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The calculation of the structure of white dwarf and neutron stars is a suitable topic for an
undergraduate thesis or an advanced special topics or independent study course. The subject is rich
in many different areas of physics, ranging from thermodynamics to quantum statistics to nuclear
physics to special and general relativity. The computations for solving the coupled structure
differential equations~both Newtonian and general relativistic! can be done using a symbolic
computational package. In doing so, students will develop computational skills and learn how to
deal with units. Along the way they also will learn some of the physics of equations of state and of
degenerate stars. ©2004 American Association of Physics Teachers.

@DOI: 10.1119/1.1703544#

I. INTRODUCTION

In 1967 Jocelyn Bell, a graduate student, along with her
thesis advisor, Anthony Hewish, discovered the first pulsar,
an object in outer space that emits very regular pulses of
radio energy.1 After recognizing that these pulse trains were
so unvarying that they could not support an origin from little
green men, it soon became generally accepted that the pulsar
was due to radio emission from a rapidly rotating neutron
star2 endowed with a very strong magnetic field. At present
more than 1000 pulsars have been catalogued.3 Pulsars are
by themselves quite interesting,4 but perhaps more so is the
structure of the underlying neutron star. This paper discusses
a student project on their structure.

While still at MIT, one of us~Reddy! had the pleasure of
acting as mentor for a bright British high school student,
Aiden J. Parker. She spent the summer of 2002 at MIT as a
participant in a special research program. With minimal
guidance she was able to write a Fortran program for solving
the Tolman–Oppenheimer–Volkov equations5 to calculate
the masses and radii of neutron stars.

In discussing this impressive work after Reddy’s arrival at
LANL, the question arose of whether it would have been
possible~and easier! to have done the computation using
Mathematica~or another symbolic and numerical manipula-
tion package!. This question was taken as a challenge by
Silbar, who also figured it would be a good opportunity to
learn how these kinds of stellar structure calculations are
done.~Silbar’s only previous experience in this field of phys-
ics consisted of having read, with some care, the chapter on
stellar equilibrium and collapse in Weinberg’s treatise on
gravitation and cosmology.6!

In the process of meeting the challenge, it became clear
that this subject would be an excellent topic for a junior or
senior physics major’s project or thesis. There is much more
physics in the problem than just simply integrating a pair of
coupled nonlinear differential equations. In addition to the
physics~and some astronomy!, students must think about the
magnitudes of the quantities they are calculating in order to
check and understand the answers they obtain. Another side
benefit is that students learn about the stability of numerical
solutions and how to deal with singularities. In the process
they also learn about the inner mechanics of the software
package they use.

The paper proceeds as follows. The student should begin
with a derivation of the~Newtonian! coupled structure equa-

tions ~Sec. II A!, and be given the general relativistic correc-
tions ~Sec. II B!. Before trying to solve these equations, they
need to know the relation between the energy density and
pressure of the matter that constitutes the stellar interior, that
is, the equation of state. The first equation of state to use can
be derived from the noninteracting Fermi gas, which brings
in quantum statistics and special relativity~Sec. III B!.

As a warm-up problem students can integrate the Newton-
ian equations and learn about white dwarf stars. They can
then include the general relativistic corrections and proceed
in the same way to work out the structure of pure neutron
stars and reproduce the results of Oppenheimer and Volkov.5

It is interesting at this point to determine the importance of
the general relativistic corrections, that is, how different a
neutron star is from what would be given by classical New-
tonian mechanics.

Of course, realistic neutron stars also contain some pro-
tons and electrons. As a first approximation we can treat this
multicomponent system as a noninteracting Fermi gas. In the
process we learn about chemical potentials. To improve on
this treatment, we must include nuclear interactions in addi-
tion to the degeneracy pressure from the Pauli exclusion
principle. The nucleon–nucleon interaction is not well
known to undergraduates, but there is a simple model~which
we learned from Prakash7! for the nuclear matter equation of
state. It has parameters that are fit to quantities such as the
binding energy per nucleon in symmetric nuclear matter, the
nuclear symmetry energy, and the~not so well known!
nuclear compressibility.8 If we use these nuclear interactions
in addition to the Fermi gas energy in the equation of state,
we find ~pure! neutron star masses and radii that are quite
different from those using the Fermi gas equation of state.

In the following we will indicate possible ‘‘gotcha’s’’ that
students might encounter and possible side-trips that might
be taken. Of course, the project we outline here should be
augmented by the faculty mentor9 with suggestions for by-
ways that might lead to publishable results, if that is desired.

Balian and Blaizot have given a similar discussion of this
subject matter.10 However, they used this material~and re-
lated materials! as the basis for a full-year course. In con-
trast, our emphasis is more toward nudging the student into a
research frame of mind involving numerical calculations.
Much of the material we discuss here is covered in the text-
book by Shapiro and Teukolsky.11 However, as the reader
will notice, the emphasis here is on students learning through

892 892Am. J. Phys.72 ~7!, July 2004 http://aapt.org/ajp © 2004 American Association of Physics Teachers



computation. One of our intentions is to establish a frame-
work for students to interact with their own computer pro-
gram, and in the process learn about the physical scales in-
volved in the structure of compact degenerate stars.

II. THE TOLMAN –OPPENHEIMER –VOLKOV
EQUATION

A. Newtonian formulation

A good first exercise for the student is to derive the fol-
lowing structure equations for stars from classical mechan-
ics,

dp

dr
52

Gr~r !M~r !

r 2 52
Ge~r !M~r !

c2r 2 , ~1!

dM~r !

dr
54pr 2r~r !5

4pr 2e~r !

c2 , ~2!

M~r !54pE
0

r

r 82 dr8 r~r 8!54pE
0

r

r 82 dr8 e~r 8!/c2.

~3!

Here G56.67331028 dyne cm2/g2 is Newton’s gravita-
tional constant,r(r ) is the mass density at the distancer in
g/cm3, and e is the corresponding energy density in
ergs/cm3.12 The quantityM(r ) is the total mass inside the
sphere of radiusr . A sufficient hint for the derivation is
shown in Fig. 1.

Challenge question: Eqs.~1!–~3! hold for any value ofr ,
not just the larger situation depicted in Fig. 1. Derive these
results in spherical coordinates where the box becomes a
cutoff wedge.

Note that in the second halves of Eqs.~1!–~3!, we have
departed slightly from Newtonian physics and have ex-
pressed the energy densitye(r ) in terms of the mass density
r(r ) according to the famous Einstein equation from special
relativity,

e~r !5r~r !c2. ~4!

This definition allows Eq.~1! to be used when we take into
account contributions of the interaction energy between the
particles making up the star.

To solve Eqs.~1!–~3! for p(r ) and M(r ), we can inte-
grate from the origin,r 50, to the pointr 5R where the
pressure goes to zero. This point definesR as the radius of
the star. We will need an initial value of the pressure atr
50, call it p0 ; R and the total mass of the star,M(R)
[M , will depend on the value ofp0 . To be able to perform
the integration, we need to know the energy densitye(r ) in
terms of the pressurep(r ). This relation is the equation of
state for the matter making up the star. Thus, a lot of the
effort in this project will be directed to developing an appro-
priate equation of state.

B. General relativistic corrections

The Newtonian formulation presented in Sec. II A works
well in regimes where the mass of the star is not so large that
it significantly ‘‘warps’’ space–time. That is, integrating Eqs.
~1! and~2! will work well in cases for which general relativ-
istic effects are not important, such as for the compact stars
known as white dwarfs.~General relativistic effects become
important when the ratioGM/c2R becomes non-negligible,
as is the case for typical neutron stars!.

It is probably not to be expected that an undergraduate
physics major will be able to derive the general relativistic
corrections to Eqs.~1!–~3!. For that, we can look at various
derivations of the Tolman–Oppenheimer–Volkov~TOV!
equation.6,11 It is sufficient to simply state the corrections to
Eq. ~1! in terms of three additional~dimensionless! factors,

dp

dr
52

Ge~r !M~r !

c2r 2 F11
p~r !

e~r ! GF11
4pr 3p~r !

M~r !c2 G
3F12

2GM~r !

c2r G21

. ~5!

The first two factors in the square brackets in Eq.~5! repre-
sent special relativity corrections of orderv2/c2. These fac-
tors enter because, in the nonrelativistic limit, the pressurep
varies askF

2/2m5mv2/2 @see Eq.~13!#, while e and Mc2

vary asmc2. These factors reduce to 1 in the nonrelativistic
limit. ~By now the student should realize thatp ande have
the same dimensions.! The last set of brackets in Eq.~5! is a
general relativistic correction. Equation~2! for M(r ) re-
mains unchanged.

Note that the correction factors are all positive definite. It
is as if Newtonian gravity becomes stronger for any value of
r . That is, relativity strengthens the relentless pull of gravity.

Equations~5! and ~2!, involve a balance between gravita-
tional forces and the internal pressure. The pressure is a
function of the equation of state, and for certain conditions it
may not be sufficient to withstand the gravitational attrac-
tion. Thus the structure equations imply there is a maximum
mass that a star can have. The resultant coupled nonlinear
equations forp(r ) andM(r ) can be integrated fromr 50 to
the pointR where p(R)50 to determine the star massM
5M(R) for a given value ofp0 .

Fig. 1. Diagram for the derivation of Eq.~1!.
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III. WHITE DWARF STARS

A. A few facts

For the cold, compact stallar objects known as white
dwarf stars, it suffices to solve the Newtonian structure equa-
tions, Eqs.~1!–~3!.13 White dwarf stars14 were first observed
in 1844 by Friedrich Bessel~the same person who invented
the special functions bearing that name!. He noticed that the
bright star Sirius wobbled back and forth and then deduced
that the visible star was being orbited by some unseen object,
that is, it is a binary system. The object itself was resolved
optically some 20 years later and thus earned the name of
‘‘white dwarf.’’ Since then, numerous other white~and the
smaller brown! dwarf stars have been observed or detected.

A white dwarf star is a low- or medium-mass star near the
end of its lifetime, having burned up, through nuclear pro-
cesses, most of its hydrogen and helium forming carbon,
silicon, or ~perhaps! iron. They typically have a mass less
than 1.4 times that of our Sun,M (51.98931030 kg.15 They
are also much smaller than our Sun, with radii of the order of
104 km ~to be compared withR(56.963105 km). These
values can be determined from the period of the wobble for
the dwarf-normal star binary in the usual Keplerian way. As
a result~and as also is the case for neutron stars!, the natural
dimensions for discussing white dwarfs are for masses to be
in units of solar mass,M ( , and distances to be in kilome-
ters. By using these numbers, students should be able to
make a quick estimate of the~average! densities of our Sun
and of a white dwarf to obtain a feel for the numbers that
will be encountered.

BecauseGM/c2R'1024 for a typical white dwarf, we
can concentrate on solving the non-relativistic structure
equations of Sec. II A. Question: why is it a good approxi-
mation to drop the special relativistic corrections for these
dwarfs?

The reason a dwarf star is small is because, having burned
up all the nuclear fuel it can, there is no longer enough ther-
mal pressure to prevent its gravity from crushing it down. As
the density increases, the electrons in the atoms are pushed
closer together, which then tend to fall into the lowest energy
levels available to them.~The star begins to become colder.!
Eventually the Pauli principle takes over, and the electron
degeneracy pressure~to be discussed in Sec. III B! provides
the means for stabilizing the star against its gravitational
attraction.11,15

B. Fermi gas model for electrons

For free electrons the number of statesdn available be-
tween the momentumk andk1dk per unit volume is16

dn5
d3k

~2p\!3 5
4pk2 dk

~2p\!3 . ~6!

By integrating Eq.~6!, we obtain the electron number den-
sity,

n5
8p

~2p\!3 E
0

kF
k2 dk5

kF
3

3p2\3 . ~7!

The additional factor of two is included because there are
two spin states for each electron energy level. HerekFc, the
Fermi energy, is the maximum energy electrons can have in
the star under consideration. It is a parameter that varies

according to the star’s total mass, but which students are free
to set in the calculations.

Each electron is neutralized by a proton, which in turn is
accompanied in its atomic nucleus by a neutron~or perhaps a
few more, as in the case of a nucleus like56Fe). Thus, if we
neglect the electron massme with respect to the nucleon
massmN , the mass density of the star is given by

r5nmNA/Z, ~8!

whereA/Z is the number of nucleons per electron. For12C,
A/Z52, while for 56Fe, A/Z52.15. Note that, becausen is a
function of kF , so isr. Conversely, given a value ofr,

kF5\S 3p2r

mN

Z

AD 1/3

. ~9!

The energy density of this star also is dominated by the
nucleon masses, that is,e'rc2.

The contribution to the energy density from the electrons
~including their rest masses! is

eelec~kF!5
8p

~2p\!3 E
0

kF
~k2c21me

2c4!1/2k2 dk

5
me

4c5

p2\3 E
0

kF /mec

~u211!1/2u2 du

5
me

4c5

8p2\3 @~2x31x!~11x2!1/22sinh21~x!#,

~10!

wherex5kF /mec. The total energy density is then

e5nmNA/Z1eelec~kF!. ~11!

One should check that the first term is much larger than the
second.

To obtain the desired equation of state, we also need an
expression for the pressure. The following presents a prob-
lem for the student. From the first law of thermodynamics,
dU5dQ2p dV, and the temperatureT fixed at T50
~wheredQ50 becausedT50), we have

p5F2
]U

]VG
T50

5n2
d~e/n!

dn
5n

de

dn
2e5nm2e, ~12!

where the energy density is given by Eq.~11!. The quantity
m5de/dn is known as the chemical potential of the elec-
trons. The chemical potential will be especially useful in Sec.
V, where we consider an equilibrium mix of neutrons, pro-
tons, and electrons.

If we utilize Eq.~10!, Eq. ~12! yields the pressure~another
problem!

p~kF!5
8p

3c~2p\!3 E
0

kF
~k2c21me

2c4!21/2k4 dk

5
me

4c5

3p2\3 E
0

kF /mec

~u211!21/2u4 du

5
me

4c5

24p2\3 @~2x323x!~11x2!1/213 sinh21~x!#.

~13!

@Hint: use then2d(e/n)/dn form and integrate by parts.#
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By using Mathematica,17 students can show that the con-
stant in front of the integral in the second line of Eq.~10! is
1.4231024 ergs/cm3. ~Another problem: verify that the units
of this constant are as claimed.18! Mathematica also can per-
form the integrals analytically.@We already gave the results
in Eqs.~10! and~13!.# They are a bit messy, however, as they
both involve an inverse hyperbolic sine function, and thus
are not terribly enlightening. It is useful, however, for the
student to make a plot ofe versusp ~such as shown in Fig. 2!
for various values of the parameter 0<kF<2me . This curve
has a shape much likee4/3 ~the student should compare the
curve to this function!, and there is a good reason for that, as
we will see.

Consider the~relativistic! case whenkF@me . Then Eq.
~13! simplifies to

p~kF!5
me

4c5

3p2\3 E
0

kF /mec

u3 du

5
me

4c5

12p2\3 ~kF /mec!4

5
\c

12p2 S 3p2Zr

mNA D 4/3

'K rele
4/3, ~14!

where

K rel5
\c

12p2 S 3p2Z

AmNc2D 4/3

. ~15!

A star having a simple equation of state such asp5Keg is
called a polytrope, and we see that the relativistic electron
Fermi gas gives a polytropic equation of state withg54/3.
As will be seen in Sec. III C, a polytropic equation of state
allows us to solve the structure equations~numerically! in a
relatively straightforward way.19

There is another polytropic equation of state for the non-
interacting electron Fermi gas model corresponding to the
nonrelativistic limit, wherekF!me . In a way similar to the
derivation of Eq.~14!, we find

p5Knonrele
5/3, ~16!

where

Knonrel5
\2

15p2me
S 3p2Z

AmNc2D 5/3

. ~17!

Question: what are the units ofK rel and Knonrel? Confirm
that, in the appropriate limits, Eqs.~10! and ~13! reduce to
Eqs.~14! and ~17!.

C. The structure equations for a polytrope

As mentioned, we want to express our results in units of
km and M ( . Thus it is useful to defineM̄(r )
5M(r )/M ( . The first Newtonian structure equation, Eq.
~1!, then becomes

dp~r !

dr
52R0

e~r !M̄~r !

r 2 , ~18!

where the constantR05GM( /c251.47 km.~For those who
know, R0 is one-half the Schwartzschild radius of our sun.!
In Eq. ~18! p ande carry dimensions of ergs/cm3. Therefore,
we define the dimensionless energy density,ē, and pressure,
p̄, by

p5e0p̄, ~19!

e5e0ē, ~20!

where e0 has dimensions of energy density. Its choice is
arbitrary, and a suitable strategy is to make that choice based
on the dimensionful numbers that define the problem at
hand. We will employ this strategy to choose it below. For a
polytrope, we can write

p̄5K̄ ēg, ~21!

whereK̄5Ke0
g21 is dimensionless.

It is easier to solve Eq.~18! for p̄, so we expressē in
terms of it,

ē5~ p̄/K̄ !1/g. ~22!

Equation~18! can now be recast in the form

dp̄~r !

dr
52

a p̄~r !1/gM̄~r !

r 2 , ~23!

where the constanta is

a5R0 /K̄1/g5R0 /~Ke0
g21!1/g. ~24!

Equation~23! has dimensions of 1/km, witha in km ~be-
causeR0 is!.

We can choose any convenient value fora becausee0 is
still free. For a given value ofa, e0 is then fixed at

e05F 1

K S R0

a D gG12g

. ~25!

We also need to cast the other coupled equation, Eq.~2!, in
terms of the dimensionless quantitiesp̄ andM̄,

dM̄~r !

dr
5br 2p̄~r !1/g, ~26!

where20

b5
4pe0

M (c2K̄1/g
5

4pe0

M (c2~Ke0
g21!1/g

. ~27!

Fig. 2. Relation between the pressurep and the energy densitye in the free
electron Fermi gas model. The units are ergs/cm3. Note that the pressure is
much smaller than the energy density, because the latter is dominated by the
massive nucleons.

895 895Am. J. Phys., Vol. 72, No. 7, July 2004 Richard R. Silbar and Sanjay Reddy



Equation~26! also carries dimensions of 1/km, the constant
b having dimensions 1/km3. Note that, in integrating from

r 50, the initial value ofM̄(0)50.

D. Integrating the polytrope numerically

Our task is to integrate the coupled first-order differential
equations, Eqs.~23! and ~26!, from the origin,r 50, to the
point R wherep̄(R)50.21 To do so we need two initial val-

ues, p̄(0) ~which must be positive!, andM̄(0) ~which we
know must be zero!. The star’s radius,R, and its massM

5M̄(R) in units of M ( will vary, depending on the choice
for p̄(0).

For purposes of numerical stability in solving Eqs.~23!
and ~26!, we want the constantsa and b to be not much
different from each other~and not much different from
unity!. We will see that this can be arranged for both of the
two polytropic equation of states that we discussed for white
dwarfs.

Our coupled differential equations are quite nonlinear. Be-
cause of thep̄1/g factors, the exact solution will be complex
when p̄(r ),0, that is, whenr .R. For example, Math-
ematica and symbolic programs like it have built-in first-
order differential equation solvers. The solver might be as
simple as a fixed, equal-step Runge–Kutta routine. These
packages also allow for program control constructs such as
do loop and while statements.

E. The relativistic casekFšme

The casekF@me is the regime for white dwarfs with the
largest mass. A larger mass needs a greater central pressure
to support it. However, large central pressures mean that the
squeezed electrons become relativistic.

Recall that the polytrope exponentg54/3 for this case
and the equation of state is given byP5K rele

g with K rel
given by Eq.~15!. After some trial and error, we choose~the
student may want to try another value!

a5R051.473 km ~kF@me!, ~28!

which in turn from Eq.~25! fixes,

e057.46331039 ergs/cm354.17M (c2/km3 ~kF@me!.
~29!

WhenkF@me , Eqs.~15! and ~27! give

b552.46/km3, ~30!

which is about 30 times larger thana, but manageable from
the standpoint of performing the numerical integration.

In our first attempt to integrate the coupled differential
equations for this case, we choosep̄(0)51.0. This choice
gives a white dwarf of radiusR'2 km, which is miniscule
compared with the expected radius of'104 km. Why? What
went wrong?

Students who make this kind of mistake will eventually
realize that our choice of scale,e054.17M (c2/km3, repre-
sents a huge energy density. We can simply estimate the
average energy density of a star with a 104 km radius and a
massM ( by the ratio of its rest mass energy to its volume,

^e&'
M (c2

R3 510212M (c2 km23, ~31!

which is much, much smaller than our choice ofe0 here. In
addition, the pressurep is about 2000 times smaller than the
energy densitye ~see Fig. 2!. Thus, choosing a starting value
of p̄(0);10215 would be more physical. Doing so does give
much more reasonable results. Table I shows our program’s
results forR andM and how they depend onp̄(0).

The surprise is that, within the expected numerical error,
all these cases have the same mass. Increasing the central
pressure does not allow the star to be more massive, just
more compact. This result is correct: the white dwarf mass is
independent of the choice of the central pressure. However, it
is not easy to understand this result from the numerical inte-
gration.

The discussion in terms of Lane–Emden functions shows
why, although the mathematics here might be a bit steep for
many undergraduates. For this reason, we give the analytic
results without proof.19 For the polytropic equation of state
p5Keg, the mass is

M54pe2(g2 4/3)/3S Kg

4pG~g21! D
3/2

z1
2uu~z1!u, ~32!

and the radius is given by

R5A Kg

4pG~g21!
z1e (g22)/2. ~33!

In Eqs.~32! and ~33!, z1 andu(z1) are numerical constants
that depend on the polytropic indexg. From Eq.~32!, we see
that forg54/3, the mass is independent of the central energy
density, and hence also the central pressurep0 . Also, note
that from Eq.~33!, the radius decreases with increasing cen-
tral pressure asR}p0

(g22)/2g5p0
21/4. Students should notice

this point and use it to check their numerical results.
Figure 3 shows the dependence ofp̄(r ) and M̄(r ) on r

for p̄(0)510216. It is interesting thatp̄(r ) becomes small
and essentially flat around 8000 km before going through
zero atR515 080 km. Such a star has a very tall ‘‘atmo-
sphere.’’

F. The nonrelativistic case,kF™me

As the central pressurep̄(0) becomes smaller, the electron
gas eventually is no longer relativistic. Also asp̄(0) be-
comes smaller, the electron gas can support less mass, which
moves the gas in the direction of the less massive white
dwarfs. It turns out that these dwarfs are larger~in radius!
than the relativistic ones just discussed.

In the extreme case whenkF!me , we can integrate the
structure equations for the polytropic equation of state where
g55/3. The program for this case is much the same as in the
4/3 case, but the numbers involved are quite different as are
the results.

Table I. RadiusR ~in km! and massM ~in M () for white dwarfs with a
relativistic electron Fermi gas equation of state.

p̄(0) R M

10214 4840 1.2431
10215 8600 1.2432
10216 15 080 1.2430
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If we substitute the values of the physical constants in Eq.
~17!, we find

Knonrel53.309310223cm2/ergs2/3. ~34!

After some experimentation, we choose the constant

a50.05 km, ~kF!me!, ~35!

which then fixes

e052.48831037 ergs/cm350.013 92M (c2/km3. ~36!

Note that this value ofe0 is much smaller than our choice for
the relativistic case. The other constant we need is from Eq.
~27!,

b50.005 924 km23, ~37!

which, unlike the relativistic case, is not larger thana, but is
smaller.

When we first ran our code for this case, we~inadvert-
ently! tried a value ofp̄(0)510212. This value gave a star
with radiusR55310 km and massM53.131. This mass is
bigger than the largest mass of 1.243 that we found for the
relativistic equation of state. What did we do wrong? What
happened~students can write their program so this trap can
be avoided! is that the choicep̄(0)510212 violates the as-
sumption thatkF!me . One really needs values such that
p̄(0),4310215. That is, the valuep̄(0)510216 for the case

that we plotted in Fig. 3 is not really appropriate for a cal-
culation using a relativistic polytrope for the equation of
state.

The results for the nonrelativistic case for the last two
values ofp̄(0) in Table I are shown in Table II. It is instruc-
tive to compare the differences in the two tables. The masses
are, of course, smaller, as expected, and now they vary with
p̄(0). Figure 4 shows the pressure distribution for the latter
case, which is to be compared with the corresponding graph
in Fig. 3. Note that this nonrelativistic pressure curve does
not have the peculiar long flat tail found using the relativistic
equation of state~Fig. 3!.

By this time students should realize that neither of these
polytropes is very physical, at least not for all cases. The
nonrelativistic assumption certainly does not work for central
pressuresp̄(0).10214, that is, for the more massive~and
more common! white dwarfs. On the other hand, the relativ-
istic equation of state certainly should not work when the
pressure becomes small, that is, in the outer regions of the
star ~where it eventually goes to zero at the star’s radius!.
Can we find an equation of state to cover the whole range of
pressures?

We have not actually found such an equation for white
dwarfs, but the program would be similar to that discussed in
the following for the full neutron star. Given the transcen-
dental expressions for the energy and pressure that generate
the curve shown in Fig. 2, Eqs.~10! and~13!, it also should
be possible to find a fit~using, for example, the intrinsic
fitting function of Mathematica! such as

ē~ p̄!5ANRp̄3/51ARp̄3/4. ~38!

The second term dominates at high pressures~the relativistic
case!, but the first term takes over for low pressures when the
kF@me assumption does not hold.~Setting the two terms
equal and solving forp̄, gives the value ofp̄ when special
relativity starts to be important.! This expression forē( p̄)
could then be used in place of thep̄1/g factors on the right-
hand sides of the structure equations. Proceed to solve nu-

Fig. 3. The quantities~a! p̄(r ) and ~b! M(r ) ~in M () versus radiusr ~in
km! for white dwarfs using the relativistic electron Fermi gas model. These
curves are obtained from the integration of Eqs.~23! and ~26! with the
polytropic equation of state of Eq.~14!. This is the case for the central
pressurep̄(0)510216.

Fig. 4. p̄(r ) for a white dwarf using the nonrelativistic electron Fermi gas
model, Eq.~17!, with central pressurep̄(0)510216.

Table II. RadiusR ~in km! and massM ~in M () for white dwarfs with a
nonrelativistic electron Fermi gas equation of state.

p̄(0) R M

10215 10 620 0.3941
10216 13 360 0.1974
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merically as before. We leave this as an exercise for inter-
ested students.

IV. PURE NEUTRON STAR, FERMI GAS EQUATION
OF STATE

In this case we must include the general relativistic con-
tributions represented by the three dimensionless factors in
the TOV equation, Eq.~5!. One of the first programming
problems that comes to mind is how one deals numerically
with the ~apparent! singularities in these factors atr 50.

Also, as for the white dwarfs, there is a question of what to
use for the equation of state. In this section we show what
can be done for pure neutron stars, once again using a Fermi
gas model for a neutron gas instead of an electron gas. Such
a model, however, is unrealistic for two reasons. First, a real
neutron star consists not just of neutrons, but contains a
small fraction of protons and electrons~to inhibit the neu-
trons from decaying into protons and electrons by their weak
interactions!. Second, the Fermi gas model ignores the strong
nucleon–nucleon interactions, which give important contri-
butions to the energy density. Each of these points will be
dealt with in Secs. V and VI, respectively.

A. The nonrelativistic case,kF™mn

For a pure neutron star Fermi gas equation of state we can
proceed much as in the white dwarf case, substituting the
neutron massmn for the electron massme in the equations in
Sec. III. WhenkF!mn , we again find a polytrope withg
55/3. ~Another exercise for the student.! From Eq.~17! we
have

Knonrel5
\2

15p2mn
S 3p2Z

Amnc2D 5/3

56.483310226cm2/ergs2/3.

~39!

If we choosea51 km, we find the scaling factor from Eq.
~25! to be

e051.60331038 ergs/cm350.089 69M (c2/km3. ~40!

Furthermore, from Eqs.~21! and ~27!,

K̄51.914 andb50.7636 km23. ~41!

Note that, in this case, the constantsa andb are of similar
magnitude.

To estimate the average energy density of a typical neutron
star (mass5M ( , R510 km), we expect that a good starting
value for the central pressurep̄(0) is order 1024 or less. Our
program for this situation is essentially the same as the one
for nonrelativistic white dwarfs, but with appropriate
changes of the distance scale. It gives the results shown in
Table III. Note that the general relativistic effects are small,
but not negligible, for this nonrelativistic equation of state.
As in the white dwarf case, these are smaller mass stars. We

see that as the mass becomes smaller, the gravitational attrac-
tion is less and thus the star extends out to larger radii.

B. The relativistic case,kFšmn

In this case there is again a polytropic equation of state,
but with g51. In fact, p5e/3, a well-known result for a
relativistic gas. The conversion to dimensionless quantities
becomes very simple in this case with relations such asK

5K̄51/3. It is still useful to factor out ane0 , which in our
program we take to have a value of 1.631038 ergs/cm3, as
suggested by the value in Sec. IV A. Then, if we choose

a53R054.428 km, ~42!

we find

b53.374 km23. ~43!

We expect central pressuresp̄(0) in this case to be greater
than 1024. Other than these changes, our program is similar
to the previous one, with care taken to avoid exponents such
as 1/(g21).

Running our code gives, at first glance, enormous radii,
values ofR greater than 50 km. We can imagine the student
looking frantically for a program bug that is not there. In
fact, what really happens is that for this equation of state, the
loop on r̄ runs through its entire range, because the pressure
p̄(r ) never passes through zero.@A plot of p̄(r ) looks quite
similar, except for the distance scale, to that shown in Fig. 3,
whereg54/5.] It only falls monotonically toward zero, be-
coming ever smaller. By the time students recognizes this
behavior, they will probably also have realized that the rela-
tivistic gas equation of state is inappropriate for such small
pressures. Something better should be done~as in Sec. IV C!.

It turns out that the structure equations forg51 are suf-
ficiently simple that an analytic solution forp(r ) can be
found, which corroborates the above remarks about not hav-
ing a zero at a finiteR. A suggestion for the student is to try
a power law ansatz.

C. The Fermi gas equation of state for arbitrary
relativity

To avoid the trap of the relativistic gas, we should find an
equation of state for the noninteracting neutron Fermi gas
that works for all values of the relativity parameterx
5kF /mnc. By taking a hint from the two polytropes, we can
try to fit the energy density as a function of pressure, each
given as a transcendental function ofkF , with the form

ē~p!5ANRp̄3/51ARp̄. ~44!

For low pressures the nonrelativistic first term dominates
over the second.@The power in the relativistic term is
changed from that in Eq.~38!.# It again is useful to factor out
an e0 from both e and p. In this case, it is more natural to
definee0 as

e05
mn

4c5

~3p2\!3 55.34631036ergs/cm3

50.003 006M (c2/km3 . ~45!

Mathematica can easily create a table of exactē and p̄
values as a function ofkF . The dimensionless values ofA

Table III. RadiusR ~in km! and massM ~in M () for pure neutron stars with
a nonrelativistic Fermi gas equation of state.

p̄(0) R ~Newton! M ~Newton! R ~GR! M ~GR!

1024 16.5 0.7747 15.25 0.6026
1025 20.8 0.3881 20.00 0.3495
1026 26.3 0.1944 25.75 0.1864
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can then be fit using Mathematica’s intrinsic fitting function.
From our efforts we found, to an accuracy of better than 1%
over most of the range ofkF , that,22

ANR52.4216 andAR52.8663. ~46!

We used the fitted functional form forē of Eq. ~44! in a
Mathematica program similar to that for the neutron star
based on the nonrelativistic equation of state. With thee0 of
Eq. ~45! and the choicea5R051.476 km, we obtainedb
50.037 78. Our results for a starting value ofp̄(0)50.01,
clearly in the relativistic regime, are

R515.0, M51.037 ~Newtonian equations!, ~47!

R513.4 M50.717. ~ full TOV equation!. ~48!

For this more massive star, the general relativistic effects are
significant~as should be expected from the size ofGM/c2R,
and are about 10% in this case!. Figure 5 displays the differ-
ences.

It is instructive to calculateM andR for a range ofp̄(0)
values. We display in Fig. 6 a~parametric! plot of M andR
as a function of the central pressure. The low-mass/large-
radius stars are to the right in the graph and correspond to
small starting values ofp̄(0). As the central pressure in-
creases, the total mass that the star can support increases.
And, the bigger the star mass, the bigger the gravitational
attraction, which draws in the periphery of the star, making

stars with smaller radii. That is, increasingp̄(0) corresponds
to ‘‘climbing the hill,’’ moving upward and to the left in the
diagram.

At about p̄(0)50.03, the star reaches the top of the hill,
achieving a maximum mass of about 0.8M ( at a radius of
R'11 km. This maximum value ofM and itsR agree with
Oppenheimer and Volkov’s seminal 1939 result for a Fermi
gas equation of state.5

What about the solutions in Fig. 6 that are ‘‘over the hill,’’
that is, to the left of the maximum? It turns out that these
stars are unstable against gravitational collapse into a black
hole. The question of stability, however, is complicated,23

perhaps too difficult for students at this level. The fact that
things collapse to the left of the maximum, however, means
that we probably should not worry too much about the pecu-
liar tail on the M –R curve in Fig. 6. It appears to be an
artifact for very large values ofp̄(0), asalso is seen in other
calculations, even though it is especially prominent for this
Fermi gas equation of state.

D. Why is there a maximum mass?

One can argue on general grounds that cold compact ob-
jects such as white dwarfs and neutron stars must possess a
limiting mass beyond which stable hydrostatic configurations
are not possible. This limiting mass often is called the maxi-
mum mass of the object and was briefly mentioned at the end
of Sec. II B and that the discussion relating to Fig. 6. In what
follows, we outline the general argument.

The thermal component of the pressure in cold stars is by
definition negligible. Thus, variations in both the energy den-
sity and pressure are caused only by changes in the density.
Given this simple observation, let us examine why we expect
a maximum mass in the Newtonian case.

An increase in the density results in a proportional in-
crease in the energy density. This increase results in a corre-
sponding increase in the gravitational attraction. To balance
this increase, we require that the increment in pressure be
large enough. However, the rate of change of the pressure
with respect to the energy density is related to the speed of
sound ~see Sec. VI C!. In a purely Newtonian world, this
speed is in principle unbounded. However, the speed of all

Fig. 5. The quantities~a! p̄(r ) and~b! M(r ) ~in M () versusr ~in km! for
a pure neutron star with central pressurep̄(0)50.01, using the Fermi gas
equation of state fit valid for all values ofkF , Eq. ~44!. The thin curves are
results from the classical Newtonian structure equations, while the thick
ones include general relativistic corrections.

Fig. 6. The massM ~in M () and radiusR ~in km! for pure neutron stars,
using a Fermi gas equation of state. The stars of low mass and large radius
are solutions of the TOV equations for small values of central pressure
p̄(0). The stars to the right of the maximum atR511 are stable, while those
to the left will suffer gravitational collapse.
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propagating signals cannot exceed the speed of light. This
limit is a bound on the pressure increment associated with
changes in density.

Once we accept this bound, we can safely conclude that all
cold compact objects will eventually run into the situation in
which any increase in density will result in an additional
gravitational attraction that cannot be compensated by a cor-
responding increment in pressure, leading naturally to the
existence of a limiting mass for the star.

When we include general relativistic corrections, as dis-
cussed in Sec. II B, they act to ‘‘amplify’’ gravity. Thus we
can expect the maximum mass to occur at a somewhat lower
mass than in the Newtonian case.

V. NEUTRON STARS WITH PROTONS AND
ELECTRONS, FERMI GAS EQUATION OF STATE

As mentioned at the beginning of Sec. IV, neutron stars are
not made only of neutrons, but also must include a small
fraction of protons and electrons. The reason is that a free
neutron will undergo a weak decay,

n→p1e21 n̄e , ~49!

with a lifetime of about 15 minutes. So, there must be some-
thing that prevents this decay for a star, and that is the pres-
ence of the protons and electrons.

The decay products have low energies (mn2mp2me

50.778 MeV), with most of that energy being carried away
by the light electron and~nearly massless! neutrino.24 If all
the available low-energy levels for the decay proton are al-
ready filled by the protons already present, then the Pauli
exclusion principle takes over and prevents the decay from
taking place.

The same might be said about the presence of the elec-
trons, but in any case the electrons must be present within
the star to cancel the positive charge of the protons. A neu-
tron star is electrically neutral. We saw earlier that the num-
ber density of a particle species is fixed in terms of that
particle’s Fermi momentum@see Eq.~7!#. Thus equal num-
bers of electrons and protons implies that

kF,p5kF,e . ~50!

In addition to charge neutrality, we also require weak in-
teraction equilibrium, that is, as many neutron decays@Eq.
~49!# taking place as electron capture reactions,p1e2→n
1ne . This equilibrium can be expressed in terms of the
chemical potentials for the three species,

mn5mp1me . ~51!

We already defined the chemical equilibrium for a particle
after Eq.~12!,

m i~kF,i !5
de

dni
5~kF,i

2 1mi
2!1/2 ~ i 5n,p,e!, ~52!

where, for the time being, we have setc51 to simplify the
equations somewhat.~The student is urged to prove the right-
hand equality.! From Eqs.~50!, ~51!, and~52!, we can find a
constraint that determineskF,p for a givenkF,n ,

~kF,n
2 1mn

2!1/22~kF,p
2 1mp

2!1/22~kF,p
2 1me

2!1/250. ~53!

Although an ambitious student can probably solve Eq.~53!
for kF,p as a function ofkF,n , we were lazy and let Math-
ematica do it, and found

kF,p~kF,n!

5
@~kF,n

2 1mn
22me

2!222mp
2~kF,n

2 1mn
21me

2!1mp
4#1/2

2~kF,n
2 1mn

2!1/2

~54!

'
kF,n

2 1mn
22mp

2

2~kF,n
2 1mn

2!1/2 for
me

kF,n
→0. ~55!

The total energy density is the sum of the individual en-
ergy densities,

e tot5 (
i 5n,p,e

e i , ~56!

where

e i~kF,i !5E
0

kF,i
~k21mi !

1/2k2 dk5e0ē i~xi ,yi !, ~57!

and, as before,25

e05mn
4/3p2\3, ~58!

ē i~xi ,yi !5E
0

xi
~u21yi

2!1/2u2 du, ~59!

xi5kF,i /mi , yi5mi /mn . ~60!

The corresponding total pressure is

ptot5 (
i 5n,p,e

pi , ~61!

pi~kF,i !5E
0

kF,i
~k21mi !

21/2k4 dk5e0p̄i~xi ,yi !, ~62!

p̄i~xi ,yi !5E
0

xi
~u21yi

2!21/2u4 du. ~63!

By using Mathematica the~dimensionless! integrals can be
expressed in terms of log and sinh21 functions ofxi andyi .
We can then generate a table ofē tot versusp̄tot values for an
appropriate range ofkF,n’s. These values can be fitted to the
same sum of two terms as in Eq.~44!. We found the coeffi-
cients to be

ANR52.572 andAR52.891. ~64!

These coefficients are not much changed from those in Eq.
~46! for the pure neutron star. Therefore, we expect that the
M versusR diagram for this more realistic Fermi gas model
would not be much different from that in Fig. 6.

VI. INTRODUCING NUCLEAR INTERACTIONS

Nucleon–nucleon interactions can be included in the equa-
tion of state~they are important! by constructing a simple
model for the nuclear potential that reproduces the general
features of~normal! nuclear matter. In so doing we were
much guided by Ref. 7.

We will use MeV and fm (10213 cm) as the energy and
distance units for much of this section, converting back to
M ( and km later. We also will continue settingc51. In this
regard, the important number to remember for making con-
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versions is\c5197.3 MeV fm. We also will neglect the
mass difference between protons and neutrons, and label
their masses asmN .

The von Weiza¨cker mass formula26 for nuclides withZ
protons andN neutrons gives, for normal symmetric nuclear
matter (A5N1Z with N5Z), an equilibrium number den-
sity n0 of 0.16 nucleons/fm3. For this value ofn0 the Fermi
momentum iskF

05263 MeV/c@see Eq.~7!#. This momentum
is sufficiently small compared withmN5939 MeV/c2 to al-
low a nonrelativistic treatment of normal nuclear matter. At
this density, the average binding energy per nucleon, BE
5E/A2mN , is 216 MeV.

The equilibrium density and the binding energy per
nucleon are two physical quantities we definitely want our
nuclear potential to respect, but there are two more that we
will need to fix the parameters of the model.

We choose one of these as the nuclear compressibility,K0 ,
to be defined below. The magnitude of this quantity is not
that well established, but is in the range of 200 to 400 MeV.
The other is the symmetry energy term, which, whenZ50,
contributes about 30 MeV of energy above the symmetric
matter minimum atn0 . ~This quantity might really be better
described as an asymmetry parameter, because it accounts
for the energy that arises whenNÞZ.)

A. Symmetric nuclear matter

We defer the case whenNÞZ, which is our main interest
in this paper, to Sec. VI B. Here we concentrate on obtaining
a good~enough! equation of state for nuclear matter when
N5Z, or, equivalently, when the proton and neutron number
densities are equal,nn5np . The total nucleon densityn
5nn1np .

We need to relate the three nuclear quantities,n0 , BE, and
K0 to the energy density for symmetric nuclear matter,e(n).
Heren5n(kF) is the nuclear density~at and away fromn0).
We will not worry in this section about the electrons that are
present, because, as was seen in Sec. V, their contribution is
small. The energy density now will include the nuclear po-
tential, V(n), which we will model in terms of two simple
functions with three parameters that are fitted to reproduce
the above three nuclear quantities.@The fourth quantity, the
symmetry energy, will be used in Sec. VI B to fix a term in
the potential that is proportional to (N2Z)/A.]

First, the average energy per nucleon,E/A, for symmetric
nuclear matter is related toe by

E~n!/A5e~n!/n, ~65!

which includes the rest mass energy,mN , and has units of
MeV. As a function ofn, E(n)/A2mN has a minimum at
n5n0 with a depth BE5216 MeV. This minimum occurs
when

d

dn S E~n!

A D5
d

dn S e~n!

n D50 at n5n0 . ~66!

Equation~66! is one constraint on the parameters ofV(n).
Another, of course, is the binding energy,

e~n!

n
2mN5BE at n5n0 . ~67!

The positive curvature at the bottom of this valley is related
to the nuclear~in!compressibility by27

K~n!59
dp~n!

dn
59Fn2

d2

dn2 S e

nD12n
d

dn S e

nD G , ~68!

where we have used Eq.~12!, which defines the pressure in
terms of the energy density. Atn5n0 this quantity equals
K0 . ~The factor of 9 is a historical artifact from the conven-
tion originally definingK0 .) ~Question: why does onenot
have to calculate the pressure atn5n0?)

We will modele(n) for theN5Z part of the potential by7

e~n!

n
5mN1

3

5

\2kF
2

2mN
1

A

2
u1

B

s11
us, ~69!

whereu5n/n0 ands are dimensionless andA and B have
units of MeV. The first term represents the rest mass energy
and the second the average kinetic energy per nucleon.
@These two terms are dominant in the nonrelativistic limit of
the nucleonic version of Eq.~10!.# For kF(n0)5kF

0 we will
abbreviate the kinetic energy term as^EF

0&, which evaluates
to 22.1 MeV. The kinetic energy term in Eq.~69! can be
better written aŝEF

0&u2/3.
From the three constraints, Eqs.~66!–~68!, and the fact

thatu51 atn5n0 , we obtain three equations for the param-
etersA, B, ands,

^EF
0&1

A

2
1

B

s11
5BE, ~70!

2

3
^EF

0&1
A

2
1

Bs

s11
50, ~71!

10

9
^EF

0&1A1Bs5
K0

9
. ~72!

By solving these three equations~which we found easier to
do by hand than with Mathematica!, we found

s5
K012^EF

0&

3^EF
0&29BE

, ~73!

B5
s11

s21 F1

3
^EF

0&2BEG , ~74!

A5BE2
5

3
^EF

0&2B. ~75!

For K05400 MeV ~which is perhaps a high value!,

A52122.2 MeV, B565.39 MeV, s52.112.
~76!

Note thats.1, which violates a basic principle of physics
called ‘‘causality,’’ a point that we will discuss in the follow-
ing.

The student can try other values ofK0 to see how the
parametersA, B, and s change. More interesting is to see
how the interplay between theA andB terms gives the val-
ley at n5n0 . Figure 7 showsE/A2mN as a function ofn
using the parameters of Eq.~76!. We hope students notice the
funny little positive bump in this plot nearn50 and sort out
the reason for its occurrence.

Given e(n) from Eq. ~69!, we can find the pressure using
Eq. ~12!,
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p~n!5n2
d

dn S e

nD5n0F2

3
^EF

0&u5/31
A

2
u21

Bs

s11
us11G .

~77!

For the parameters of Eq.~76! the dependence ofp(n) on n
is shown in Fig. 8. On first seeing this graph, students should
wonder whyp(u51)5p(n0)50. Also, what is the meaning
of the negative values for pressure belowu51? ~Hint: what
is ‘‘cavitation’’?!

If this N5Z case were all we had for the nuclear equation
of state, a plot ofe(n) versusp(n) would only make sense
for n>n0 . Such a plot looks much like a parabola opening to
the right for the range 0,u,3. At very large values ofu,
however,e'p/3, as it should for a relativistic nucleon gas
~see Sec. IV B!. We will not pursue this symmetric nuclear
matter equation of state further because our interest is in the
case whenN@Z.28

B. Nonsymmetric nuclear matter

We continue following Ref. 7 closely. Let us represent the
neutron and proton densities in terms of the parametera as

nn5
11a

2
n, np5

12a

2
n. ~78!

This a is not to be confused with the constant defined in Eq.
~24!. For pure neutron mattera51. Note that

a5
nn2np

n
5

N2Z

A
, ~79!

so we can expect that the isospin-symmetry-breaking inter-
action is proportional toa ~or some power of it!. An alter-
native notation is in terms of the fraction of protons in the
star,

x5
np

n
5

12a

2
. ~80!

We now consider how the energy density changes from the
symmetric case discussed above, wherea50 ~or x51/2).

First, there are contributions to the kinetic energy part ofe
from both neutrons and protons,

eKE~n,a!5
3

5

kF,n
2

2mN
nn1

3

5

kF,p
2

2mN
np

5n^EF&
1

2
@~11a!5/31~12a!5/3#, ~81!

where

^EF&5
3

5

\2

2mN
S 3p2n

2 D 2/3

~82!

is the mean kinetic energy of symmetric nuclear matter at
densityn. For n5n0 we note that̂ EF&53^EF

0&/5 @see Eq.
~69!#. For nonsymmetric matter,aÞ0, the excess kinetic en-
ergy is

DeKE~n,a!5eKE~n,a!2eKE~n,0!

5n^EF& $ 1
2 @~11a!5/31~12a!5/3#21%

5n^EF&$22/3@~12x!5/31x5/3#21%. ~83!

For pure neutron matter,a51, and

DeKE~n,a!5n^EF&~22/321!. ~84!

It is useful to expand Eq.~84! to leading order ina,

DeKE~n,a!5n^EF&
5

9
a2S 11

a2

27
1¯ D

5nEF

a2

3 S 11
a2

27
1¯ D . ~85!

Keeping terms to ordera2 is evidently good enough for most
purposes. For pure neutron matter, the energy per particle
~which is e/n) at normal density is DeKE(n0,1)/n0

'13 MeV, more than a third of the total bulk symmetry
energy of 30 MeV, our fourth nuclear parameter.

Thus the potential energy contribution to the bulk symme-
try energy must be'20 MeV. Let us assume the quadratic
approximation ina also works well enough for this potential
contribution and write the total energy per particle as

E~n,a!5E~n,0!1a2S~n!. ~86!

The isospin-symmetry breaking is proportional toa2, which
reflects~roughly! the pairwise nature of the nuclear interac-
tions.

We will assumeS(u), u5n/n0 , has the form

S~u!5~22/321! 3
5 ^EF

0&~u2/32F~u!!1S0F~u!. ~87!

Fig. 7. The average energy per nucleon, less its rest mass, as a function of
u5n/n0 ~in MeV!. The position of the minimum is atn5n050.16 fm23,
its depth there is BE5216 MeV, and its curvature~second derivative! cor-
responds to the nuclear compressibilityK05400 MeV.

Fig. 8. The pressure for symmetric nuclear matter as a function ofu
5n/n0 . The student should ask what it means when the pressure is negative
and why it is 0 atu51.
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Here S0530 MeV is the bulk symmetry energy parameter.
The functionF(u) must satisfyF(1)51 @so thatS(u51)
5S0] and F(0)50 @so thatS(u50)50; no matter means
no energy#. Besides these two constraints, there is, from what
we presently know, much freedom in what we may choose
for F(u). We will make the simplest possible choice here,
namely,

F~u!5u, ~88!

but we encourage students to try other forms that satisfy the
conditions onF(u), such asAu, to see what difference it
makes.

Figure 9 shows the energy per particle for pure neutron
matter,E(n,1)2mN , as a function ofu for the parameters of
Eq. ~76! andS0530 MeV. In contrast with thea50 plot in
Fig. 7, E(n,1)>0 and is monotonically increasing. The plot
looks almost quadratic as a function ofu. The dominant term
at largeu goes likeus with s52.112~for this case!. How-
ever, we might have expected a linear increase instead. We
will return to this point in Sec. VI C.

Given the energy density,e(n,a)5n0uE(n,a), the corre-
sponding pressure is, from Eq.~12!,

p~n,x!5u
d

du
e~n,a!2e~n,a!

5p~n,0!1n0a2F22/321

5
^EF

0&~2u5/323u2!1S0u2G ,
~89!

where p(n,0) is defined by Eq.~77!. Figure 10 shows the
dependence of the pure neutronp(n,1) and e(n,1) on u
5n/n0 , ranging from 0 to 10 times normal nuclear density.
Both functions increase smoothly and monotonically from
u50. We hope students will wonder why the pressure be-
comes greater than the energy density aroundu56. Why
doesn’t it go like a relativistic nucleon gas,p5e/3? ~Hint:
check the assumptions.!

We can now look at the equation of state, that is, the
dependence ofp on e ~the points in Fig. 11!. The pressure is
smooth, non-negative, and monotonically increasing as a
function of e. In fact it looks almost quadratic over this en-
ergy range (0<u<5). This behavior suggests that it might
be reasonable to see if we can make a simple, polytropic fit.
If we assume the form

p~e!5k0eg, ~90!

we find the fit shown in Fig. 11 as the solid curve with

k053.54831024 and g52.1, ~91!

where k0 has appropriate units so thatp and e are in
MeV/fm3. ~We simply guessed and setg52.1.)

This polytrope can now be used in solving the TOV equa-
tion for a pure neutron star with nuclear interactions. Alter-
natively, we might solve for the structure by using the func-
tional forms from Eq.~86!, multiplied by n, and Eq.~89!
directly. We defer that for a bit, because it would be a good
idea to first find an equation of state that does not violate
causality, a basic tenet of special relativity.

C. Does the speed of sound exceed that of light?

What is the speed of sound in nuclear matter? If we start
from the elementary formula for the square of the speed of
sound in terms of the bulk modulus,29 we can show that

Fig. 9. The average energy per neutron~less its rest mass!, in MeV, for pure
neutron matter, as a function ofu5n/n0 . The parameters for this curve are
for a nuclear compressibilityK0 of 400 MeV.

Fig. 10. The pressure~dashed curve! and energy density~solid! for pure
neutron matter, as a function ofu5n/n0 . The units for they axis are
MeV/fm3. This curve uses parameters based on a nuclear compressibility
K05400 MeV.

Fig. 11. The equation of state for pure neutron matter (a51), that is, the
dependence of pressure versus energy density. The units for both axes are
MeV/fm3, and the nuclear compressibility in this case isK05400 MeV.
The points are values calculated directly from Eq.~86!, multiplied byn, and
Eq. ~89!, while the solid curve is a fit to these points given in Eqs.~90! and
~91!.
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S cs

c D 2

5
B

rc2 5
dp

de
5

dp/dn

de/dn
. ~92!

To satisfy relativistic causality, we must require that the
sound speed does not exceed that of light, which could hap-
pen when the density becomes very large, that is, whenu
→`. For the simple model of nuclear interactions presented
in Sec. V, the dominant terms at largeu in p ande are those
going like us11. Thus, from Eq.~86!, multiplied by n, and
Eq. ~89!, we see that

S cs

c D 2

5
dp/dn

de/dn
→s52.11 ~93!

for the parameters of Eq.~76!, and indeed for any set of
parameters withK0 greater than about 180 MeV.

We can recover causality by assuring that bothe(u) and
p(u) grow no faster thanu2. There must still be an interplay
between theA andB terms in the nuclear potential, but one
simple way of recovering causality is to modify theB term
by introducing a fourth parameterC so that, for symmetric
nuclear matter (a50),

Vnuc~u,0!5
A

2
u1

B

s11

us

11Cus21 . ~94!

We can chooseC small enough so that the effect of the
denominator only becomes appreciable for very largeu. The
presence of the denominator would modify and complicate
the constraint equations forA, B, ands from those given in
Eqs.~70!–~72!. However, for smallC, which can be chosen
as we wish, the values of the other parameters should not be
much changed from those, say, in Eq.~76!. Thus, with a little
bit of trial and error, we can simply readjust theA, B, ands
values to put the minimum ofE/A2mN at the right position
(n0) and depth~BE!, hoping that the resulting value of the
~poorly known! compressibilityK0 remains sensible.

In our calculations we chooseC50.2 and start the search
by hand with theK05400 MeV parameters in Eq.~76!. We
found that by fiddling only withB ands, we could fitn0 and
B with only small changes,

B565.39→83.8 MeV, s52.11→2.37. ~95!

For these new values ofB and s, A changes from
2122.2 MeV to2136.7 MeV, andK0 from 400 to 363.2
MeV. That is, it remains a reasonable nuclear model.

We can now proceed as in Sec. V to obtaine(n,a),
p(n,a), and the equation of state,p(e,a). The results are
not much different from those shown in Fig. 11. This time
we decided to live with a quadratic fit for the equation of
state for pure neutron matter, and found

p~e,1!5k0e2 and k054.01231024. ~96!

This result is not much different from before, Eq.~91!.
Somewhat more useful for solving the TOV equation is to
expresse in terms ofp,

e~p!5~p/k0!)1/2. ~97!

D. Pure neutron star with nuclear interactions

With all this groundwork, students can now proceed to
solve the TOV equations as before for a pure neutron star,

using the fit fore(p) found in Sec. VI C. It is, once again,
useful to convert first from units of MeV/fm3 to ergs/cm3,
then toM ( /km3 and, finally, to dimensionlessp̄ and ē.

ē~ p̄!5~k0e0!21/2p̄1/25A0p̄1/2, A050.8642, ~98!

where this time we have defined

e05
mn

4c5

3p2\3 . ~99!

The constanta that occurs on the right-hand side of the TOV
equation, Eq.~23!, is a5A0R051.276 km. The constant for
the mass equation, Eq.~26!, is b50.032 65, again in units of
1/km3.

Now proceeding as before, we can solve the coupled TOV
equations forp̄(r ) andM̄(r ) for various initial central pres-
sures,p̄(0). The plots of the solutions are very similar to
those for the Fermi gas equation of state, Fig. 5.

More interesting is to solve for a range of initialp̄(0)’s,
generating, as before, a massM versus radiusR plot that
now includes nucleon–nucleon interactions~Fig. 12!. The
effect of the nuclear potential is enormous as seen by com-
paring with the Fermi gas model predictions forM versusR
shown in Fig. 6. The maximum star mass is now about
2.3M ( , rather than 0.8M ( . The radius for this maximum
mass star is about 13.5 km, somewhat larger than the Fermi
gas model radius of 11 km. The large value of maximumM
is a reflection of the large value of the nuclear~in!compress-
ibility K05363 MeV. The more incompressible something
is, the more mass it can support. If we had fit to a smaller
value of K0 , we would have obtained a smaller maximum
mass.

E. What about a cosmological constant?

We do not know if there is a cosmological constant, but
there are definite indications that much of our universe is
something called ‘‘dark energy.’’30 This conclusion comes
about because we have recently learned that something is
causing the universe to be accelerating instead of slowing
down ~as would be expected after the Big Bang!.

One way to interpret this dark energy is in terms of Ein-
stein’s cosmological constant, which contributes a term

Fig. 12. The massM ~in M () and radiusR ~in km! for pure neutron stars
using an equation of state that contains nucleon–nucleon interactions. Only
those stars to the right of the maximum are stable against gravitational
collapse. Compare this graph with that in Fig. 6 which is based on a non-
interacting Fermi gas model for the equation of state.
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Lgmn to the right-hand side of Einstein’s field equation, the
basic equation of general relativity. The most natural value
for L would be zero, but that may not be the way the world
is. If L is nonzero, it is nonetheless surprisingly small. What
would the effect of a nonzero cosmological constant be on
the structure of a neutron star? It turns out that the only
modification to the TOV equation31 is the correction factor

F11
4pr 3p~r !

M~r !c2 G→F11
4pr 3p~r !

M~r !c2 2
Lr 3

2GM~r !G . ~100!

We encourage students to first understand the units ofL and
then to see what values ofL might affect the structure of a
typical neutron star.

VII. CONCLUSIONS

The materials we have described would be suitable as an
undergraduate thesis or special topics course accessible to
junior or senior physics majors. It is a topic rich in the sub-
jects students will have covered in their courses, ranging
from thermodynamics to statistical mechanics to nuclear
physics. The major emphasis of such a project would be to
construct a~simple! equation of state. The latter is needed to
solve the nonlinear structure equations. The numerical solu-
tion of these equations would develop the students’ compu-
tational skills. Along the way, they also will learn some of
the lore regarding degenerate stars, for example, white
dwarfs and neutron stars. And, in the latter case, they also
will come to appreciate the relative importance of special
and general relativity.
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The following typos were noted by Bijay K. Agarwal of
Texas A & M University, and Irina Sagert and Matthias
Hempel of the Goethe University, Frankfurt am Main. Also,
the symbolsk, kF , etc., represent momenta, not wave num-
bers. Some of our correspondents were confused on this
point.

d Equation~11!: include a factor ofc2 in the first term on the
right-hand side.

d Equation~25!: the exponent of the term in square brackets
should be 1/(g21).

d Equation~57!: there should be a factor of 1/(p2\3) before
the integral. Note that, in this section, we have setc51.
Compare with Eqs.~10! and ~13! for the electron Fermi
gas case.

d Equation ~58!: in view of the correction in Eq.~57!, it
might have been more felicitous to have definede0 without
the factor of 3 in the denominator. However, as we have
emphasized,e0 is anarbitrary dimensional constant.

d Equation~59!: with e0 defined as in Eq.~58!, then there
should be a factor of 3 before the integral.

d Equation~60!: xi should be written askF /mn , not kF /mi .
d Equation~62!: there should be a factor of 1/(3p2\3) be-

fore the integral.

d Equation~69!: the factor of\2 in the second term on the
right-hand side should not be there.~This equation is for an
energy and we forgot thatkF is a momentum, not a wave
number.!

d Section VI A, last paragraph: the relativistic gas hasp
5e/3, not e5p/3.

d After Eq. ~82!: the text should read ‘‘Forn5n0 we note
that ^EF&5^EF

0&, ’’ i.e., the factor of 3/5 should be
dropped.

d Equation~86!: it would be more consistent with our earlier
use of ‘‘energy per particle’’ to have written this equation
with each term divided byA.

d Equation ~87!: in view of the correction after Eq.~82!,
drop the factor of 3/5 beforêEF

0&.
d Equation~89!: likewise, the denominator before^EF

0& is 3,
not 5.

The errors in Eq.~25! and in Eqs.~57!–~62! are only typos
resulting from bad transcription from theMATHEMATICA files
to the LaTeX manuscript. The numerical value ofe0 in Eq.
~29! and the masses in Table I are correct. Likewise, the
fitted coefficients in Eq.~64! are correct and the concluding
sentence of Sec. V is still valid.
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