PHYS3701 Introduction to Quantum Mechanics I Spring 2021 Homework Assignment #3 Due at 5pm to the <u>Grader</u> on Thursday 4 Feb 2021

(1) Find the resulting ket, as an expansion in the $|\pm \mathbf{z}\rangle$ basis, that results from $\hat{R}(\alpha \mathbf{j})|+\mathbf{z}\rangle$ where $\hat{R}(\alpha \mathbf{j})$ is the operator which effects a counter-clockwise rotation through an angle α about the *y*-axis. Check to see if your answer makes sense for $\alpha = 0$, $\alpha = \pi/2$, and $\alpha = \pi$. Recall (2.42) and (2.43a) in the textbook.

Hints. Base your form of $\hat{R}(\alpha \mathbf{j})|+\mathbf{z}\rangle$ on (2.32) in the textbook. You will need to evaluate $\hat{J}_y|\pm\mathbf{z}\rangle$ to work this out, and that is most easily done by writing $|+\mathbf{z}\rangle$ in terms of the $|\pm\mathbf{y}\rangle$.

(2) Prove the following properties of commutators:

(i)
$$\left[\hat{A}, \hat{B} + \hat{C}\right] = \left[\hat{A}, \hat{B}\right] + \left[\hat{A}, \hat{C}\right]$$

(ii) $\left[\hat{A}\hat{B}, \hat{C}\right] = \hat{A}\left[\hat{B}, \hat{C}\right] + \left[\hat{A}, \hat{C}\right]\hat{B}$
(ii) $\left[\hat{A}, \hat{B}\hat{C}\right] = \hat{B}\left[\hat{A}, \hat{C}\right] + \left[\hat{A}, \hat{B}\right]\hat{C}$