro-
vided by the eigenstates of the Hamiltonian, 0 „&+) and
0'„& ) where n numbers the eigenstates and the super-
script gives the positive or negative character of the
states, respectively, as in (2.27). For later convenience
we introduce the notation:

For suKciently weak interactions there will be a definite
sign of the energy associated with each value of 0 so
that oE„,= ~E„,

~
and

2

(H)=P ~E„,
~

~+„,*rk@dkz . (2.43)

This equation states that the expectation value for the
energy is the sum of the energies for each state e, charge
0. weighted by the amount of charge in each state. It is
clear that a similar interpretation will be possible for
any operator which commutes with II.

To summarize, it has been shown that the Klein-
Gordon equation admits of a single particle interpreta-
tion in which the particle necessarily possesses a charge
degree of freedom. To every solution with a given sign
of charge there is a corresponding charge conjugate
solution with the opposite sign Lsee (2.24)7 and both of
these solutions are needed to give a complete description
of possible solutions of the Klein-Gordon equation
representing a particle of a given sign of charge Lsee
(2.41)7. We a,iso fmd that it is possible to set up the
general transformation theory in which H has its usual
signi6cance of the infinitesimal time displacement oper-=@ (+) ~ @ =@ (-)

nother striking example is given by the velocity If we now ask for the no™~z~tionintegra, we obta'

operator. From (2.37) it follows that the canonical
equations of motion are valid as operator equations so
that for the free-particle case
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ator, (2.37) and in which parity andangular momentum

play their customary roles. Physically we expect this
description to break down if the external electromag-
netic fields are sufficiently strong so that pairs can be
produced and, of course, a single particle theory would
then be inadequate. This appears from the preceding
analysis in that it is not possible to make a clean
separation of positive and negative solutions if the ex-
ternal fields are too strong. Ke would like to emphasize,
however (proved in Sec. 4) that the eGects of virtual
pair production are completely taken into account.
Indeed, some of the eGects of these virtual processes
are revealed in the phenomenon of Zitterbewegung as
shown in the following section.

E. Free-Particle Representation

For a more detailed discussion of the interpretation
of the wave equation, particularly its nonrelativistic
limit, and also the connection with the formalism of
quantum field theory, it is more convenient to have the
wave equation in a representation in which the free
particle Hamiltonian is diagonal rather than (2.17), in
which the position operator x is diagonal. In such a
representation, the wave equation for a free particle
separates into two uncoupled equations, one describing
a particle of positive charge, the second a particle of
negative charge. If an external electromagnetic field

(A,p) is present, the equation will be shown not to
separate any more. In Sec. 4 we show that this coupling
between the two equations is an eGect of the polarization
of the vacuum.

Since the free particle Hamiltonian can only be
diagonal in momentum space, we first write Eq. (2.15)
in p space. We just have to make the replacements,

x—+ihV „,
h/iv-+p,

into (2.15) to have the transformed equation. The
transformed equation therefore reads

8%(p,t) [1 e
ih = p ——A(ihV ~) (rg+irm)

Bt 2m c

+mc'el+~(ihV, ) )4'(p, t). (2.44)

operator,

so that
exp( —«&.)f(p) =f(p —«), (2.46)

4(ih& )f(p) = 4'(«)f(p «)d—'q

or

4(i».)f(p) = C'(p —«)f(«)d'q,

(1' )0'
"(+&—

I

&0)
'

&1)
' (2.48)

in terms of which we may write

('(P, t) i
~(pt)=~

' I=-(+&+x.(-&.

'y(p, t) I
(2.49)

In the free-particle representation, we replace q and
y by the amplitudes I and e with respect to new basis
vectors%'o(+) and 4'0( ' as given in (2.27). That is, we
write, instead of (2.49),

+(P,t) =N(p, t)+o'+'(P)+'(P, t)+o' '(P). (2.5o)

The choice of this new basis is simply a "rotation" in
r space; both g'+' and 0'0'+~ form orthonormal sets and
are hence connected by a unitary transformation.

Now a comparison of (2.49) and (2.50), both being
expressions for the same two-component wave function
4'(p, t), leads to

(p) (yo(+) (Po()~ f"''
(yo(+& yo(&J Es)

fg'
=U~ ~=U%'*, (2.51)

Es)

a familiar result. The free-particle Hamiltonian is

Ho=(ra+ir2)(p/2m)+r3mc, (2.47)

and has (Sec. 2C) the eigenvalues ~E, and eigen-
vectors 4(+)(p), 4( '(p) given by (2.26).

The transformation to the free-particle representation
can now be made specific. I et us introduce the basis-
vectors

4()= ""*'~(a)d'q. (2.45)

The operator $(ihV„) is most easily defined in terms
of its Fourier transform C(«) where is the wave function in the free particle representation. '

Hence, the transformation U which connects with the
transformed 4* is given by a matrix whose columns are
the eigenvectors 4'0(+&(p). By (2.27),

Then
r 1 (E'+mc' mc' E~)—

y(ihV, )=)' exp —(«V„)C(«)d'q.

9 Throughout this paper we use the + to indicate operators
Moreover, from the properties of the exponential and states in the free-particle representation.
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or Ov
h—'= E—, (p,t)+ d'qe4 (p q)—

U= [1/2(mc'E~)& j[(E„+mc') »—(Ev mc—') j, (2.52a)

and

U '= Ll/2(mc'E)&]
X[(E„+mc')+r~(Ev—mc')]. (2.52b)

It is obvious that
SIC e+~"d'V, ——q A(p —q)

2(E+,) & mc

E„+E
X v(q, t)+ u(q, t)

~2(EvEa)' 2(E.Ea)'

U '(p) H p(P) U(p) = rgE„. (2.53)

Inserting q = U%'* into wave equation (2.44) we obtain
the equation for 0+,

8'0+
ih =~3E„+*

+U-'(p) —$p—A(ihV, )+A(ihv ) pg
I mc

A'(i hv, )+~(ihv, )
e'

2tÃc

X U(P)q*(p) =0. (2.54)

The last term in this equation is easily written in a more
explicit fashion by using the two steps illustrated in
(2.45) and (2.46). Using the notation,

4(q), A(q), A'(q),

for the Fourier transform of the corresponding space
functions, we obtain terms of type

eU '(P)J
"d'q4 (p q) U(V)+'(q)—

Now U '(p)U(p) =1 but

+ A'(y —q) (u+v). (2.55b)
28$C

We now investigate the consequences of these equa-
tions in the weak field (i.e., fields with small high mo-
mentum Fourier amplitudes) limit. Such weak fields
couple I and v only very weakly so that a useful ap-
proximation is obtained, say for the positive solution,
by dropping v in the equation for N.

F. Discussion of Weak Field Limit

We discuss separately the eGect of an electric and a
magnetic field.

(1) We consider a weak electric field, e.g. , that given
by a light nucleus (Z«137). Equation (2.55) for u
becomes

8%
ih =Evu—+) d'q&(p —q)

at

- E +E
u(q)+ v(q) . (2.56)

-2(EAC)' 2(ERC)'

In the equation for v we may write approximately

p g2
v I d'q~(p —q) u(q), (2.57)

E+E„& (2mc')'

E+E E E-
U '( )U(V)= +»

2(EvE,) & 2(E+,) &

Using this and similar relations, (2.54) reads, in detail,

8N
ih =E„u(p,t)+ I—d'q+(p —q)

Bt

where we have replaced ihB/8t by Ev. Inserting this
result into (2.56), the correction to u from coupling to
v is quadratic in the electrostatic potential. Hence in
case the field is su%ciently weak, it is negligible com-
pared to the u term on the right-hand side of (2.56). For
example, for the case of a Coulomb field g (x) =Ze/r and
using the exact nonrelativistic solution on the right-
hand side of (2.57) we find

E+E E~—E~
u(q, t)+ v(q, t) ~

2(E+,)& 2( ,E)E&

81C e
+)fd'q ——q. A(p —q)

2(EvE,)& mc

1 (Ze'p '
v/u=i

g&r )

so that for small enough Z we may drop v entirely in
(2.56). Dropping v, we get, from (2.55),

1+ A'(p —q) (u+v), (2.55a)2''
BQ f' E+E

ih =E,u+ I d'q~(y——q) u(q). (2.58)
2(E+ )t
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In this form, and expansion of E„and E„
E„=mc'+ (p'/2m) —(p4/8mici)

833 P t' P
ih =—

i
1— ~33+ "d'q&(p q)N(q—)

Bt 2m ( 4m'c')

The only (w/c)3 correction is the relativistic increase
ln mass.

(2) Zeeman effect of a s-mesic atom. A weak mag-
netic field adds to (2.56) the coupling term

e
d'g q A(p —q)N(q)

mc & (E,E,)&
slc

where we use a gauge in which divA=O, or (p—q)
A(p —q) =0.

For a homogeneous magnetic field we have from,
A(x) =-'3(HXr),

ih
A(p —q) =—HX&.&(y—q).

2

The coupling term then becomes

—(e/2mc) (mc'/E )8 (ihw „Xp)it(p),

gives the corrections to the low energy limit. For
charged scalar particles the first relativistic correc-
tions to the Coulomb potential are of order (p/mc)';
in sharp contrast to the spin —,

' case, where they appear
in (p/mc)' (spin-orbit and Darwin terms). Hence, in our
case, to order (s/c)3, the equation for a spin 0 particle
of given charge reads simply (after taking out the time
dependence associated with the rest mass),

that the position operator is not an even operator.
He(p) = (ri+iri) (p /2m)+ rime' is an example of purely
even operator, since

&o(P)P3'+'(P) =~E q'o'+'(P)

and ~~ is an example of an odd operator, since

rglI/3(+' (P) =@3(w) (P),

as one can easily verify.
Any operator may be decomposed uniquely into an

even and an odd part; in particular,

x= ihV~= x(+&+x(—&.

Vfe obtain now this decomposition of x. The discussion
of the position operator is best carried out in mo-
mentum space, due to the close connection of evenness
or oddness with the free-particle representation. Since
in this representation, positive and negative states are
of type

(N(p)~ ( o )
0 ) 43)(p))

respectively, an even operator 0(+' must, in this repre-
sentation, be a diagonal matrix,

( 0 o)3)

whereas, an odd operator 0( ' must be nondiagonal

or
—(e/2mc) (mc'/E, )H LN (p).

(a*) - =~
(tdii 0 )

Therefore, the magnetic moment operator p is

p= (e/2mc) (mc'/E„)L.

The relativistic effects, therefore, reduce the Zeeman
splitting in the x-mesic atom.

G. The Zitterbewegung

The discussion in this section provides a better under-
standing of the origin of the correction terms to the
Coulomb interaction in (2.56). We had already ob-
served that the positive states alone do not satisfy a
completeness relation. The narrowest packet that can
be built up of positive states alone has a width of order
ft/mc. To construct a h function, negative and positive
states must contribute with equal weight.

It follows that eigenstates of the position operator x
[that is, 6 function 8(x—xo)7 necessarily contain posi-
tive and negative components. Defining even (odd)
operators as having nonzero matrix elements only be-
tween states of equal (opposite) charge, " it follows

'oAn equivalent definition is: Even operators are diagonal
matrices in the free-particle representation; odd operators are
completely nondiagonal.

x+= ikV p+ U '(p) [ikV „,U-(p)]
= 373 (V~—C'y/2E„'r 3), (2.61)

as may be found with (2.52).
The important result is that in the free particle

representation tAV„ is the even part of x*, an oper-
ator, for which the name of mean position operator has
been proposed. 4 The time derivative of the mean posi-
tion operator defines the mean velocity. For a free
particle we have

d t
(x4) (+)—L+34 (x4) &+)]

dt

t BE~
[T3Ey)3AV y] —r3

))3 c)p

= ric'P/E„. (2.62)

It is easy to write the position operator in this repre-
sentation. We have

x*= (i7iv „)*=U '(p) (ihv „)U(p), (2.60)

the matrix U being given by (2.52). Now (2.60) may
be rewritten as
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This latter property justifies the terminology since the
time derivative of (x*)&+' gives the correct value of the
steady motion of the particle.

If we Fourier transform the wave equation in the free-
particle representation back into x space, we get a
space-time description in terms of the mean position of
the particle. The odd part (x*)& ' is clearly an integral
operator in x space,

(x*)' &4'—*(x,t) = )l d'x'X&-&(x x—)@*(x',)t

The integrations may be performed, giving

1 (mc)'1d ( A —Bl
+(xolx) =

4&r (h J sds( —A B&—

(&r) l l&(s) ir& ICi&4(s)
A (s) = —

I

—
I +, (2.66)

E 2 J s& 4I'(-,') s"4

irt21 E'&&4(s) mc
B(s)= S=—X—Xo

I'(') s& h

The kernel X' '(x—x') is given by

ikey p p
X&-&(x—x') = —

I d'p
2 (2xh)' " p'+ (mc)'

2p
Xexp —(x—x'),

or

expL —(mc/h) I
x x'

I ]
X& &(x—x')= ——V.

2 4&rlx —x'I
(2.63)

is an integral operator with the kernel,

X'+&(x—x') =xb(x —x')

From (2.52), (x+) & & = x& &, so in the original x represen-
tation the mean position operator

x&+'=x—x( '

Compare this result to the eigenfunction of x, h(x —xo).
The most noteworthy change is that the eigenfunction
for x(+) is not localized, i.e., it has a value difFerent from
zero for points where x/xo. This extension in space
covers a radius of the order of h/mc since for large values
of s, A e '/s'", B e '/s'". In other words, the eigen-
states of the mean position operator are packets of
width h/mc. These are the narrowest possible packets,
whose space time development follows the nonrela-
tivistic pattern: A propagation with group velocity
v, =(pc/E, )A„, resulting from a displacement of the
interference maximum of the various positive Fourier
components.

Any sharper localization of a packet brings in nega-
tive components, and with this a new element into
the space-time behavior: the Schroedinger "Zitter-
bewegung" (trembling motion). Indeed, since positive
and negative parts have a time dependence given by

exp (WEE„t/h),

expl —(mc/h) I
x—x'

I ]+—V
4 lx —*'I

(2.64)

It is of interest to construct the eigenfitncti&&n of x&+&

in the x representation. "This is easiest again in the free-
particle representation, where (x*)&+' is i7iV~, so that
an eigenfunction with eigenvalue xo of (x~) &+' has the
form at the time t= 0, the Fourier amplitude:

(1q
+*(xol p) =exp(i/hy'xo)

I I
&o)

We transform this into the x representation

+(»Ix) = 1/(2xh)' ' d'P eel:i/hf (xe—«)]U(p) I

(11
&. o)

d'p expf i/hp (xo—x)]
(2&rh)' ~

((E,+mc')/2(mc'E, )~
yx I I. (2.65)

& (mc' E„)/2(mc'E )&]—

respectively, the density p=%'*7-pI contains now inter-
ference terms which shift the charge around with a fre-
quency of, at least, 2mc'/h. This trembling motion is
excited whenever the particle is subject to a field of force
whose potential varies significantly over a distance of
order &&t/mc; the Coulomb potential near a nucleus is
an example.

Although we are going to discuss this efFect quantita-
tively, we may well pursue the sketch a little further.
A positive packet, subject to such a field, will in first
approximation feel the average (taken over a distance
h/mc) effect of that Geld. The excitation of negative
components appears in next order. As already men-
tioned, the appearance of these components is best
viewed as a polarization efFect and is discussed as such
later. As a virtual process (which might be called
"virtual Zitterbewegung"), negative components also
modify the coupling of the positive amplitude with the
field. This latter process gives correction terms of order
(p/mc)' for the spin zero particle, and term of order
(p/mc)' for spin ~i particles.

For a more quantitative discussion, we first state
again that each operator Q(x) (for instance, an external
field) appears in the free-particle representation as"T.D. Newton and E. P. Wigner, Revs. Modern Phys. 21,

400 (1949). 0*=U-'(y) 0(ihV, ) U(p),
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which in turn may be written

Q*=Q(U 'i&&&V~U) =Q(x*).

We may then use (2.61) and obtain

(2.67)

We investigate only the lowest order real and virtual
effects of the x& ) operator. In this case we may write

x& & = ( ik/2—) (r,) (p/m'c'),

so that the commutator,

[x;&+&,zg& &5=-,'r&(&&t/mc)'8;p,

commutes with both x'+& and x' ~. For such a pair, the
following identity holds:

a+b —&aeby-)[a, b)

Applying this result to the exponential in the equation
for p* we obtain

71
d'q@(q) exp( —q V~) exp (q'+2p. q) .

4m'c'

The last term contains real and virtual e6ects of the
Zitterbewegung. Expansion of the exponential gives

( (2p q —q')'l
d'qy(q)~ 1+

~
exp( —q V,)

32(mc)'

2p q
—

g
+»~ d'q4'(q) %&(—O'Vn)+ ' '.

4m'c'

If therefore p* operates on the wave function%'*(p), we
obtain, using (2.46) and dropping the r& term,

(2p q —q')'
4 p*(p) = d'q4 (q) 1+ + q'*(p —q)

32m ~

(P' q')'—
= ~d'q4(p —q) 1+ +*(q)+

32m4c'

in complete agreement with previous results (2.56).

Q*=Q[ihV „—(ik/2) r&(c'p/E~') 5 . (2.68)

In particular, we apply (2.68) to the case of an electro-
static potential

d (i&&tV,)= )td'qp(q) exp( —q V„).

By (2.68), the corresponding operator in the free-par-
ticle representation is

ii't c'p )
y+=y( iaV, —r,

2 Z'& (, c'u )
d3q@(q) exp —q.

(
V„2r&—-

3. WAVE MECHANICS OF CHARGED SPIN $
PARTICLES—THE DIRAC EQVATION"

This formalism is so well known that a word of ex-
planation is in order. First we derive the Dirac equation
as the unique generalization of the nonrelativistic Pauli
equations. This seems to us a more satisfying procedure
than the customary Dirac factorization. Secondly, we
emphasize the parallels to the structure of the spin zero
case discussed in the preceding section. However the
derivation presented below is a digression both in spirit
and content from the main purposes of this paper so
that in a first reading Secs. A, 8, and C may be omitted.

Let us first consider the derivation of the Dirac
equation. Ke start from the nonrelativistic situation in
which the wave function, y, has two components corre-
sponding to the two independent orientations of the
spin and satisfies the Pauli equation, "

By 1 t' e q' eh
ih =—

~
p —-A ~+~y-

Bt 2m( c 2mc
o"Hy, (3.1)

where e are the usual Pauli spin operators. This should
be contrasted with the spin zero case where the non-
relativistic one particle equation requires only a single
component wave function and where, as a consequence,
the relativistic generalization is relatively easy (see
(2.6)). Here we need to generalize the concept of spin
and of spin space. We find that once this is done it
is easier to continue the discussion in spin space and ask
for covariant equations in that space. It turns out that
there is only one (apart from those which are connected
to this one by a canonical transformation) and that its
nonrelativistic limit is (3.1).

A. Dirac Matrices'4

We start with the nonrelativistic result that the
Pauli-spin operators are proportional to the infinitesimal
rotation operator I in spin space

(3.2)

where e are the usual Hermitian Pauli-spin operators.
That is under a spatial rotation of angle ~ the nonrela-
tivistic Schroedinger wave function &&t transforms to P'
as follows:

p= exp[ i(L+ ', e—) co]f',- (3.3)

where L is the orbital angular momentum in units of h:
L= 1/&&t(xXp).

From the point of view of the Lorentz transformation,
the rotation operator I is a pseudovector constructed

"P.A. M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928).
The Dirac equation is discussed in many books and monographs,
for example, by W. Pauli in the Handbag der Physik, H. Geiger
and K. Scheel, editors (Verlag Julius Springer, Berlin, 1933),
second edition, Vol. 24, Part I.

"W. Pauli, Z. Physik 43, 601 (1927).
'4 The algebra of the Dirac matrices is discussed by W. Pauli,

Ann. inst. Henri Poincarh 6, 109 (1936); R. H. Good, Jr., Revs.
Modern Phys. 27, 187 (1955).
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from the spatial components of an antisymmetric tensor
of second rank, I„„.Turning to e we see that there must
be a tensor P„.for which a forms just the spatial part.
Therefore,

a velocity v in the 1 direction we have

I0'1 = O'1)

os'= (1 v—/c ) &/os+i(v/c)as7,

o s'= (1—v'/c') —
&Los—s (v/c) as7.

(3.9)

gatv

23) 31) 12 ~

To complete P„„we introduce the vector operator n:

We now require that in the new system relations (3.5)
still hold. Then from o-2'o-3'= io 1'= io-1, we have

z(1 'v /c )ol sol+s(v/c) (o'sns aso'2)+ (v /c )nsns.

Equating the coefficients of each power of v/c on both
sides of this equation we obtain

(3.4)14) 24) 34 ~

We note here that Q„„F„„(F„„=electricand magnetic
field intensities) forms an invariant, which is the correct
generalization of the cr H interaction in the Pauli
equation.

The properties of e can be completely determined
from the Lorentz transformation connecting the prop-
erties of e in one Lorentz frame with the properties of
e and 0; in another frame.

The defining properties of e are

O 3Q3 = tX20 2)

and
(3.10)O1= A&30!2.

These relatiorss hold for all cyclic permutatiosss of the

irtdices as will be true of the relatiosss obtainedimmediately
below. Similarly from (os')s = 1 we find

(3.11)
(3.5a)

(3.12)~~3+~3~2= o.
o los &sos sos (3.5b)

(and cyclic permutations).
We now have a sufBcient number of relations to deter-
mine the commutation rules of eg, with e and e. For
example, from (3.10), and (3.12) we havePassing to a rotated coordinate system, the components

of a transform like a space (pseudo)-vector. If the
properties (3.5) of a are stated in the covariant form

(asas)as+as(asas) =0.

A1Q3R3 +0!30!1CX3=0)
It follows that

O;al+OI ~;=2b;I„

(aXa) =2ia,

(3.13)CX1%3+Q30!1=0.

Clearly (3.11) and (3.13) may be summed up in the

(3 7)
general relation

(3.14)&s~I+O'I &;=2~sI

(3.6a,b) and with (3.11) that

the invariance of these properties under an orthogonal
transformation becomes self-evident, so that (3.6) is
also satisfied by the

(a;s being the orthogonal matrix relating the two co-
ordinate systems). "

Any vector V in spin space satisfies, as a consequence
of (3.3), the commutation relations, "
Lo,,V,7=0 (o;,V;7= —fa, , V,7=2iVs (i j, h cyclic),

an equation, which in terms of the P;s, may be re-
written as

for all i, h= (1, 2, 3).
In a similar fashion (3.10) and its cyclic permutations

are summed up Lwith the help of (3.14)7 as

a,a, = n,a,=i—o& (i, j, h cyclic). (3.15)

To evaluate the commutator of e and e, we notice
that a is a 3-vector in spin space; consequently (3.8)
gives

LV'Zss7= —2i(%Vs—&'s Vt). (3.8) La;,P;s7= —2i(b,,as —h,sn;). (3.16)

Incidentally, in nonrelativistic theory, the only vector
in spin space is a multiple of e itself. This is no longer so,
on passing from the three-dimensional rotation group
to the Lorentz group.

Under a Lorentz transformation from a reference
system at rest to one (denoted by a prime) moving with

"Clearly the transformation (3.7) changes the representation of
the o' matrices. The transformation exp( —pie. u) (3.3) just re-
establishes the original matrix representation: cry =Z a;h(u),
pk= exp(i/2' u)o; exp( —1/2&r ca).' E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Near York, 1935), p. 59.

We can verify this relation to be a consequence of
(3.15). For instance

as,ns7=snsas as+sas asns=2sn . s

Having completely specified the properties of the
rotation-operator P„, in spin space, we now prove the
important statement that there exists a unipart four
vector 7„ in spin space. Uniqueness here expresses the
fact that the algebraic properties of y„so pin down the
operator that in an irreducible matrix representation of
the operator in spin space any two vector p„and p„'
must be numerical multiples of each other except for a
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( i
Zas ~aP )Vtl eXP( Ra&ay

(2 ) E 2 j
=E 44..(~-s)v. , (3 1g)

where a„,form the Lorentz transformation. Rather than
work this out in detail we remark that the result will

be the covariant generalization of (3.8) which is

b.r-p]= —»L&.-vp —&.trY-] (3 19)

We now examine the consequences of (3.19) which
follow from the properties of P s. For example, since

(P„„)'(not summed over t4 or 4) is the unit matrix, we
have (no summation over t4)

P(Vpv(b'av) ] 0 QFvLVaZpv]+LVpvEpv]Elvv ~

Substituting from (3.19) we find

{V.Z")=o
where

{A,B}=AB+BA.

Ke can also prove that

(3.20)

possible unitary transformation. The algebraic prop-
erties of y„are shown to be

v„v.= —v„v„=i P„. (t4W v) (3.17a)

and, for p= v.' all y„' are equal and a multiple of the
unit matrix, so that we may define a normalized p„as
obeying

V„'=I (t4=1, 2, 3, 4), (3.17b)

where I is the unit matrix.
To prove these remarks we perform a general in6ni-

tesimal Lorentz transformation on y„and from this
obtain the commutation relations between p s and V„.
In other words we evaluate"

With this result, we may write (3.22) in the covariant
form,

(3.24)v~v.+v.vw= 2I&~'

Although (3.23) is quite sufficiently established, we
shall add a simple algebraic proof of the identity of all
operators V„'. From (3.19) and (3.20) we derive

V g c= iV—p

VS Zac= iVav

and multiplying the first from the left with yp, the
second with V, we get with (3.22)

'YP Vtx )

which proves (3.23).
We now show that I, in addition to commuting with

all the p„„,also commutes with all the V„. This is, in

fact, trivial, since

$I,V„]=[V„',V„]=0.

On the basis of this result, we can get an irreducible
representation of the V„and p„„matrices by choosing I
to be the unit matrix.

The pa, can then be expressed in terms of the V„:
From (3.19) we have (no summation over a)

Va patt Va Eac Ya 2iVtrYa

or with (3.20), (3.22), and (3.23)

P.p I= —iV.Vp.

Since I equals unit matrix, it follows that

2 s= iV Vs=1/-»LV Vs]

Thus we have derived all the familiar results about
the Dirac matrices, and we shall simply take over the
well-known conclusion that the y„may be represented
in terms of 4X4 matrices.

LV' Z-s]=o (3.21) B. The Dirac Equation
For t4= n, and t4=P, this follows from (3.19). For t4=a,
then

[Va vZ as] Va{VavZ ap) {Vavg as) Va

which vanishes because of (3.20) proving (3.21). We
may, however, also write the above commutator in
terms of commutators rather than anticommutators.
Then

[Va vZ ap] =VaLVavp ap]+ b'avgas]Va =0.

Substituting (3.19) we obtain

{V,Vs}=0 (asap) (3.22)

proving the first part of (3.17a).
The main results so far are (3.21) and (3.22). The

6rst of these shows that y„' commutes with all rotations
and is, therefore, a scalar, which we call I,

y„~=I for all p, . (3.23)

The existence of a four vector in spin space provides
us with the possibility of constructing a 6rst-order
covariant wave equation for a spin —,

' particle,

(Q„D„v„+mc/A)/=0. (3.25)

It is not immediately evident that this equation is
the "unique relativistic generalization" of the Pauli
nonrelativistic wave equation (3.1); but that this is so
becomes apparent shortly. To obtain this equation in
Hamiltonian form, we multiply through with Acy4 and
use iV4V4,.=a4, a relation which follows from (3.3) and
(3.17a). This leads to

Lc4r (p e/cA)+V4mc—'+c4tp=ikey&/Bt (3.26).
The operator on the left is the Dirac Hamiltonian. This
reordering of the equation satisfied by P is analogous to
the one performed for the Klein-Gordon equation in
Sec. 2B.
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Ke do not derive the familiar representations of y„
because these derivations are available in many
places. ""The results are that f is a unicolumnar ma, trix
of four elements, while the p„, e, g„,matrices are 4X4
matrices. To obtain an analogy with the spin zero
equation we use the "split" notation

(3.27)

where y and x are two component amplitudes which

play a role exactly equivalent to the p and p of the
spin zero theory, on using a representation in which y4
is diagonal, (y4 becomes the analog of the r3 of the spin
0 case)

(1 0 ~ (0 o&q
o~=I

40 —1) hog 0)
(3.28)

With this, (3.26) may be written as a set of two coupled
two-component equations,

N(Bq/Bt)=err (y—e/cA)g+(mc'+~)e,
ih(Bx/Bt) =ce. (p e/cA—)e+ ( mc'—+&)x (3..29)

The relation of (3.29) to the Pauli equation can now
be established. Adding the rest energy term to the
nonretatieistic Pauli equation (3.1), the latter reads

equations are emphasized. In both, the efkct of the
relativistic generalizations is to double the number of
components of the wave function. In the scalar case the
nonrelativistic equation has one component, the rela-
tivistic two; in the spin ~ case the nonrelativistic has
two, the relativistic, four components. This doubling
of degrees of freedom in both cases gives rise to formally
negative energy solutions; in both cases the negative
energy solutions are related to the positive energy solu-
tions of a charge-conjugate problem: To get the charge
conjugate equation, for the Dirac case, we take the
complex conjugate of (3.29) and observe that

p*= (A/'&)*= —p

and e*=e~, the transposed 6, if we assume the usual
representation of the 0 as Hermitian matrices. Then

( e
ih(Bx*/Bt) =cor

~

p+-A ~s~+mc'x* —Qx~,
c )

ih(Bq*/Bt) =cer
~

y+-A. ~y*—mc'q* —Qq*.
c )

Since the transposed Pauli matrices 0~ satisfy

we have, from (3.5b):
eh

e He. (3.30)
Be 1 ( e

ih =
( y —-A

~
e+mc'p+e4ey

Bt 2m& c ) 22ÃC The wave functions

Cryo; 0'y= —tr;..T'

But using the well-known relations,

e ) ( e f ( e )' eh
e

( y —-A
i

e
I p —-A

i =i y —-A
I
——c 8,

c ) E c ) ( c ) c

we can write (3.30) exactly as a set of two coupled
equations:

Bqr ( e
ih — =ca

( p—-A ~x+mc'e+e4e,
Bt E c)

satisfy

gc= &OyX y

X =is„

Be, ( e
ih =ctr

~
p+ —A ~x,+ (mc~ —Q) yg,

Bt 4 c)
Bxe

ih =co
i

y+-A ie,—(mc'+&)x.,

(3.32)

(3.31)
e

mc'x=ccr
~

p ——A
~
p mc'X. —

c )
The similarity between (3.29) and (3.31) is evident.

The main di6erence, apart from the omission of the
small electrostatic term, lies in the suppression of a
degree of freedom which results from specifying the time
dependence of x to be expL —i(mc'/A)tj, thus reducing
the second equation in (3.29) to a subsidia, ry condition.

C. Physical Interpretation

YVe do not derive the familiar expressions which give
the physical content of the Dirac equation, but rather
quote those that we need in the following discussion,
in which the common elements of the scalar and spin -',

which differs from (3.29) by a change in sign of the
electric charge.

A discussion exactly analogous to that in Sec. 2
shows that (3.31) associates a positive energy solution
of (3.32) with a negative energy solution of (3.29) and
that, if the positive energy solution has a total charge
of +1, the charge conjugate solution, as well as the
corresponding negative energy solution, has the total
charge —1.This again establishes the physical meaning
of the negative energy solutions. For a free electron, if
the momentum for

is p, then the momentum for the charge conjugate
function is —y. The eGect on the spin operator is also
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D. Free-Particle Representation4
e*=U '(y)eU(p)

(3.37)Again, as in the spin 0 case, it is useful, for a discus-
sion of the nonrelativistic limit, and of the Zitter-
bewegung, to go to a representation, in which the free-
particle Hamiltonian

cpcp
=e+p——e p

E, E„(E~+mc')
and

Hp(y) =c(e p)+mc'P P=y4 (3.33)
x»=U ' y ihv~U yis diagonal. Since H02(p)=E~', the columns of the

4X4 matrix ic(eXp) ePc
Ho(y) p+E, " =ihv, +ih +

2E„(E„+mc') 2E„
(3.34)

are solutions of the free-particle Dirac equation
(e p)pp~

2E,'(E,+mc')
LHo(y) —E3+(p) =o (3.38)

with eigenvalues E„,E~, —E„,—E„.To normalize these
solutions, we divide (3.34) by [2E~(E„+mc')jt.

With this normalization, (3.34) furnishes the matrix
which describes the transformation to the free-particle
representation,

By the same argument as given for the spin zero case,
(3.35) provides a splitting of x into an even and odd
part: To the approximation needed below, we have

x*= (x»)(+i+ (x»)( i,H (y)P+E.
U(y) =

[2E„(E,+mc')]l ( eXp i ep
(3 35) (x*)&+& ih~ v„+i ~; (x*)& & ih . (3.39)

(2mc)') 2mcpHO(y)+E,
U'(y) =

[2E„(E,+mc')]& Thus (x*)&+& consists of the displacement operator in

p space and of a spin Qip part.
However, from the point of view of discussing the

relativistic corrections to the Pauli equation, and par-
ticularly the Zitterbewegung, it is more convenient not
to split x* into its even and odd parts but rather to
write

Again exactly as in the spin zero case, we make use
of U(p) to transform the general momentum space
Dirac equation

e
ih8$(p, t)/Bt= ce. p A(ih—v-~)

C x*=x'+bx,

+mc'p+et (ihv ) I~(p t) where

i(eXp) eP
x'=ik~„; bx=ik +

(2mc)' 2mc
(3.40)into the free-particle representation,

P(p) = U(p)P*(p)
where and to employ the representation in which x' rather

than x is diagonal.
With this notation, the equations which follow hold

in either the momentum representation

(e(p) i

Then

to turn the spin around so that the relation between spin Using this technique to write out H» in (3.36), we have
and momentum for the charge conjugate solution is the H*=pE~ e(—U 'eU) .A(x»)+&(x»). (3.36')
same as for the original wave function.

With the help of (3.35) we find that

ihip*/Bt= U '(p)H(y, ihvi, )U(p)p (p)
=H*(p,i&v.)4*(p). (3.36)

p=p x'= ihV„

or in an x representation, in which x' is diagonal

(3.41)

Before writing (3.36) in more detail, we recall a pro-
cedure applied in connection with the discussion of the
position operator x=iAV'„ in Sec. 3. We noted that x
is transformed into x*=U 'xU by this change of repre-
sentation, and we showed that for any function of x
we may write

U '(p)f(ihv. ) U(p) =f(U 'ihv. U) =f(*').
' A similar result holds for the free-particle solutions 4 &+) in the

scalar boson case.

p= ibad~; x'= x. (3.41b)

H~~E,—.
~

e+P—
~

A(x+Sx)+~(x+Sx). (3.42)
E,3

We are now in a position to write down the trans-
formed Hamiltonian II+. As our main interest is the
nonrelativistic limit and the first relativistic corrections
to it, we retain only the necessary terms:
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The free-particle Dirac equation is rigorously de-

coupled in this representative, and reads

i7iau/&tt =E„u,
ihBv/Bt = E„—v.

But again as in the spin zero case, there exists a weak
field situation, in which the two amplitudes u and v of
P* in (3.36) are only very weakly coupled. This is

especially true for the nonrelativistic limit, where we

may assume that only either u or v is nonzero.

E. Nonrelativistic Limit and Zitterbewegung

For free particles we can easily construct the velocity
operators associated with both parts of the position
operator,

(v*)&+' =i/h/8E~, (x*) +'7=Ppc'/Es,

The magnetic energy consists of four separate terms.
The leading term is

t' dx p pic—(e/2)H
~

x'X
~

= —(e/2mc) H L, (3.44)
&lt I

L being the orbital angular momentum L= (ihV ~Xp)
As in the spin zero theory, this orbital magnetic

coupling is reduced by a factor (mc'/E„) as compared
to the nonrelativistic limit (2.58).

Going to the next terms, the "cross terms" in (x'+bx)
X (L(dx'/dt)+ (d/dt) (bx)7) have a vanishing nonrela-
tivistic limit, and need not be discussed here. The last
term, however, becomes

e ( d q e «ih&rP——H
] bxX—bx)~——H ( Xe[

2 ( dt J 2 E 2mc

( *)' '= /hDtE ( *)' '7
(3.43)

(&r p)c'p
p(H &r),

28$C
(3.45)

E,(E„+mc')

X' '(x—x') = ltd'pe'&'"&* *'
(2~h)' ~

(u p)Pp~

2' 2E~'(E~+mc')

ePc

As in the spin zero case we can construct eigenfunctions
of x&+& and find that they are packets with a width h/mc.

As soon as an external field is turned on, the Zitter-
bewegung comes into play. Let us discuss this eGect
again for the case of a magnetic field and for the case of
a central electrostatic field.

(a) Magrtetic Field

Assuming for simplicity a constant field with A(x)
=-', (HXx), the magnetic coupling term in (3.41) is

e——H. L(x'+bx) X ((v*) '+'+ (v*) &
—7.

2

It is easily seen that

(v+) &+& = (dx'/dt), v& & = (d/dt) (bx).

Clearly (v*) &+'+ (v*) ' ' = ca*, the transformed velocity
operator, since in the original representation v= ca.

v( & is the velocity operator of the Zitterbewegung.
For purely positive (or purely negative) states in the
field free case, v& ' has, of course, zero expectation value.
As in the spin zero case, here again it is impossible to
construct purely positive packets that are localized to
any better than h/mc. The operator x'+' in x space, is
a nonlocal operator, given by an integral kernel (com-
pare (2.63)7.

x&+&=xb(x—x') —X' '(x —x'),

$2@

+ 0 ~ ~

8@
4&(x) =4 (x')+P bx,

Bx' Bx Bxg

Inserting (3.40), we get the following evert terms (the
odd ones vanish in the nonrelativistic limit):

even part of d (x)~g(x') —
(&r Xp) V&b(x')

(2mc)'

V'@(x').
Sns'c'

This expansion produces in a straightforward manner
the well-known correction terms, which for a central
potential may be written as

eh 1 d&t 2&rh'

(e L)- —y p(r),
(2mc)' r dr (2mc)'

' K. Huang, Am. J. Phys. 20, 479 (19S2}.

(3.46)

using (eXa)=2i&r. This derivation shows clearly the
connection of the spin magnetic moment with the odd
parts of the position- and velocity-operators, and
justifies to a certain extent the phrase that "the spin
magnetic moment is the orbital moment of the Zitter-
bewegung. '"'

(b) Electrostatic Field

In this case we expand the electrostatic potential
term in (3.41)

e&b(x) = e4&(x'+ bx).

In the approximation (3.40), x,' and bx, commute.
This makes the situation simpler than in the spin zero
case, as we may now write
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and are identi6ed as the spin-orbit coupling and the
Darwin term, respectively and where p is the charge
density giving rise to p. We have, in this last equation,

gone back to an x-space representation employing rela-

tions (3.41b).The diagonal position operator thus intro-
duced is called the "mean" position: the nonrelativistic
limit to the Dirac equation is most conveniently ex-

pressed in terms of this mean position. To sum up, we

have, to order (v/c)'

( p' p' & e
= pi mc'+ — i+~(x)— p(e H)

at l & 2m Sm'c4) 28$C

ek 1 d4 2s.h'

+ ( I)-—+ t(r) 4* (3.4~)
(2mc)' r dr (2mc)'

4. CONNECTION WITH FIELD THEORY;
NEUTRAL PARTICLES'9

In the interpretation given in the preceding section,
we have considered the Klein-Gordon and Dirac equa-
tions to be single particle equations in which the particle
also possesses the charge degree of freedom. There are
limitations to such an interpretation which arise when

many particle phenomena intervene, as in the presence
of strong fields. Associated with this real process there
are also virtual processes responsible, for example, for
vacuum polarization. It might be thought that the
single particle interpretation might fail here. To obtain
a deeper insight into these problems and other questions
of interpretation of the single particle formalism, we

turn to the more general and more powerful formalism of
6eld quantization.

The complete equivalence of the wave-mechanical

description in configuration space and the quantum
6eld theoretical description in the nonrelativistic case is
well known. We demonstrate here the equally well-

known relations'0 in the exterrtal field approximatiort of
relativistic single particle wave mechanics and rela-
tivistic field quantization. Whereas the analysis of this
relation de~nitely settles certain questions as, for in-

stance, the interpretation of the negative frequency
solutions of the one particle problem as well as those
mentioned in the preceding paragraph, we get little help
in others like the question of the meaning of the "posi-
tion operator" and the like. Concepts like the latter are
foreign to the 6eld theoretical formalism and become
meaningful only in the limit of weak-external fields

where a sufficiently close analogy to the nonrelativistic
situation prevails.

This short digression into 6eld theory will be most
useful in connection with the problem of the description

'9 Some general references to quantum Geld theory: W. Pauli,
Revs. Modern Phys. 13, 203 (1941);J.M. Jauch and F. Rohrlich,
The Theory of Photos and E/echoes (Addison-Wesley Press, Cam-
bridge, 1955);Schweber, Bethe, and deHoGman, Mesoes and Fields
(Row, Peterson and Company, Evanston, Illinois, 1955), Vol. 1.

P.A. M. Dirac, Qgaetlm Mechanics (Oxford University Press,
New York, 1947), third edition, Chap. X; V. Fock, Physik Z.
Sowjetunion 6, 1425 (1934);J. Pirenne, Physica 15, 1023 (1949).

of intrinsically neutral particles (e.g., the s' meson). We
do not obtain much guidance for this case from the
discussion of Sec. 2.

Our program is therefore first to establish anew the
relation between the single particle formalism and
quantum Geld theory for charged particles and then to
build up a neutral particle formalism by starting from
the field theory version. This will enable us to write a
one particle wave equation for the scattering of x
mesons in an external field (e.g. , the field of a nucleon
or a nucleus) which includes the processes of charge
exchange.

A. Field Theory of Charged Particles
in an External Field

We discuss here only the problem of a particle in an
external 6eld.

The 6eld Hamiltonian" I is obtained from the wave-
mechanical expression for the energy,

1 ( e
(E)— d x4 ra

~
p ——A

~
(rg+zr2)+mc rs+W 0'

J 2m( c )
(for scalar bosons) (4.1a)

or

(E)= d'x4* ca
~ p —-A

~
+mc'P+~ +( e

c )
(for fermions) (4.1b)"

by substituting the operator %' for the wave function +
%'=g„L+&+&(p)a,+4' '(p)b *]exp(i/Ap x). (4.2)

The 0 &+& are normalized momentum eigenstates of
the wave-mechanical free-particle Hamiltonian,

(bosons) (vs+i r~)+mc'rs 4 &+& (p) = &E~%'&+& (p),
2m

(fermions) Lc(e y)+mc'P]%'&+'(y) =ME~@&+&(p).

Thus for bosons%'~+' are two component amplitudes;
for fermions, four component. For the latter, a spin-
index s (s=+-'„—-', ) must be added for a complete
description, but we shall not write it out explicitly.

The operators u, u*, b, b* satisfy the commutation
relations

(bosons) (a~,a~ *j=$b„,b„*j=b» (4.3)

all other commutators zero

(fermions) (a„,u„~)= {b„,b„*)=8». (4.4)

all other anticommutators zero. In this way, (a„*a„)

~' To avoid confusion all Geld operators are in boldface.
~ These expressions hold independently of the single particle

interpretation; {8)is identical with —J'T44d x, where T„„is the
energy-momentum density associated with the wave equation
in question.
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and (bo~b„) are the operators of "occupation numbers"
for positive and negative charge, respectively.

As a consequence of (4.3) and (4.4) the Geld equations
for %' hold as operator equations with i/ALH, %'7

equalling 8%'/Bt Recall also that the choice of the
commutator in (4.3) and anticommutator in (4.4)
corresponds to limiting the eigenstates of the Hamil-
tonian H to those which are symmetrical (for boson)
and antisymmetrical (for fermion) under exchs.nge of
two particles.

The eigenstates of H represent many particle situa-
tions. But since, in the external field approximation,
these particles are not interacting, the problem of find-

ing the eigenstates of H is essentially a one-particle
problem. We now show that the formulation of this
one-particle problem leads exactly to the wave-
mechanical equations discussed in Secs. 2 and 3.

Let us now write down the Hamiltonian for an ex-
ternal electrostatic field 0». inserting the operator (4.2)
into the energy expression (4.1), we obtain the field

Hamiltonian (apart from a constant)

H=Z. Eo( a*oa.+b~*b.)
+e Z., s»(p —q) f (p+ I «+)a.'a,
+(p—Iq )b o*b .+—(p+ Iq )a„*b 0'—

+ (ts —I v+)a.b-.}, (4 5)

when we have used an abbreviation for certain coef5-
cients: For bosons

(p~ I «~) =+'+'(p)*ro»'"'(q),
(p~ I q~) =»'"'(p)*ro»'"'(q),

and for fermions

(p~ I q~) =~q'"'(p)*»""(q),

(p~ I q~) = ~»'"'(p) P"'(p)
With these definitions, the Hamiltonian (4.5) is the

sandie for both bosons and fermions.
We now discuss the problem of constructing the

eigenstates of H. We consider first the vacuum state,
qlpp. There is a "naive" vacuum state, +pp, characterized
by the absence of free particles

apepP =o, bpepP =o.

This state is not an eigenstate of I, as one may
verify by direct substitution. Correctly, the vacuum
state @p is defined as the lowest eigenstate of H, for zero
value of momentum and charge, The charge is given by
the operator

and read

N(p) = (eo,a,ei, „),
o(p) = (q'o, b-.*@i,-), (4.9)

The commutation relations

Qa.=a.(Q—e) Qb. =b.(Q+e)

Qa,*=a„*(Q+e) Qb *=b,*(Q e)—

show that a„* and b„create a charge e, a„and b„*
destroy a charge e. Note that a~+p is not zero; i.e., in
the presence of an interaction the zero charge, zero
momentum state is not one for which the occupation
numbers are all zero. Charges are present but are paired
o8 so that the net charge is zero. This phenomenon is
connected with the possibility of "polarization of the
vacuum. "

One "particle" states may now be described as states
carrying one unit of charge, positive or negative. We
call these states

and

respectively. They are eigenstates of H with energy
hi, „and h i, „, eigenstates of Q with eigenvalues +e
and —e, respectively, the subscript n denoting the
various one-particle states. In the discussion below we
often do not write it in explicitly. We also specify that
we are not concerned with three (or more) real particles
having a net charge of one unit. This is done by requir-
ing that at a large distance from the interaction with
the external field, where the particle is essentially free,
the energy and momentum of the particle are related
as usual, i.e., E= (iio'e'+p')»

The question of the eigenvalues 8„leads back trivially
to the eigenvalue problem discussed in Secs. 2 and 3:
Exploiting the fact that both opi, „and qoo (the vacuum)
are eigenstates of H, with energies h~„and 0 respec-
tively, we have the relations,

(+0 Lao Hj@1, ) ~1 (q 0 aoq 1, ) (4 7a)

(q'o, lb-,*,H+i, )=hi. ( o,pob„*alii, ). (4.7b)

The commutators on the left side are linear in a
and b*:

La.,&j=E.a.+e Z. »b(p+q)La, (p+ I «+)
+b-,*(p+

I »—)j, (4.ga)

Lb-.*,H3= —E.b-.*—e Zo 4 (p—«) I ao(p —
I «+)

+b-.*(p—
I q —)3. (4 gb)

Equations (4.7) are therefore linear relations in the
amplitudes

Qo =e/2 I d x(%'*%'—%'%'*), (for fermions)

Qe=e/2 I dox(%'"ro%'+%'(%'*ro)), (for bosons)

or, with (4.2)

Qr. e=e Z (ao*ao bo*bo). —

(E.—hi-)~(p)+e Z e(p —q)

X((p+ Iq+)N(q)+ (p+ lq —)0/q)} =0,
(E.+hi-)s(p)+e Z 4 (p—q)

x((p—Iq—)s(q)+(p —lq+)N(q)}=o. (4.»)
The terms in o(p) are present only because of the

(4.6) polarization of the vacuum. For the naive vacuum
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u'(p) = (e g,a,eo),
v'(p)=(4 ',b v*4o), (4.11)

except that E=li, „is now replaced by E'= —8 & „&0.
This again demonstrates the proper interpretation of
the negative eigenstates of (4.10) as the solutions to the
charge-conjugate problem.

It would have been possible to define directly a set
of amplitudes u„v, for the charge-conjugate problem.
For bosons, for example, this would simply be achieved

by de6ning

N. (p)=(+p,b„e g),

V&(p) (&p~G—v 4 —1). (4.11a)

The equations for I, and v, are then like (4.10), for
E= h ~, „&0,but with the sign of the charge t, reversed.

By the nature of the procedure that leads to (4.10),
the eigenvalues of this equation define the one-particle
energy spectrum of the Geld Hamiltonian H. As long
as the external field is sufficiently weak (e.g. , Ze'/Ac(-, '
for bosons, Ze'/Ac(1 for fermions in an external
Coulomb field), the regular solutions of (4.10) form a
complete, orthonormal set and, therefore, give the
complete one-particle spectrum of H. If the 6eld is too
strong diKculties arise: The admissible solutions are no
longer automatically orthogonal. "The physics behind
this situation is the breakdown of the validity of the
external held approximation. An external 6eld builds

up around its source a polarization charge density

p &
——(c/2)(0~%'*(x)%'(x) —%'(x)%'*(x) ~0), (fermions),

p, '= (c/2)(0~%'*r3%' %'(%'*rq) ~0). — (bosons).

~ K. M. Case, Phys. Rev. 80, 797 (1950).

v(p) =0. Thus the presence of the two equations in

(4.10) and the coupling between them arises in the field

theoretic interpretations as a consequence of vacuum

polarization.
But (4.10) are just the wave equations in the free-

particle representation, and identical with (2.55) for
bosons, (3.36) for fermions. There is one difference,
however: By assumption, b is positive in this case, so
that only the positive solutions of (4.10) are to be
associated with the problem at hand. The negative
solutions to (4.10) arise from a diBerent problem,
namely the eigenvalue problem for negative charge
states + i,

H4' i, „=b i„+ i, „.

In analogy to the method used for the positive charge
states, we consider the equations,

(e g, ",fa„,H)4p) = —8 g, (m g, „,a„Wp),

(e-, „,)b, ,*,H je,)= 8-—, „(e,-, „,b ,„'e,) (4. .9a)

Working out the commutator gives an equation
identicaL to (4.10), for the amplitudes

The external 6eld approximation neglects the electro-
magnetic interaction between this polarization density
and the particle. This polarization eBect prevents'4 the
actual occurrence of fields exceeding a critical strength.
Thus, from a physical point of view, no actual diKculty
arises; only our approximate treatment of the situation
becomes then inadequate. Still, a one-particle equation,
of type (4.10) exists, but the original external field g
is supplemented by a screening 6eld @~,i. This system of
equations has well-defined solutions which form a
complete set.

Returning now to the original situation (4.5), the
orthogonality relations for the solutions of (4.10) follow

directly from the definitions of the amplitudes N(p) and

v(p). From the commutation relations (4.5a,b) we get
relations of the type

Z. &.«-(p)N-*(q) = b.,
Z"p. &v. (p)v. (q)= —b„, (bosons), (4.12a)t

and
Z I-(p)N*-(q) = b.,
a, n

2 '.(p)v"-(q) =bv.
(fermions). (4.12b)

Similarly from the zero commutator of u„and b, we
have the equations

Q «. (p)v*.„(q)=0

for bosons.
Z "-(p)v*-(q) =o

~ J. M. Jauch and F. Rohrlich (Addison-Wesley Press, Cam-
bridge, 1955), pp. 311—312.

~' The eGect of this Geld is particularly important in the case
of p,-mesic atoms vvhere ppoi is the consequence of the polarization
of the electron-positron vacuum by the Geld of the nucleus.

f In these equations e(o.=+1) stands for the u's deGned by
(4.11), e(cr = —1) for the u's defined by (4.11a).

Z &0la*I 1n&(—1, e]a ]0&=b„,.

This equation holds exactly only if all states with
unit charge are included in the sum. This is more than
the single particle as defined earlier; that is, the sum
must also include states which have a particle of a given
unit charge plus any number of pairs of positively and
negatively charged particles. However, these cannot
exist at large distances from the external 6eld since,
from (4.10), the energy momentum relation for a single
particle holds there. These states must, therefore, con-
tribute to the polarization charge density and are im-
portant when strong external 6elds are present. Their
eGect may be taken into account by a suitable modifica-
tion in the external 6eld."

Now with this reservation in mind we employ the
definitions of the amplitudes I and v. Equations (4.9)
and (4.11) may be written as
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These are obviously "completeness-relations. " As

such, they imply the orthogonality relations"

Z. L~-'(tf)~-(zf) -~-'(tl)~-(a)) =~b-&-
for bosons, (4.13a)

and

Z. LN-*(q)N. (tl)+s-'(tI)z. (tI)j=~-&-
for fermions. (4.13b)

With this, we have rederived all the basic elements of
the wave-mechanical description.

B. Neutral Particles

We now proceed to a discussion of neutral particles,
which by definition do not interact with the electro-
magnetic field. However, the relativistic doubling of
states still occurs, and we must rename these two de-
grees of freedom so as to apply equally to both charged
and neutral particles. For example, in the scalar case,
if 4 describes the particle, then re% describes the anti-
particle. The process of going from 4 to ri+* is called
particle-antiparticle conjugation rather than charge
conjugation. In the fermion case, the neutrino and
antineutrino form a possible particle-antiparticle com-
bination.

The convenience of such a terminology depends upon
whether or not interactions with other fields dis-
tinguishes between particles and antiparticles as, for
example, the electromagnetic field distinguishes be-
tween positive and negative charge. If the interaction
does distinguish then the particle and antiparticle have
an analog of the charge associated with each, e.g. ,
the nucleonic charge" recently introduced. On the other
hand, if the interactions with other fields is identical for
both particle and antiparticle it becomes possible to
make an "abbreviation" of the theory so that only one
degree of freedom enters as was first done for fermions
by Majorana. "

Obviously it becomes important to classify inter-
actions according to their behavior under particle-anti-
particle conjugation. We restrict the discussion to the
boson case. First let us assume that the interaction does
not remove the particle-antiparticle degeneracy. Then
both + and ri%* are solutions of the Schroedinger
equation so that

a
hi—(re*)=H (re~).

Bt

Comparing this to the equation satisfied by 4~ we

26These orthogonality relations may also be derived directly
from the expression for the charge operator (4.6) and the equation
lno [Q(mrl=es„b „.

~' J. Schwinger, Phys. Rev. 104, 1164 (1956).
~ E. Majorana, Nuovo cimento 14, 171 (1937). W. Furry,

Phys. Rev. 54, 56 (1938). See also discussion by W. Pauli, refer-
ence 19.

immediately see that H must satisfy the equation,

r jHr j.= —H*. (4.13)

(U '—«z)f (ag/Ac)—SP=0 (4.15)

If the interactions are not of the form (4.14), then one
may define an analog of the charge and take over the
development given in Sec. 2 without any essential
changes.

We now discuss the situation given by Hamiltonian
(4.14). We develop a Majorana abbreviation of the
theory in which the particle and the antiparticle are
identified. The Schroedinger equation corresponding to
(4.14) is

ik(8y/ztt) = (p'/2m) (q+x)+mczp+gS(q+x),
ik(Bx/Bt) = ( p'/2m) —(p+x) mc'x —gS(y+—x) (4.16).
From the preceding discussion these equations are in-
variant under the substitutions,

~~X*
X~~% )

(4.17)

so that the charge conjugate equation is identical with
the original. In other words, the complete set of eigen-
functions for (4.16) is given by

(p.(x) ) t'x.' (x)l
e (us)s"' and

(
le(ass)z»i E„)0only.

& X„(x)) (y*„(x))
These wave functions can be normalized

"d'&(v*-z —x' x )=1, (4.18)

but it is not clear how this furnishes a basis for inter-
pretation since the integrand and the associated "cur-
rent density" are not associated with charge distribu-
tions. To obtain an interpretation it is necessary to go
to quantum field theory since here the interpretation
may be obtained from the field intensity and energy
operators for the field, as is done in electromagnetic
theory.

There are two Majorana abbreviations possible, one
for which %'=%', and one for which %'= —%'„or, in

To this must be added the condition of Hermiticity
L(2.32), (2.33)],

r~r3=H,
as well as the condition of Lorentz covariance. We find
that only operators of the form

H =A rz+ B(rz+ zrz),

where A is a real constant while 8 can be a real scalar
space-time function. Therefore, the form of H must be

H= (rz+irz)(@'/2m)+rzmc'+(rz+irz)gS(x). (4.14)

The corresponding modified Klein-Gordon equation is
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other words, one which has an eigenfunction of the
particle-antiparticle conjugation operator has the
eigenvalue (+1), the other (—1). The zrq meson is
known (in virtue of its decay into two gamma rays) to
be even under charge conjugation so that we shall con-
sider here only the first of the above two cases. We write

exp(zp x/fz)~=K LC.+"'(u)+c*-P' '(p)) (4»)

SEC
EN=Evzz+g it d'gS(P —

Zl) I ZZ(q)+v(q)),
(EA.)'

(4.24)

one degree of freedom, no other independent matrix
elements can be formed. Utilizing expressions analogous
to (4.8), one may immediately derive the equation
satisfied by u and v. We find

We note
(4.20)

d'P'(u —q) LN(q)+v(e) 7.
J (E.Eq)'

I The wave function which is odd under charge conjuga-
tion is given by taking the difference of the two terms
in the sum in (4.19) and dividing by i.) Comparing this
with the charged particle case we see that the dy-
namically independent operators c„and b„have been
replaced by a single operator c„.Equivalently, in the
charged particle case %' and %', were independent
operators. In the above abbreviated theory they are
the same.

We now examine the consequences of (4.19). The
charge operator becomes

q= "d *(e*rze+m (~*rz))=—0, (4.21)

as expected. For Hamiltonian (4.14), the field Hamil-
tonian

8= t CPZC%'*rdEe'
J

1s

etc
H= P E„c*„c„+gP S(y—q)

(E„E,)Z

)(fC vcq+zcyc q+2C ~C q) (4.22).
Again the "naive" vacuum is not an eigenstate of H.

Contrary, however, to the charged particle case, there
is no way of labeling the eigenstates of H by a charge
quantum number and indeed the question of the number
of particles associated with a given eigenstate is mean-
ingful only in the limit of weak interactions. We can
only use the eigenvalues of the Hamiltonian to label the
states. The physical vacuum state +0 is taken to be the
lowest energy state with energy zero (by adjustment of
the energy scale). The one-particle state, +z, is then the
first excited state of the system, etc., assuming, of
course, that the interactions with other fields are not
too strong. We may then define the one-particle wave
function by

This expression is exact even when the interaction S is
included. In terms of 0,

kc' c%* ae-
(TZ+ZTZ)% 4 (q Z

—ZTZ)
2z Bxp BSIc

L(p»%' ) (Tz+zTz)% +4 (rz zrz) p»% ).
2

Dropping a divergence term

S» = c'L+* rAzP). (4.25)

Now going over to quantum field theory, we insert
expansion (4.19), and integrating over all space we
obtain

r
S»=~ S~x=cz p p»pc*„c„c,c* „7 (4.—26).

If we now take the one-particle expectation value,
we obtain

These are just the Schroedinger equations in mo-
mentum space follpwing from Hamiltonian (4.14).

We turn now to the physical interpretation of the
above equation. In the case of charged particles the
discussion depends on the charge and current density
operators. For example, the orthonormal conditions
which are so necessary for the statistical interpretation
can be obtained directly from the conservation of
charge. '6 In the neutral case we use instead the field
intensity S and energy density which also satisfy a con-
tinuity equation. This is similar to the procedure fol-
lowed in electromagnetic theory, where the physical
interpretation of the Maxwell equations, particularly
for scattering problems, is made in terms of the Poynting
vector c /4zr( E)& 0). For the present interaction and in
terms of f of Sec. 2

S»= —(fzz/zzz) L (eh+/aZ) (aP/»»)+ (zlzz*/»») (~4/clZ) )

(4.23) (1 I
g» I1)=c' "P»I:N*(lz)~(lz) -v*(u)v(1z))d'P (4 2&)

As may be seen in the weak energy limit and prin-
cipally because we are dealing with a system with only We need only this expression for the calculation of
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scattering cross section since from it we can obtain both
the incident intensity and the scattered power. Com-

bining (4.27) with the orthogonality relation which

follows from (4.24)

0 1 0

-0 1 0.

0 —1 0w

0 0.

0 —1

J
(+ elm & a&m)dP=gnmg (4.28)

0

T3= 0 0

0i

0 .

(4.32)

we may interpret

I-*(u)N-(u) —~-*(u)c-(u)

as being the density in momentum space of the in-

tensity. The corresponding expression in ordinary
space is

e -*(x)p-(x)-x-*(x)x.(x)

This completes our discussion of the neutral particle.

C. Wave-Mechanical Descxiption of Boson
of Isotope Spin 1

It is now easily seen how one can construct a wave-
mechanical description of bosons with isotopic spin 1,
having the charge states 1, 0, —1.We construct a six-
component wave function

0"= %p = 4'p

.+c.
(4.29)

Here 0' is the wave function of a charged boson of
two components (2.16), N, is the charge conjugate to 4',
and +p is the wave function of a neutral particle.

We may now introduce not only a scalar interaction
S(x) common to all amplitudes in (4.20), but also a
charge-exchange interaction

g. T.V.(x). (4.30)

T being the isotopic spin matrices for isotopic spin one,
and V an isotopic vector. V, describes a change of
charge of the scatterer. The wave equation for 8 is

gO. 1 ( e
eIt =

l y—TeA l (r8+irm)O+mc'r30
at 2m& c

+eT+O~+ ~~ (geS+gr(T V)) (rl+irq) e (431).
The isotopic spin operator T is given by the usual

angular momentum matrices for angular momentum 1:

0 0 —i.
From the method by which (4.31) is obtained, it is

clear that only the positive energy solutions of this
problem refer to the situation for which this equation
is intended.

The negative solutions of (4.31) describe the scatter-
ing by a "mirror sytem" (say, by the mirror nucleus of
the original scattering nucleus).

A note on the solution of (4.31) for a scattering prob-
lem may be helpful. We have endeavored to put these
equations into Hamiltonian form as a bridge to the
discussion of their physical content. This does not mean
that this is the form most suitable for solving the equa-
tion. The well-known problem of the eigenfunctions of
a charged boson in a Coulomb field, both for bound and
continuum states, is an illustration of the point: It is
then much more appropriate to solve the one-component
equation in the Klein-Gordon form directly. The same
holds for the scattering of mesons of isotopic spin 1 by
a nuclear potential, as exemplified by (4.31).The Klein-
Gordon equation associated with (4.31) is

( Xe) '
(E—Q)Qg= l p ——

l f),+mcQg+geSf),
c3

+g~Z &~ITll') ~A (4.33)

with

A=—(v»+xx)
v2

according to (2.13).
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