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I present a way tovisualizethe concept of curved spacetime. The result is a curved surface with
local coordinate systems~Minkowski systems! living on it, giving the local directions of space and
time. Relative to these systems, special relativity holds. The method can be used to visualize
gravitational time dilation, the horizon of black holes, and cosmological models. The idea
underlying the illustrations is first to specify a field of timelike four-velocitiesum. Then, at every
point, one performs a coordinate transformation to a local Minkowski system comoving with the
given four-velocity. In the local system, the sign of the spatial part of the metric is flipped to create
a new metric of Euclidean signature. The new positive definite metric, called theabsolutemetric,
can be covariantly related to the original Lorentzian metric. For the special case of a
two-dimensional original metric, the absolute metric may be embedded in three-dimensional
Euclidean space as a curved surface. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION

Einstein’s theory of gravity is a geometrical theory and is
well suited to be explained by images. For instance, the way
a star affects thespacearound it can easily be displayed by a
curved surface. The very heart of the theory, thecurved
spacetime, is however fundamentally difficult to display us-
ing curved surfaces. The reason is that the Lorentz signature
gives us negative squared distances, something that we never
have on ordinary curved surfaces.

However, we can illustrate much of the spacetime struc-
ture using flat diagrams that include the lightcones. Famous
examples of this are the Kruskal and Penrose diagrams~see,
e.g, Ref. 1!. Such pictures are valuable tools for understand-
ing black holes.

This article describes a method that lets us visualize not
just the causal structure of spacetime, but also the scale~the
proper distances!. It is my hope that these illustrations can be
of help in explaining the basic concepts of general relativity
to a general audience.

In exploring the possibilities of this method I use the lan-
guage and mathematics of general relativity. The level is that
of teachers~or skilled students! of general relativity. The
resulting illustrations can however be used without any ref-
erence to mathematics to explain concepts like gravitational
time dilation, cosmological expansion, horizons, and so on.

In Sec. II, I give a brief introduction to the concept of
curved spacetime, using the method of this article, and con-
sider a few examples of physical interest. This section pre-
sumes no knowledge of general relativity. In Sec. III, I ex-
plain the method underlying the illustrations thus far, and
also apply it to a black hole and a hollow star. In Secs.
IV–VIII, I present the general formalism, demonstrate how
to use it to produce embeddings, and investigate the geodesic
properties of the formalism. These sections are of a more
technical character. In Secs. IX–XIII, I apply the formalism
to various types of spacetimes. In Secs. XIV–XVI, I relate
this work to other similar approaches, and comment on this
article. Sections XVII and XVIII include some pedagogical
questions and answers.

II. INTRODUCTION TO CURVED SPACETIME

Consider a clock moving along a straight line. Special
relativity tells us that the clock will tick more slowly than the
clocks at rest as illustrated in Fig. 1.

Consider two events on the moving clock, separated by a
time dt and a distancedx, as seen relative to the system at
rest. We can illustrate the two events, and the motion of the
clock in aspacetime diagramas depicted in Fig. 2. Time is
directed upwards in the diagram. The motion of the clock
corresponds to aworldline in the diagram.

The proper time intervaldt is the time between the two
events according to the moving clock, which is given by2

dt25dt22S dx

c D 2

. ~1!

Herec is the velocity of light. Note that in the limit as the
speed of the clock approaches the speed of light we have
dx5cdt, and thus from Eq.~1! we havedt50. A clock
moving almost at the speed of light will thus almost not tick
at all relative to the clocks at rest.

It is customary to choose the axes of the spacetime dia-
gram in such a manner that motion at the speed of light
corresponds to a line that is inclined at a 45° angle relative to
the axes of the diagram. At every point in the diagram we

Fig. 1. ~Color online! A clock moving along a straight line. Relative to the
clocks at rest, the moving clock will tick more slowly.

248 248Am. J. Phys.73 ~3!, March 2005 http://aapt.org/ajp © 2005 American Association of Physics Teachers



can then draw a little triangle, with a 90° opening angle,
known as a lightcone. The rightmost edge of the triangle
corresponds to a right-moving photon and the leftmost edge
corresponds to a left-moving photon. No material objects can
travel faster than the velocity of light, which means that the
worldlines of objects must always be directed within the lo-
cal lightcone.

A. Curved spacetime

In general relativity we have acurvedspacetime, which
we may illustrate by a curved surface with little locally flat
coordinate systems, known as Minkowski systems, living on
it as illustrated in Fig. 3.

The little coordinate systems on the surface work precisely
as the spacetime diagram of Fig. 2. In particular the world-
lines of moving objects must always be directed within the
local lightcone. To find out how much a clock has ticked
along its winding worldline, we consider nearby events along
the worldline and sum up thedt ’s we get using Eq.~1!,
wheredt anddx are the time and space separation between
the events as seen relative to the local Minkowski system.

B. The spacetime of a line through a dense star

As a specific example let us consider the spacetime of a
line through a very dense star as depicted in Fig. 4.

The circles around the surface correspond to fixed posi-
tions along the line through the star. The lines directed along

~as opposed to around! the surface correspond to fix coordi-
nate time~known for this particular case as Schwarzschild
time!.

Consider now two observers, one at rest in the middle of
the star and the other at rest far to the left of the star. The
worldlines of these observers are circles around the middle
and the left end of the spacetime. Obviously the distance
measured around the spacetime is shorter at the middle than
at the end. This means that the proper time~the experienced
time! per turn around the spacetime is shorter in the middle
than at the end. From this we may understand that time in-
side the star runs slow relative to time outside the star.

To be more specific, consider the following scenario. Let
an observer far outside the star send two photons, separated
by a time corresponding to one lap, toward the center of the
star. The corresponding worldlines of the photons will spiral
around the surface and arrive at the center of the star still
separated by one lap. The points where the photons arrive at
the center will in this illustration be the same, but they are
different points in spacetime because the surface is layered
as in a paper roll. Since the distance around the central part
of the spacetime is smaller than that toward the ends of the
spacetime the observer in the center of the star will experi-
ence a shorter time between the arrival of the two photons
than the time between the emission of the two photons, as
experienced by the sender. This effect is known as gravita-
tional time dilation—and is a consequence of the shape of
spacetime.

Alternatively we may note that the lines of constant coor-
dinate time are lying closer to each other in the middle of the
spacetime surface than at the ends. An observer inside the
star will therefore observe that a local clock showing
Schwarzschild coordinate time~synchronized with a proper
clock far outside the star! ticks much faster than a clock
measuring proper time within the star. We may then under-
stand that an observer inside the star will see the Universe
outside the star evolving at a faster rate than that experienced
by an observer outside the star.

C. Freely falling motion

According to general relativity, an object thrown out radi-
ally from the surface of the star, moving freely~so there is no

Fig. 2. ~Color online! A spacetime diagram showing the worldline of the
moving clock~the fat line!. The two events we are considering are the black
dots in the diagram. The shaded area is known as the lightcone.

Fig. 3. ~Color online! An illustration of curved spacetime using a curved
surface with little Minkowski systems living on it. The curving line could be
the worldline of a moving clock.

Fig. 4. ~Color online! A radial line through a very dense star, and an illus-
tration of the curved spacetime for that line. Time is directed around the
hourglass-shaped surface. Strictly speaking the surface should not close in
on itself in the time direction. Rather one should come to a new layer after
one circumference as on a paper roll.
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air resistance for instance!, takes a path through spacetime
such that the proper time elapsed along the worldline of the
object ismaximized. Consider then two events, at the surface
of the star separated by some finite time only. It is easy to
imagine that a particle traveling between the two events will
gain proper time by moving out toward a larger embedding
radius ~where the circumference is greater!, before moving
back to the second event. On the other hand it cannot move
out too fast since then it will move at a speed too close to the
speed of light—whereby the internal clock hardly ticks at all,
see Fig. 5.

To predict the motion of an object that has been thrown
out from the star and returns to the same location after a
specific amount of time, we can thus consider different pairs
of events~as in Fig. 5! and find the worldline that maximizes
the integrated proper time. This trajectory corresponds to the
motion that we are seeking. Thus we can explain not only
gravitational time dilation but also the motion of thrown ob-
jects using images of the type shown in Figs. 4 and 5.

D. Cosmological models

We may use the same technique that we employed in the
previous section to visualize the spacetimes corresponding to
various cosmological models~although we are restricted to
one spatial dimension!. In Fig. 6, a few images of such mod-

els are displayed.
Notice that time is here directed along the surface and

space is directed around the surface. Just like before the local
coordinate systems, in which special relativity holds, give
the local spatial and temporal distances.

The leftmost illustration corresponds to a Big Bang and
Big Crunch spacetime. As we follow the spacetime upwards
~i.e., forward in time! the circumference first increases and
then shrinks. This means that space itself expands and then
contracts. The Big Bang is here just a point on the
spacetime—where the spatial size of the universe was zero. I
will leave it to the reader to describe how space behaves in
the two rightmost spacetimes.

Using Newtonian intuition one might think of the Big
Bang as a giant fire cracker exploding at some point in time.
As the fire cracker explodes it sends out a cloud of particles
that expands at a great rate relative to afixedspace. In Ein-
stein’s theory it is space itself that expands due to theshape
of spacetime. Also unlike in the fire cracker view we cannot
in general even talk about a time before the Big Bang in
Einstein’s theory.

As another application of the illustrations in Fig. 6, con-
sider a set of photon worldlines separated by some small
spatial distance shortly after the Big Bang in the leftmost Big
Bang model. The worldlines will spiral around the space-
time, always at 45° to the local time axis. From this we may
understand that they will get further and further separated as
the circumference of the universe increases. Thinking of a
photon as a set of wave crests that are all moving at the
speed of light, we then understand that the wavelength of a
photon will get longer and longer as the universe grows
larger. This effect is known as the cosmological redshift. We
can consider a similar scenario for the gravitational redshift
by considering a set of photon worldlines for the spacetime
of the line through the dense star of Fig. 4.

III. A SIMPLE METHOD

The idea allowing us to make a figure like Fig. 4, which is
an exact representation of the spacetime geometry, is simple.
Assume that we have a two-dimensional, Lorentzian, time-
independent and diagonal metric:

dt25gttdt21gxxdx2. ~2!

We then produce a new metric by taking the absolute value
of the original metric components,

dt̄25ugttudt21ugxxudx2. ~3!

The new metric, called the absolute metric, is positive defi-
nite and can be embedded in three-dimensional Euclidean
space as a surface of revolution becausegtt andgxx are in-
dependent oft. For an observer with fixedx, pure temporal
and pure spatial distances will precisely correspond to the
absolute distances. There will thus be small Minkowski sys-
tems living on the curved surface. Analogous arguments hold
if we havex rather thant-independence~as for the cosmo-
logical models!.

A. Black hole embedding

As another example of the visualization scheme outlined
above, we consider the line element of a radial line through a
Schwarzschild black hole. An embedding of the correspond-
ing absolute metric is depicted in Fig. 7.

As before, the azimuthal angle corresponds to the
Schwarzschild time. The two points of zero embedding ra-

Fig. 5. ~Color online! Three different worldlines connecting two fixed
events. The middle worldline corresponds to the actual motion of an object
initially thrown radially away from the star and then falling back toward the
star. Of the three worldlines this has the largest integrated proper time.

Fig. 6. ~Color online! Schematic spacetime cosmological models.
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dius correspond to the horizon on either side of the black
hole. As we approach these points from the outside, the time
dilation becomes infinite. The trumpet-like regions within
these points lie within the horizon. Here movingalong the
surface~as opposed to moving around the surface! corre-
sponds to timelike motion.

Photons, however, move at a 45° angle relative to a purely
azimuthal line, both inside and outside of the horizon. Study-
ing a photon trajectory coming from the outside and spiraling
toward the point of zero embedding radius, it is not hard to
realize that it will take an infinite number of laps~i.e., infi-
nite Schwarzschild time! to reach that point.

The singularity~where the spacetime curvature becomes
infinite! is not visible in the picture. While the distance as
measured along the internal trumpet from the horizon to the
singularity is finite ~it has to be since we know that the
proper time to reach the singularity once inside the horizon is
finite!, the embedding radius is infinite at the singularity.
Thus, we cannot show the singularity using this visualiza-
tion. We can however come arbitrarily close by everywhere
making the embedding radius smaller. In Fig. 8 we zoom in
on the internal geometry.

Note that the singularity is not a spatial point to which we
may walk. Once inside the horizon, the singularity lies in the
future and it is impossible to avoid it—just like it is impos-
sible to avoid New Year’s Eve. In this 111 dimensional
scenario~inside the horizon! the singularity is the time when
space expands at an infinite rate.

Following a Schwarzschild time line~of fixed azimuthal
angle! inside the black hole corresponds to timelike geodesic
motion. Imagine then two trajectories directed along two

such coordinate lines, starting close to the horizon and ex-
tending toward the singularity. The corresponding two ob-
servers will be at rest with respect to each other at the start
~to zeroth order in the initial separation between them!. As
they approach the singularity they will however drift further
and further apart in spacetime. At the singularity, where the
embedding radius is infinite, they will be infinitely separated.
We also know that the time it takes to reach the singularity is
finite. It is then easy to imagine that if we try to keep the
observers together, the force required will go to infinity as
we approach the singularity. Hence, whatever we throw into
a black hole will be ripped apart as it approaches the singu-
larity. Notice, however, that there is no gravitational force in
general relativity. The shape of spacetime is in this case sim-
ply such that a force is needed to keep things together, and in
the end no force is strong enough.

B. Thin spherical crust

As a pedagogical example, imagine a hollow massive star,
with a radial line through it, as illustrated in Fig. 9.

We know from Birkhoff’s theorem~see, e.g., Ref. 3! that,
assuming spherical symmetry, the spacetime outside the crust
will match the external Schwarzschild solution. On the inside
however, spacetime must be Minkowski.4 In Fig. 10 the ab-
solute spacetime of the radial line is displayed.

If we were to cut out a square of the interior spacetime it
would look just like a corresponding square cut out at infin-
ity. There is thus no way that one, even by finite sized ex-
periments~not just local experiments! within the crust, can
distinguish between being inside the star or being at infinity.
Even tidal effects are completely absent.

If we, however, were to open up a dialogue with someone
on the outside, we would find that the outside person would
talk very fast, and in a high pitched tone, whereas our speech
would appear very slow and thick to the outside person.

The point that one can illustrate is that we do not have to
feel gravity for it to be there. Gravity is not about forces

Fig. 7. ~Color online! An embedding of the absolute spacetime of a central
line through a black hole.

Fig. 8. ~Color online! The absolute internal spacetime of a central line
through a black hole. Notice the direction of the lightcones. The singularity
lies in the~temporal! direction that the lightcones are opening up towards.

Fig. 9. ~Color online! A line through a thin crust of high mass. The wedge is
cut out to obtain abetter view of the interior of the star.

Fig. 10. ~Color online! A schematic picture of the spacetime for a line
through a hollow star in the absolute scheme. Notice how, after one circum-
ference in time, we are really at a new layer.
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pulling things, it is about the fabric of space and time, and
how the different pieces of this fabric are woven together.

IV. GENERALIZATION TO ARBITRARY
SPACETIMES

The scheme outlined in the preceding section was specific
for a particular type of metric expressed in a particular type
of coordinates. There is, however, a way to generalize this
scheme.

Given a Lorentzian spacetime of arbitrary dimensionality
~although we commonly will apply the scheme to two di-
mensions!, the idea is first to specify a field of timelike four-
velocities denotedum(xa) ~we will refer to spacetime veloci-
ties as four-velocities regardless of dimensionality!. We then
make a coordinate transformation to a local Minkowski sys-
tem comoving with the given four-velocity at every point. In
the local system we flip the sign of the spatial part of the
metric to create a newabsolutemetric of Euclidean signa-
ture. Notice that the new metric will be highly dependent on
our choice of generating four-velocities. The absolute metric
together with the field of four-velocities contains all the in-
formation about the original spacetime, and allows one to
keep track of what is timelike and what is not. We can al-
ways do the backwards transformation and flip the local
positive definite metric into a Lorentzian~Minkowski! met-
ric.

Considering for example the black hole illustrations of the
preceeding section, thegenerators~the worldlines tangent to
the field um) outside the horizon were simply those of the
Schwarzschild observers at rest. Inside the horizon the gen-
erators were the worldlines of observers for whomt
5const. Notice that the observers located right outside the
horizon have infinite proper acceleration. It is then perhaps
not surprising that the resulting embedding is singular at the
horizon. As we will see in Sec. V we can better resolve the
horizon by using the worldlines of freely falling observers as
generators.

A. A covariant approach

We could carry out the scheme we just outlined explicitly,
doing coordinate transformations, flipping the sign of the
metric, and transforming it back again. There is, however, a
more elegant method. We know that the absolute metric,
from now on denoted byḡmn , is a tensor~as any metric!, and
in a frame comoving withum we have

ḡmn5F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G
52F 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

G12F 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

G . ~4!

Adopting (1,2,2,2) as the metrical signature~as we will
throughout the article!, we realize that we must have

ḡmn52gmn12umun . ~5!

Hereum5gmn dxn/dt. Notice that both sides of the equality
are covariant tensors that equal each other in one system,
thus the equality holds in every system.5

For later convenience, we may also derive an expression
for the inverse absolute metric, defined byḡmrḡrn5dm

n . By
a contravariant argument, analogous to the covariant argu-
ment above, we find that the inverse absolute metric is given
by

ḡmn52gmn12umun. ~6!

That this is indeed the inverse of the absolute metric can be
verified directly. It is a little surprising however that we get
the inverse of the new metric by raising the indices with the
original metric.6

In the new metric, proper intervals will be completely dif-
ferent from those in the original metric. Intervals as mea-
sured along a generating congruence line will however be the
same; these are unaffected by the sign-flip. Using a bar to
denote the four-velocity relative to the absolute metric, it
then follows that

um5ūm, um5ūm . ~7!

Using this in Eq.~5!, we immediately find

gmn52ḡmn12ūmūn . ~8!

Comparing with Eq.~5!, we see that there is a perfect sym-
metry in going from the original to the absolute metric, and
vice versa.

V. FREELY FALLING OBSERVERS
AS GENERATORS

As a specific example of the absolute metric, we again
consider the line element of a radial line through a Schwarzs-
child black hole. We setc5G51, and introduce dimension-
less coordinates, and proper intervals,

x5
r

2M
, t5

toriginal

2M
, t5

toriginal

2M
. ~9!

The line element then takes the form

dt25S 12
1

xDdt22S 12
1

xD 21

dx2. ~10!

As generators (um) we consider freely falling observers, ini-
tially at rest at infinity. Using the squared Lagrangian formal-
ism ~see, e.g., Ref. 1! for the equations of motion, we readily
find the lowered four-velocity of the generating free-fallers

um5S 1,
Ax

x21D . ~11!

The absolute metric is then according to Eq.~5!

ḡmn5F 11
1

x

2Ax

x21

2Ax

x21

x~x11!

~x21!2
G . ~12!

To make an embedding of this metric we are wise to first
diagonalize it by a coordinate transformationt85t1f(x).
Letting df/dx5 ḡtx /ḡtt the line element in the new coordi-
nates becomes
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dt̄25S 11
1

xDdt821S 11
1

xD 21

dx2. ~13!

This metric is easy to remember since by chance it is the
Schwarzschild metric with the minus signs replaced by plus
signs~except for the minus sign in the exponent!. Notice that
nothing special happens with the metrical components at the
horizon (x51). At the singularity (x50) however, the ab-
solute metric is singular.

To produce a meaningful picture of this geometry, we
must include the worldlines of the freely falling observers
used to generate the absolute geometry. Coordinate trans-
forming the trajectories to the new coordinatest8,x can be
done numerically. The result is depicted in Fig. 11.

Notice how the local Minkowski systems are twisted on
the surface. The horizon lies exactly where the generating
worldlines are at a 45° angle to a purely azimuthal line.

Time dilation is now not solely determined by the local
embedding radius, but also by the gamma factor7 of the ob-
server at rest relative to the generating observer. For instance
an observer at rest at the horizon will be at a 45° angle to the
generating observer, corresponding to an infinite gamma fac-
tor, and his clock will therefore not tick at all during a
Schwarzschild lap~one circumference!, thus being infinitely
time-dilated.

Unlike for the hourglass-shaped embedding of Sec. II B,
this explanation of gravitational time dilation requires a basic
knowledge of special relativistic time dilation. However, un-
like the illustration of Fig. 7 where there is a cusp right at the
horizon, Fig. 11 has the virtue of showing how passing the
horizon is not at all dramatic~locally!. Spacetime is as
smooth and continuous at the horizon as everywhere else
outside the singularity.

VI. SYMMETRY-PRESERVING GENERATORS

In this section we generalize the scheme outlined in the
preceeding section to include arbitrary two-dimensional~2D!
metrics with a Killing symmetry,8 for arbitrary generators
that preserve manifest Killing symmetry. In two dimensions,
the generating fieldum can~since it is normalized! be speci-
fied by a single parameter as a function ofxm. A parameter
that is well suited to preserve the symmetries of the original
metric is theKilling velocity v. By this we mean the velocity
that a generatorum experiences for a Killing line~a worldline
of constantx). In other words, it is the velocity of a point of
constantx as seen by the generating observer. The absolute
value of this velocity will be smaller than one outside the
horizon, and greater than one inside the horizon. Without
loss of generality we can assume that the original line ele-

ment is of the form Diag(gtt(x),gxx(x)). The relation be-
tweenum andv is derived in Appendix A. The result is

um56A gtt

12v2 S 1

gtt
,

2v

A2gxxgtt
D . ~14!

Using the lowered version of Eq.~14! in Eq. ~5! gives us the
absolute metric as a function of the parameterv. Making a
coordinate transformation that diagonalizes this metric,
analogous to the diagonalization in the preceeding section,9

yields after simplification

ḡmn8 5S gtt

11v2

12v2 0

0 2gxx

12v2

11v2

D . ~15!

Notice that if there is a horizon present, wheregtt50, we
have also (12v2)50. The quotient of these two entities will
remain finite and well defined, given thatdv/dxÞ0 and
dgtt /dxÞ0.

We see from Eq.~15! that there is much freedom in choos-
ing ḡtt8 . Since we can choosev arbitrarily close to 1, both
inside and outside of the horizon, we can everywhere make
ḡtt8 take an arbitrarily high value. Because the square root of
ḡtt8 is proportional to the embedding radius, there are virtu-
ally no limits to what shape the curved surface can be given.
To interpret the embedded surface we need also the generat-
ing worldlines, relative to the new~diagonalizing! coordi-
nates. How these can be found is derived in Appendix B.

While the shape of the embedded surface depends strongly
on the choice of generators, thearea is independent of this
choice. This holds regardless of any assumed symmetries as
is explained in Appendix C.

VII. FLAT EMBEDDINGS

Using Eq. ~15! and assuming a time-symmetric and 2D
original metric, we can produce an absolutely flat absolute
metric. This we can embed as a cylinder or a plane. We
simply setḡtt8 5C, whereC is some arbitrary positive con-
stant. Solving forv yields

v56AC2gtt

C1gtt
. ~16!

As a specific example we consider a Schwarzschild original
line element. We choosev50 at infinity, corresponding to
the generating observers at infinity being at rest, which
yieldsC51. We also choose the positive sign, corresponding
to an in-falling observer~on the outside! to find

v5
1

A2x21
. ~17!

This is a completely smooth function at the horizon. We see
that it remains real forx>1/2. For other choices ofC we can
make the inner boundary come arbitrarily close to the singu-
larity. We notice also thatḡxx8 51/C and is thus also constant.
This means that the constantx-worldlines will be evenly
spaced on the flat surface. Also we may, from the expression
for v, immediately figure out how the local generator should
be tilted relative to the constantx-worldline on the flat sur-

Fig. 11. ~Color online! The absolute free-faller geometry. The dashed line is
the horizon. As before the singularity lies outside of the embedding~toward
the left!.
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face. An embedding for this particular case is displayed in
Fig. 12.

Notice that for this visualization the curvature of space-
time is manifested solely as atwist of the local Minkowski
systems relative to each other. As in the case of Fig. 11, the
flat embedding illustrates the smoothness of the spacetime
around the horizon.

VIII. ABSOLUTE GEODESICS

We know that the motion of particles in free fall corre-
sponds to trajectories that maximize the proper time. Such
trajectories can be found using the absolute scheme, as out-
lined in Sec. IV C. The fact that these trajectories are also
straight is unfortunately a bit lost in this scheme. There are,
however, ways to manifestly retain at least parts of the origi-
nal geodesic structure, in the absolute metric. The net value
of this discussion turns out to be of more academic than
pedagogical value. Below we therefore simply summarize
the results derived in the appendices.

d Assuming an original 2D metric with a Killing symmetry,
we can demand thatsomegiven motionx(t) should be
geodesic relative to the absolute metric. For example one
can show that there exist generators such that outward-
moving photons on a Schwarzschild radial line follow ab-
solute geodesics. For brevity the analysis of this is omitted.

d To investigate the general connection between the geodesic
structure of the original and the absolute metric, we derive
a covariant expression for the absolute four-acceleration in
terms of Lorentzian quantities. See Appendix D.

d Using the formalism of the preceeding point we can show
that if the generators are geodesics with respect to the
original metric they will also be geodesics with respect to
the absolute metric, and vice versa. See Appendix E. We
also give an intuitive explanation for this.

d In the preceeding points we have seen how some parts of
the geodesic structure can be retained. To completely retain
the geodesic structure, as is derived in Appendix F, we
must have

¹aum50. ~18!

At any single point in spacetime, this is easily achieved.
We just go to an originally freely falling system and in this
system chooseum5(1/Ag00) dm

0 . Since in this system the
metric derivatives all vanish, so will the derivatives of the
generators. For a normalized vector fieldum to exist such

that Eq.~18! holds everywhere, we must have a so-called
ultrastatic spacetime—as is derived in Appendix G. By ul-
trastatic we mean that space may have some fixed shape,
but there can be no time dilation.

We conclude that only to a limited extent can we, in the
absolute scheme, visualize Lorentz-geodesics as straight
lines. There are, however, other visualization methods that
are better suited for this, as discussed in Sec. XV.

IX. CHARGED BLACK HOLE

All that we have done so far for ordinary black holes, in
the absolute scheme, can also be done for charged black
holes. The line element of a radial line is then given by~see,
e.g., Ref. 10!

dt25S 12
1

x
1

b2

4x2Ddt22S 12
1

x
1

b2

4x2D 21

dx2. ~19!

The dimensionless constantb lies in the range@0,1# and is
proportional to the charge of the black hole. Just as in Sec.
VII, we may find a flat absolute geometry for this line ele-
ment as depicted in Fig. 13.

We see the classic three regions of the Reissner–
Nordström solution. Thinking of free particles taking a path
that maximizes the proper time we understand that a freely
falling observer initially at rest in the innermost region, will
accelerate toward the inner horizon. Actually this becomes
clearer still if we form the absolute metric by simply taking
the absolute value of the original metrical components, as we
did in Sec. III. This corresponds to having generators that are
orthogonal to the Killing field in the intermediate region, and
parallel to the Killing field outside this region. See Fig. 14.

We notice that the spacetime geometry of the region just
inside the inner horizon looks very much like the geometry

Fig. 12. ~Color online! A flat embedding of a Schwarzschild black hole. The
radial parameterx lies in the interval@0.5, 2.5#. We could equivalently
embed this geometry as a cylinder. As we go further to the right~largerx),
the lightcones will approach pointing straight up.

Fig. 14. ~Color online! An alternative representation of a Reissner–
Nordström black hole. Notice the direction of the local Minkowski systems.
Hereb50.995 and the range is@0.425, 0.7#.

Fig. 13. ~Color online! A flat embedding of a Reissner–Nordstro¨m black
hole. The dimensionless radial coordinatex lies in the range@0.22,2.5#. The
two internal horizons are marked with the thicker dotted lines. The charge is
chosen so thatb50.95.
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just outside the outer horizon. Knowing that it takes a finite
proper time to reach the outer horizon from the outside, we
understand that it must take a finite proper time~while infi-
nite coordinate time! to reach the innermost horizon from the
inside. In the embedding there is however apparently no re-
gion to which the trajectory may go after it has reached the
inner horizon. To resolve this puzzle, we must consider the
extended Reissner–Nordstro¨m solution. This is in principle
straightforward, as will be briefly discussed at the end of Sec.
XI.

X. FLAT SPACETIME

The simplest possible spacetime to which we may apply
the absolute scheme, is flat Minkowski in two dimensions.
Choosing a field of generating four-velocities that is con-
stant, with respect to standard coordinates (t,x), the result-
ing absolute geometry is flat and can be embedded as a
plane. If we choose some more disordered field of four-
velocities we can, however, get an embedding with no appar-
ent symmetries at all. There is, however, another choice of
generators that will produce a regular surface,11 as is illus-
trated in Fig. 15.

In the right and left regions, of the Minkowski diagram,
we have chosen so-called Rindler observers as generators.12

In the top and bottom regions we are using timelike geode-
sics converging at the origin as generators. The universe as
perceived from this set of observers is known as a Milne
universe~in two dimensions!.13

It is obvious from the embedding that there is a~Lorentz-
ian! Killing field directed around the conical surfaces. Imag-
ining the corresponding field in the diagram, we realize that
it is in fact the Killing field connected to continuous Lorentz
transformations.

XI. EXTENDED BLACK HOLE

Notice the similarity between the Kruskal diagram of a
maximally extended Schwarzschild black hole~see, e.g.,
Ref. 1! and the Rindler diagram to the left in Fig. 15. Having
seen the interior and exterior regions of a~nonextended!
black hole in the absolute scheme~Fig. 7!, we realize that we
can also illustrate a maximally extended black hole~Fig. 16!.

While all symmetries are preserved in this picture, it is
hard to see how one can move between the different regions.

Since the generators are null at the horizons, making the
absolute distance along these lines zero, all the points along
the null lines coming from the Kruskal origin sit at the con-
necting point in the embedding. Thus a trajectory passing
one of the horizons in the diagram will pass through the
connecting point in the embedding. However, where it will
end up is not evident from the embedding alone. Through a
more well behaved set of generators one can remove this
obscurity at the cost of losing manifest symmetry, as will be
briefly discussed in Sec. XII.

Having seen the absolute version of the extended
Schwarzchild black hole, we can also figure out how the
extended Reissner–Nordstro¨m black hole must look. At all
the cusps in the embedding, four locally cone-like surfaces
must meet. Otherwise, as is apparent from Sec. X, the space-
time will not be complete. I will leave to the reader’s imagi-
nation the specifics of how to extend the Reissner–
Nordström embedding depicted in Fig. 14.

XII. OTHER SPACETIMES

So far in the embedding examples, we have restricted our-
selves to Lorentzian spacetimes with a Killing symmetry and
also to generators that manifestly preserve this symmetry.
The absolute scheme is, however, completely general. When
applying the scheme to the Kruskal black hole, we do not
have to let the generators be either parallel or orthogonal to
the local Killing field, as we did before. Instead we could for
instance use geodesic free-fallers, originally at rest along a
t50 line in the standard Kruskal coordinates. My best guess
is that the corresponding embedding would resemble a tor-
toise shell.

We can also consider spacetimes where there is no Killing
symmetry. As an example one could study a radial line
through a collapsing thin shell of matter.~Here there are
local Killing fields but no global Killing field.! As a first try,
one might choose observers at fixedx as generators. Outside
of the shell we would~via the Birkhoff theorem! have a
picture similar to Fig. 7. Inside the shell we would have a flat
~though it may be rolled up! surface, with straight generating
lines. Whether these two pieces can be put together in some
meaningful manner I have yet to discover. Maybe one will
find that another set of observers will be needed to join the
two spacetime regions together.

XIII. TOY MODELS

While we can use the absolute scheme to produce pictures
representing exact solutions to Einstein’s field equations, we

Fig. 15. ~Color online! To the left: Minkowski spacetime with a certain set
~as discussed in the main text! of worldlines~the thick full drawn lines!. To
the right: The corresponding absolute geometry embedding. Note that the
conical surfaces are not closed as one goes around in the space direction, but
rather they consist of very tightly rolled layers with no end.

Fig. 16. ~Color online! To the left: A Kruskal diagram of a maximally
extended black hole. To the right: an embedding of the absolute geometry
with generators at fixed radius in the exterior regions and at fixed Schwarzs-
child time in the interior regions~the full drawn lines in the diagram!.
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can also do the opposite. Suppose that we have a surface, say
a plane, and we specify an angle as a function of position on
the plane. Letting the angle correspond to the direction of the
generators, it is straightforward to find the corresponding
Lorentzian metric~just do the inverse transformation of Eq.
~6!!. We may insert this metric into some program~say
MATHEMATICA ! and let it calculate the corresponding Ein-
stein tensor and thus, through the field equations, also the
energy-momentum tensor.14 We may see the solution as a
purely two-dimensional solution. Alternatively we may see it
as a four-dimensional solution assuming that we add two
dimensions corresponding to internally flat planes. In Fig. 17
we see an example of such a toy model spacetime.

From the look of the spacetime in Fig. 17 we might call
the propulsion mechanism ‘‘twist drive’’ rather than warp
drive. I will leave to the reader’s imagination to visualize a
spacetime that more deserves the name warp drive.

XIV. OTHER METHODS

In this article we have seen how one may use curved sur-
faces, with local Minkowski systems, to visualize for in-
stance gravitational time dilation. This can also be achieved
using a flat diagram, letting the space and time scales be
encoded in the size~and shape! of the local lightcones as
depicted in Fig. 18.

The disadvantage with this technique is that it is more
abstract than the hourglass embedding~Fig. 4!. In the hour-
glass embedding there is a shorter distance between two
Schwarzschild time lines inside the star than outside. From
the flat lightcone model we must deduce this fact. Also one
loses the visual connection to the concept of curved space–
time.

The flat diagram technique, however, has the virtue of
being extendable to 211 dimensions. The scheme outlined
in this article can also be used in 211 dimensions, but to
produce a faithful image we would need a flatabsolute
spacetime. Then we could embed little lightcones of constant
opening angle and size. To demand a Euclidean absolute
spacetime is, however, quite restrictive, and it seems better to
allow the lightcones to vary in apparent width and height. I
will leave to the reader’s imagination how this technique
could be applied to visualize warp drive, rotating black
holes, the big bang, and so on.

XV. COMPARISON TO OTHER WORK

There are, to the author’s knowledge, three other distinctly
different techniques of visualizing curved spacetime using
embedded surfaces.

Marolf15 presents a way of embedding a two-dimensional
Lorentzian metric in a 211 dimensional Minkowski space-
time ~visualized as a Euclidean 3-space!.

L. C. Epstein16 presents a popular scientific visualization
of general relativity. The underlying theory rests on the as-
sumption of an original time independent, diagonal, Lorent-
zian line element. Rearranging terms in this line element one
can get something that looks like a new line element, but
where the proper time is now a coordinate. The ‘‘space-
proper-time’’ can be embedded as a curved surface, from
which many spacetime properties can be deduced.

In a previous article,17 I assumed a time-independent
Lorentzian line element. I then found another line element,
also time symmetric, but positive definite and geodesically
equivalent to the original line element. The resulting geom-
etry can be embedded as a curved surface as in Fig. 19. The
method can be used to explain straight lines in a curved
spacetime, the meaning of forces as something that bends
spacetime trajectories, etc.

Each of the three techniques outlined here together with
the absolute scheme of this article has different virtues~and
drawbacks!. Depending on the audience they can all be used
to explain aspects of the theory of general relativity.

Fig. 17. ~Color online! A crude illustration of a toy model for warp drive.

Fig. 18. ~Color online! A flat spacetime visualization of a radial line through
a star. The lightcones are everywhere, by definition, one proper time unit
high, and two proper length units wide. The dashed circle illustrates that
when we actually go to a specific region, the lightcones will appear as they
do at infinity.

Fig. 19. ~Color online! Illustration of how straight lines in a curved space-
time can explain the motion of upwards-thrown apples. The lines can be
found using a little toy car that is rolled straight ahead on the surface.
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XVI. COMMENTS AND CONCLUSIONS

The absolute scheme as presented in this article can be
applied toany spacetime, giving a global positive definite
metric. Together with the generating field of four-velocities,
it carries complete information about the original Lorentzian
spacetime.

While there are mathematical applications of this scheme
~see Ref. 18!, we have here focused on its pedagogical vir-
tues. At the level of students of relativity, a study of the
mathematical structure itself may have some pedagogical
virtue. In particular it is instructive to see an alternative rep-
resentation of the shape of spacetime.

The main pedagogical virtue is however that, applied to
two-dimensional spacetimes, the absolute scheme enables us
to makeembeddingsthat illustrate the meaning of a curved
spacetime.

While such an embedding is not unique, due to the free-
dom in choosing generators as well as the freedom of the
embedding, it gives a completely faithful image of the true
spacetime geometry. With only a basic understanding of
Minkowski systems, a complete knowledge of the embedded
parts of the Lorentzian geometry can be deduced from the
surface. For instance we can figure out how much a clock has
ticked along a certain path, or what path a thrown apple will
take.

Also, many applications require no knowledge at all of
special relativity. We do not need to mention Minkowski
systems or proper times to give a feeling for how geometry
can explain how time can run at different rates at different
places, or how space itself can expand. Most important, we
emphasize the point of view that gravity, according to gen-
eral relativity, is aboutshapes—not forces and fields.

XVII. QUESTIONS FOR STUDENTS OF GENERAL
RELATIVITY

Here are a handful of questions regarding applications of
the absolute scheme. The answers are given in the next sec-
tion.

~1! The hourglass-shaped embedding of Fig. 4 illustrates a
spacetime where time ‘‘runs slower’’ in a local region.
How would a corresponding embedding look that illus-
trates how time can run faster in a local region?

~2! Can you, using the technique of this article, illustrate a
two-dimensional spacetime that is closed in space and
time and with no vertices~by a vertex we mean a point
from which the Minkowski systems point either outward
or inward!?

~3! Can a spacetime of the type specified in the preceeding
question be flat?

~4! In exam periods students often need more time to study.
Consider as a primary spacetime a flat plane with uni-
formly directed Minkowski systems. How would you al-
ter this spacetime to ensure that there is sufficient time to
study? Include the worldline of the student in need, as
well as the worldline of the teacher bringing the exam.

~5! Imagine an upright-standing cylindrical surface, with
upward-directed Minkowski systems. The all-famous ex-
periment where one twin goes on a trip and later returns
to his brother can be illustrated by two worldlines on the
cylinder, one going straight up and the second going in a
spiral around the cylinder~intersecting the first one
twice!. This scenario differs from the standard one in

that no acceleration was needed by either twin for them
to still reunite. The same question applies however. Will
the twins have aged differently?

XVIII. ANSWERS TO STUDENTS QUESTIONS

Here are~the! answers to the questions of the preceeding
section.

~1! Instead of a dip in the hourglass-shaped embedding~de-
crease of the radius toward the middle!, we have a bulge
~increase of radius toward the middle!.

~2! Yes. For instance a torus, with the Minkowski systems
directed along the smaller toroidal circumference.

~3! Yes. Make a tube out of a paper by taping two opposite
ends together. Flatten the tube, preferably so that the tape
is a bit away from the two folds that emerges. Roll the
flattened tube, so that the tape describes a complete
circle and connect the meeting paper ends by some more
tape. If the local Minkowski systems on this shape are
given a uniform direction, the corresponding Lorentz-
geometry will be flat.

~4! Make a sufficiently high and steep bump in the plane,
while keeping the direction of the Minkowski systems
~as seen from above the former plane!. Make sure that
the student’s trajectory passes straight over the peak,
while the teacher’s trajectory misses it.

~5! Oh yes. What time the twins experience is determined by
their respective spacetime trajectories. If the trajectory of
the traveling twin is tilted almost as much as a photon
trajectory, he will have aged very little compared to his
brother. There is also an article19 that deals with this
thought-experiment.

APPENDIX A: FINDING uµ AS A FUNCTION OF v

Here is a derivation of the general expression forum as a
function of the Killing velocity v. Let us definevm as a
vector perpendicular toum, normalized to21. Also we de-
note the Killing field byjm. The vectors as seen relative to a
system comoving withum are displayed in Fig. 20.

We have then

jm5~um1vvm!K. ~20!

Fig. 20. The Killing field in local coordinates comoving withum.
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Here the variableK may take positive or negative values.
Contracting both sides with themselves, we solve forK to
find

K56A jaja

12v2. ~21!

The orthogonal vectorvm can be expressed via

vm5
1

Ag
emrgraua,

where

emr5S 0 21

1 0 D . ~22!

Here g52Det(gmn). Through this definitionvm is within
180° clockwise fromum ~looking at the coordinate plane
from above, assumingt up andx to the right!. Inserting Eq.
~22! into Eq. ~20!, using Eq.~21!, we readily find

S dm
n1

v

Ag
emrgrnD un56A12v2

jaja
. ~23!

This is a linear equation forum that can easily be solved. For
the particular case ofgmn5Diag(gtt ,gxx) andjm5(1,0) we
find

um56A gtt

12v2 S 1

gtt
,

2v

A2gxxgtt
D . ~24!

So now we have a general expression for the generating four-
velocity, expressed in terms of the Killing velocityv. The6
originates from the6 in the previous expression forK.

APPENDIX B: VECTOR TRANSFORMATION
BY DIAGONALIZATION

Under the diagonalization of the absolute metric~as per-
formed in Sec. VI! a general vector transforms according to

q8m5S qt1
ḡtx

ḡtt
qx,qxD . ~25!

Using the lowered version of Eq.~14! and the definition of
the absolute metric, Eq.~5!, we find after simplification

ḡtx

ḡtt
5

2v
11v2

2gxx

A2gttgxx

. ~26!

For the particular case ofqm5um, using Eq.~14!, we find
after simplification

u8m56A gtt

12v2 S 1

gtt

12v2

11v2 ,
2v

A2gxxgtt
D . ~27!

This expression can be used to find the generating lines in
the new coordinates. We simply integrateu8t and u8x nu-
merically, with respect to the parametert, to find t8(t) and
x(t). These lines can then easily be mapped to an embed-
ding of the absolute geometry.

APPENDIX C: REGARDING THE ABSOLUTE AREA

Consider a small square in the coordinates we are using.
Then consider two different choices of generators,u1

m and
u2

m . Assume also that the coordinate square is small enough
that the generating fields~as well as the metric! can be con-
sidered constant within the surface. We denote the absolute
area of the coordinate square for the two representations by
dA1 anddA2 . Knowing that the absolute area is independent
of the choice of coordinates we may evaluate each area in the
local Minkowski systemsx1

m and x2
m , comoving with the

corresponding generator. In these systems the original square
will be deformed, but the absolute area will exactly equal the
coordinate area. Since the two Minkowski systems are re-
lated via the Lorentz transformation, which preserves coor-
dinate areas, we know that the coordinate areas are equal and
thus alsodA15dA2 . Because the argument applies to arbi-
trary pairs of generators, it follows that the absolute area is
independent of the choice of generators.

In N dimensions we can, by a completely analogous argu-
ment, show that theN-volume of the absolute metric is in-
dependent of the choice of generators.

APPENDIX D: COVARIANT RELATION
FOR THE ABSOLUTE FOUR-ACCELERATION

First we derive an expression for a general absolute four-
velocity q̄m, in terms of Lorentzian quantities

q̄m5
dxm

dt̄
5

dxm

dt

dt

dt̄

5qmA grsdxrdxs

2gabdxadxb12uaubdxadxb

5qmA 1

2112uaub

dxa

dt

dxb

dt

5qm
1

A2~uaqa!221
. ~28!

Notice that choosingqm5um yields ūm5um as we realized
before.

To covariantly relate the absolute four-acceleration to the
Lorentzian quantities we need an expression for the absolute
affine connection, i.e., the affine connection for the absolute
metric

Ḡab
m 5 1

2ḡ
mr~]aḡrb1]bḡra2]rḡab!. ~29!

Using the corresponding definition of the original affine con-
nection, together with the expressions for the absolute metric
and its inverse given by Eqs.~5! and~6!, we can write this as

Ḡab
m 5Gab

m 22umurGrab1~2gmr12umur!

3~]a~urub!1]b~urua!2]r~uaub!!. ~30!

Now we evaluateD̄q̄m/D̄ t̄ in an originally freely falling
system where the original affine connection vanishes. Setting
all unbarred derivatives to their covariant analogue and using
the definition of covariant derivatives, Eqs.~28! and~30! we
obtain

258 258Am. J. Phys., Vol. 73, No. 3, March 2005 Rickard M. Jonsson



D̄q̄m

D̄ t̄
5

1

A2~uaqa!221

D

Dt
S qm

A2~ubqb!221
D

12
qaqb

2~usqs!221
~2gmr12umur!

3~ub¹aur1ur¹aub2ub¹rua!. ~31!

Here we have a manifestly covariant relation. We can expand
this expression, and simplify it somewhat using

uaua51, ua¹mua50, k[uaqa . ~32!

The first two relations follow directly from the normalization
of um, and the latter is a definition introduced for compact-
ness. The resulting expansion is given by

D̄q̄m

D̄ t̄
5

2

2k221
3F1

2

Dqm

Dt
2

kqm

2k221
S qrqs¹sur

1ur

D

Dt
qrD 2kqa¹aum1umqbqa¹aub

1kqa¹mua22kumqaur¹ruaG . ~33!

APPENDIX E: GEODESIC GENERATORS

Consider a trajectory that everywhere is tangent to the
generating field so thatqm5um. Also, assume that the gen-
erators are geodesicsDum/Dt 50, or equivalentlyur¹rum

50. Using the normalization relationumum51, from which
it follows thatum¹aum50, we immediately see that Eq.~31!
reduces to

D̄ūm

D̄ t̄
50. ~34!

Thus if the original generators are geodesic then they are
geodesic also relative to the absolute metric. Through the
perfect symmetry in transforming from the absolute to the
Lorentzian metric and back, we have derived implicitly that
if the absolute generators are geodesics they will also be
geodesics in Lorentzian spacetime. We conclude thatif and
only if the original generators are geodesic then they will be
geodesic in the absolute spacetime.

To get an intuitive feeling for the result we just derived
consider a straight generating line~in the absolute sense! on
an embedded surface. Any small deviation from this line will
introduce negative contributions to the proper time. More
rigorously we can argue that an infinitesimal variation of a
trajectory~with fixed end points!, around a straight generat-
ing line, will to first order in the variation parameter not
affect theabsolutelength of the trajectory. Also we know
that the Lorentzian distance along a trajectory is shorter than
or equal to the absolute distance~the equality holds if and
only if we follow a generator!. Hence we cannot gain proper
time to first order in the variational parameter as we vary the
trajectory. Thus the Lorentz proper time is maximized by the
original trajectory.

On the other hand, if the absolute generating line is curv-
ing relative to the surface, it seems plausible that we could

gain proper time by taking a path on theoutsideof the curv-
ing generating line. Thus a nongeodesic absolute generator
would imply a nongeodesic Lorentzian generator. The result
that the generators are absolute geodesics if and only if they
are Lorentzian geodesics is thus intuitively understandable.

APPENDIX F: DERIVING NECESSARY AND
SUFFICIENT CONDITIONS FOR GEODESIC
EQUIVALENCE

To investigate if it is possible to completely retain the
original geodesic structure in the absolute metric, we set
D̄q̄m/D̄ t̄ 50 and Dqm/Dt 50 in Eq. ~33!. The resulting
equation is given by

052
kqm

2k221
qrqs¹sur2kqa¹aum1umqbqa¹aub

1kqa¹mua22kumqaur¹rua . ~35!

If this equation is to hold forall directions,qa, it must hold
for the particular caseqa5ua. Inserting this and using the
normalization ofum, only the second term survives

ua¹aum50. ~36!

Thus it isnecessaryto have geodesic generators to get all the
geodesics ‘‘right’’. Assuming the generators to be geodesic—
the last term in Eq.~35! dies. Multiplying the remaining four
terms byqm , we are after simplification left with another
necessary constraint,

S 2k

2k221
1kDqaqm¹aum50. ~37!

The expression within the parentheses is zero if and only if
k561. Assuming a future-like convention on bothum and
qm we cannot have a negativek, and k51 corresponds
uniquely toum5qm, a direction that we already considered.
Thus, the expression outside the parentheses must vanish.
For this to hold forall directionsqa, we must have

¹aum52¹mua . ~38!

Using this necessary antisymmetry in Eq.~35! we are left
with

052kqa¹aum1kqa¹mua . ~39!

Lowering this withgmn and using the necessary antisymme-
try again, we obtain

qa¹aun50. ~40!

For this in turn to hold forall qa it is necessary to have
¹aum50. This also immediately satisfies the above necessary
constraints on antisymmetry and generator geodesics. That it
is also sufficient for geodesic equivalence follows directly
from Eq. ~35!. Thus the absolute metric will be geodesically
equivalent to the original one, if and only if

¹aum50. ~41!

APPENDIX G: PROVING THAT ¹µunÄ0
EVERYWHERE IMPLIES ULTRASTATIC
SPACETIME

Assuming ¹mun50, the Frobenius condition
u[m¹nur]5020 is trivially satisfied. This means that there ex-
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ists ~locally! a slice for whichum is normal. Introducing
coordinates such thatt5const in every slice and letting the
spatial coordinates follow the congruence connected toum,
the line element takes the form

gmn5Fgtt 0

0 gi j
G . ~42!

In this particular systemum5Agttd
t
m . Then we readily find

¹aub[]aub2Gab
r ur ~43!

5 . . . ~44!

5
1

Agtt

3S d t
b~]agtt!2

1

2
~]agtb1]bgta2] tgab! D .

~45!

Letting i and j denote general spatial indices and evaluating
this equation fora5t,i andb5t, j ~there are four different
combinations! we readily find

]mgtt50, ~46!

] tgi j 50. ~47!

Thus in these particular coordinates, choosing at-labeling
such thatgtt51, the metric takes the form

gmn5F1 0

0 gi j ~x!
G . ~48!

A spacetime where the metric can be put in this form is
called ultrastatic. Thus¹mun50 implies an ultrastatic space-
time. The converse, choosing the preferred observers in the
ultrastatic spacetime as observers, is also obviously true.
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