
PHYS4101 Thermal Physics
(Fall 2021)

Final Exam

Thursday 9 Dec 2021

There are five questions and you are to work all of them. You are welcome to use your
textbook, notes, or any other resources, but you may not communicate with another human.
Of course, if you have questions, you are encouraged to ask the person proctoring the exam.

The five problems will be equally weighted but they are not of equal difficulty. If you are
stuck on one, move on to another and come back if you have time.

Please start each problem on a new page in your exam booklet.

Good luck!

(1) Find an expression for the chemical potential µ of a degenerate (T = 0) Fermi gas with
N highly relativistic fermions, that is energies ε = |~p|c for momentum ~p, occupying a volume
V . Then find the total energy, expressed in terms of N and µ. Compare the total energy in
this case to the result we obtained for the non-relativistic case.

(2) Consider a “large” Einstein solid with N oscillators and q energy units. To a good
approximation, as derived in your textbook Equation (2.18), the multiplicity Ω is given by

log Ω(N, q) = (q +N) log(q +N)− q log q −N logN

Use this to find the entropy S(N, q) of an Einstein solid. Next find the temperature T as a
function of the energy U = qε, for some constant ε. Finally, find the specific heat at constant
volume as a function of T . Do not assume anything about the relative sizes of q and N .
Show that you get the answer you expect for ε� kT .

(3) Use the thermodynamic identity for the energy U to write an expression for the pressure
P as a partial derivative keeping the entropy S and number of particles N constant. Then
use this result to calculate the pressure of a “photon gas” of energy density U/V , which can
be written as a factor times U/V . Cite any equations you use from the textbook.

(4) Two solid blocks of dissimilar materials are initially at different temperatures and then
brought into thermal contact with each other. Block #1 has a mass m and a specific heat
capacity c, and is at temperature T1 = T . Block #2 has mass 2m and specific heat capacity
3c/2, and is at T2 = 3T . Find the change in entropy ∆S of the two-block system after the
joined pair of blocks comes to equilibrium, in terms of m and c. Show that ∆S > 0.

(5) Calcium carbonate CaCO3 exists in two phases, called calcite and aragonite, near the
Earth’s surface. Use the thermodynamic data in the back of your textbook to determine
which of these two is most stable on the surface of the Earth. Then calculate (numerically)
the pressure at which the other becomes the most stable. Compare this to atmospheric
pressure. You can assume constant temperature.



Solutions

(1) See Problem 7.22. This is very similar to the non-relativistic case that we covered in
class. Following (7.36) we write
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which is the answer given in Problem 7.22. We also just follow (7.41) to get the total energy,
that is
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(I pointed out in class that it is easiest to “split” the powers of nmax to get the energy in
this form.) The non-relativistic result was (7.42) U = (3/5)NεF , a bit less than for highly
relativistic fermions.

(2) See Problem 3.25. We have S = k log Ω, and
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Note that in Equation (7.103), N is the number of atoms, and there are three oscillators (i.e.
x, y, and z) for each atom. Now for ε/kT � 1, we have
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This is just what you expect. The high temperature limit means that each oscillator has
many energy units, that is q � N . Thus U = NkT , i.e. (3.11), which is what you get from
the equipartition theorem for the oscillator which has two quartic degrees of freedom. Of
course, this gives CV = Nk, i.e. (3.15).



(3) See Problem 7.45. The thermodynamic identity for energy is given in Equation (3.58)
as

dU = TdS − PdV + µdN

Therefore we can write the pressure as
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The energy (density) of a photon gas is given by (7.96), namely
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where α is a constant. However, before we differentiate, we need it in a form that lets us
keep S and N constant. From (7.89), and also (homework) Problem 7.46, the entropy is
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where β is a constant. The number of photons, from Problem 7.44 after doing the integral,
is
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where a is a constant. Therefore, if S is constant then so is N . Now it is simple to write U
in terms of S and V so that we can take the derivative:
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(4) First we need to find the final temperature Tf of the two blocks. Conservation of energy
gives us

mc(Tf − T ) = (2m)(3c/2)(3T − Tf )
4Tf = 10T

Tf = 5T/2

We know that the change in entropy for a block is ∆S = mc log(Tf/Ti) so
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which is positive since the argument of the log is greater than unity.

(5) See Problem 5.28. This is almost identical to the problem we did for the phase transition
between the graphite and diamond phases of elemental carbon. In this case, the Gibbs free
energy of formation at atmospheric pressure and temperature, as given in the table on page
404 of Schroeder, of one mole of calcite and aragonite are −1128.8 kJ and −1127.8 kJ,
respectively. Calcite has the lower Gibbs free energy so is the more stable of the two.

From Equation (5.41), the change in Gibbs free energy with pressure at constant temperature
is given by (
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)
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The table on page 404 also gives the volumes of calcite and aragonite as 36.93 cm3 and
34.15 cm3. Setting Gcalcite = 0 at atmospheric pressure and temperature, and converting
everything to SI units, we have

Gcalcite = 36.93× 10−6P

Garagonite = 34.15× 10−6P + 1000

The Gibbs free energy for calcite grows more quickly with pressure than for aragonite, so at
some positive pressure, aragonite will be the more stable form. To find this pressure, just
equate the two Gibbs free energies. That is,

P =
1000

36.93− 34.15
× 106 = 3.6× 108 Pa = 3600 bar

which is close to 3600 times atmospheric pressure.


