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QUESTIONS AND ANSWERS

Contributions to this section, both Questions and Answers, are welcomed. Please submit four
copies to the editorial office. Please include a tirle for each submission, include name and address at
the end, and put references in the standard format used in the American Journal of Physics. For further
suggestions, sample Questions and Answers, and requested form for both Questions and Answers, see
Robert H. Romer, ‘‘Editorial: ‘Questions and Answers,” a new section of the American Journal of

Physics,”” Am. J. Phys. 62 (6) 487-489 (1994).

Questions at any level and on any appropriate AJP topic, including the ‘‘quick and curious’’

question, are encouraged.

Editorial Note on Answers to Question #55. Are there
pictorial examples that distinguish covariant and
contravariant vectors?

We reviewed over a dozen responses to Neuenschwan-
der’s question’ that were sent in by readers. Although many
of them make similar and overlapping points, we have cho-
sen to print the following three answers as ones which cover
most clearly the several aspects of the question 3posed. Na-
politano and Lichtenstein,” as well as Schmidt,” make the
point that at a conceptual level, covariant and contravariant
vectors are different kinds of geometric objects, but, given a
metric, there is a natural identification between them. As a
result, in a space with a metric, one may speak of covariant
and contravariant components of either type of vector.

While the conceptual distinction between a (contravariant)
vector and a co(variant)-vector is sometimes important, be-
cause physical situations almost always involve metric
spaces, and because our intuitions are so deeply encoded
with notions of distances and angles, it is actually harder
than one might first suppose to communicate to students why
one must distinguish the two types of geometric objects. The
gradient of a function (the prototype of a covector), and the
flow velocity of a particle [the prototype of a (contravariant)
vector] are good places to start. With the oblique, rectilinear
axes in the flat plane, and with the usual metric, one may be
able to provide the student some intuition in this regard. For
example, if one defines a function on this plane by
f1(x",x*)=x', then the lines of constant f, are parallel to
the x? axis, and the gradient “‘vector’’ is perpendicular to
that axis. It is easy to imagine extending this type of example
to get at the more general conceptual distinction between co-
and contra-variant vectors.

Neuenschwander’s question also asked about pictorial il-
lustrations. The most popular (and appropriate) response we
got involved the use of oblique axes in the Euclidean plane
with the usual metric. As Evans’s* answer points out, this is
a good starting example for clarifying the distinction be-
tween co- and contra-variant components. However, all the
answers we got were either incomplete or too cryptic regard-
ing the full set of circumstances where such distinctions may
be usefully maintained. The metric, in the case of flat space
with oblique axes, is nondiagonal. But an orthogonal, curvi-
linear co-ordinate system (polar co-ordinates, for example) in
flat space also gives rise to a distinction between covariant
and contravariant vector components. Indeed, as discussed in
Mary Boas’s popular text, in such cases ‘‘any vector has
three kinds of components: contravariant, covariant and what
we might call ordinary components.””> Here, the metric is
diagonal, but is not the identity matrix as it would be in
orthogonal, rectilinear co-ordinates (aka Cartesian co-
ordinates). Of course, when the space is not flat, but
smoothly curved, since it is impossible to introduce Carte-
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sian co-ordinates in a whole neighborhood, the distinction
between the two kinds of vector components becomes man-
datory.

"Dwight E. Neuenschwander, ‘‘Question #55. Are there pictorial examples
that distinguish covariant and contravariant vectors?,”” Am. J. Phys.
65 (1), 11 (1997).
2J. Napolitano and R. Lichtenstein, ‘‘Answer to Question #55,”° Am. J.
Phys. 65 (11), 1037-1038 (1997).
3Hans-Jiirgen Schmidt, ‘‘Answer to Question #55,”” Am. J. Phys. 65 (11),
1038 (1997).
4James Evans, ‘‘Answer to Question #55,”” Am. J. Phys. 65 (11), 1039
(1997).
SMary L. Boas, Mathematical Methods in the Physical Sciences (Wiley,
New York, 1983), 2nd ed., Chap. 10, Sec. 13, pp. 447-449.
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Answer to Question #55. Are there pictorial examples
that distinguish covariant and contravariant vectors?

Pictorial examples as called for by Neuenschwander’s
question' indeed provide a very useful device for making the
distinction between covectors (i.e., covariant vectors) and
vectors (i.e., contravariant vectors), and they are used in
some textbooks. For example, see the popular textbook by
Misner, Thorne, and Wheeler.? We prefer using examples
that are a bit tongue-in-cheek.

Consider first a vector. This is, in fact, the object most
familiar to students, which is drawn simply as a ‘stick”’
(e.g., ““—"). We refer to such an object as a ‘‘stick vector.”
One example is the displacement vector between two points
in coordinate space. The magnitude of a stick vector is sim-
ply proportional to the length of the stick drawn on the
blackboard. The arrow demonstrates the sense of direction of
the stick vector.

Now consider a covector. This should be familiar to most
students in terms of a gradient. We can picture a gradient
best in terms of the equipotential surfaces to which it refers,
and this is the basis of the pictorial representation. That is,
draw the surfaces themselves, along with some sense of di-
rection, which might be indicated by a wavy line with an
arrow at the end, or with a whorl on one of the sheets:

[7F [

9—(—ﬂ5————’/
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Note that, in any case, the magnitude of the covector is pro-
portional to the density of sheets.

We refer to this pictorial representation of a covector as a
‘‘lasagna vector,”’ the sheets reminiscent of the noodles in a
pan of lasagna. Students have no trouble remembering this
analogy. It is also handy because if there are many noodles
packed closely together in the pan, the lasagna is certainly
worth more. That is, it has a larger magnitude.

Next we point out that the inner product can only be taken
between a stick vector and a lasagna vector, but never be-
tween two of the same kind. The inner product is given,
pictorially, by placing the stick vector into the pan of lasagna
(of course, maintaining its orientation) and counting the
number of noodles pierced by the stick. Clearly, the value of
the inner product is both proportional to the length of the
stick (i.e., the magnitude of the vector) and the density of the
lasagna noodles (i.e., the magnitude of the covector).

Now a student may ask, as happened in our class, why
there is any distinction between vectors and covectors since
one can easily draw stick vectors for gradients by attaching
them at right angles to the equipotentials, or contour lines in
two dimensions. This is an excellent question and it strikes to
the heart of the meaning of the metric tensor. Given our
representation of vector and covector, there is not yet any
way to define an angle!

An angle is defined by the inner product between two stick
vectors, but as we have defined it, this operation is not pos-
sible. We need some mechanism for turning a stick vector
into a lasagna vector. We would then take the inner product
between this transformed stick vector and the untransformed
one that remains. The object (or function) which maps a stick
vector into the corresponding lasagna vector is called the
metric tensor.

'Dwight E. Neuenschwander, ‘‘Question #55. Are there pictorial examples
that distinguish covariant and contravariant vectors?,”” Am. J. Phys.
65 (1), 11 (1997).

2Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravi-
tation (W. H. Freeman and Company, San Francisco, 1973), pp. 53-39,
with examples throughout the book.
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Answer to Question #55. Are there pictorial examples
that distinguish covariant and contravariant vectors?

Neuenschwander' asked how to visualize the distinction
between co- and contravariant vectors. Most textbooks intro-
duce this distinction on an abstract level; the only exception
I know is that of Stephani,> and below I will show how I
present it in my lectures ‘‘Introduction to Differential Geom-
etry”’ at Potsdam University.

If no metric exists at all, then covariant vectors and con-
travariant vectors are different types of objects.

If a metric exists, then there is a canonical isomorphism
between them; so we introduce vectors, and after fixing a
coordinate system, we speak about their covariant and their
contravariant components.
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In the following, we will deal with the second case only,
because it is easier to visualize: The chalkboard has a canoni-
cal metric which makes it a flat two-dimensional Riemannian
manifold.

Neuenschwander' wrote that the mentioned distinction is
necessary  when dealing with curved spaces. This is not
wrong, but it is a little bit misleading, and I prefer to say:
‘.. .1s necessary when dealing with a non-Cartesian coor-
dinate system.’” Example: We fix a point (the “‘origin’” O) in
the Euclidean plane; then there is a one-to-one correspon-
dence between points and vectors. (The point P is related to
the vector OP.) First, we use rectangular coordinates. We
might call them x and y; however, as we are interested in
seeing how the situation is changed by introducing non-
rectangular coordinates, we call them x! with e{1,2}. So the
point P has coordinates (x',x2); cf. diagram 1.

2!
diagram 1
The coordinate system is a rectangular one, and so the
component x' can be equivalently described as the perpen-
dicular projection to the x! axis or as the projection parallel
to the x? axis.
Let us now consider the case of an inclined system (see
diagram 2). Let the angle between the axes be a with

'

diagram 2
o<a<m.

Here, x! is the projection parallel to the x? axis, and x, is
the perpendicular projection to the x' axis. We get x
=x'+x? cos a, i.e., x;=x! if and only if @=m/2. In general,
we get the following linear relation:

xi:gijxj

by the use of the metric g;;, where g;;=g;=cos a, gy
=g,,=1, and summation over j e{1,2} is automatically as-
sumed.

ID. Neuenschwander, Am. J. Phys. 65 (1), 11 (1997).

’H. Stephani, General Relativity (Cambridge U. P., Cambridge, England,
1990), 2nd ed., p. 26. (In the first German edition, which appeared in
Berlin in 1997, this distinction is on p. 35.)
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