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These notes are meant to accompany the course Electromagnetic Theory for the Spring
2010 term at RPI. The course will use CGS units, as does our textbook Classical Electro-
dynamics, 2nd Ed. by Hans Ohanian. Up to this point, however, most students have used
the International System of Units (SI, also known as MKSA) for mechanics, electricity and
magnetism. (I believe it is easy to argue that CGS is more appropriate for teaching elec-
tromagnetism to physics students.) These notes are meant to smooth the transition, and to
augment the discussion in Appendix 2 of your textbook.

The base units1 for mechanics in SI are the meter, kilogram, and second (i.e. “MKS”)
whereas in CGS they are the centimeter, gram, and second. Conversion between these base
units and all the derived units are quite simply given by an appropriate power of 10.

For electromagnetism, SI adds a new base unit, the Ampere (“A”). This leads to a world
of complications when converting between SI and CGS. Many of these complications are
philosophical, but this note does not discuss such issues. For a good, if a bit flippant, on-
line discussion see http://info.ee.surrey.ac.uk/Workshop/advice/coils/unit systems/; for a more
scholarly article, see “On Electric and Magnetic Units and Dimensions”, by R. T. Birge, The
American Physics Teacher, 2(1934)41.

Electromagnetism: A Preview

Electricity and magnetism are not separate phenomena. They are different manifestations
of the same phenomenon, called electromagnetism. One requires the application of special
relativity to see how electricity and magnetism are united. Consequently, it was quite some
time after they were separately established, that electricity and magnetism were realized to
be just different ways that electromagnetism can exert a force.

1See http://physics.nist.gov/cuu/Units/ for a good online reference on the principles of units, including
the distinction between base and derived units.
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The starting place for an “electric” force is Coulomb’s Law. If some number of electrons
is added to, or removed from, an object, then it acquires a “charge” q. A force appears
between two charged objects separated by some distance. This force is proportional to the
product of the charges, and inversely proportional to the square of the distance between
them. That is,

F = kE
q1q2
d2

(1)

Here kE is an arbitrary constant of proportionality; without describing what we mean by
“charge,” we can say no more about it.

A “magnetic” force appears between two wires, each of which carries something called
a “current.” For two long, parallel wires, the force per unit length is proportional to the
product of the currents and inversely proportional to the perpendicular separation of the
wires. That is,

F

L
= kM

I1I2
d

(2)

As with the electric force, kM is a generic constant of proportionality which depends on what
we mean by “current.”

Today we understand that (1) and (2) are two different manifestations of “electromag-
netism.” A “current” is in fact a flow of “charge,” and electromagnetism tells us that

2kE = c2kM (3)

In other words, if we make a choice for kE, then (3) specifies kM and vice versa.

Here’s the thing. The SI and CGS systems make different choices for kE or kM.
There can be choices, of course, which lead to systems of units other than SI and CGS, but
we will not generally be using them in this course.

The SI System: Inventing a Unit for Current

The SI system is based on (2). People learned how to make current, well before we understood
it in terms of charge. Perhaps for these reasons, a new base unit, the ampere (A), was created.
One Ampere is the amount of current flowing in each of two long, parallel wires, separated
by one meter, such that the force between the wires is 2× 10−7 N/m. We write

kM =
µ0

2π
SI (4)

where µ0 ≡ 4π × 10−7 N

A2
(5)

(The factor of 4π turns out to be handy to cancel out integrations over the unit sphere.)
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This quantity µ0 turns out to describe the magnetic properties of the vacuum. It shows
up, for example, in the inductance of a loop of wire surrounding empty space. This is all
forced upon us by the invention of the Ampere. Some books refer to µ0 as the “permeability
of free space.”

Equations (3) and (4) tell us how to write Coulomb’s Law (1) in the SI system. We have

kE =
c2

2
kM =

µ0c
2

4π
SI (6)

= 8.99× 109 N ·m2

(A · s)2
(7)

The form of Coulomb’s Law shows that charge, in the SI system, has units Amperes×seconds
(A · s). This is defined to be the Coulomb (C). SI furthermore defines the quantity

ε0 ≡
1

µ0c2
(8)

called the “permittivity of free space.” It is another property of the vacuum, showing up,
for example, as the capacitance of parallel plates separated by empty space. It is, as with
µ0, forced upon us by the choosing a new base unit for current. Thus, combining (1), (6),
and (8), we write Coulomb’s Law in SI as

F =
1

4πε0

q1q2
d2

SI (9)

which is the form presented in introductory physics textbooks that use the SI convention.

The CGS System: No New Base Units

In CGS we take the point of view that no new base units are necessary. We write

kE = 1 CGS (10)

that is, a dimensionless number. In other words, Coloumb’s Law (1) is simply

F =
q1q2
d2

CGS (11)

The unit of charge in CGS is derived in terms of centimeters, grams, and seconds. It is called
the electrostatic unit (esu), or sometimes the statcoulomb, and is simply2

esu ≡
√

dyne · cm2 = g1/2 · cm3/2/s (12)

2Recall that the unit of force in CGS is called the dyne ≡ g · cm/s2 = 10−5 N.
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Our course will start with (11) and use the principles and formalism of special relativity
to arrive at (2). See Equations 25 and 93 in Chapter 9 of your textbook. The result is of
course just (2) with (3), namely

F

L
=

2

c2
I1I2
d

CGS (13)

CGS is not without its sources of confusion. Some authors3 use (13) to define a unit of
current, the statampere, which gives 2 dynes/cm of force between two long parallel wires
separated by 1 cm. Note that this is not the same as one esu/s, something called the “absolute
ampere” or “abampere.” The statampere and abampere differ by a factor of 2.998 × 1010,
although they have the same dimensions, namely those of the esu/s = g1/2 · cm3/2/s2.

Converting between SI and CGS

The units of charge and current have different dimensions between SI and CGS, and this is
why everyone encounters confusion when converting between one system and the other.

Of course, all of this boils down to experiment. You make a measurement, and use some
equations (whether they are CGS or SI) to interpret the result. We’ll take the point of view
of Coulomb’s Law as a starting point, and the classic work by Millikan4 to measure the
charge on a single electron, a (negative) quantity that we traditionally call −e. The modern
best value for his measurement is e = 4.8032042× 10−10 esu.

So let’s start by giving ourselves the problem of expressing the charge on an electron in
Coulombs. This is easy. Let eesu equal the dimensionless number 4.8032042 × 10−10. The
force between two electrons separated by one meter is 10−4e2esu dyne = 10−9e2esu N. So, in SI

10−9e2esu N =
1

4πε0

e2

(1 m)2
=
µ0

4π

c2e2

(1 m)2
= 10−7c2SIe

2
C N (14)

where eC is the electron charge in Coulombs, and cSI ≡ 2.998 × 108, is yet another dimen-
sionless number. Then eC = eesu/10cSI = 1.602 × 10−19. This procedure is obviously valid
regardless of the charge on an electron. We therefore write

qC = qesu/10cSI = qesu/2.998× 109 (15)

as a general conversion between charge in the CGS system to that in SI. That is, one Coulomb
represents a much larger amount of charge (i.e. very many more electrons) than one esu, by
a factor of 10cSI.

3Ohanian is not one of them.
4This experiment was a tour de force, which Millikan carried out systematically and carefully over two

decades. For a culmination of this work, see his paper “The Most Probable 1930 Values of the Electron and
Related Constants” in Phys. Rev. 35(1930)1231. He determined the value e = (4.770± 0.005)× 10−10 esu.
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The trick here was to recognize that the numerical difference between Coulombs and esu
is absorbed by the factor c2 in (14). This is not to say that Coulombs and esu differ by the
dimensions of velocity. One cannot equate Coulombs to esu without some conversion factor
that explicitly cancels out the base unit Amperes.

We can extend from here. Consider the units of electric potential, defined by

1 Joule = 1 Volt · C SI (16)

1 erg = 1 statvolt · esu CGS (17)

therefore 1 Volt · C = 107 statvolt · esu (18)

since one Joule equals 107 ergs. (I like this way of writing things because it means I can
use the “=” sign. Energy is energy, whether CGS or SI.) Now thinking again in terms of
number of electrons, we know that one Coulomb corresponds to 10cSI times as much charge
as an esu. So we write, now having to abandon a strict equality,

1 Volt · 10cSI ⇐⇒ 107 statvolt (19)

or 1 statvolt ⇐⇒ 299.8 Volt (20)

In other words, in practical terms, one statvolt is the same as 300 volts.5

The same thing works symbolically, of course. To go from CGS to SI we need to insert
the factor µ0c

2/4π = 1/4πε0 in front of Coulomb’s law, and rederive things. So, wherever we
encounter a value of charge q in a CGS equation, we replace it with q/

√
4πε0. (The trivial

conversions from centimeters and grams to meters and kilograms are irrelevant symbolically.)
Similarly, any values of current I get replaced by cI

√
µ0/4π.

You can easily check that these substitutions turn (11) into (9), and (13) into (2) w/(4).
For a different example, the electric field E = limq0→0 F/q0 gets multiplied by

√
4πε0 leaving

(of course) the force for a charge in an electric field F = qE unchanged.

Now let’s try going the other way, namely SI to CGS, with the Lorentz force law, namely

F = qE + qv ×B SI (21)

We know that the first term on the right is unchanged. In the second term, replace q with
q
√

4πε0 = q
√

4π/µ0/c, but what about the B field? Our study of electromagnetism will lead
us to Ampere’s Law, which relates magnetic fields and currents. Indeed, steady currents give
rise to static magnetic fields according to

∇×B =
4π

c
j CGS (22a)

∇×B = µ0 j SI (22b)

5Perhaps here is a reason that SI is more popular with electricians and engineers. We always prefer to
use numbers on the order of unity when doing practical work. One volt is a reasonable potential difference
from a human perspective, but 300 volts would give you a rather significant shock. So, if we worked in CGS,
practical electronics would be discussed in terms of “millistatvolts”, a somewhat unwieldy term.
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where j is the current density. To go from CGS to SI, j gets multiplied by cI
√
µ0/4π, so

equations (22) tell us to multiply B by
√

4π/µ0. So, getting back to (21) we multiply the

second term by
√

4π/µ0/c for q and
√
µ0/4π for B. (Remember, we are going from SI to

CGS.) We therefore arrive at the Lorentz force law

F = qE + q
v

c
×B CGS (23)

An important lesson in this last example, which we will drive home during our course,
is that in going from SI to CGS, the magnetic field changes its dimensions differently than
does the electric field. Indeed, (21) shows that in SI, the dimensions of E are the dimensions
of B multiplied by the dimensions of velocity. On the other hand, (23) shows that in CGS,
E and B have the same dimensions. This actually goes to the heart of one of the reasons I
will be teaching this material using CGS units.

We could go on from here, but we won’t. Table A.2 (in Appendix 2) of your textbook
lists a collection of expressions as they would appear in either CGS or SI. It would be worth
your while to derive a few of these to convince yourself that you know what you are doing.

Further Reading

First, see the Appendices in your textbook. Appendix 1 gives the fundamental constants
in both CGS and SI units. Appendix 2 discusses the manner of conversion, and is, for all
intents and purposes, a concise version of this note.

The standard graduate textbook Classical Electrodynamics by J. D. Jackson has an ap-
pendix which thoroughly goes through the various popular systems of units, based on choices
for kE or kM . It also includes many tables that you can use for conversion of formulas or
constants. Interestingly, the second edition of this book uses CGS units exclusively, while
the third edition uses SI for the first part, and switches to CGS for the second. (You’ll have
to read the preface to get some idea of how Jackson justifies this craziness.)

The paper R. T. Birge, The American Physics Teacher, 2(1934)41, which I mention at
the start of this note, is referenced by Jackson. It may well be the first time these things
were put down in print, albeit at a time when there were vehement discussions about which
ought to be adopted as an international standard. (Of course, SI won.)

You can locate online references as well as I can, but here are a couple of pointers. In the
introduction, I mention a website which, although flippant, does seem to cover the basics
rather thoroughly. I also find the Wikipedia entry useful:

http://en.wikipedia.org/wiki/Centimetre gram second system of units
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