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| present a way twisualizethe concept of curved spacetime. The result is a curved surface with
local coordinate system®linkowski systemgliving on it, giving the local directions of space and
time. Relative to these systems, special relativity holds. The method can be used to visualize
gravitational time dilation, the horizon of black holes, and cosmological models. The idea
underlying the illustrations is first to specify a field of timelike four-velociti#s Then, at every
point, one performs a coordinate transformation to a local Minkowski system comoving with the
given four-velocity. In the local system, the sign of the spatial part of the metric is flipped to create
a new metric of Euclidean signature. The new positive definite metric, calledbautemetric,

can be covariantly related to the original Lorentzian metric. For the special case of a
two-dimensional original metric, the absolute metric may be embedded in three-dimensional
Euclidean space as a curved surface.2@@5 American Association of Physics Teachers.

[DOI: 10.1119/1.1830500

[. INTRODUCTION II. INTRODUCTION TO CURVED SPACETIME

; . T . .. Consider a clock moving along a straight line. Special
Emstgm s theory of gravity Is a geometngal theory and ISrelativity tells us that the clock will tick more slowly than the
well suited to be explained by images. For instance, the wa

a star affects thepacearound it can easily be displayed by a tlocks at rest as llustrated in Fig. 1.
Consider two events on the moving clock, separated by a
curved surface. The very heart of the theory, theved d P y

ey oo . time dt and a distanceéx, as seen relative to the system at
spacetimeis however fundamentally difficult to display us- rest. We can illustrate the two events, and the motion of the

ing curved surfaces. The reason is that the Lorentz signaturg, .y in aspacetime diagranas depicted in Fig. 2. Time is
gives us negative squared distances, something that we neVg§fected upwards in the diagram. The motion of the clock
have on ordinary curved surfaces. _ corresponds to aorldline in the diagram.

However, we can illustrate much of the spacetime struc- The proper time intervadi7 is the time between the two
ture using flat (_Jllagrams that include the Ilghtcones. Famougyents according to the moving clock, which is giver? by
examples of this are the Kruskal and Penrose diagi@ess, dx 2

X
?) : (1)

e.g, Ref. 1. Such pictures are valuable tools for understand-
It-|erec is the velocity of light. Note that in the limit as the

ing black holes.
This article describes a method that lets us visualize no

speed of the clock approaches the speed of light we have

dx=cdt, and thus from Eq(1l) we havedr=0. A clock

just the causal structure of spacetime, but also the sttzde
proper distancegslt is my hope that these illustrations can be

g gelzr:grz)fgﬁlﬂg:?ctehe basic concepts of general reIat'v'tymoving almost at the speed of light will thus almost not tick
9 : at all relative to the clocks at rest.

In exploring the po§sibilities of this mgthod | use thg lan- It is customary to choose the axes of the spacetime dia-
guage and mathematics of general relativity. The level is thaﬁram in such a manner that motion at the speed of light

of teachers(or skilled studentsof general relafivity. The 5 aqhonds to a line that is inclined at a 45° angle relative to
resulting illustrations can however be used without any ref-

. : . 2 tlhe axes of the diagram. At every point in the diagram we
erence to mathematics to explain concepts like gravitationa
time dilation, cosmological expansion, horizons, and so on.
In Sec. Il, | give a brief introduction to the concept of
curved spacetime, using the method of this article, and con-
sider a few examples of physical interest. This section pre-
sumes no knowledge of general relativity. In Sec. lll, | ex-
plain the method underlying the illustrations thus far, and
also apply it to a black hole and a hollow star. In Secs.
IV=VIII, | present the general formalism, demonstrate how
to use it to produce embeddings, and investigate the geodesi
properties of the formalism. These sections are of a more
technical character. In Secs. IX-XIII, | apply the formalism _ _ .
to various types of spacetimes. In Secs. XIV=XVI, | relate - Py, PRETEy T ’Mﬁ -
this work to other similar approaches, and comment on this ~— m‘ﬁw‘ iz :
article. Sections XVII and XVIII include some pedagogical Fig. 1. (Color onling A clock moving along a straight line. Relative to the
questions and answers. clocks at rest, the moving clock will tick more slowly.

dr?=dt*~

D
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Fig. 2. (Color onling A spacetime diagram showing the worldline of the
moving clock(the fat line. The two events we are considering are the black
dots in the diagram. The shaded area is known as the lightcone.

Fig. 4. (Color onling A radial line through a very dense star, and an illus-
tration of the curved spacetime for that line. Time is directed around the
hourglass-shaped surface. Strictly speaking the surface should not close in
on itself in the time direction. Rather one should come to a new layer after
one circumference as on a paper roll.

can then draw a little triangle, with a 90° opening angle,

known as a lightcone. The rightmost edge of the triangle

corresponds to a right-moving photon and the leftmost edgéas opposed to aroupthe surface correspond to fix coordi-
corresponds to a left-moving photon. No material objects camate time(known for this particular case as Schwarzschild
travel faster than the velocity of light, which means that thetime).

worldlines of objects must always be directed within the lo- Consider now two observers, one at rest in the middle of
cal lightcone. the star and the other at rest far to the left of the star. The
worldlines of these observers are circles around the middle
and the left end of the spacetime. Obviously the distance
measured around the spacetime is shorter at the middle than

In general relativity we have aurved spacetime, which at the end. This means that the proper tifthe experienced
we may illustrate by a curved surface with little locally flat time) per turn around the spacetime is shorter in the middle
coordinate systems, known as Minkowski systems, living orthan at the end. From this we may understand that time in-
it as illustrated in Fig. 3. side the star runs slow relative to time outside the star.

The little coordinate systems on the surface work precisely To be more specific, consider the following scenario. Let
as the spacetime diagram of Fig. 2. In particular the world-an observer far outside the star send two photons, separated
lines of moving objects must always be directed within theby a time corresponding to one lap, toward the center of the
local lightcone. To find out how much a clock has tickedstar. The corresponding worldlines of the photons will spiral
along its winding worldline, we consider nearby events alongaround the surface and arrive at the center of the star still
the worldline and sum up thd7r's we get using Eq(1), separated by one lap. The points where the photons arrive at
wheredt anddx are the time and space separation betweetthe center will in this illustration be the same, but they are
the events as seen relative to the local Minkowski system. different points in spacetime because the surface is layered
as in a paper roll. Since the distance around the central part
of the spacetime is smaller than that toward the ends of the
spacetime the observer in the center of the star will experi-

As a specific example let us consider the spacetime of ance a shorter time between the arrival of the two photons
line through a very dense star as depicted in Fig. 4. than the time between the emission of the two photons, as

The circles around the surface correspond to fixed posiexperienced by the sender. This effect is known as gravita-
tions along the line through the star. The lines directed alongjonal time dilation—and is a consequence of the shape of
spacetime.

Alternatively we may note that the lines of constant coor-
dinate time are lying closer to each other in the middle of the
spacetime surface than at the ends. An observer inside the
star will therefore observe that a local clock showing
Schwarzschild coordinate tim@ynchronized with a proper
clock far outside the starticks much faster than a clock
measuring proper time within the star. We may then under-
stand that an observer inside the star will see the Universe
outside the star evolving at a faster rate than that experienced
by an observer outside the star.

A. Curved spacetime

B. The spacetime of a line through a dense star

C. Freely falling motion

Fig. 3. (Color onling An illustration of curved spacetime using a curved . . . .
surface with little Minkowski systems living on it. The curving line could be ~ According to general relativity, an .ObjeCt thrown out radi-
the worldline of a moving clock. ally from the surface of the star, moving fre€bo there is no
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els are displayed.

Notice that time is here directed along the surface and
space is directed around the surface. Just like before the local
coordinate systems, in which special relativity holds, give
the local spatial and temporal distances.

The leftmost illustration corresponds to a Big Bang and
Big Crunch spacetime. As we follow the spacetime upwards
(i.e., forward in timeé the circumference first increases and
then shrinks. This means that space itself expands and then
contracts. The Big Bang is here just a point on the
spacetime—where the spatial size of the universe was zero. |
will leave it to the reader to describe how space behaves in
the two rightmost spacetimes.

Using Newtonian intuition one might think of the Big
Bang as a giant fire cracker exploding at some point in time.
As the fire cracker explodes it sends out a cloud of particles
Fig. 5. (Color onling Three different worldlines connecting two fixed tha.t ?xpands ?‘t.a great r.ate relative thxadspace. In Ein-
events. The middle worldline corresponds to the actual motion of an objec?te'n S th‘?Ofy itis spa(_:e 't_self tha_t expands d,ue tosthepe
initially thrown radially away from the star and then falling back toward the Of spacetime. Also unlike in the fire cracker view we cannot
star. Of the three worldlines this has the largest integrated proper time. in general even talk about a time before the Big Bang in

Einstein’s theory.

As another application of the illustrations in Fig. 6, con-
air resistance for instangetakes a path through spacetime sider a set of photon worldlines separated by some small
such that the proper time elapsed along the worldline of thgpatial distance shortly after the Big Bang in the leftmost Big
object ismaximizedConsider then two events, at the surfaceBang model. The worldlines will spiral around the space-
of the star separated by some finite time only. It is easy taime, always at 45° to the local time axis. From this we may
imagine that a particle traveling between the two events willunderstand that they will get further and further separated as
gain proper time by moving out toward a larger embeddinghe circumference of the universe increases. Thinking of a
radius (where the circumference is greatebefore moving photon as a set of wave crests that are all moving at the
back to the second event. On the other hand it cannot movépeed of light, we then understand that the wavelength of a
out too fast since then it will move at a speed too close to thgyhoton will get longer and longer as the universe grows
speed of light—whereby the internal clock hardly ticks at all, larger. This effect is known as the cosmological redshift. We
see Fig. 5. can consider a similar scenario for the gravitational redshift

To predict the motion of an object that has been throwrpy considering a set of photon worldlines for the spacetime
out from the star and returns to the same location after af the line through the dense star of Fig. 4.
specific amount of time, we can thus consider different pairs
of events(as in Fig. 5 and find the worldline that maximizes 1II. A SIMPLE METHOD
the integrated proper time. This trajectory corresponds to the . . . . . o
motion ?hat wep ar% seeking. Thusjwe c)f:m explgin not only The idea allowing us to make a figure like Fig. 4, which is

gravitational time dilation but also the motion of thrown ob- &1 €Xact representation of the spacetime geometry, is simple.
jects using images of the type shown in Figs. 4 and 5. Assume that we have a two-dimensional, Lorentzian, time-

independent and diagonal metric:
D. Cosmological models d72=g,dt?+ g, dx2. %)

We may use the same technique that we employed in thé/e then produce a new metric by taking the absolute value
previous section to visualize the spacetimes corresponding @f the original metric components,
various cosmological modelalthough we are restricted to d72=|gy|d 2+ g, dX2. @)

one spatial dimensignin Fig. 6, a few images of such mod- ) o N )
The new metric, called the absolute metric, is positive defi-

nite and can be embedded in three-dimensional Euclidean
space as a surface of revolution becaggeandg,, are in-
dependent of. For an observer with fixes, pure temporal
and pure spatial distances will precisely correspond to the
absolute distances. There will thus be small Minkowski sys-
tems living on the curved surface. Analogous arguments hold
if we havex rather thant-independencéas for the cosmo-
logical models.

A. Black hole embedding

As another example of the visualization scheme outlined
above, we consider the line element of a radial line through a
Schwarzschild black hole. An embedding of the correspond-
ing absolute metric is depicted in Fig. 7.

As before, the azimuthal angle corresponds to the
Fig. 6. (Color onling Schematic spacetime cosmological models. Schwarzschild time. The two points of zero embedding ra-

Space
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Fig. 9. (Color online A line through a thin crust of high mass. The wedge is

Fig. 7. (Color online An embedding of the absolute spacetime of a central CUt out to obtain abetter view of the interior of the star.
line through a black hole.

such coordinate lines, starting close to the horizon and ex-

dius correspond to the horizon on either side of the blackending toward the singularity. The corresponding two ob-
hole. As we approach these points from the outside, the timeervers will be at rest with respect to each other at the start
dilation becomes infinite. The trumpet-like regions within (to zeroth order in the initial separation between thefs
these points lie within the horizon. Here moviatpngthe  they approach the singularity they will however drift further
surface(as opposed to moving around the surfacerre-  and further apart in spacetime. At the singularity, where the
sponds to timelike motion. embedding radius is infinite, they will be infinitely separated.

Photons, however, move at a 45° angle relative to a purelyVe also know that the time it takes to reach the singularity is
azimuthal line, both inside and outside of the horizon. Studyfinite. It is then easy to imagine that if we try to keep the
ing a photon trajectory coming from the outside and spiralingobservers together, the force required will go to infinity as
toward the point of zero embedding radius, it is not hard tove approach the singularity. Hence, whatever we throw into
realize that it will take an infinite number of lagse., infi- @ black hole will be ripped apart as it approaches the singu-
nite Schwarzschild timeto reach that point. larity. Notice, however, that there is no gravitational force in

The singularity(where the spacetime curvature becomeggeneral relativity. The shape of spacetime is in this case sim-
infinite) is not visible in the picture. While the distance as ply such that a force is needed to keep things together, and in
measured along the internal trumpet from the horizon to théhe end no force is strong enough.
singularity is finite (it has to be since we know that the
proper time to reach the singularity once inside the horizon i
finite), the embedding radius is infinite at the singularity.
Thus, we cannot show the singularity using this visualiza- As a pedagogical example, imagine a hollow massive star,
tion. We can however come arbitrarily close by everywhereyith a radial line through it, as illustrated in Fig. 9.
making the embedding radius smaller. In Fig. 8 we zoom in \We know from Birkhoff’s theorenisee, e.g., Ref.)3hat,
on the internal geometry. assuming spherical symmetry, the spacetime outside the crust

Note that the singularity is not a spatial point to which we will match the external Schwarzschild solution. On the inside
may walk. Once inside the horizon, the singularity lies in thehowever, spacetime must be Minkow$Kn Fig. 10 the ab-
future and it is impossible to avoid it—just like it is impos- solute spacetime of the radial line is displayed.

B. Thin spherical crust

sible to avoid New Year's Eve. In this11 dimensional If we were to cut out a square of the interior spacetime it
scenarid(inside the horizonthe singularity is the time when would look just like a corresponding square cut out at infin-
space expands at an infinite rate. ity. There is thus no way that one, even by finite sized ex-

Following a Schwarzschild time linéof fixed azimuthal  periments(not just local experimentswithin the crust, can
angle inside the black hole corresponds to timelike geodesidistinguish between being inside the star or being at infinity.
motion. Imagine then two trajectories directed along twoEven tidal effects are completely absent.

If we, however, were to open up a dialogue with someone
on the outside, we would find that the outside person would
talk very fast, and in a high pitched tone, whereas our speech
would appear very slow and thick to the outside person.

The point that one can illustrate is that we do not have to
feel gravity for it to be there. Gravity is not about forces

Fig. 8. (Color online The absolute internal spacetime of a central line Fig. 10. (Color online A schematic picture of the spacetime for a line
through a black hole. Notice the direction of the lightcones. The singularitythrough a hollow star in the absolute scheme. Notice how, after one circum-
lies in the(temporal direction that the lightcones are opening up towards. ference in time, we are really at a new layer.
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pulling things, it is about the fabric of space and time, andHereu,=g,,, dx"/dr. Notice that both sides of the equality
how the different pieces of this fabric are woven together. are covariant tensors that equal each other in one system,
thus the equality holds in every systém.
For later convenience, we may also derive an expression
IV. GENERALIZATION TO ARBITRARY for the inverse absolute metric, definedd$/g,,= 6", . By
SPACETIMES a contravariant argument, analogous to the covariant argu-

) ) ) ) ~ment above, we find that the inverse absolute metric is given
The scheme outlined in the preceding section was specifig

for a particular type of metric expressed in a particular type o v e
of coordinates. There is, however, a way to generalize this 9" =9 +2ufu”. (6

scheme. _ _ _ _ __ That this is indeed the inverse of the absolute metric can be
Given a Lorentzian spacetime of arbitrary dimensionalityyerified directly. It is a little surprising however that we get

(although we commonly will apply the scheme to two di- the inverse of the new metric by raising the indices with the

mensions, the idea is first to specify a field of timelike four- original metric®

velocities denoted”(x”) (we will refer to spacetime veloci-  |n the new metric, proper intervals will be completely dif-

ties as four-velocities regardless of dimensionaliye then  ferent from those in the original metric. Intervals as mea-

make a coordinate transformation to a local Minkowski syssured along a generating congruence line will however be the

tem comoving with the given four-velocity at every point. In same; these are unaffected by the sign-flip. Using a bar to

the local system we flip the sign of the spatial part of thedenote the four-velocity relative to the absolute metric, it

metric to create a newabsolutemetric of Euclidean signa- then follows that

ture. Notice that the new metric will be highly dependent on P —

our choice of generating four-velocities. The absolute metric Y4 =U"  U,=Uy,. @)

together with the field of four-velocities contains all the in- Using this in Eq.(5), we immediately find

formation about the original spacetime, and allows one to _ _

keep track of what is timelike and what is not. We can al-  9ur= ~ 9uyT2UuU,. ®)

ways do the backwards transformation and flip the localComparing with Eq(5), we see that there is a perfect sym-

positive definite metric into a LorentziaiMinkowski) met-  metry in going from the original to the absolute metric, and

ric. o _ _ vice versa.
Considering for example the black hole illustrations of the

preceeding section, thgeneratorsthe worldlines tangent to
the field u#) outside the horizon were simply those of the
Schwarzschild observers at rest. Inside the horizon the gert: FREELY FALLING OBSERVERS
erators were the worldlines of observers for wham AS GENERATORS

=const. Notice that the observers located right outside the

horizon have infinite proper acceleration. It is then perhaps As a specific example of the absolute metric, we again

not surprising that the resulting embedding is singular at thgﬁ.rllg"gf"r tl?ihlne S\Ilemz]t_(gé rladlaldh_n? thdrougr:jg Schyvarzs-
horizon. As we will see in Sec. V we can better resolve the™ " ack hole. vyve sel=G= 1, and Introduce dimension-

horizon by using the worldlines of freely falling observers as ess coordinates, and proper intervals,
generators. r toriginal Toriginal

“om oM TTTom ©

The line element then takes the form

A. A covariant approach

We could carry out the scheme we just outlined explicitly,
doing coordinate transformations, flipping the sign of the d-2=
metric, and transforming it back again. There is, however, a
more elegant method. We know that the absolute metricas generatorsy*) we consider freely falling observers, ini-
from now on denoted by, , is a tensofas any metrit and  tja|ly at rest at infinity. Using the squared Lagrangian formal-

1 1\t
1——|dt?—|1—=| dx2 (10
X X

in a frame comoving withu* we have ism (see, e.g., Ref.)Ifor the equations of motion, we readily
100 O find the lowered four-velocity of the generating free-fallers
o L =[12%). an
000 1 The absolute metric is then according to Eg).
1 0 0 0 1 0 0 O 1+ E &
o -1 0 o0 0000 e 12
““lo 0o -1 0|00 o0 o ¥ 2Nk x(x+ D)
o 0o 0 -1/ |0 0 0 O x-1 (=17

To make an embedding of this metric we are wise to first
diagonalize it by a coordinate transformation=t+ ¢(x).
Letting dp/dx = g« /9y the line element in the new coordi-
9uv="0,,1t2U,U,. (5) nates becomes

Adopting (+,—,—,—) as the metrical signatur@s we will
throughout the article we realize that we must have
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ment is of the form Diagf;(X),dxx(X)). The relation be-
tweenu* andv is derived in Appendix A. The result is

Ut =+ g“z(i, 7 ) (14)
1-v Gt V= OxxOtt

Using the lowered version of E@L4) in Eq. (5) gives us the
absolute metric as a function of the parameteMaking a
coordinate transformation that diagonalizes this metric,

Fig. 11._(Co|or onling The at_)solute‘freg-faller geometry. The dashed line is analogous to the diagonalization in the preceeding se&tion,
the horizon. As before the singularity lies outside of the embeddoward yields after simplification

the left.
1+02
i 0
1 1! e (15
d2=1+ Z|dt2+| 1+ 2| d (13 Jur™ T
X X R

This metric is easy to remember since by chance it is the ) ) )
Schwarzschild metric with the minus signs replaced by pludNotice that if there is a horizon present, wheyg=0, we
signs(except for the minus sign in the exporeiotice that ~have also (+v?)=0. The quotient of these two entities will
nothing special happens with the metrical components at theemain finite and well defined, given thai/dx+0 and
horizon (x=1). At the singularity k=0) however, the ab- dg,/dx+0.
solute metric is singular. We see from Eq(15) that there is much freedom in choos-
To produce a meaningful picture of this geometry, weing g;,. Since we can choose arbitrarily close to 1, both
must include the worldlines of the freely falling observersinside and outside of the horizon, we can everywhere make
used to generate the absolute geometry. Coordinate trang: take an arbitrarily high value. Because the square root of
forming the trajectories to the new coordinaté can be @ s proportional to the embedding radius, there are virtu-
done numerically. The result is depicted in Fig. 11. ally no limits to what shape the curved surface can be given.
Notice how the local Minkowski systems are twisted on interpret the embedded surface we need also the generat-
the surface. The horizon lies exactly where the generatin g worldiines, relative to the newdiagonalizing coordi-
worldlines are at a 45° angle to a purely azimuthal line.  ate5 How these can be found is derived in Appendix B.
Time dilation is now not solely determined by the local \ypjle the shape of the embedded surface depends strongly
embedding radius, but also by the gamma fdctdithe ob- o the choice of generators, theeais independent of this

server at rest relative to the generating observer. For instangg,gice. This holds regardless of any assumed symmetries as
an observer at rest at the horizon will be at a 45° angle to thgy explained in Appendix C.

generating observer, corresponding to an infinite gamma fac-
tor, and his clock will therefore not tick at all during a
Schwarzschild laggone circumferende thus being infinitely ~ VII. FLAT EMBEDDINGS

time-dilated. : . . .
Unlike for the hourglass-shaped embedding of Sec. Il B, Using Eq.(15 and assuming a time-symmetric and 2D

this explanation of gravitational time dilation requires a basicorlglnal meiric, we can praduce an absolutely fiat absolute

knowledge of special relativistic time dilation. However, un- ”_‘e”'lc- Th'_s, Xve carr: embgd as a cylkl)_nder ora _plane. we
like the illustration of Fig. 7 where there is a cusp right at theSIMPly setgy=C, whereC is some arbitrary positive con-
horizon, Fig. 11 has the virtue of showing how passing thestant. Solving for yields

horizon is not at all dramaticlocally). Spacetime is as \/C—ign
CH+ou

smooth and continuous at the horizon as everywhere else =+
outside the singularity.

(16)

As a specific example we consider a Schwarzschild original

VI. SYMMETRY-PRESERVING GENERATORS line element. We choose=0 at infinity, corresponding to
. ) ) ] . the generating observers at infinity being at rest, which
In this section we generalize the scheme outlined in thgjie|gsc=1. We also choose the positive sign, corresponding

prec_eedin_g sectio_n_ to include arbitrary tvv_o-dimensi((ﬁl) to an in-falling observeton the outsidgto find
metrics with a Killing symmetry, for arbitrary generators

that preserve manifest Killing symmetry. In two dimensions, 1
the generating field* can(since it is normalizedbe speci- v= V=1 17

fied by a single parameter as a functionx#f A parameter

that is well suited to preserve the symmetries of the originallhis is a completely smooth function at the horizon. We see
metric is theKilling velocityv. By this we mean the velocity that it remains real fox=1/2. For other choices & we can

that a generatan® experiences for a Killing lingéa worldline ~ make the inner boundary come arbitrarily close to the singu-
of constan). In other words, it is the velocity of a point of larity. We notice also thag;,=1/C and is thus also constant.
constantx as seen by the generating observer. The absolutéhis means that the constartworldlines will be evenly
value of this velocity will be smaller than one outside thespaced on the flat surface. Also we may, from the expression
horizon, and greater than one inside the horizon. Withoufor v, immediately figure out how the local generator should
loss of generality we can assume that the original line elebe tilted relative to the constamtworldline on the flat sur-
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x=1 x=2
x=1 x=2

Fig. 13. (Color onling A flat embedding of a Reissner—Nordstrdolack
hole. The dimensionless radial coordinatkes in the rang¢0.22,2.5. The

two internal horizons are marked with the thicker dotted lines. The charge is
chosen so thgB=0.95.

Fig. 12. (Color onling A flat embedding of a Schwarzschild black hole. The
radial parametex lies in the interval[0.5, 2.9. We could equivalently
embed this geometry as a cylinder. As we go further to the fighgerx),
the lightcones will approach pointing straight up.

that Eq.(18) holds everywhere, we must have a so-called

face. An embedding for this particular case is displayed in ultrastatic spacetime—as is derived in Appendix G. By ul-

Fig. 12. trastatic we mean that space may have some fixed shape,
Notice that for this visualization the curvature of space- but there can be no time dilation.

time is manifested solely astaist of the local Minkowski  \We conclude that only to a limited extent can we, in the

systems relative to each other. As in the case of Fig. 11, thebsolute scheme, visualize Lorentz-geodesics as straight

flat embedding illustrates the smoothness of the spacetimhes. There are, however, other visualization methods that

around the horizon. are better suited for this, as discussed in Sec. XV.

VIIl. ABSOLUTE GEODESICS IX. CHARGED BLACK HOLE

We know that the motion of particles in free fall corre-  AJl that we have done so far for ordinary black holes, in
sponds to trajectories that maximize the proper time. Suckhe absolute scheme, can also be done for charged black
trajectories can be found using the absolute scheme, as oWoles. The line element of a radial line is then given(bge,
lined in Sec. IVC. The fact that these trajectories are als@.g., Ref. 10
straightis unfortunately a bit lost in this scheme. There are, )
however, ways to manifestly retain at least parts of the origi- 2= ( 1— } " ,3_
nal geodesic structure, in the absolute metric. The net value X 4x°
of this discussion turns out to be of more academic tha
pedagogical value. Below we therefore simply summariz
the results derived in the appendices.

-1

2
LB dx®. (19

2
—1-=+
dt (1 X 4x?

"he dimensionless constagtlies in the rangd0,1] and is
eproportional to the charge of the black hole. Just as in Sec.
VII, we may find a flat absolute geometry for this line ele-
« Assuming an original 2D metric with a Killing symmetry, ment as depicted in Fig. 13.

we can demand thatomegiven motionx(t) should be We see the classic three regions of the Reissner—
geodesic relative to the absolute metric. For example on&lordstran solution. Thinking of free particles taking a path
can show that there exist generators such that outwardhat maximizes the proper time we understand that a freely
moving photons on a Schwarzschild radial line follow ab-falling observer initially at rest in the innermost region, will
solute geodesics. For brevity the analysis of this is omittedaccelerate toward the inner horizon. Actually this becomes
To investigate the general connection between the geodes@tearer still if we form the absolute metric by simply taking
structure of the original and the absolute metric, we derivghe absolute value of the original metrical components, as we
a covariant expression for the absolute four-acceleration ifid in Sec. lll. This corresponds to having generators that are
terms of Lorentzian quantities. See Appendix D. orthogonal to the Killing field in the intermediate region, and
Using the formalism of the preceeding point we can showparallel to the Killing field outside this region. See Fig. 14.
that if the generators are geodesics with respect to the We notice that the spacetime geometry of the region just
original metric they will also be geodesics with respect toinside the inner horizon looks very much like the geometry
the absolute metric, and vice versa. See Appendix E. We

also give an intuitive explanation for this.

In the preceeding points we have seen how some parts @
the geodesic structure can be retained. To completely retail
the geodesic structure, as is derived in Appendix F, we
must have

V.u,=0. (18

At any single point in spacetime, this is easily achieved.

We just go to an originally freely falling system and in this
P —\ o . I

SyStem Ch_OOS_G (y 909) 5. Sl_nce in th'_s SV_Stem the Fig. 14. (Color online An alternative representation of a Reissner—

metric derivatives all Van|§h, so will th_e denvat'_VeS of the Nordstran black hole. Notice the direction of the local Minkowski systems.

generators. For a normalized vector fielt] to exist such  Here 3=0.995 and the range [€.425, 0.7.
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Fig. 16. (Color online To the left: A Kruskal diagram of a maximally
extended black hole. To the right: an embedding of the absolute geometry
with generators at fixed radius in the exterior regions and at fixed Schwarzs-

Fig. 15. (Color onling To the left: Minkowski spacetime with a certain set ¢hild time in the interior regiongthe full drawn lines in the diagram

(as discussed in the main textf worldlines(the thick full drawn lines To
the right: The corresponding absolute geometry embedding. Note that the

conical surfaces are not closed as one goes around in the space direction, I8ince the generators are null at the horizons, making the
rather they consist of very tightly rolled layers with no end. absolute distance along these lines zero, all the points along
the null lines coming from the Kruskal origin sit at the con-
. ) . ] ] ~_necting point in the embedding. Thus a trajectory passing
just outside the outer horizon. Knowing that it takes a finiteone of the horizons in the diagram will pass through the
proper time to reach the outer horizon from the outside, Wesonnecting point in the embedding. However, where it will
understand that it must take a finite proper titagile infi-  end up is not evident from the embedding alone. Through a
nite coordinate tlm)?to reach the innermost horizon from the more well behaved set of generators one can remove this

inside. In the embedding there is however apparently no regpscurity at the cost of losing manifest symmetry, as will be
gion to which the trajectory may go after it has reached theyriefly discussed in Sec. XII.

inner horizon. To resolve this puzzle, we must consider the Having seen the absolute version of the extended
extended Reissner—Nordstrosolution. This is in principle  schwarzchild black hole, we can also figure out how the
straightforward, as will be briefly discussed at the end of Secextended Reissner—Nordsimoblack hole must look. At all

XI. the cusps in the embedding, four locally cone-like surfaces
must meet. Otherwise, as is apparent from Sec. X, the space-
X. FLAT SPACETIME time will not be complete. | will leave to the reader’s imagi-

nation the specifics of how to extend the Reissner—
The simplest possible spacetime to which we may applyordstran embedding depicted in Fig. 14.
the absolute scheme, is flat Minkowski in two dimensions.

Choosing a field of generating four-velocities that is CON-y|I. OTHER SPACETIMES

stant, with respect to standard coordinatex)( the result-

ing absolute geometry is flat and can be embedded as a So far in the embedding examples, we have restricted our-

plane. If we choose some more disordered field of fourselves to Lorentzian spacetimes with a Killing symmetry and

velocities we can, however, get an embedding with no appamlso to generators that manifestly preserve this symmetry.

ent symmetries at all. There is, however, another choice ofhe absolute scheme is, however, completely general. When

generators that will produce a regular surfates is illus-  applying the scheme to the Kruskal black hole, we do not

trated in Fig. 15. have to let the generators be either parallel or orthogonal to
In the right and left regions, of the Minkowski diagram, the local Killing field, as we did before. Instead we could for

we have chosen so-called Rindler observers as genefatorsinstance use geodesic free-fallers, originally at rest along a

In the top and bottom regions we are using timelike geodet=0 line in the standard Kruskal coordinates. My best guess

sics converging at the origin as generators. The universe as that the corresponding embedding would resemble a tor-

perceived from this set of observers is known as a Milnetoise shell.

universe(in two dimensions®® We can also consider spacetimes where there is no Killing
It is obvious from the embedding that there isLarentz-  symmetry. As an example one could study a radial line

ian) Killing field directed around the conical surfaces. Imag-through a collapsing thin shell of matteiHere there are

ining the corresponding field in the diagram, we realize thatocal Killing fields but no global Killing field). As a first try,

it is in fact the Killing field connected to continuous Lorentz one might choose observers at fixeds generators. Outside

transformations. of the shell we would(via the Birkhoff theorem have a
picture similar to Fig. 7. Inside the shell we would have a flat
XI. EXTENDED BLACK HOLE (though it may be rolled upsurface, with straight generating

lines. Whether these two pieces can be put together in some

Notice the similarity between the Kruskal diagram of ameaningful manner | have yet to discover. Maybe one will
maximally extended Schwarzschild black hdigee, e.g., find that another set of observers will be needed to join the
Ref. 1) and the Rindler diagram to the left in Fig. 15. Having two spacetime regions together.
seen the interior and exterior regions of(@onextended
black hole in the absolute schertfég. 7), we realize thatwe w1 TOY MODELS
can also illustrate a maximally extended black h@ligy. 16).

While all symmetries are preserved in this picture, it is While we can use the absolute scheme to produce pictures
hard to see how one can move between the different regionsepresenting exact solutions to Einstein’s field equations, we
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The flat diagram technique, however, has the virtue of
being extendable to 21 dimensions. The scheme outlined
in this article can also be used intZL dimensions, but to
produce a faithful image we would need a flabsolute
spacetime. Then we could embed little lightcones of constant
opening angle and size. To demand a Euclidean absolute
spacetime is, however, quite restrictive, and it seems better to
allow the lightcones to vary in apparent width and height. |
will leave to the reader’'s imagination how this technique
could be applied to visualize warp drive, rotating black
holes, the big bang, and so on.

Fig. 17. (Color online A crude illustration of a toy model for warp drive.

can also do the opposite. Suppose that we have a surface, sy COMPARISON TO OTHER WORK
a plane, and we specify an angle as a function of position on
the plane. Letting the angle correspond to the direction of the There are, to the author’s knowledge, three other distinctly
generators, it is straightforward to find the correspondingdifferent techniques of visualizing curved spacetime using
Lorentzian metrigjust do the inverse transformation of Eq. embedded surfaces.
(6)). We may insert this metric into some prografsay Marolf'® presents a way of embedding a two-dimensional
MATHEMATICA ) and let it calculate the corresponding Ein- Lorentzian metric in a 2 1 dimensional Minkowski space-
stein tensor and thus, through the field equations, also thiéme (visualized as a Euclidean 3-space
energy-momentum tenstt.We may see the solution as a L. C. Epsteir® presents a popular scientific visualization
purely two-dimensional solution. Alternatively we may see itof general relativity. The underlying theory rests on the as-
as a four-dimensional solution assuming that we add tw@umption of an original time independent, diagonal, Lorent-
dimensions corresponding to internally flat planes. In Fig. 17%zian line element. Rearranging terms in this line element one
we see an example of such a toy model spacetime. can get something that looks like a new line element, but
From the look of the spacetime in Fig. 17 we might call where the proper time is now a coordinate. The “space-
the propulsion mechanism “twist drive” rather than warp proper-time” can be embedded as a curved surface, from
drive. | will leave to the reader’s imagination to visualize a which many spacetime properties can be deduced.
spacetime that more deserves the name warp drive. In a previous articlé/ | assumed a time-independent
Lorentzian line element. | then found another line element,
also time symmetric, but positive definite and geodesically
XIV. OTHER METHODS equivalent to the original line element. The resulting geom-

In this article we have seen how one may use curved sufetry can be embedded as a curved surface as in Fig. 19. The
faces, with local Minkowski systems, to visualize for in- method can be used to explain straight lines in a curved
stance gravitational time dilation. This can also be achievegpacetime, the meaning of forces as something that bends
using a flat diagram, letting the space and time scales b&Pacetime trajectories, etc. _ _
encoded in the sizéand shapeof the local lightcones as Each of the three techniques outlined here together with
depicted in Fig. 18. the absolute scheme of this article has different virt(zesl

The disadvantage with this technique is that it is moredrawbacks Depending on the audience they can all be used
abstract than the hourglass embeddiRiy. 4). In the hour- o explain aspects of the theory of general relativity.
glass embedding there is a shorter distance between two
Schwarzschild time lines inside the star than outside. From
the flat lightcone model we must deduce this fact. Also one
loses the visual connection to the concept of curved space-
time.

Fig. 18. (Color onling A flat spacetime visualization of a radial line through

a star. The lightcones are everywhere, by definition, one proper time unit
high, and two proper length units wide. The dashed circle illustrates thatig. 19. (Color onling lllustration of how straight lines in a curved space-
when we actually go to a specific region, the lightcones will appear as theyime can explain the motion of upwards-thrown apples. The lines can be
do at infinity. found using a little toy car that is rolled straight ahead on the surface.
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XVI. COMMENTS AND CONCLUSIONS

The absolute scheme as presented in this article can b
applied toany spacetime, giving a global positive definite
metric. Together with the generating field of four-velocities,
it carries complete information about the original Lorentzian
spacetime.

While there are mathematical applications of this scheme
(see Ref. 18 we have here focused on its pedagogical vir-
tues. At the level of students of relativity, a study of the

mathematical structure itself may have some pedagogica
virtue. In particular it is instructive to see an alternative rep-
resentation of the shape of spacetime.

The main pedagogical virtue is however that, applied to
two-dimensional spacetimes, the absolute scheme enables |
to makeembeddingghat illustrate the meaning of a curved
spacetime.

While such an embedding is not unique, due to the free-
dom in choosing generators as well as the freedom of the
embedding, it gives a completely faithful image of the true
spacetime geometry. With only a basic understanding of
Minkowski systems, a complete knowledge of the embedded
parts of the Lorentzian geometry can be deduced from the
surface. For instance we can figure out how much a clock has
ticked along a certain path, or what path a thrown apple will
take.

Also, many applications require no knowledge at all of

Fig. 20. The Killing field in local coordinates comoving witkt.

that no acceleration was needed by either twin for them
to still reunite. The same question applies however. Will
the twins have aged differently?

XVIII. ANSWERS TO STUDENTS QUESTIONS

Here are(the) answers to the questions of the preceeding

special relativity. We do not need to mention Minkowski ggction.

systems or proper times to give a feeling for how geometry
can explain how time can run at different rates at different(1)
places, or how space itself can expand. Most important, we
emphasize the point of view that gravity, according to gen-
eral relativity, is aboushapes—not forces and fields. 2

3
XVIl. QUESTIONS FOR STUDENTS OF GENERAL ®

RELATIVITY

Here are a handful of questions regarding applications of
the absolute scheme. The answers are given in the next sec-
tion.

(1) The hourglass-shaped embedding of Fig. 4 illustrates a
spacetime where time “runs slower” in a local region. (4)
How would a corresponding embedding look that illus-
trates how time can run faster in a local region?

Can you, using the technique of this article, illustrate a
two-dimensional spacetime that is closed in space and
time and with no verticegoy a vertex we mean a point (5)
from which the Minkowski systems point either outward

or inward?

Can a spacetime of the type specified in the preceeding
guestion be flat?

In exam periods students often need more time to study.
Consider as a primary spacetime a flat plane with uni-
formly directed Minkowski systems. How would you al-

()

(4)

Instead of a dip in the hourglass-shaped embed(ieg
crease of the radius toward the middlee have a bulge
(increase of radius toward the midjlle

Yes. For instance a torus, with the Minkowski systems
directed along the smaller toroidal circumference.

Yes. Make a tube out of a paper by taping two opposite
ends together. Flatten the tube, preferably so that the tape
is a bit away from the two folds that emerges. Roll the
flattened tube, so that the tape describes a complete
circle and connect the meeting paper ends by some more
tape. If the local Minkowski systems on this shape are
given a uniform direction, the corresponding Lorentz-
geometry will be flat.

Make a sufficiently high and steep bump in the plane,
while keeping the direction of the Minkowski systems
(as seen from above the former planklake sure that
the student’s trajectory passes straight over the peak,
while the teacher’s trajectory misses it.

Oh yes. What time the twins experience is determined by
their respective spacetime trajectories. If the trajectory of
the traveling twin is tilted almost as much as a photon
trajectory, he will have aged very little compared to his
brother. There is also an artitfethat deals with this
thought-experiment.

ter this spacetime to ensure that there is sufficient time tapPPENDIX A: EINDING u* AS A FUNCTION OF v

study? Include the worldline of the student in need, as
well as the worldline of the teacher bringing the exam.

(5

_ | : er bl . Here is a derivation of the general expressiondfbras a
Imagine an upright-standing cylindrical surface, with function of the Killing velocityv. Let us definev” as a

upward-directed Minkowski systems. The all-famous ex-yector perpendicular ta*, normalized to— 1. Also we de-
periment where one twin goes on a trip and later returng,qte the Killing field by&“. The vectors as seen relative to a

to his brother can be illustrated by two worldlines on the
cylinder, one going straight up and the second going in
spiral around the cylinde(intersecting the first one

twice). This scenario differs from the standard one in

a
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&= (u*+vvH)K. (20)
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Here the variablek may take positive or negative values. APPENDIX C: REGARDING THE ABSOLUTE AREA
Contracting both sides with themselves, we solve Koto

find Consider a small square in the coordinates we are using.
Then consider two different choices of generatarg: and

. &£, u,*. Assume also that the coordinate square is small enough
K== 1—p2 2D that the generating fieldas well as the metrjccan be con-

sidered constant within the surface. We denote the absolute

The orthogonal vectos” can be expressed via area of the coordinate square for the two representations by

dA; anddA,. Knowing that the absolute area is independent

ph="_ekrg y® of the choice of coordinates we may evaluate each area in the
= IRTLS

\/5 local Minkowski systems;* and x,*, comoving with the
corresponding generator. In these systems the original square
where will be deformed, but the absolute area will exactly equal the
0o -1 coordinate area. Since the two Minkowski systems are re-
6#92( ) (22) lated via the Lorentz transformation, which preserves coor-
1 0 dinate areas, we know that the coordinate areas are equal and

thus alsodA;=dA,. Because the argument applies to arbi-

Here g=—Det(g,,). Through this definitionv® is within 1y hairs of generators, it follows that the absolute area is
180° clockwise fromu* (looking at the coordinate plane independent of the choice of generators.

from above, assumingup andx to the righ. Inserting Eq. In N dimensions we can, by a completely analogous argu-
(22) into Eq. (20), using Eq.(21), we readily find ment, show that thél-volume of the absolute metric is in-

v -0 dependent of the choice of generators.
S+ —=€tPg,, U= %\ o 23
g ) e, @3

This is a linear equation far* that can easily be solved. For APPENDIX D: COVARIANT RELATION
the particu|ar case (g/“}: Diag(gtt 1gxx) and = (1,0) we FOR THE ABSOLUTE FOUR-ACCELERATION

find

First we derive an expression for a general absolute four-

Out 1 —v velocity g, in terms of Lorentzian quantities
YEEN T e T 24 dx*  dx d
V7 Ot V= 0yt gt=—==— -
) . dr  dr d7
So now we have a general expression for the generating four-
velocity, expressed in terms of the Killing velocity The = 0,,dxPdx”
originates from thet in the previous expression fdt. =g~ _gaﬁdxadxﬁ+2uauﬂdxadxﬁ
1
=a dx® dxP
APPENDIX B: VECTOR TRANSFORMATION 142U U —
BY DIAGONALIZATION ““Adr dr
Under the diagonalization of the absolute metas per- o 1 28)
formed in Sec. V) a general vector transforms according to =q /—2(uaqa)2_ 1 (
i Notice that choosing|*=u* yields u*=u* as we realized
’ e — ty T2 X 4X
f ar gy 0 ) @9 pefore.

] ) L To covariantly relate the absolute four-acceleration to the
Using the lowered version of Eq14) and the definition of | grentzian quantities we need an expression for the absolute

the absolute metric, E¢5), we find after simplification affine connection, i.e., the affine connection for the absolute
_ metric
% _ 2v — Oxx 26) . o . .
gtt 1+02 \/m FaB: 29 p((gagpﬁ+(93gpa_apgaﬁ)- (29)

, P , ) Using the corresponding definition of the original affine con-
For the particular case af*=u*, using Eq.(14), we find  pection, together with the expressions for the absolute metric

after simplification and its inverse given by Eq&) and(6), we can write this as
/ 11-0v2 —v T4, =Tk —2urUPT, 4+ (— g“P + 2uuP
Ny 1gtt2(_1+ iy . @27 ap= 1 ap papt (=0 )
U G 2TV V=00 X (da(U,Uup)+dp(UyUy) = dp(UgUp)). (30

This expression can be used to find the generating lines iow we evaluateDg*/D~ in an originally freely falling

the new coordinates. We simply integrat€ and u’* nu-  system where the original affine connection vanishes. Setting
merically, with respect to the parameterto findt’(7) and  all unbarred derivatives to their covariant analogue and using
X(7). These lines can then easily be mapped to an embedhe definition of covariant derivatives, Eq28) and(30) we
ding of the absolute geometry. obtain
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Do 1 D “ gain proper time by taking a path on tbatsideof the curv-
Qv _ _ 4 ing generating line. Thus a nongeodesic absolute generator
D7 \/2(uaq")2— 1D7 \/z(quB)Z_ 1 would imply a nongeodesic Lorentzian generator. The result
that the generators are absolute geodesics if and only if they
qeq” are Lorentzian geodesics is thus intuitively understandable.
+2 —————(—g"*"+2u”uP)
2(u,q7)*—1

APPENDIX F: DERIVING NECESSARY AND
X (UgV,U,+ U, VU g—UgV,u,). (31)  SUFFICIENT CONDITIONS FOR GEODESIC

Here we have a manifestly covariant relation. We can expang QUIVALENCE
this expression, and simplify it somewhat using To investigate if it is possible to completely retain the
) ) - iainal X o th | ic.
ueu,=1, u°V,u,=0, k=ucq,. (32) gl_glni_geodesm structure |n.t e absolute metric Yve set
] ] . .. Dg*D7=0 and Dg*/D7=0 in Eq. (33). The resulting
The first two relat|ons_ follow (_j|r_e_ctly_ from the normalization equation is given by
of u#, and the latter is a definition introduced for compact-

ness. The resulting expansion is given by 0= — kg* PV u. —ka®V ut+ utgBq®V
o - 2k2_1q q o’up q-V.u u”qg-q au,B
Dg* 2 1Dg* kg*
— = - — 9°q°v,u,, +kqg*V*#u,—2ku*q“u’v,u,. (35
Dr 2k*-1 |2 Dr 2k*-1 , o A .
If this equation is to hold forll directions,q®, it must hold
D for the particular casg“=u*. Inserting this and using the
+UpD—qp —kq*V,u#+urqPqv,ug normalization ofu*, only the second term survives
7.
u*v,u#=0. (36)

) (33)  Thusitisnecessaryo have geodesic generators to get all the
geodesics “right”. Assuming the generators to be geodesic—
the last term in Eq(35) dies. Multiplying the remaining four

APPENDIX E: GEODESIC GENERATORS terms byq,, we are after simplification left with another

necessary constraint,
Consider a trajectory that everywhere is tangent to the

generating field so thaj*=u*. Also, assume that the gen- (2—+k

erators are geodesidsu*/D7 =0, or equivalentlyu’V,u* 2k*~1

=0. Using the normalization relatiom“u, =1, from which ~ The expression within the parentheses is zero if and only if
it follows thatu”V,u, =0, we immediately see that E81) = k=*1. Assuming a future-like convention on bat and
reduces to g* we cannot have a negatile and k=1 corresponds

_ uniguely tou#=q*, a direction that we already considered.
_o (34) Thus,_the expression puts!de the parentheses must vanish.
— For this to hold forall directionsg®, we must have

Thus if the original generators are geodesic then they are Vally= = Vil (38)
geodesic also relative to the absolute metric. Through th&Jsing this necessary antisymmetry in H§5) we are left
perfect symmetry in transforming from the absolute to thewith
Lorentzian metric and back, we have derived implicitly that L o
if the absolute generators are geodesics they will also be 0=—kg"Vou" +kq*V¥u,. (39)
geodesics in Lorentzian spacetime. We conclude ifr@td  Lowering this withg,,, and using the necessary antisymme-
only if the original generators are geodesic then they will beiry again, we obtain
geodesic in the absolute spacetime. « _

To get an intuitive feeling for the result we just derived Vel =0. (40)
consider a straight generating lifi@ the absolute sensen  For this in turn to hold forall ¢ it is necessary to have
an embedded surface. Any small deviation from this line willy y =0. This also immediately satisfies the above necessary
introduce negative contributions to the proper time. Moreconstraints on antisymmetry and generator geodesics. That it
rigorously we can argue that an infinitesimal variation of ajs a|so sufficientfor geodesic equivalence follows directly

trajectory (with fixed end points around a straight generat- from Eq. (35). Thus the absolute metric will be geodesically
ing line, will to first order in the variation parameter not equivalent to the original one, if and only if

affect theabsolutelength of the trajectory. Also we know
that the Lorentzian distance along a trajectory is shorter than Vau,=0. (41)
or equal to the absolute distan@e equality holds if and
only if we follow a generatgr Hence we cannot gain proper APPENDIX G: PROVING THAT V,u,=0
time to first order in the variational parameter as we vary theeVERYWHERE IMPLIES ULTRASTATIC
trajectory. Thus the Lorentz proper time is maximized by theSpPACETIME
original trajectory.
On the other hand, if the absolute generating line is curv- Assuming V,u,=0, the  Frobenius condition
ing relative to the surface, it seems plausible that we couldj[#Vyup]:OZO is trivially satisfied. This means that there ex-

+kq“V*#u,—2ku*q*uv,u,

q“g“V,u,=0. (37)
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ists (locally) a slice for whichu* is normal. Introducing distance. A distance function like E¢L) corresponds to a flat spacetime,

coordinates such that=const in every slice and letting the but see Eq(lO? for an example of a distance function corresponding to a
curved spacetime.

spati_al coordinates follow the congruence connected“lo  ssieven WeinbergGravitation and CosmologgWiley, New York, 1972,
the line element takes the form pp. 337-338.
0 “Assuming that there is no black hole inside the crust.
Ott SAs was pointed out to me by Ingemar Bengtsson, this relation is also used
0 g

) (42) by Hawking and Ellis(Ref. 18, although for completely different pur-
poses than those of this article.
In this particular systern , = @5% . Then we readily find  °If we had instead considered a metric of the forg”"+ auu*, wherea
is some general number, the inverse would have beet’+a/(a

g,u,V:

VoUg=3d,Ug— FZIBUp (43 —1)u#u”. Itis only in the casexr=2 that we can simply raise the indices
_ of the absolute metric with the original metric to get the inverse of the
e (44) absolute metric.

"The gamma factor is defined as=(1—v?)~ 2 wherev is the relative
1 1
_ t = _ velocity. With this definition, it follows from Eq(1) thatdr= dt/y.
- \/g— X 5ﬁ(ﬁagtt) 2 (aagtﬁ+’9ﬁgta atgaﬁ) : 8A geometry has a Kiling symmetry if there exists a vector field
it (called a Killing field £&*) such that when we shift our coordinate4
(45)
— X+ e&*—the metric has the same form. As an example we can consider
Lettingi andj denote general spatial indices and evaluating a geometry that can be embedded as a surface of revolution. Then there

; ; 4 PR ; exists a Killing field directed around the surfa@e the azimuthal direc-
this equation fora=t,i and,B L (there are four different tion) with a length proportional to the embedding radius. Also, if there are

combinations we readlly find coordinates where the metric is independent of one coordinate, then there
‘9Mgtt: 0, (46) gis’ a Killing symmetry with respecitolhat cqordinatg. . B
t =_t+§>9<) where d¢/dx= 0y /09 gives g},,=Diag(Q; ,9xx
atgij =0. (47) —(9u) /9u)-

i ) ) ) ) 10C. W. Misner, K. S. Thorne, and J. A. Wheel@ravitation (Freeman,
Thus in these particular coordinates, choosintrlabeling New York, 1973, p. 841.

such thatg,, =1, the metric takes the form “Suggested to me by Sebastiano Sonego.
2w, Rindler, Relativity: Special, General and Cosmologid@xford U.P.,

1 0 Oxford, 2002, pp. 267-272.
9= 0 . (49 Bw. Rindler, Essential Relativity: Special, General and Cosmological
gii(x) (Springer-Verlag, New York, 1937pp. 204—207.

_ _ o 1aF ] o
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