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The calculation of the structure of white dwarf and neutron stars is a suitable topic for an
undergraduate thesis or an advanced special topics or independent study course. The subject is rich
in many different areas of physics, ranging from thermodynamics to quantum statistics to nuclear
physics to special and general relativity. The computations for solving the coupled structure
differential equationgboth Newtonian and general relativistican be done using a symbolic
computational package. In doing so, students will develop computational skills and learn how to
deal with units. Along the way they also will learn some of the physics of equations of state and of
degenerate stars. @004 American Association of Physics Teachers.
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I. INTRODUCTION tions (Sec. 11 A), and be given the general relativistic correc-
tions (Sec. 11 B.. Before trying to solve these equations, they
In 1967 Jocelyn Bell, a graduate student, along with heheed to know the relation between the energy density and
thesis advisor, Anthony Hewish, discovered the first pulsarpressure of the matter that constitutes the stellar interior, that
an object in outer space that emits very regular pulses of, the equation of state. The first equation of state to use can
radio energy. After recognizing that these pulse trains werepe derived from the noninteracting Fermi gas, which brings
so unvarying that they could not support an origin from little j,, guantum statistics and special relativi§ec. 11l B).
green men, it soon became generally accepted that the pulsarpg 5 warm-up problem students can integrate the Newton-
was due to radio emission from a rapidly rotating neutronjan equations and learn about white dwarf stars. They can
staf endowed with a very strong magnetic field. At presentinen, include the general relativistic corrections and proceed
more than 1000 pulsars have been cataloguedisars are iy the same way to work out the structure of pure neutron
by themselves quite interestifidut perhaps more so is the ¢iar5"ang reproduce the results of Oppenheimer and Volkov.
structure of the underlylr)g neutron star. This paper dlscussq§ is interesting at this point to determine the importance of
a student project on their structure. the general relativistic corrections, that is, how different a

While still at MIT, one of us(Reddy had the pleasure of : : : )
acting as mentor for a bright British high school student,,[]oenuigr?r:nsggrr];ifégm what would be given by classical New

Aiden J. Parker. She spent the summer of 2002 at MIT as a

articipant in a special research proaram. With minimal Of course, realistic neutron stars also contain some pro-
P P P prog ’ ons and electrons. As a first approximation we can treat this

guidance she was able to write a Fortran program for solvinén . . . .
the Tolman—Oppenheimer—\Volkov equatiorts calculate ulticomponent system as a noninteracting Ferm! gas. In the
process we learn about chemical potentials. To improve on

the masses and radii of neutron stars. this treat i t includ I int fi in addi
In discussing this impressive work after Reddy’s arrival at_. IS treatment, we must Include nuciear interactions n addi-
LANL, the question arose of whether it would have beention to the degeneracy pressure from thg P"’?“" exclusion
possible (and easierto have done the computation using principle. The nucleon—nucleon interaction 1S not well
known to undergraduates, but there is a simple moaleich

Mathematicalor another symbolic and numerical manipula- A
tion package This question was taken as a challenge by""e learned from Prakadhfor the nuclear matter equation of

Silbar, who also figured it would be a good opportunity to State- It has parameters that are fit to quantities such as the
learn how these kinds of stellar structure calculations ar@inding energy per nucleon in symmetric nuclear matter, the
done.(Silbar’s only previous experience in this field of phys- nuclear symmetry energy, and tti@ot so well known
ics consisted of having read, with some care, the chapter O!;Huclea_r_compreSS|blllt§/._If we use these nuclear interactions
stellar equilibrium and collapse in Weinberg's treatise onin addition to the Fermi gas energy in the equation of state,
gravitation and cosmolod). we find (pure neutron star masses_and radii t_hat are quite
In the process of meeting the challenge, it became cledfifferent from those using the Fermi gas equation of state.
that this subject would be an excellent topic for a junior or In the following we will indicate possible “gotcha’s” that
senior physics major’s project or thesis. There is much morstudents might encounter and possible side-trips that might
physics in the problem than just simply integrating a pair ofoe taken. Of course, the project we outline here should be
coupled nonlinear differential equations. In addition to theaugmented by the faculty mentowith suggestions for by-
physics(and some astronomystudents must think about the Ways that might lead to publishable results, if that is desired.
magnitudes of the quantities they are calculating in order to Balian and Blaizot have given a similar discussion of this
check and understand the answers they obtain. Another sideibject mattet’ However, they used this materiednd re-
benefit is that students learn about the stability of numericalated materialsas the basis for a full-year course. In con-
solutions and how to deal with singularities. In the procesdrast, our emphasis is more toward nudging the student into a
they also learn about the inner mechanics of the softwareesearch frame of mind involving numerical calculations.
package they use. Much of the material we discuss here is covered in the text-
The paper proceeds as follows. The student should beginook by Shapiro and Teukolsky.However, as the reader
with a derivation of thgNewtonian coupled structure equa- will notice, the emphasis here is on students learning through
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p(r+dr) = F(r+dr)/A

T

dr

Fig. 1. Diagram for the derivation of Eq1).

(4)

This definition allows Eq(1) to be used when we take into
account contributions of the interaction energy between the
particles making up the star.

To solve Eqgs(1)—(3) for p(r) and M(r), we can inte-
grate from the originy =0, to the pointr=R where the
pressure goes to zero. This point defifeas the radius of
the star. We will need an initial value of the pressure at
=0, call it py; R and the total mass of the stak((R)
=M, will depend on the value gi,. To be able to perform
the integration, we need to know the energy densfty) in
terms of the pressurp(r). This relation is the equation of
state for the matter making up the star. Thus, a lot of the
effort in this project will be directed to developing an appro-
priate equation of state.

e(r)=p(r)c?.

B. General relativistic corrections

The Newtonian formulation presented in Sec. Il A works
well in regimes where the mass of the star is not so large that
it significantly “warps” space—time. That is, integrating Egs.
(1) and(2) will work well in cases for which general relativ-

computation. One of our intentions is to establish a frameistic effects are not important, such as for the compact stars
work for students to interact with their own computer pro-known as white dwarfsGeneral relativistic effects become
gram, and in the process learn about the physical scales iimportant when the rati& M/c?R becomes non-negligible,

volved in the structure of compact degenerate stars.

Il. THE TOLMAN —OPPENHEIMER —VOLKOV
EQUATION

A. Newtonian formulation

A good first exercise for the student is to derive the fol-

lowing structure equations for stars from classical mechan-

ics,
dp_ Gp(r)M(r)_ Ge(r)M(r)
dr re B @
dmMm Ar?
N sy =T @

r r
M(r)=47-rf r'2dr’ p(r’)=47'rf r'2dr’ e(r’)/c?.
0 0

)
Here G=6.673<10 & dynecnt/g® is Newton’s gravita-
tional constantp(r) is the mass density at the distancen
glen?, and e is the corresponding energy density in
ergs/cn.? The quantityM(r) is the total mass inside the
sphere of radiug. A sufficient hint for the derivation is
shown in Fig. 1.

Challenge question: Eqsl)—(3) hold for any value of,
not just the large situation depicted in Fig. 1. Derive these
results in spherical coordinates where the box becomes
cutoff wedge.

Note that in the second halves of E¢%)—(3), we have

as is the case for typical neutron stars

It is probably not to be expected that an undergraduate
physics major will be able to derive the general relativistic
corrections to Eqs1)—(3). For that, we can look at various
derivations of the Tolman—Oppenheimer—\olk@q¥OV)
equatior®!! It is sufficient to simply state the corrections to
Eqg. (1) in terms of three additionddimensionlessfactors,

dp Ge(r)M(r) p(r) 47r3p(r)
dr ¢ * e(r) [1+ M(r)c?
2GM(r)]t
S ©

The first two factors in the square brackets in Eg).repre-
sent special relativity corrections of ordef/c?. These fac-
tors enter because, in the nonrelativistic limit, the prespure
varies askZ/2m=muv?/2 [see Eq.(13)], while e and Mc?
vary asmc?. These factors reduce to 1 in the nonrelativistic
limit. (By now the student should realize thatand e have
the same dimensionsThe last set of brackets in E¢p) is a
general relativistic correction. Equatiai) for M(r) re-
mains unchanged.

Note that the correction factors are all positive definite. It
is as if Newtonian gravity becomes stronger for any value of
r. That is, relativity strengthens the relentless pull of gravity.

Equations(5) and(2), involve a balance between gravita-
tional forces and the internal pressure. The pressure is a
fanction of the equation of state, and for certain conditions it
may not be sufficient to withstand the gravitational attrac-
tion. Thus the structure equations imply there is a maximum

departed slightly from Newtonian physics and have ex-mass that a star can have. The resultant coupled nonlinear
pressed the energy densitgr) in terms of the mass density equations fop(r) andM(r) can be integrated from=0 to

p(r) according to the famous Einstein equation from speciathe pointR where p(R)=0 to determine the star mass
relativity, = M(R) for a given value ofpg.
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Ill. WHITE DWARF STARS according to the star’s total mass, but which students are free
to set in the calculations.

A. A few facts Each electron is neutralized by a proton, which in turn is
accompanied in its atomic nucleus by a neutf@nperhaps a

For the cold, compact stallar objects known as whitee,y more, as in the case of a nucleus I#€ge). Thus, if we
dwarf stars, it sufﬂlges to solve the Newtonian structure equaﬁeglect the electron mass, with respect to the nucleon
tions, Eqs(1)—(3).1® White dwarf star¥ were first observed massmy, the mass densityeof the star is given by

in 1844 by Friedrich Bessdthe same person who invented
the special functions bearing that ngmide noticed that the p=nmyA/Z, 8
bright star Sirius wobbled back and forth and then deduced )

that the visible star was being orbited by some unseen objec/hereA/Z is the number of nucleons per electron. Fe,
that is, it is a binary system. The object itself was resolved®/Z=2, while for>*Fe, A/Z=2.15. Note that, becauseis a
optically some 20 years later and thus earned the name dfinction ofkg, so isp. Conversely, given a value @f
“white dwarf.” Since then, numerous other whitand the 372 7\ 13

smaller brown dwarf stars have been observed or detected. :ﬁ( TP _) ) (9)

A white dwarf star is a low- or medium-mass star near the my A

end of its lifetime, having burned up, through nuclear pro-the energy density of this star also is dominated by the
cesses, most of its hydrogen and helium forming Carbonnucleon masses, that is= pc?

silicon, or (perhaps iron. They typically have a mass less - :

than 1.4 times that of our SuN o~ 1.983< 10 kg They 11, COMIoution 1o the energy density from the electrons
are also much smaller than our Sun, with radii of the order of(

10* km (to be compared witlR,=6.96x10° km). These 8w
values can be determined from the period of the wobble for Ceted k) = (27h)°
the dwarf-normal star binary in the usual Keplerian way. As

k
J i " (K2c2+ m2ch) VA2 dk

a result(and as also is the case for neutron state natural m‘gc5 Ke/mee 122

dimensions for discussing white dwarfs are for masses to be X fo (u*+1)"u"du

in units of solar massVl, and distances to be in kilome-

ters. By using these numbers, students should be able to mac® . o1 g

make a quick estimate of tHaveragg densities of our Sun = 8,273 (2 X)(1+x5)  =sini ()],
and of a white dwarf to obtain a feel for the numbers that

will be encountered. (10

2p~10" 4 i H L.
BecauseGM/c“R~10"" for a typical white dwarf, we \yherex=k./m.c. The total energy density is then
can concentrate on solving the non-relativistic structure

equations of Sec. Il A. Question: why is it a good approxi-  €=NMyA/Z+ €ged Kg). (11
(rjnati?cnoto drop the special relativistic corrections for thes€gne should check that the first term is much larger than the
warfs?

The reason a dwarf star is small is because, having burneSéF-?-gngt')tam the desired equation of state, we also need an
up all the nuclear fuel it can, there is no longer enough therg, ression for the pressure. The following presents a prob-
mal pressure to prevent its gravity from crushing it down. A, o the student. From the first law of thermodynamics
the density increases, the electrons in the atoms are push —dQ-pdV, and the temperaturd fixed at T=0 ’
closer together, which then tend to fall into the lowest energy, heredO=0 b & T=0 h
levels available to then{The star begins to become colder. (wheredQ=0 becaus@lT=0), we have
Eventually the Pauli principle takes over, and the electron [ ou zd(e/n) de

p= _

T=0

degeneracy pressuf be discussed in Sec. Il)Brovides TV dn_ nﬁ —e=nu—e¢, (12

the means for stabilizing the star against its gravitational
attraction™ where the energy density is given by Edl). The quantity
pn=de/dn is known as the chemical potential of the elec-
trons. The chemical potential will be especially useful in Sec.
V, where we consider an equilibrium mix of neutrons, pro-
For free electrons the number of staths available be- tons, and electrons.

B. Fermi gas model for electrons

tween the momenturk andk+ dk per unit volume i If we utilize Eq.(10), Eq.(12) yields the pressur@nother
problem
g d*k  4wk?dk © o )
n= = .
(2mh)®  (27h)® p(kF):WZ_h)?’f " (K2c2+ mZct) V%4 dk
By integrating Eq.(6), we obtain the electron number den- 0
sity, m‘e‘c5 kg /mgc
- 2 -1/2, 4
8 - i =327, jo (u+1)"“u*du
"= @ ), K I 3 @ 45
— € 3_ 2\1/2 inh- 1
The additional factor of two is included because there are - 24772713[(2)( 3x)(1+x9) 75+ 3 sinh(x) ].

two spin states for each electron energy level. Hgig the (13
Fermi energy, is the maximum energy electrons can have in
the star under consideration. It is a parameter that variegHint: use then?d(e/n)/dn form and integrate by paris.
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Question: what are the units ¢f,, and K,onei? Confirm
that, in the appropriate limits, Eq&10) and (13) reduce to
15 a0 Eqgs.(14) and(17).

B
T

10, 10
C. The structure equations for a polytrope

05 -0 As mentioned, we want to express our results in units of

km and Mg. Thus it is useful to define/ﬁ(r)
=M(r)/Mg. The first Newtonian structure equation, Eq.

27 ZB
0.5-10 L. -1t (1), then becomes
&
r r r
Fig. 2. Relation between the pressyrand the energy densityin the free dp(r) =—-R, «( )'/\24( ) , (18)
electron Fermi gas model. The units are ergd/cNote that the pressure is dr r
much smaller than the energy density, because the latter is dominated by the 2
massive nucleons. where the constaiRy=GMg /c“=1.47 km.(For those who

know, R, is one-half the Schwartzschild radius of our gun.
In Eq. (18) p ande carry dimensions of ergs/cinTherefore,
By using Mathematicd’ students can show that the con- we define the dimensionless energy densityand pressure,
stant in front of the integral in the second line of E§0) is  p, by
1.42x 107 ergs/cni. (Another problem: verify that the units _
of this constant are as claimé{.Mathematica also can per- P= €oP, (19
form the integrals analyticallfWe already gave the results €= g€, (20)
in Egs.(10) and(13).] They are a bit messy, however, as they
both involve an inverse hyperbolic sine function, and thuswhere €; has dimensions of energy density. Its choice is
are not terribly enlightening. It is useful, however, for the arbitrary, and a suitable strategy is to make that choice based
student to make a plot efversusp (such as shown in Fig)2 on the dimensionful numbers that define the problem at
for various values of the parametes®-<2m,. This curve hand. We will employ this strategy to choose it below. For a
has a shape much liké”? (the student should compare the POlytrope, we can write

curve to this functiopy and there is a good reason for that, as p=Ke” 21)
we will see. '
Consider the(relativistic) case wherkg>me. Then Eq.  whereK=Ke} ! is dimensionless.
(13) simplifies to It is easier to solve Eq(18) for p, so we expresg in
k) mac® J‘k,:/mec 2 terms of it,
=573 u°du _
PR o e=(pIK)1". (22
m‘e}c5 4 Equation(18) can now be recast in the form
= 10273 e /MeC)

dp(r)  ap(r)*"M(r)

fic [37%Zp\*B a3 dr B r? ' @3
:P —A %Kre|6 y (14) .
T\ My where the constant is
where a=Ry/KY=Ry/(Ke] 1), (24
hc [ 3wz \4B . . : o
KrelzP Ao (15) Equation(23) has dimensions of 1/km, witlx in km (be-
T AMC causeR, is).
A star having a simple equation of state suchpasKe” is We can choose any convenient value éobecauseg is

called a polytrope, and we see that the relativistic electrorstill free. For a given value o#, ¢, is then fixed at
Ferm_| gas gives a polytropic equation o_f state v_vyth 4/3. 1 /R 71
As will be seen in Sec. llIC, a polytropic equation of state - _0)
allows us to solve the structijpre equatignsmerically in a K\ «a
relatively straightforward way: We al . .

. : . n he other I n n

There is another polytropic equation of state for the non- € aiso ee_d 0 c{_ﬁtt e othe C_in ed equatio (Bl

interacting electron Fermi gas model corresponding to théerms of the dimensionless quantitigsand M,

(25

€En=

nonrelativistic limit, whereke<<mg. In a way similar to the dM(r)
derivation of Eq.(14), we find g = Brp(r)Y, (26)
r
=Knonre€™, (16)

p nonref wher&®

where
2 25\ 53 47eg 4reg
h 3wz B= = . (27)
Knonre™ 1577'2me AmN02 (7 M Gczilly M ch( Ked~ 1)1/7
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Equation(26) also carries dimensions of 1/km, the constantTable I. RadiusR (in km) and massM (in M) for white dwarfs with a
B having dimensions 1/kPn Note that, in integrating from relativistic electron Fermi gas equation of state.

r=0, the initial value of/\_/l(O)=0. P(0) R M
) ) 10 4840 1.2431
D. Integrating the polytrope numerically 10718 8600 1.2432
10716 15080 1.2430

Our task is to integrate the coupled first-order differential
equations, Eqs(23) and (26), from the origin,r =0, to the
point R wherep(R)=0.2! To do so we need two initial val-

ues,p(0) (which must be positive and M(0) (which we  which is much, much smaller than our choiceegfhere. In
know must be zero The star’s radiusR, and its masM  aqgition, the pressung is about 2000 times smaller than the
= M(R) in units of M5 will vary, depending on the choice energy density (see Fig. 2 Thus, choosing a starting value
for p(0). of p(0)~ 10" *> would be more physical. Doing so does give
For purposes of numerical stability in solving Eq&3) much more reasonable results. Table | shows our program’s
and (26), we want the constanta and 8 to be not much results forR andM and how they depend qm(0).
different from each othefand not much different from The surprise is that, within the expected numerical error,
unity). We will see that this can be arranged for both of theall these cases have the same mass. Increasing the central
two polytropic equation of states that we discussed for whitgressure does not allow the star to be more massive, just
dwarfs. more compact. This result is correct: the white dwarf mass is
Our coupled differential equations are quite nonlinear. Beindependent of the choice of the central pressure. However, it
cause of the@'/” factors, the exact solution will be complex is not easy to understand this result from the numerical inte-
when p(r)<o0, that is, whenr>R. For example, Math- gration.
ematica and symbolic programs like it have built-in first- The discussion in terms of Lane—Emden functions shows
order differential equation solvers. The solver might be agvhy, although the mathematics here might be a bit steep for
simple as a fixed, equal-step Runge—Kutta routine. Thes@any undergraduates. For this reason, we give the analytic
packages also allow for program control constructs such akesults without proot?® For the polytropic equation of state
do loop and while statements. p=Ke?, the mass is

Ky 3/2
_ — a3 2
E. The relativistic casekg>m, M =470 43 3( 4Gy 1)) {ilecyl, (32

The case&kg>m, is the regime for white dwarfs with the and the radius is given by
largest mass. A larger mass needs a greater central pressure
to support it. However, large central pressures mean that the g_ / Ky P aL: (33)
squeezed electrons become relativistic. 47G(y—1)°t '

Recall that the polytrope exponent=4/3 for this case
and the equation of state is given IB=K,qe” with K

given by Eq.(15). After some trial and error, we choogthe
student may want to try another vajue

In Egs.(32) and(33), {; and 6({;) are numerical constants
that depend on the polytropic index From Eq.(32), we see
that for y=4/3, the mass is independent of the central energy
density, and hence also the central presqyeAlso, note
a=Ry=1.473 km (kg>m,), (28 that from Eq.(33), the radius decreases with increasing cen-
tral pressure aRocp$Y~2/2=p ¥ Students should notice
this point and use it to check their numerical results.

Figure 3 shows the dependencepdf) and /\_/l(r) onr

which in turn from Eq.(25) fixes,
€0=7.463<10°° ergsicm=4.1Myc2/km® (ke>m,).

. @9 for P(0)=10"18 It is interesting thap(r) becomes small
Whenkg>m,, Egs.(15) and(27) give and essentially flat around 8000 km before going through
B="52.46/kn?, (30) zero atR=15080 km. Such a star has a very tall “atmo-

sphere.”
which is about 30 times larger than but manageable from

the standpoint of performing the numerical integration.
In our first attempt to integrate the coupled differential £ The nonrelativistic case ke<m,
equations for this case, we choog€0)=1.0. This choice
gives a white dwarf of radiuR~2 km, which is miniscule As the central pressug0) becomes smaller, the electron
compared with the expected radiusefl0* km. Why? What gas eventually is no longer relativistic. Also @g0) be-
went wrong? comes smaller, the electron gas can support less mass, which
Students who make this kind of mistake will eventually moves the gas in the direction of the less massive white
realize that our choice of scaleyg=4.1Mc?/km°, repre- dwarfs. It turns out that these dwarfs are larger radiug
sents a huge energy density. We can simply estimate th&an the relativistic ones just discussed.
average energy density of a star with & & radius and a  In the extreme case wheg-<m,, we can integrate the

massM , by the ratio of its rest mass energy to its volume, Structure equations for the polytropic equation of state where
M2 v=>5/3. The program for this case is much the same as in the
oC

~ —10-12 2 -3 4/3 case, but the numbers involved are quite different as are
() RE 10 "Moc® km, BV the results.
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16 Table Il. RadiusR (in km) and massV (in M) for white dwarfs with a

Lo-10°
nonrelativistic electron Fermi gas equation of state.
N p(0) R M
o
1075 10 620 0.3941
05107 1071 13360 0.1974

that we plotted in Fig. 3 is not really appropriate for a cal-
culation using a relativistic polytrope for the equation of

S004) 1 (000 | 50040 state.
r The results for the nonrelativistic case for the last two
(a) values ofp(0) in Table | are shown in Table . It is instruc-

tive to compare the differences in the two tables. The masses
are, of course, smaller, as expected, and now they vary with
S P(0). Figure 4 shows the pressure distribution for the latter
case, which is to be compared with the corresponding graph
1o in Fig. 3. Note that this nonrelativistic pressure curve does
not have the peculiar long flat tail found using the relativistic
Hr) equation of statéFig. 3.

By this time students should realize that neither of these
polytropes is very physical, at least not for all cases. The
nonrelativistic assumption certainly does not work for central
pressure(0)>10 14 that is, for the more massivand
more commohwhite dwarfs. On the other hand, the relativ-

5000 10000 15000 istic equation of state certainly should not work when the
r pressure becomes small, that is, in the outer regions of the
(b) star (where it eventually goes to zero at the star’'s radius
Can we find an equation of state to cover the whole range of
Fig. 3. The quantitiesa) p(r) and(b) M(r) (in M) versus radius (in pressures?
km) for white dwarfs using the relativistic electron Fermi gas model. These  \We have not actually found such an equation for white
curves are obtained from the integration of E(E3) and (26) with the  — g\warfs, hut the program would be similar to that discussed in
g?;fsrﬁfé%gg‘:altgqum state of Eq14). This s the case for the central o following for the full neutron star. Given the transcen-
’ dental expressions for the energy and pressure that generate
the curve shown in Fig. 2, Eq§10) and(13), it also should
be possible to find a fitusing, for example, the intrinsic

If we substitute the values of the physical constants in Eqfitiing function of Mathematicasuch as
(17), we find €(P)=AnrP™>+ Arp (38)
Knonre™= 3.309x 10 2c?/ergs”. (34  The second term dominates at high press(res relativistic

case, but the first term takes over for low pressures when the
ke>m, assumption does not holdSetting the two terms

After some experimentation, we choose the constant

a=0.05 km, (kg<<m,), (35  equal and solving fop, gives the value op when special
which then fixes relativity starts to be importantThis expression fore(p)

; S could then be used in place of tpé’” factors on the right-
€9=2.488< 10" ergs/cni=0.0139Moc?/km’.  (36)  hand sides of the structure equations. Proceed to solve nu-

Note that this value o€, is much smaller than our choice for
the relativistic case. The other constant we need is from Eq.

(27), 1. 107"
B=0.005924 km?, (37
which, unlike the relativistic case, is not larger tharbut is i
smaller. i
5, 10"

When we first ran our code for this case, \Weadvert-
ently) tried a value ofp(0)=10*2. This value gave a star
with radiusR=5310 km and masM =3.131. This mass is
bigger than the largest mass of 1.243 that we found for the
relativistic equation of state. What did we do wrong? What
happenedstudents can write their program so this trap can 3000 10000
be avoided is that the choicg(0)=10 *? violates the as- r
sumption thatkp<m,. One really needs values such thatrig 4. p(r) for a white dwarf using the nonrelativistic electron Fermi gas
P(0)<4x10 '® Thatis, the valug@(0)=10 '®for the case model, Eq.(17), with central pressurp(0)=10"19.

897 Am. J. Phys., Vol. 72, No. 7, July 2004 Richard R. Silbar and Sanjay Reddy 897



Table Ill. RadiusR (in km) and mas# (in M) for pure neutron stars with  see that as the mass becomes smaller, the gravitational attrac-

a nonrelativistic Fermi gas equation of state. tion is less and thus the star extends out to larger radii.
P(0) R(Newton M (Newton  R(GR) M (GR)

104 165 0.7747 15.25 0.6026 B. The relativistic case,kg>m,

igiz 32:2 giigii ;g:gg 8:?:22 In this case there is again a polytropic equation of state,

but with y=1. In fact, p=¢€/3, a well-known result for a
relativistic gas. The conversion to dimensionless quantities
becomes very simple in this case with relations suctKas

merically as before. We leave this as an exercise for inter= K=1/3. It is still useful to factor out a,, which in our

ested students. program we take to have a value of X.60°® ergs/cni, as
suggested by the value in Sec. IV A. Then, if we choose
IV. PURE NEUTRON STAR, FERMI GAS EQUATION a=3Ry=4.428 km, (42
OF STATE .
we find
In this case we must include the general relativistic con- B=3.374 km 3. (43)

tributions represented by the three dimensionless factors in

the TOV equation, Eq(5). One of the first programming We expect central pressurgg0) in this case to be greater
problems that comes to mind is how one deals numericallghan 10 4. Other than these changes, our program is similar
with the (apparent singularities in these factors at 0. to the previous one, with care taken to avoid exponents such

Also, as for the white dwarfs, there is a question of what toas 1/(y—1).
use for the equation of state. In this section we show what Running our code gives, at first glance, enormous radii,
can be done for pure neutron stars, once again using a Fermalues ofR greater than 50 km. We can imagine the student
gas model for a neutron gas instead of an electron gas. Sugfioking frantically for a program bug that is not there. In
a model, however, is unrealistic for two reasons. First, a reafact, what really happens is that for this equation of state, the
neutron star consists not just of neutrons, but contains op onT runs through its entire range, because the pressure
small fraction of protons and electroif® inhibit the N€U-  p(r) never passes through zefd plot of p(r) looks quite
trons from decaying into protons and electrons by their wealgimijar, except for the distance scale, to that shown in Fig. 3,
interactions. Second, the Fermi gas model ignores the strongy here o — 4/5 ] It only falls monotonically toward zero, be-
nuc_Ieon—nucIeon interactions, which give important Cc?m”'coming ever smaller. By the time students recognizes this
butions to the energy density. Each of these points will b§,epayior, they will probably also have realized that the rela-
dealt with in Secs. V and VI, respectively. tivistic gas equation of state is inappropriate for such small
pressures. Something better should be dasen Sec. IV G.

It turns out that the structure equations fgr1 are suf-

For a pure neutron star Fermi gas equation of state we cdiciently simple that an analytic solution fqu(r) can be
proceed much as in the white dwarf case, substituting théound, which corroborates the above remarks about not hav-
neutron massn, for the electron mas®, in the equations in  ing a zero at a finit&R. A suggestion for the student is to try
Sec. Ill. Whenkg<m,,, we again find a polytrope wity  a power law ansatz.
=5/3. (Another exercise for the studenkErom Eq.(17) we

A. The nonrelativistic case,kp<€m,

have C. The Fermi gas equation of state for arbitrary
#2 [ 37%Z\58 relativity
K“O”feFls—Z(ﬁ) =6.483x< 10" 25cn/ergg’s. , o .
T My | AMGC To avoid the trap of the relativistic gas, we should find an

(39) equation of state for the noninteracting neutron Fermi gas
If we choosea=1 km, we find the scaling factor from Eq. that works for all values of the relativity parametar
(25) to be =kg/m,c. By taking a hint from the two polytropes, we can
try to fit the energy density as a function of pressure, each
— 8 — 2 3
€0=1.603< 10 ergs/cri=0.089 6Moc”/km’. (40 given as a transcendental functionkgf, with the form
Furthermore, from Eq421) and(27),

o €(p) =AD"+ Agp. (49

K=1.914 andp=0.7636 km>. (41) For low pressures the nonrelativistic first term dominates
Note that, in this case, the constantsnd B are of similar ~ Over the second[The power in the relativistic term is
magnitude. changed from that in Ed38).] It again is useful to factor out

To estimate the average energy density of a typical neutro@in €o from both e andp. In this case, it is more natural to
star (mass M, R=10 km), we expect that a good starting definee, as

value for the central pressupg0) is order 10“ or less. Our mac5

program for this situation is essentially the same as the one 60:%:5_34& 10%ergs/cmi

for nonrelativistic white dwarfs, but with appropriate (37°h)

changes of the distance scale. It gives the results shown in =0.003 008/ 5c2/km? . (45)

Table Ill. Note that the general relativistic effects are small, . _ o
but not negligible, for this nonrelativistic equation of state. Mathematica can easily create a table of exa@nd p
As in the white dwarf case, these are smaller mass stars. Walues as a function dfz. The dimensionless values éf
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10 Fig. 6. The mas$/ (in M) and radiusk (in km) for pure neutron stars,
using a Fermi gas equation of state. The stars of low mass and large radius
are solutions of the TOV equations for small values of central pressure

0.8 1 P(0). The stars to the right of the maximumRet 11 are stable, while those
Mir) to the left will suffer gravitational collapse.

06 |

04 |

stars with smaller radii. That is, increasip§0) corresponds
to “climbing the hill,” moving upward and to the left in the
02 | diagram.

At aboutp(0)=0.03, the star reaches the top of the hill,
2 3 & g 10 12 achieving a maximum mass of about B.8 at a radius of

R~11 km. This maximum value d1 and itsR agree with

(k) r Oppenheimer and Volkov’s seminal 1939 result for a Fermi
gas equation of stafe.

Fig. 5. The quantitiea) p(r) and(b) M(r) (in M) versusr (in km) for What about the solutions in Fig. 6 that are “over the hill,”
a pure neutron star with central pressp(@®)=0.01, using the Fermi gas ’ ’

equation of state fit valid for all values &f , Eq.(44). The thin curves are that is, to the left of th.e maXIm.um? It tumns out .that these
results from the classical Newtonian structure equations, while the thickStars are unStab'Ie against QFaV'tat'Onal co!lapse 'ntlo a black
ones include genera| relativistic corrections. hOIe. The queStlon Of Stablllty, hOWeVer, IS Compllca%éd,
perhaps too difficult for students at this level. The fact that
things collapse to the left of the maximum, however, means
that we probably should not worry too much about the pecu-
can then be fit using Mathematica’s intrinsic fitting function. liar tail on the M—R curve in Fig. 6. It appears to be an
From our efforts we found, to an accuracy of better than 1%artifact for very large values g¥(0), asalso is seen in other
over most of the range df-, that? calculations, even though it is especially prominent for this

Ang=2.4216 andAg=2.8663. (46) Fermi gas equation of state.

We used the fitted functional form far of Eq. (44) in a
Mathematica program similar to that for the neutron starD. Why is there a maximum mass?
based on the nonrelativistic equation of state. Withdhef
Eq. (45) and the choicar=R,=1.476 km, we obtaine ' One can argue on general grounds that cold compact ob-
=0.03778. Our results for a starting value @f0)=0.01, jects such as white dwarfs and neutron stars must possess a
clearly in the relativistic regime, are limiting mass beyonq vyhu;h stable hydrost_anc conﬂguratlon's

are not possible. This limiting mass often is called the maxi-
R=15.0, M=1.037 (Newtonian equations (47) mum mass of the object and was briefly mentioned at the end
of Sec. 11 B and that the discussion relating to Fig. 6. In what
R=13.4 M=0.717. (full TOV equation. (48)  follows, we outline the general argument.
. . N The thermal component of the pressure in cold stars is by
For this more massive star, the general relativistic efgects a8efinition negligible. Thus, variations in both the energy den-
significant(as should be expected from the size&/c°R, iy and pressure are caused only by changes in the density.
and are about 10% in this cas€igure 5 displays the differ- - Gjyen this simple observation, let us examine why we expect
ences. . a maximum mass in the Newtonian case.

It is instructive to calculatél andR for a range ofp(0) An increase in the density results in a proportional in-
values. We display in Fig. 6 g@arametri¢ plot of M andR  crease in the energy density. This increase results in a corre-
as a function of the central pressure. The low-mass/largesponding increase in the gravitational attraction. To balance
radius stars are to the right in the graph and correspond tthis increase, we require that the increment in pressure be
small starting values op(0). As thecentral pressure in- large enough. However, the rate of change of the pressure
creases, the total mass that the star can support increasesth respect to the energy density is related to the speed of
And, the bigger the star mass, the bigger the gravitationadound (see Sec. VIE In a purely Newtonian world, this
attraction, which draws in the periphery of the star, makingspeed is in principle unbounded. However, the speed of all
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propagating signals cannot exceed the speed of light. Thig_ o(Ke )
limit is a bound on the pressure increment associated with ’

changes in density. B [(kZ ,+mi—m?)2— ng(ké,ﬁ m2-+m?) + mé]“z
Once we accept this bound, we can safely conclude thatall — 2(k2 +m?2)12
cold compact objects will eventually run into the situation in '
which any increase in density will result in an additional (59
gravitational attraction that cannot be compensated by a cor- 2 2_ 2
el . ; kg ,+mi—m Me
responding increment in pressure, leading naturally to the ~_20_ " P ¢ € g (55)

existence of a limiting mass for the star. 2(kg n+mp) V2 Ken

When we include general relativistic corrections, as dis- - PR
. . X ' The total energy density is the sum of the individual en-
cussed in Sec. II B, they act to “amplify” gravity. Thus we ergy densities %y y

can expect the maximum mass to occur at a somewhat lower

mass than in the Newtonian case.
€tot— . E €, (56)
i=n,p,e
V. NEUTRON STARS WITH PROTONS AND where
ELECTRONS, FERMI GAS EQUATION OF STATE .
_ TR 2,2 . —
As mentioned at the beginning of Sec. IV, neutron stars are ~ €i(Kr,i) = fo (K*+my) 22 dk= eoe(%; Y1), (57)

not made only of neutrons, but also must include a small
fraction of protons and electrons. The reason is that a freand, as beforé>
neutron will undergo a weak decay,

a eo=mi/3m2h3, (58
n—p+e +uvg, (49
Xi
with a lifetime of about 15 minutes. So, there must be some-  €(x;,y;)= J (u?+y?)Y2u2 du, (59
thing that prevents this decay for a star, and that is the pres- 0
ence of the protons and electrons. xi=Ke /mi, yi=m/m,. (60)

The decay products have low energies,m,—m;
=0.778 MeV), with most of that energy being carried away The corresponding total pressure is
by the light electron andnearly masslegseutrino?® If all
the available low-energy levels for the decay proton are al-  p= >, pi, (61)
ready filled by the protons already present, then the Pauli i=np.e
exclusion principle takes over and prevents the decay from
taking place. pi(Ke i):j
The same might be said about the presence of the elec- ’ 0
trons, but in any case the electrons must be present within “
the star to cance'l the positive charge of thg protons. A neu- (X ’Yi):j I(u2+yi2)*1’2u4du. (63)
tron star is electrically neutral. We saw earlier that the num- 0

ber density of a particle species is fixed in terms of tha . . . . .
particle's Fermi momenturfsee Eq.(7)]. Thus equal num- tBy using Mathematica thédimensionlessintegrals can be

bers of electrons and protons implies that expressed in terms of log and_sfri%unctigns ofx; andy; .
We can then generate a table&gf; versusp,, values for an
Kep=Kre- (50 appropriate range &g ,’'s. These values can be fitted to the
In addition to charge neutrality, we also require weak in-Ssame sum of two terms as in E@4). We found the coeffi-
teraction equilibrium, that is, as many neutron decglyg.  cients to be

Ke,i
" (k4 m) VAR dk=egpi(x;yi),  (62)

(49)] taking pla_c_e as electron capture react_iop%,e‘—m Awr=2.572 andAg=2.891, (64)
+ve. This equilibrium can be expressed in terms of the o _
chemical potentials for the three species, These coefficients are not much changed from those in Eq.
(46) for the pure neutron star. Therefore, we expect that the
M= ppt e (51 M versusR diagram for this more realistic Fermi gas model

We already defined the chemical equilibrium for a particlewould not be much different from that in Fig. 6.
after Eq.(12),

de
— _ (1,2 2\1/2 H-
pilke )= g = (ke tm)™ (i=n.p.e), (32 v|. INTRODUCING NUCLEAR INTERACTIONS

where, for the time being, we have set 1 to simplify the Nucleon—nucleon interactions can be included in the equa-
equations somewh&(fThe student is urged to prove the right- tion of state(they are importantby constructing a simple
hand equality. From Eqs.(50), (51), and(52), we can find a model for the nuclear potential that reproduces the general
constraint that determinds: , for a givenke ,,, features of(norma) nuclear matter. In so doing we were

2 2012 (1,2 2012 (1,2 2\1/2_ much guided by Ref. 7.

(Kg o+ mp) ™= (kg - mp) 5= (ke p +me) ¥5=0. - (53) We will use MeV and fm (10** cm) as the energy and
Although an ambitious student can probably solve &) distance units for much of this section, converting back to
for ke , as a function okg ,, we were lazy and let Math- Mg and km later. We also will continue settireg= 1. In this
ematica do it, and found regard, the important number to remember for making con-
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versions isfic=197.3 MeVfm. We also will neglect the dp(n) _9{ 5 d? (e) d (e) 68
- . —1,

mass difference between protons and neutrons, and label K(n)=9 dn n dan? +2”ﬁ n
their masses asy .

The von Weizaker mass formuf& for nuclides withz ~ where we have used E(l2), which defines the pressure in
protons andN neutrons gives, for normal symmetric nuclear terms of the energy density. At=n, this quantity equals
matter A=N+Z with N=Z), an equilibrium number den- Ko- (The factor of 9 is a historical artifact from the conven-
sity no of 0.16 nucleons/frh For this value o, the Fermi  tion originally definingK,.) (Question: why does oneot
momentum ik®= 263 MeV/c[see Eq(7)]. This momentum have to calculate the pressureratny?)

is sufficiently small compared withy=939 MeV/& to al- We will model e(n) for theN=Z part of the potential by
low a nonrelativistic treatment of normal nuclear matter. At 212

. . - e(n) 3hky A B
this density, the average binding energy per nucleon, BE ——=mg+ = - +u+ ue, (69)
=E/A—my, is —16 MeV. n 52my 2 o+l

The equilibrium density and the binding energy perynherey=n/n, and o are dimensionless anl andB have
nucleon are two physical quantities we definitely want our,qis of Mev. The first term represents the rest mass energy
nuclear potential to respect, but there are two more that Wg,§ the second the average kinetic energy per nucleon.

will need to fix the parameters of the model. o [These two terms are dominant in the nonrelativistic limit of
We choose one of these as the nuclear compressitty, o ncleonic version of Eq10).] For ke(ng) =k we will

to be defined below. The magnitude of this quantity is not . L 0 .

that well established, but is in the range of 200 to 400 Mev_abbrewate the kmetl_c energy term égF)’. which evaluates

The other is the symmetry energy term, which, wieno, [0 22.1 MeV. Theoklrlguc energy term in E¢69) can be

contributes about 30 MeV of energy above the symmetri®etter written agEg)u.

maitter minimum an,. (This quantity might really be better  From the three constraints, Eq$6)—(68), and the fact

described as an asymmetry parameter, because it accoufi@tu=1 atn=no, we obtain three equations for the param-

for the energy that arises whéiwZ.) etersA, B, ando,

A. Symmetric nuclear matter o A B
<EF>+ §+—1:BE, (70
We defer the case whex# Z, which is our main interest ot
in this paper, to Sec. VIB. Here we concentrate on obtaining 2 A  Bo
a good(enough equation of state for nuclear matter when —(EQD+—+ — =0 71
N=Z, or, equivalently, when the proton and neutron number o
densities are equah,=n,. The total nucleon density 10 K
=Nyt Ny, 3<E2>+A+Ba=3°. (72

We need to relate the three nuclear quantitigs,BE, and
Ko to the energy density for symmetric nuclear maté¢n). By solving these three equatiofiwhich we found easier to

Heren=n(kg) is the nuclear densitiat and away fronm). do by hand than with Mathematigave found
We will not worry in this section about the electrons that are o
present, because, as was seen in Sec. V, their contribution is Kot 2(Ef)
small. The energy density now will include the nuclear po- 7~ 3(ER)—9BE’ (73
tential, V(n), which we will model in terms of two simple
functions with three parameters that are fitted to reproduce o+1lil |
the above three nuclear quantiti€$he fourth quantity, the B=_——7|3(Ef) ~BE|, (74)
symmetry energy, will be used in Sec. VIB to fix a term in
the potential that is proportional toN( Z)/A.] 5 ,

First, the average energy per nucleBrnA, for symmetric A=BE-3(Ef)—B. (75
nuclear matter is related toby

E(n)/A= e(n)/n, (65) For Ko=400 MeV (which is perhaps a high valye

which includes the rest mass energy,, and has units of A=-122.2 MeV, B=65.39 MeV, 022.112.(76)

MeV. As a function ofn, E(n)/A—my has a minimum at
n=no with a depth BE= —16 MeV. This minimum occurs Note thato>> 1, which violates a basic principle of physics

when palled “causality,” a point that we will discuss in the follow-
d [E(n)}\ d [e(n) ing.
an\ A T an\ T =0 atn=ng. (66) The student can try other values Kf; to see how the

parameterdA, B, and o change. More interesting is to see
Equation(66) is one constraint on the parameters\in). how the interplay between th&® andB terms gives the val-

Another, of course, is the binding energy, ley atn=n,. Figure 7 showsE/A—my as a function of
e(n) using the parameters of E(.6). We hope students notice the
e my=BE atn=n,. (67) funny little positive bump in this plot near=0 and sort out

the reason for its occurrence.
The positive curvature at the bottom of this valley is related Given e(n) from Eqg. (69), we can find the pressure using
to the nuclearin)compressibility b§’ Eq. (12),
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Nh—np N-Z
= (79)

a=

so we can expect that the isospin-symmetry-breaking inter-
: action is proportional tax (or some power of )t An alter-
native notation is in terms of the fraction of protons in the
star,

>

_Mp_
X= ; > (80

We now consider how the energy density changes from the
Fig. 7. The average energy per nucleon, less its rest mass, as a function %ym_memc case dlscuslsed_ above, Whe.FeO_ (or x=1/2).
u=n/n, (in MeV). The position of the minimum is at=ny=0.16 fm 3, First, there are contributions to the kinetic energy par of
its depth there is BE — 16 MeV, and its curvaturésecond derivativecor- ~ from both neutrons and protons,
responds to the nuclear compressibikty=400 MeV. 2 2

3 kg n 3 Kep

eKE(n,a)z g z—mNnn—i- g ﬂnp
d|e 2 A Bo 1
F’(”):”zﬁ(ﬁ) =g (BRI Ui g u, ~n(ER L1+ @+ (1-0)%], (@D
(77)
where

For the parameters of E¢jr6) the dependence @f(n) onn
is shown in Fig. 8. On first seeing this graph, students should 3 7% [3w?n\?8
wonder whyp(u=1)=p(ng) =0. Also, what is the meaning (Ep)= 5 2my| 2 (82
of the negative values for pressure below 1? (Hint: what o )
is “cavitation”?) is the mean kinetic energy of symmetric nuclear matter at

If this N=2Z case were all we had for the nuclear equationdensityn. Forn=n, we note that(E¢)=3(E?)/5 [see Eq.
of state, a plot ofe(n) versusp(n) would only make sense (69)]._For nonsymmetric matteg;# 0, the excess kinetic en-
for n=n,. Such a plot looks much like a parabola opening to€rgy 1S

the right for the range Qu<3. At very Ir_;\r_ge_ values ofi, Aerg(n, @)= exe(n, @) — exe(n,0)

however,e~p/3, as it should for a relativistic nucleon gas

(see Sec. IVR We will not pursue this symmetric nuclear =n(Ep) {3[(1+ @)%+ (1—a)®?]-1}

matter equation of state further because our interest is in the

case wherN>Z7.%8 =n(Ep){27(1-)>3+xF]-1}. (83
For pure neutron mattegs=1, and

B. Nonsymmetric nuclear matter

_ , Aege(n,a)=n{Eg)(22R-1). (84)
We continue following Ref. 7 closely. Let us represent the ) )
neutron and proton densities in terms of the parametas It is useful to expand Eq84) to leading order in,
1+« l-a 5 ) a?
Mp=-—7—N, Np=—5—n (78 AeKE(n,a):n<EF>§a 1+ CYAR
This « is not to be confused with the constant defined in Eq. o?
(24). For pure neutron matter=1. Note that :nEF?

aZ
14—+

27 ' @9

Keeping terms to orde? is evidently good enough for most
10 purposes. For pure neutron matter, the energy per particle
(which is €/n) at normal density isAexe(ng,1)/ng
8 ~13 MeV, more than a third of the total bulk symmetry
P energy of 30 MeV, our fourth nuclear parameter.
6 Thus the potential energy contribution to the bulk symme-
try energy must be=20 MeV. Let us assume the quadratic
approximation ina also works well enough for this potential
contribution and write the total energy per particle as

E(n,a)=E(n,0)+ a?S(n). (86)
i A B o The isospin-symmetry breaking is proportionalda®, which

reflects(roughly) the pairwise nature of the nuclear interac-
tions.

Fig. 8. The pressure for symmetric nuclear matter as a functiom of We will assumeS(u), u=n/ng, has the form

=n/ny. The student should ask what it means when the pressure is negative 0
and why it is 0 au=1. S(u)=(22P-1) {(ER)(uZP—F(u))+ SpF (u). (87)

i u = miny
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Fig. 9. The average energy per neutftess its rest magsin MeV, for pure

neutron matter, as a function af=n/n,. The parameters for this curve are
for a nuclear compressibiliti, of 400 MeV.

Here Sy=30 MeV is the bulk symmetry energy parameter.
The functionF(u) must satisfyF(1)=1 [so thatS(u=1)
=] and F(0)=0 [so thatS(u=0)=0; no matter means

no energy. Besides these two constraints, there is, from wha
we presently know, much freedom in what we may choose
for F(u). We will make the simplest possible choice here,

namely,

F(u)=u, (89

1000

BOD |

G0

400

200

200 400 GO0 B0 1000 1200

E

Fig. 11. The equation of state for pure neutron matter(), that is, the
dependence of pressure versus energy density. The units for both axes are
MeV/fm®, and the nuclear compressibility in this caseKig=400 MeV.

The points are values calculated directly from E&f), multiplied byn, and

Eq. (89), while the solid curve is a fit to these points given in E§) and

(92).

P(n,x)zuﬁe(n,a)—e(n,a)

22/3_

=p(n,0)+nya? (E2)(2u®-3u?) + Syu?|,

(89
where p(n,0) is defined by Eq(77). Figure 10 shows the

but we encourage students to try other forms that satisfy theependence of the pure neutrgign,1) and e(n,1) on u

conditions onF(u), such asyu, to see what difference it
makes.

=n/ng, ranging from 0 to 10 times normal nuclear density.
Both functions increase smoothly and monotonically from

Figure 9 shows the energy per particle for pure neutrony=0. We hope students will wonder why the pressure be-

matter,E(n,1)—my, as a function ot for the parameters of
Eq. (76) andSy=30 MeV. In contrast with thex=0 plot in
Fig. 7,E(n,1)=0 and is monotonically increasing. The plot
looks almost quadratic as a functionwaf The dominant term
at largeu goes likeu” with o=2.112 (for this cas¢ How-

comes greater than the energy density arourds. Why
doesn't it go like a relativistic nucleon gag= €/3? (Hint:
check the assumptions.

We can now look at the equation of state, that is, the
dependence gb on e (the points in Fig. 1L The pressure is

ever, we might have expected a linear increase instead. Wamooth, non-negative, and monotonically increasing as a

will return to this point in Sec. VIC.
Given the energy density(n,«) =nguE(n, @), the corre-
sponding pressure is, from E@L2),

#0000

G000

Fig. 10. The pressuréashed curyeand energy densitysolid) for pure
neutron matter, as a function ef=n/ny. The units for they axis are

function of . In fact it looks almost quadratic over this en-
ergy range (6su<5). This behavior suggests that it might
be reasonable to see if we can make a simple, polytropic fit.
If we assume the form

p(€)= Ko€”, (90)
we find the fit shown in Fig. 11 as the solid curve with
ko=3.548<10"% and y=2.1, (91

where ko has appropriate units so that and € are in
MeV/fim®. (We simply guessed and sgt=2.1.)

This polytrope can now be used in solving the TOV equa-
tion for a pure neutron star with nuclear interactions. Alter-
natively, we might solve for the structure by using the func-
tional forms from Eq.(86), multiplied by n, and Eq.(89)
directly. We defer that for a bit, because it would be a good
idea to first find an equation of state that does not violate
causality, a basic tenet of special relativity.

C. Does the speed of sound exceed that of light?

What is the speed of sound in nuclear matter? If we start

MeV/fim®. This curve uses parameters based on a nuclear compressibiliffom the elementary formula for the square of the speed of

Ko=400 MeV.
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c.\2 B dp dp/dn
(s) p dp @

c] “pc2 de deldn’

To satisfy relativistic causality, we must require that the

sound speed does not exceed that of light, which could hap-

pen when the density becomes very large, that is, wihen 4 1.3
— o0, For the simple model of nuclear interactions presented
in Sec. V, the dominant terms at largan p ande are those
going like u®**. Thus, from Eq.86), multiplied byn, and

Eq. (89), we see that

Cs|?_dp/dn —o11 ©3 5 10 15 20 25 30
¢/ “deldn 7T~ R

for the parameters of Eq76), and indeed for any set of Fig. 12. The mas#/ (in M) and radiusR (in km) for pure neutron stars

parameters WitI‘KO greater than about 180 MeV. using an equation of_state that conta!ns nucleon—nucleon |_nteract|o_ns.‘OnIy
those stars to the right of the maximum are stable against gravitational

We can recover causality by assuring .that bdb) and  collapse. Compare this graph with that in Fig. 6 which is based on a non-
p(u) grow no faster tham?. There must still be an interplay interacting Fermi gas model for the equation of state.

between theA andB terms in the nuclear potential, but one

simple way of recovering causality is to modify tBeterm

by introducing a fourth paramet& so that, for symmetric using the fit fore(p) found in Sec. VIC. It is, once again,
nuclear matter ¢=0), useful to convert first from units of MeV/ffnto ergs/cr,
then toM /km?® and, finally, to dimensionless ande.

2.5

0.5

A B u’
ViudU0)= U+ ——= 0= 1 (94 €(p)=(koe0) Yp2=Agp"%  A=0.8642, (98

We can chooseC small enough so that the effect of the where this ime we have defined

denominator only becomes appreciable for very larg&he mﬁc5
presence of the denominator would modify and complicate €0~ 323" (99

the constraint equations fé, B, ando from those given in . )
Egs.(70)—(72). However, for smalC, which can be chosen The constantr that occurs on the right-hand side of the TOV

as we wish, the values of the other parameters should not KAvation, Eq(23), is a=AoRy=1.276 km. The constant for
much changed from those, say, in Eg6). Thus, with a little  the mass equation, E(6), is $=0.032 65, again in units of
bit of trial and error, we can simply readjust the B, ando  1/km’.

values to put the minimum d&/A—my, at the right position ~ NOw proceeding as before, we can solve the coupled TOV
(no) and depth(BE), hoping that the resulting value of the equatigns foip(r) and M(r) for various initial central pres-
(poorly known compressibilityK, remains sensible. sures,p(0). Theplots of the solutions are very similar to

In our calculations we chooge=0.2 and start the search those for the Fermi gas equation of state, Fig. 5.
by hand with theK =400 MeV parameters in E476). We More interesting is to solve for a range of initip(0)’s,
found that by fiddling only wittB ande, we could fitn, and ~ generating, as before, a mabk versus radiusR plot that

B with only small changes, now includes nucleon—nucleon interactioffsg. 12. The
effect of the nuclear potential is enormous as seen by com-
B=65.39-83.8 MeV, 0=2.11-2.37. (95 paring with the Fermi gas model predictions fdrversusR

For these new values oB and o, A changes from shown in Fig. 6. The maximum s'gar mass.is now about

~122.2 MeV to—136.7 MeV, andK, from 400 to 363.2 2.3Mg, ra'gher than 0.8l . The radius for this maximum _

MeV. That is, it remains a reallsonable nuclear model. mass star Is al_oout 13.5 km, somewhat larger than _the Fermi
We can now proceed as in Sec. V to obtain,a), 935 model radius of 11 km. The large value of maximvm

p(n.a), and the equation of state(e,a). The results are is a reflection of the large value of the nucléem)compress-

not much different from those shown in Fig. 11. This time!biIity Ko=363 MeV. The more incompressible something

we decided to live with a quadratic fit for the equation of is, the more mass it can support._ If we had fit to a s_maller
state for pure neutron matter, and found value of Ky, we would have obtained a smaller maximum

mass.
p(e,1)=koe> and ko=4.012<10 4. (96)

This result is not much different from before, E(Q1). E. What about a cosmological constant?
Somewhat more useful for solving the TOV equation is to

expresse in terms ofp, We do not know if there is a cosmological constant, but
there are definite indications that much of our universe is
€(p)=(p/xq)) 2. (97 something called “dark energy3® This conclusion comes
about because we have recently learned that something is
D. Pure neutron star with nuclear interactions causing the universe to be accelerating instead of slowing

down (as would be expected after the Big Bang
With all this groundwork, students can now proceed to One way to interpret this dark energy is in terms of Ein-
solve the TOV equations as before for a pure neutron stastein’s cosmological constant, which contributes a term
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Ag;w to the right-hand side of Einstein’s field equation, the t©a yveb_sne_ from which they can be downloaded._ The idea behind _thls
basic equation of general relativity. The most natural value ?ﬁfg‘;ﬁf\:;’; is that students will learn more by doing the programming
Tor A W.OU|d be zer.o’.bUt that may not be.the way the WorldmR. Balian and J.-P. Blaizot, “Stars and statistical physics: A teaching ex-
is. If A is nonzero, it is nonetheless surprllsmgly small. What perience,” Am. J. Phys67, 1189—12061999.

would the effect of a nonzero cosmological constant be onis | shapiro and S. A. Teukolskiglack Holes, White Dwarfs and Neu-
the structure of a neutron star? It turns out that the only tron Stars: The Physics of Compact Obje¢Wiley-Interscience, New
modification to the TOV equatidhis the correction factor  York, 1983.

Ane apologize to readers who are enthusiasts about Sl units, but the first

3 3 3
n 4arp(r) 4arrp(r) _ Ar (100 author was raised on CGS units. Also, much of today’s astrophysical lit-
M(I’)Cz M(I’)CZ 2GM(r) | erature still uses CGS units. Besides, we strongly believe that by the time

i . physics students are at this level, they should be comfortable in switching
We encourage students to first understand the units afd from one system of units to another.

then to see what values df might affect the structure of a A discussion of how to solve these equatidasing conventional program-

typical neutron star. ming languagesis given in S. KooninComputational PhysicéBenjamin-
Cummings, New York, 1986
1 . ) )
VIl. CONCLUSIONS “4For more details on white dwarfs, NASA provides a useful web page at

(http://imagine.gsfc.nasa.gov/docs/science/knowl1/dwarfs)html

The materials we have described would be suitable as alﬁ'l'his maximum mass of 1M, is usually referred to as the Chandrasekhar
undergraduate thesis or special topics course accessible tngvI\tA/ nis; Sil'phi:::’;’l;ﬁ‘;‘;‘:&iaéégfmgr“’sbjéta';”;i Qicfrﬁf%
J.umor or senior p_hySICS majors. It I.S a toplc rich in the SU_b- Introduction to the Study of Stellar Structui®over, New York, 1938
jects students will ,have Cove.req in their CO'LII’SGS, ranginGesee, for example, C. Kittel and H. Kroemérhermal PhysicsW. H.
from thermodynamics to statistical mechanics to nuclear freeman, San Francisco, CA, 198Chis result is from their modern
physics. The major emphasis of such a project would be to physics course that students should review if they do not remember it.
construct asimple equation of state. The latter is needed to*"Mathematica is product of Wolfram Resear¢http://www.wolfram.con,
solve the nonlinear structure equations. The numerical solu-and its use is described by S. Wolfram,Tihe Mathematica Bookith ed.
tion of these equations would develop the students’ compu-(Cambridge University Press, Cambridge, 1p98/henever we use the
tational skills. Along the way, they also will learn some of Phrase ‘using Mathematica,” we really mean using whatever package one

. .. _has available or is familiar with, be it Maple, MathCad, or whatever. We

the lore regarding degenerate_ stars, for example, Whltedid almost all of the numerical/symbolic work that we describe in this
dwarfs and neutron stars. And, in the latter case, they alsopaper in Mathematica, but some of its notebooks were duplicated in Math-
will come to appreciate the relative importance of special cad.

and general relativity. ¥Enough of these explicit flags! Most of the equations from here on present
challenges for the student to work through.
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The following typos were noted by Bijay K. Agarwal of
Texas A & M University, and Irina Sagert and Matthias
Hempel of the Goethe University, Frankfurt am Main. Also,
the symbol, kg, etc., represent momenta, not wave num-
bers. Some of our correspondents were confused on th
point.

Equation(11): include a factor ot? in the first term on the
right-hand side.

should be 1/¢—1).

Equation(57): there should be a factor of ##¢#2) before
the integral. Note that, in this section, we have cetl.
Compare with Eqs(10) and (13) for the electron Fermi
gas case.

Equation (58): in view of the correction in Eq(57), it
might have been more felicitous to have defirgavithout

Equation(25): the exponent of the term in square brackets

Equation(69): the factor of#? in the second term on the
right-hand side should not be thef&his equation is for an
energy and we forgot thdi- is a momentum, not a wave
_ number)

B Section VIA, last paragraph: the relativistic gas has
=¢€/3, note=p/3.

After Eq. (82): the text should read “Fon=n;, we note
that (Eg)=(EP),” i.e., the factor of 3/5 should be
dropped.

Equation(86): it would be more consistent with our earlier
use of “energy per particle” to have written this equation
with each term divided bw.

Equation (87): in view of the correction after Eq(82),
drop the factor of 3/5 beforée?).

Equation(89): likewise, the denominator befo(&?) is 3,
not 5.

the factor of 3 in the denominator. However, as we have

emphasizedg, is anarbitrary dimensional constant.
Equation(59): with €, defined as in Eq(58), then there
should be a factor of 3 before the integral.
Equation(60): x; should be written akg/m,,, notkg/m;.
Equation(62): there should be a factor of 1/¢843) be-
fore the integral.

286 Am. J. Phys.73 (3), March 2005 http://aapt.org/ajp

The errors in Eq(25) and in Eqs(57)—(62) are only typos
resulting from bad transcription from th@&THEMATICA files
to the LaTeX manuscript. The numerical valueegfin Eq.
(29) and the masses in Table | are correct. Likewise, the
fitted coefficients in Eq(64) are correct and the concluding
sentence of Sec. V is still valid.
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