
PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #1

Due at 5pm to the Grader on Thursday 21 Jan 2021

(1) A beam of silver atoms is created by heating a vapor in an oven to 1227◦C, and selecting
atoms with a velocity close to the mean of the thermal distribution. The beam moves
through a 1 m long magnetic field with a vertical gradient 10 T/m, and impinges a screen
1 m downstream of the end of the magnet. Assuming the silver atom has spin-1/2 with
a magnetic moment of one Bohr magneton, find the separation distance in mm of the two
states on the screen.

(2) A solid uniform sphere of mass m has a charge q uniformly distributed over its surface.
The sphere spins on its axis with angular momentum L. Calculate its magnetic moment
µ = g(q/2mc)L and determine the (dimensionless) constant g. (If you work the problem in
SI units, you will not get the factor of c in the denominator.)



Solutions HW #1

(1) See the Mathematica solutions notebook. We find a separation of 3.0 mm.

(2) The magnetic moment of a ring of radius r and current I is πr2I (in SI units), in the
direction normal to the plane of the ring. Since the current is generated by the rotating
charged surface, it is clear that µ is in the direction of L.

We will integrate over the polar angle 0 ≤ θ ≤ π to get the magnetic moment. The radius
of a ring around the surface of the sphere at angle θ is r = R sin θ. The surface area of the
ring that subtends an angle dθ is ds = 2πr(Rdθ) = 2πR2 sin θ dθ which we can check with∫ π

0
ds = 2πR2

∫ π

0
sin θ dθ = −2πR2 cos θ|π0 = 4πR2

The charge in this ring is dq = q ds/4πR2 = (q/2) sin θdθ. The current dI in the ring is the
charge divided by the time T for one revolution, so dI = dq/T = dq(ω/2π), where ω is the
angular velocity. The individual magnetic moments add up, so

µ =
∫
dµ =

∫
πr2dI =

ω

2

∫
r2dq =

ω

2

q

2
R2
∫ π

0
sin3 θ dθ =

ω

2

q

2
R2
∫ 1

−1
(1− t2)dt =

ωqR2

3

The moment of inertia of a solid uniform sphere with mass m and radius R is (2/5)mR2, so
its angular momentum is L = (2/5)mR2ω and

µ =
q

3

5

2

1

m
L = g

q

2m
L where g =

5

3

which agrees with the statement of Problem 1.2 in Townsend. Note that in CGS units, the
definition of the magnetic dipole moment contains a factor of 1/c.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #2

Due at 5pm to the Grader on Thursday 28 Jan 2021

(1) Consider a quantum state |ψ(t)〉 which changes with time t as

|ψ(t)〉 =
1√
2
|+z〉+

eiωt√
2
|−z〉

where ω is a real number. Interpreting the expectation value as the average of a large
number of measurements, calculate 〈Sz〉 and 〈Sy〉 as a function of time. What is happening,
physically? Can you guess what 〈Sx〉 turns out to be without actually calculating it?

(2) Using the |+y〉 and |−y〉 states as a basis, find the representation (as column vectors)
for the states |+x〉 and |−x〉.



Solutions HW #2

(1) We need first to calculate |〈±z|ψ(t)〉|2 and |〈±y|ψ(t)〉|2:

〈+z|ψ(t)〉 =
1√
2

and 〈−z|ψ(t)〉 =
eiωt√

2
so |〈±z|ψ(t)〉|2 =

1

2

and 〈+y|ψ(t)〉 =

[
1√
2
〈+z| − i√

2
〈−z|

]
|ψ(t)〉 =

1

2

(
1− ieiωt

)
=

1

2
(1− i cosωt+ sinωt)

〈−y|ψ(t)〉 =

[
1√
2
〈+z|+ i√

2
〈−z|

]
|ψ(t)〉 =

1

2

(
1 + ieiωt

)
=

1

2
(1 + i cosωt− sinωt)

so |〈±y|ψ(t)〉|2 =
1

2
(1± sinωt)

The expectation values are straightforward from here:

〈Sz〉 =
1

2

(
h̄

2

)
+

1

2

(
− h̄

2

)
= 0

〈Sy〉 =
1

2
(1 + sinωt)

(
h̄

2

)
+

1

2
(1− sinωt)

(
− h̄

2

)
=
h̄

2
sinωt

The spin precesses about the z-axis. Note that at t = 0, |ψ(t)〉 = |+x〉, so of course 〈Sy〉 = 0
at t = 0. It is pretty obvious, in fact, that we must find 〈Sx〉 = (h̄/2) cosωt.

(2) We have |ψ〉 = |+y〉〈+y|ψ〉+ |−y〉〈−y|ψ〉, so calculate 〈±y|+x〉 and 〈±y|−x〉:

〈±y|+x〉 =
1

2
[〈+z| ∓ i〈−z|] [|+z〉+ |−z〉] =

1

2
(1∓ i)

〈±y|−x〉 =
1

2
[〈+z| ∓ i〈−z|] [|+z〉 − |−z〉] =

1

2
(1± i)

Therefore, in the |±y〉 basis,

|+x〉 .=
[

1−i
2

1+i
2

]
and |−x〉 .=

[
1+i

2
1−i

2

]

Note that this is Problem 2.4 in the textbook. This answer agrees with the solutions manual.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #3

Due at 5pm to the Grader on Thursday 4 Feb 2021

(1) Find the resulting ket, as an expansion in the |±z〉 basis, that results from R̂(αj)|+z〉
where R̂(αj) is the operator which effects a counter-clockwise rotation through an angle α
about the y-axis. Check to see if your answer makes sense for α = 0, α = π/2, and α = π.
Recall (2.42) and (2.43a) in the textbook.

Hints. Base your form of R̂(αj)|+z〉 on (2.32) in the textbook. You will need to evaluate
Ĵy|±z〉 to work this out, and that is most easily done by writing |+z〉 in terms of the |±y〉.

(2) Prove the following properties of commutators:

(i)
[
Â, B̂ + Ĉ

]
=
[
Â, B̂

]
+
[
Â, Ĉ

]
(ii)

[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂

(ii)
[
Â, B̂Ĉ

]
= B̂

[
Â, Ĉ

]
+
[
Â, B̂

]
Ĉ



Solutions HW #3

(1) This is Problem 2.6 in the textbook. The operator R̂(αj) = e−iJyα/h̄, so we want to write
|+z〉 in terms of the |±y〉. Do this from (2.16) or (2.17a) and (2.19b), that is

|±y〉 =
1√
2
|+z〉 ± i√

2
|−z〉 so |+z〉 =

1√
2
|+y〉+

1√
2
|−y〉

R̂(αj)|+z〉 = R̂(αj)

[
1√
2
|+y〉+

1√
2
|−y〉

]
=
e−iα/2√

2
|+y〉+

e+iα/2

√
2
|−y〉

R̂(0j)|+z〉 =
1√
2
|+y〉+

1√
2
|−y〉 = |+z〉

R̂
(
π

2
j
)
|+z〉 =

e−iπ/4√
2
|+y〉+

e+iπ/4

√
2
|−y〉 =

1− i
2
|+y〉+

1 + i

2
|−y〉

=
1

2

2√
2
|+z〉 − i

2

2i√
2
|−z〉 =

1√
2
|+z〉+

1√
2
|−z〉 = |+x〉

R̂(πj)|+z〉 =
e−iπ/2√

2
|+y〉+

e+iπ/2

√
2
|−y〉 = − i√

2
[|+y〉 − |−y〉] = − i√

2

2i√
2
|−z〉 = |−z〉

(2) This is Problem 3.1 in the textbook.[
Â, B̂ + Ĉ

]
= ÂB̂ + ÂĈ − B̂Â− ĈÂ = ÂB̂ − B̂Â+ ÂĈ − ĈÂ =

[
Â, B̂

]
+
[
Â, Ĉ

]
[
ÂB̂, Ĉ

]
= ÂB̂Ĉ − ĈÂB̂ = ÂB̂Ĉ − ÂĈB̂ + ÂĈB̂ − ĈÂB̂ = Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂[

Â, B̂Ĉ
]

= ÂB̂Ĉ − B̂ĈÂ = ÂB̂Ĉ − B̂ÂĈ + B̂ÂĈ − B̂ĈÂ =
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #4

Due at 5pm to the Grader on Thursday 11 Feb 2021

(1) In a notation where angular momentum eigenstates are written as usual in the form
|j,m〉, calculate the following matrix elements. Where appropriate, use the Kroneker δ, that
is δkl = 1 if k = l and δkl = 0 if k 6= l.

a. 〈j,m|Ĵ2|j,m〉

b. 〈j′,m′|Ĵ2|j,m〉

c. 〈j′,m′|Ĵz|j,m〉

d. 〈j′,m′|Ĵ±|j,m〉

e. 〈1
2
, 1

2
|J+|12 ,−

1
2
〉

f. 〈3
2
, 1

2
|J+|12 ,−

1
2
〉

g. 〈3
2
, 1

2
|J+|32 ,−

1
2
〉

(2) We show in class on February 9th (and as derived in Section 3.6 of the textbook) that
for a normal vector n = i cosφ + j sinφ in the xy plane, the operator Ŝn = Ŝ · n has the
correct eigenvalues (±h̄/2) regardless of the value of φ. We also derived eigenstates | ± n〉,
given by equations (3.98) and (3.101) in the textbook.

Extend this to three dimensions, using spherical polar coordinates to describe the polariza-
tion direction, that is

n = i sin θ cosφ+ j sin θ sinφ+ k cos θ

Show once again that you get the correct eigenvalues independent of θ and φ, and derive the
eigenvectors in terms of θ and φ. Do this by solving the eigenvalue problem directly, as in
Section 3.6.



Solutions HW #4

(1) These are simple, just making use of standard relationships.

a. 〈j,m|Ĵ2|j,m〉 = j(j + 1)h̄2

b. 〈j′,m′|Ĵ2|j,m〉 = j(j + 1)h̄2δjj′δmm′

c. 〈j′,m′|Ĵz|j,m〉 = mh̄δjj′δmm′

d. 〈j′,m′|Ĵ±|j,m〉 =
√
j(j + 1)−m(m± 1)h̄ δjj′δm′,m±1

e. 〈1
2
, 1

2
|J+|12 ,−

1
2
〉 =

√
1
2

3
2
−
(
−1

2

)
1
2
h̄ =
√

2h̄

f. 〈3
2
, 1

2
|J+|12 ,−

1
2
〉 = 0

g. 〈3
2
, 1

2
|J+|32 ,−

1
2
〉 =

√
3
2

5
2
−
(
−1

2

)
1
2
h̄ = 2h̄

(2) This is really problem 3.2 in the textbook. The eigenvalue matrix problem is

h̄

2
[σx sin θ cosφ+ σy sin θ sinφ+ σz cos θ]

(
〈+z|µ〉
〈−z|µ〉

)
= µ

h̄

2

(
〈+z|µ〉
〈−z|µ〉

)

Inserting the Pauli matrices, this turns into(
cos θ e−iφ sin θ

e+iφ sin θ − cos θ

)(
〈+z|µ〉
〈−z|µ〉

)
= µ

(
〈+z|µ〉
〈−z|µ〉

)

so the equation for the eigenvalues becomes

(cos θ − µ)(− cos θ − µ)− sin2 θ = −(cos2 θ − µ2)− sin2 θ = µ2 − 1 = 0

and the eigenvalues µh̄/2 are indeed ±h̄/2. For µ = +1, we have (with the top equation)

cos θ〈+z|+n〉+ e−iφ sin θ〈−z|+n〉 = 〈+z|+n〉
〈−z|+n〉
〈+z|+n〉

= eiφ
1− cos θ

sin θ
= eiφ

2 sin2(θ/2)

2 sin(θ/2) cos(θ/2)
= eiφ

sin(θ/2)

cos(θ/2)

From these we can just read off the 〈±z|+n〉 because they are already properly normalized.
For the µ = −1 eigenvalue, we do the same thing, again with the bottom equation, so

cos θ〈+z|−n〉+ e−iφ sin θ〈−z|−n〉 = −〈+z|+n〉
〈−z|−n〉
〈+z|−n〉

= −eiφ1 + cos θ

sin θ
= −eiφ 2 cos2(θ/2)

2 sin(θ/2) cos(θ/2)
= −eiφ cos(θ/2)

sin(θ/2)

Since |±n〉 = |+z〉〈[+z|±n〉 + |−z〉〈−z|±n〉 we see that these coefficients agree with the
solution given in the problem statement in the textbook.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #5

Due at 5pm to the Grader on Thursday 18 Feb 2021

(1) This problem reiterates what we covered in class on Thursday 12 Feb. Label the combined
states of two spin-1/2 particles as we did in class, and also (5.8) in the textbook, as

|1〉 = |+z,+z〉 |2〉 = |+z,−z〉 |3〉 = |−z,+z〉 |4〉 = |−z,−z〉

Then, for the operator Ŝ2 from (5.26a) with (5.10),

Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1z Ŝ2z + Ŝ1+Ŝ2− + Ŝ1−Ŝ2+

calculate the matrix elements 〈1|Ŝ2|1〉, 〈1|Ŝ2|2〉, 〈2|Ŝ2|2〉, 〈2|Ŝ2|3〉, 〈3|Ŝ2|3〉, and 〈4|Ŝ2|4〉. Use
this to complete the full 4× 4 matrix representation of Ŝ2 in the |1〉, |2〉, |3〉, |4〉 basis. Find
the eigenvalues and eigenvectors. Finally, show that the eigenvectors are also eigenvectors
of Ŝz = Ŝ1z + Ŝ2z and derive the eigenvalues.

(2) I want to try something different on this problem. The calculation in (1) above is integral
to calculating the “hyperfine splitting” in atomic hydrogen. We mentioned this in class, but
the result is derived in detail in Section 5.2 of your textbook. The transition between these
states corresponds to electromagnetic waves with frequency ν = 1420 MHz, or a wavelength
close to 21 cm. It was first measured in the laboratory (not in the Galaxy, as I said mistakenly
in class) by Nafe and Nelson, Phys.Rev. 73 (1948) 718. (This seems to be at odds with
Footnote 2 on page 146 of your textbook.) Its discovery in the Galaxy was first observed by
Ewen and Purcell, Nature 168 (1951) 356.

I want each of you to find a different journal article that reports on a measurement that
involves the so-called 21 cm line in atomic hydrogen. Most of these will likely be in papers
on astrophysics, but I think you can also find some particularly precise laboratory mea-
surements. Any use of this radiation is fine, including papers that show results on galactic
rotation curves based on the Doppler shift.

To make sure you each come up with a unique reference, communicate with each other,
either using GroupMe or through me or whatever you’d like.



Solutions HW #5

(1) We need to find the matrix elements of all six terms of Ŝ2 and add them up. All four
states are eigenstates of Ŝ2

1 and Ŝ2
2 with the same eigenvalue 3h̄2/4, so those are simple. They

are also eigenstates of Ŝ1z Ŝ2z with eigenvalues +h̄2/4 for |1〉 and |4〉, and eigenvalues −h̄2/4
for |2〉 and |3〉. Therefore, the first three terms in Ŝ2 contribute only to the diagonal, with
(3/4+3/4+2×1/4)h̄2 = 2h̄2 for the 1, 1 and 4, 4 elements, and (3/4+3/4−2×1/4)h̄2 = h̄2

for the 2, 2 and 3, 3 elements. For the fourth and fifth terms, we need to recall

Ŝ±|j,m〉 =
√

(j ∓m)(j ±m+ 1)h̄|j,m± 1〉

which gives Ŝ1+Ŝ2− |3〉 = h̄2|2〉 and Ŝ1−Ŝ2+|2〉 = h̄2|3〉, and zero for each operator on all other
states. Therefore, these do not contribute anything to the diagonals, and give h̄2 for the 2, 3
and 3, 2 matrix elements. The eigenvalue equation Ŝ2|µ〉 = µh̄2|µ〉 then becomes, in the |1〉,
|2〉, |3〉, |4〉 matrix representation,

2− µ 0 0 0
0 1− µ 1 0
0 1 1− µ 0
0 0 0 2− µ



〈1|µ〉
〈2|µ〉
〈3|µ〉
〈4|µ〉

 =


0
0
0
0


It is easiest to calculate the determinant using “minors”, that is, the 1, 1 element times the
determinant of the bottom 3×3 matrix, which itself is the 4, 4 element times the determinant
of the middle 2× 2 matrix, that is

(2− µ)2[(1− µ)2 − 1](2− µ)3µ = 0

so the eigenvalues are µ = 2 three times, and µ = 0. Two of the µ = 2 eigenvectors
are obviously 1〉 and |4〉. The third µ = 2 eigenvector, and the µ = 0 eigenvector (after
normalization) are also easy to find, just the sum and difference of the states |2〉 and |3〉
divided by

√
2. Noting that 2 = 1(1 + 1) and that Sz = S1z + S2z has eigenvalues ±1 and 0

for the three µ = 2 states, and eigenvalue 0 for the µ = 0 state, we identify the eigenstates
as j = 1 and j = 0 angular momentum eigenstates. That is

|1, 1〉 = |1〉

|1, 0〉 =
1√
2

[|2〉+ |3〉]

|1,−1〉 = |4〉

|0, 0〉 =
1√
2

[|2〉 − |3〉]

(2) If you enter either “1420 MHz” or “21 cm” into Google Scholar, you will see a long list
of highly cited articles.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #6

Due at 5pm to the Grader on Thursday 25 Feb 2021

(1) Work through the details of the discussion in Section 4.4 of the textbook and derive the
Rabi formula (4.45) for the probability (as a function of time) of observing the “spin-down”
state |−z〉, when it is initally in the “spin-up” state |−z〉, in terms of the strengths B0 and
B1 of the static and oscillating magnetic fields, and the oscillation frequency ω, namely

|〈−z|ψ(t)〉|2 =
ω2

1/4

(ω0 − ω)2 + ω2
1/4

sin2

√
(ω0 − ω)2 + ω2

1/4

2
t

where ω0 = gqB0/2mc and ω1 = gqB1/2mc. First, follow the text to obtain the matrix
equation (4.41). (Be careful of the signs of the exponents.) Then, explain (as in the text)
why it is OK to ignore the terms with ω + ω0 and rewrite the simplified matrix equation.

Solve this pair of simplified equations to find c(t) and d(t), but not with assuming that
ω = ω0. You can do this by assuming that c(t) and d(t) have a eiαt time dependence, and
then solve algebraically for α. There are two solutions, and you can use the initial conditions
to find the right linear combination. The Rabi equation comes from the inner product of
the row matrix (0 1), that is the representation of 〈−z| in the |±z〉 basis, and the column
matrix of a(t) and b(t), that is the representation of |ψ(t)〉 in the same basis.

Plot the amplitude of the oscillations as in Figure 4.6 in the textbook, that is the maximum
value of the transition probability as a function of the frequency ω of the oscillating field.
If you write ω = xω0, then you can plot it against x for values near unity. Make the plot
for three different values of the ratio B1/B0 = 10−2, 10−3, and 10−4. These might be
typical ratios for a Magnetic Resonance Imaging (MRI) scanner. Does this help you see
MRI machines are valuable medical diagnostic tools?

(2) This is a general question based on generic states and Hamiltonian. Do not confuse this
with “spin” or “angular momentum.” In some three-state system with states labeled |1〉, |2〉,
and |3〉, suppose that the matrix representation of the Hamiltonian is E0 0 A

0 E1 0
A 0 E0



a. If the initial state |ψ(0)〉 = |2〉, find the state |ψ(t)〉 as a function of time.

b. If the initial state |ψ(0)〉 = |3〉, find the state |ψ(t)〉 as a function of time.

Express your answers as time-dependent linear combinations of |1〉, |2〉, and |3〉. Remem-
ber that it is always easiest to find the time evolution of a state with a time-independent
Hamiltonian by expressing the state in terms of the energy eigenstates.



Solutions HW #6

(1) See Problem 4.9 in the textbook. The simplified version of (4.41) gives the two equations

iċ(t) =
ω1

4
ei(ω0−ω)td(t) and iḋ(t) =

ω1

4
e−i(ω0−ω)tc(t)

The first equation gives d(t) = (4i/ω1)e−i(ω0−ω)tċ(t). Use this and the second equation to
remove d(t) after taking the time derivative of the first equation, that is

ic̈(t) = i
ω1

4
(ω0 − ω)ei(ω0−ω)t 4i

ω1

e−i(ω0−ω)tċ(t) +
ω1

4
ei(ω0−ω)tω1

4i
e−i(ω0−ω)tc(t)

c̈(t) = i(ω0 − ω)ċ(t)− ω2
1

16
c(t)

Using c(t) = c0e
iαt, find −α2 = −α(ω0 − ω)− ω2

1/16, or

α =
(ω0 − ω)±

√
(ω0 − ω)2 + ω2

1/4

2
≡ α±

Therefore, the solution for c(t) takes the form

c(t) = c+e
iα+t + c−e

iα−t

and the solution for d(t) becomes

d(t) = − 4

ω1

e−i(ω0−ω)t(c+α+e
iα+t + c−α−e

iα−t)

The initial conditions are c(0) = 1 and d(0) = 0, since the initial state is |+z〉, so

c+ + c− = 1 and c+α+ + c−α− = 0

Solving these gives

c+ = − α−
α+ − α−

= − α−√
(ω0 − ω)2 + ω2

1/4
and c− =

α+

α+ − α−
=

α+√
(ω0 − ω)2 + ω2

1/4

I don’t see how we are going to enforce |c|2 + |d|2 = 0, but let’s press on. Maybe it’s
guaranteed from the way we wrote the formalism and the initial conditions. We want to
calculate |〈−z|ψ(t)〉|2 = |b(t)|2 = |d(t)|2, so, noting that the c± are real,

|d(t)|2 =
16

ω2
1

(
c+α+e

−iα+t + c−α−e
−iα−t

) (
c+α+e

iα+t + c−α−e
iα−t

)
=

16

ω2
1

(
c2

+α
2
+ + c2

−α
2
− + c+c−α+α−

[
ei(α+−α−)t + e−i(α+−α−)t

])
=

16

ω2
1

(
c2

+α
2
+ + c2

−α
2
− + 2c+c−α+α− cos[(α+ − α−)t]

)
=

16

ω2
1

α2
+α

2
− + α2

−α
2
+ + 2α2

+α
2
− cos[(α+ − α−)t]

(ω0 − ω)2 + ω2
1/4



Now

α+α− =
(ω0 − ω)2 − (ω0 − ω)2 − ω2

1/4

4
= −ω

2
1

16

Therefore

|d(t)|2 = |〈−z|ψ(t)〉|2 =
ω2

1

8

1 + cos[(α+ − α−)t]

(ω0 − ω)2 + ω2
1/4

=
ω2

1

4

1

(ω0 − ω)2 + ω2
1/4

sin2
(
α+ − α−

2
t
)

=
ω2

1/4

(ω0 − ω)2 + ω2
1/4

sin2


√

(ω0 − ω)2 + ω2
1/4

2
t


which is Rabi’s formula. The “amplitude” is the factor in front of the sin2 function.

If we write ω = xω0 and r = ω1/ω0 = B1/B0, then the amplitude is

ω2
1/4

(ω0 − ω)2 + ω2
1/4

=
r2ω2

0/4

(ω0 − x2ω0)2 + r2ω2
0/4

=
r2

4(1− x2)2 + r2

Following is a plot of the amplitude versus x made with Mathematica:
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(2) This is really Problem 4.13 in the textbook. The true lesson here, which I missed when I
first started working on the problem, is that it is always easier to find the time dependence
by expressing a state in terms of the eigenstates of the Hamiltonian. So, first find the
eigenvalues and eigenvectors for the given Hamiltonian matrix. We need to set∣∣∣∣∣∣∣
E0 − E 0 A

0 E1 − E 0
A 0 E0 − E

∣∣∣∣∣∣∣ = (E0−E)2(E1−E)−A2(E1−E) = (E1−E)[(E−E0)2−A2] = 0

so the eigenvalues are E = E1, E = E0 + A, and E = E0 − A. Therefore, as represented in
the |1〉, |2〉, |3〉 basis, the eigenstates are 0

1
0

 for E = E1 and
1√
2

 1
0
±1

 for E = E0 ± A ≡ E±

after solving the matrix equations for the eigenvalues and normalizing the eigenvectors.

For Part (a.), the initial state |ψ(0)〉 = |2〉 = |E1〉, that is, an energy eigenstate. This is a
stationary state with a simple time dependence, namely

|ψ(t)〉 = e−iĤt/h̄|ψ(0)〉 = e−iE1t/h̄|2〉

For Part (b.), the initial state |ψ(0)〉 = |3〉 is no longer an energy eigenstate, but it is simple
to express it as a linear combination of energy eigenstates, namely

|ψ(0)〉 = |3〉 =
1√
2
|E+〉 −

1√
2
|E−〉

It is now straightforward to find the time dependent state.

|ψ(t)〉 = e−iĤt/h̄|ψ(0)〉 =
1√
2
e−iE+t/h̄|E+〉 −

1√
2
e−iE−t/h̄|E−〉

We can also write

|E+〉 =
1√
2
|1〉+

1√
2
|3〉 and |E−〉 =

1√
2
|1〉 − 1√

2
|3〉

and the time-dependent state becomes

|ψ(t)〉 =
1√
2
e−iE0t/h̄e−iAt/h̄

[
1√
2
|1〉+

1√
2
|3〉
]
− 1√

2
e−iE0t/h̄e+iAt/h̄

[
1√
2
|1〉 − 1√

2
|3〉
]

=
1

2
e−iE0t/h̄

[(
e−iAt/h̄ − e+iAt/h̄

)
|1〉+

(
e−iAt/h̄ + e+iAt/h̄

)
|3〉
]

= e−iE0t/h̄ cos
(
A

h̄
t
)
|3〉 − ie−iE0t/h̄ sin

(
A

h̄
t
)
|1〉

It’s good to note that the initial condition is satisfied. I suppose there may be some insight
gained by expanding the exponentials and writing everything in terms of sines and cosines,
but it seems pretty clear that the state oscillates between |1〉 and |3〉.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #7

Due at 5pm to the Grader on Thursday 4 Mar 2021

(1) Prove that [x̂n, p̂x] = ih̄nx̂n−1. You can do this using a relationship you proved on

Homework #3, namely
[
ÂB̂, Ĉ

]
= Â

[
B̂, Ĉ

]
+
[
Â, Ĉ

]
B̂. Then use this result along with the

Taylor expansion of F (x) about x = 0 to show that

[F (x̂), p̂x] = ih̄
∂F

∂x
(x̂)

Finally, show that the Hamiltonian

Ĥ =
1

2m
p̂2
x + V (x̂) gives

d〈px〉
dt

=

〈
−dV
dx

〉

and explain how this is equivalent to Newton’s Second Law of Motion.

(2) A particle of mass m sits in a one-dimensional infinite well such that V (x) = 0 for
0 ≤ x ≤ L. The particle cannot be found outside the well.

a. Find the energy eigenvalues and their eigenfunctions. Compare your answers to the
eigenfunctions (6.106) and eigenvalues (6.110) in the textbook.

b. Suppose that the wave function at time t = 0 is given by

ψ(x, t = 0) =
(

1 + i

2

)√
2

L
sin

πx

L
+

1√
2

√
2

L
sin

2πx

L

for 0 ≤ x ≤ L and zero elsewhere. Prove that this wave function is properly normalized.
You can do this by integrating ψ∗ψ over 0 ≤ x ≤ L, but there is an easier way.

c. Find the wave function ψ(x, t), that is, as a function of time.

d. Calculate the expectation value 〈E〉 of the energy. You can do this by integrating over
0 ≤ x ≤ L, but there is an easier way. Why is 〈E〉 independent of time?

e. Calculate the expectation value 〈x〉 of the particle position, as a function of time. This
is a little tedious, unless you us something like Mathematica.

f. What is the probability, as a function of time, that a measurement of the energy will
yield the value h̄2π2/2mL2. Once again, you can do this by integrating over 0 ≤ x ≤ L,
but there is an easier way.



Solutions HW #7

(1) Use the formula given to show a progression, namely

[x̂n, p̂x] = x̂n−1[x̂, p̂x] + [x̂n−1, p̂x]x̂

= ih̄x̂n−1 + [x̂n−1, p̂x]x̂ = ih̄x̂n−1 +
{
ih̄x̂n−2 + [x̂n−2, p̂x]x̂

}
x̂

= = ih̄2x̂n−1 + [x̂n−2, p̂x]x̂
2 = · · · = ih̄nx̂n−1

Now writing the function F (x) as a Taylor expansion, we have

[F (x̂), p̂x] =

[∑
k

1

k!

∂kF

∂xk

∣∣∣∣∣
x=0

x̂k, p̂x

]
=
∑
k

1

k!

∂kF

∂xk

∣∣∣∣∣
x=0

[
x̂k, p̂x

]

=
∑
k

1

k!

∂kF

∂xk

∣∣∣∣∣
x=0

ih̄kx̂k−1 = ih̄
∂F

∂x
(x̂)

Therefore, the calculation for the rate of change of the momentum expectation value is

d〈px〉
dt

=
i

h̄

〈[
Ĥ, p̂x

]〉
=
i

h̄
〈[V (x̂), p̂x]〉 = −

〈
∂V

∂x
(x̂)

〉

The negative gradient of the potential energy is called the “force” in classical mechanics.
Therefore, this says the force equals dp/dt = mdV/dt, i.e. Newton’s Second Law of motion.

(2) The differential equation is the same as (6.88) inside the box, so the solution is still
(6.100), namely ψ(x) = A sin kx + B cos kx. However, now we need ψ(0) = 0 so B = 0,
and setting ψ(L) = A sin(kL) = 0 which is the same as (6.104) with a→ L. Therefore, the
quantization condition is identical (of course), and the energy levels are the same as (6.110),
again with a→ L. The eigenfunctions are the same as (6.106), but with x→ x+ a/2 which
converts all the cosines to sines, and n = 1, 2, 3 . . .. The normalization factor is the same as
in (6.108), of course, once more with a→ L.

The wave function is a linear combination of the normalized n = 1 and n = 2 energy
eigenfunctions, so it is properly normalized if∣∣∣∣1 + i

2

∣∣∣∣2 +

∣∣∣∣∣ 1√
2

∣∣∣∣∣
2

=
(1− i)(1 + i)

4
+

1

2
=

2

4
+

1

2
= 1

The integral is done in the Mathematica notebook. Since e−iĤt/h̄|E〉 = e−iEt/h̄|E〉, the
time dependent wave function is the same as |ψ(x, 0)〉 but with factors e−iE1t/h̄ and e−iE2t/h̄

in front of the the two terms. The expectation value of the energy must be a constant in
time because the Hamiltonian commutes with itself! Explicitly, for |ψ〉 = a|E1〉+ b|E2〉,

〈E〉 = |a|2E1 + |b|2E2 =
1

2

h̄2π2

2mL2
+

1

2

h̄2π2

2mL2
4 =

5

2

h̄2π2

2mL2

This is also calculated analytically in the Mathematica notebook. For 〈x〉 we find

〈x〉 =
8
√

2L

9π2

[
sin

(
3π2th̄

2L2m

)
− cos

(
3π2th̄

2L2m

)]
+
L

2

Finally, the probability to find the particle in the first energy eigenstate is just |(1 + i)/2|2 =
1/2, which is also calculated analytically in the Mathematica notebook.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #8

Due at 5pm to the Grader on Thursday 11 Mar 2021

(1) The uncertainties in position ∆x and momentum ∆px for some state |ψ〉 are determined
from the expectation values of x, x2, px, and p2

x by

(∆x)2 =
〈
(x− 〈x〉)2

〉
= 〈x2〉 − 〈x〉2 and (∆px)

2 =
〈
(px − 〈px〉)2

〉
= 〈p2

x〉 − 〈px〉2

a. Determine ∆x and ∆px for the ground state |0〉 of a particle of mass m in a harmonic
oscillator potential energy V (x) = mω2x2/2. Calculate the expectation values by
integrating over x. (The normalized ground state wave function is Equation (7.44) in
your textbook, and you are welcome to do the integrals using Mathematica, lookup
tables, or whatever other modern convenience you have at your disposal.) Form the
product ∆x∆px and show that it is the minimum value allowed by the uncertainty
relation (3.74).

b. Determine ∆x and ∆px for an arbitrary energy eigenstate |n〉 using operator methods,
that is, writing x̂ and p̂x in terms of â and â†. Show that your answer for n = 0 agrees
with what you calculated above for the ground state.

(2) Consider a particle of mass m in a harmonic oscillator potential energy V (x) = mω2x2/2.
The initial state is given in terms of energy eigenstates |n〉 by

|ψ(t = 0)〉 = a|n〉+ b|n+ 1〉

where a and b are, in principle, complex constants. That is, a superposition of two adjacent
energy eigenstates. The state |ψ(t = 0)〉 is, of course, properly normalized.

a. Calculate the expectation values 〈x〉 and 〈px〉, both as a function of time. Comment
on the result if either a or b is zero, and the effect of the relative phases of a and b on
the result. Feel free to modify the notation if you think that is helpful.

b. For n = 0 and a = b = 1/
√

2, your answer should follow, and agree with, Example
7.3 in your textbook. Calculate and plot the probability density |〈x|ψ(t)〉|2 for times
t = 0, t = π/2ω, and t = π/ω, as shown in Figure 7.10. (If you know how to do it,
write a program that animates this.) Comment on how your result compares to 〈x〉.



Solutions HW #8

(1) For Part (a), use (7.44) 〈x|0〉 = (mω/πh̄)1/4e−mωx
2/2h̄ and Mathematica to compute

〈x〉 =
∫ ∞
−∞

dx〈0|x〉x〈x|0〉 = 0

〈x2〉 =
∫ ∞
−∞

dx〈0|x〉x2〈x|0〉 =
h̄

2mω

〈px〉 =
h̄

i

∫ ∞
−∞

dx〈0|x〉 d
dx
〈x|0〉 = 0

〈p2
x〉 = −h̄2

∫ ∞
−∞

dx〈0|x〉 d
2

dx2
〈x|0〉 =

mωh̄

2

Therefore ∆x =
√
h̄/2mω and ∆px =

√
mωh̄/2, so ∆x∆px = h̄/2. From (3,74), and also

(3.71), we expect ∆x∆px ≥ |〈[x̂, p̂x]〉|/2 = h̄/2, since [x̂, p̂x] = ih̄. Therefore, the ground
state of the harmonic oscillator is a minimum uncertainty state.

For Part (b), we use operator methods. Note that this solution is pretty much done completely
in Section 7.5 of the textbook. Now we use (7.11) and (7.12) to write

x̂ =

√
h̄

2mω
(â+ â†)

x̂2 =
h̄

2mω
(â2 + ââ† + â†â+ â†

2

)

p̂x = −i
√
mωh̄

2
(â− â†)

p̂2
x =

mωh̄

2
(−â2 + ââ† + â†â− â†2)

Now since â and â† have nonzero matrix elements in the |n〉 basis only for off diagonal terms,
neither they nor â2 or â†

2
will contribute to the matrix elements 〈x〉, 〈x2〉, 〈px〉, and 〈p2

x〉.
Therefore 〈x〉 = 0 = 〈px〉. However,

〈n|ââ†|n〉 =
√
n+ 1〈n|â|n+ 1〉 = n+ 1

and 〈n|â†â|n〉 =
√
n〈n|â†|n− 1〉 = n

therefore 〈x2〉 =
h̄

2mω
(n+ 1 + n) =

h̄

mω

(
n+

1

2

)
and 〈p2

x〉 =
mωh̄

2
(n+ 1 + n) = mωh̄

(
n+

1

2

)

so ∆x =

√
h̄

mω

√
n+

1

2

and ∆px =
√
mωh̄

√
n+

1

2

giving, finally, ∆x∆px =
(
n+

1

2

)
h̄

The minimum uncertainty relation is only achieved in the n = 0 state.



(2) We follow the procedure we used in class, namely Example 7.3 in the textbook. The
time-dependent state is

|ψ(t)〉 = ae−iEnt/h̄|n〉+ be−iEn+1t/h̄|n+ 1〉
= e−niωt/2

[
a|n〉+ be−iωt|n+ 1〉

]
Expressions for x̂ and p̂x are given in the first problem. We will need the matrix elements

〈ψ(t)|â|ψ(t)〉 =
[
a∗〈n|+ b∗eiωt〈n+ 1|

]
â
[
a|n〉+ be−iωt|n+ 1〉

]
=

[
a∗〈n|+ b∗eiωt/h̄〈n+ 1|

] [
a
√
n|n− 1〉+ be−iωt

√
n+ 1|n〉

]
= a∗b e−iωt

√
n+ 1

and 〈ψ(t)|â†|ψ(t)〉 =
[
a∗〈n|+ b∗eiωt〈n+ 1|

]
â†
[
a|n〉+ be−iωt|n+ 1〉

]
=

[
a∗〈n|+ b∗eiωt/h̄〈n+ 1|

] [
a
√
n+ 1|n+ 1〉+ be−iωt

√
n+ 2|n+ 2〉

]
= b∗aeiωt

√
n+ 1

The expectation values 〈x〉 and 〈p〉 follow straightforwardly, namely

〈x〉 =

√
h̄

2mω

(
a∗b e−iωt + b∗a eiωt

)√
n+ 1

and 〈px〉 = −i
√
mωh̄

2

(
a∗b e−iωt − b∗a eiωt

)√
n+ 1

Now take advantage of the invitation to “modify the notation.” Let’s make a real, which in-
volves no loss of generality, just an overall phase factor for |ψ(t)〉. Then enforce normalization
with b =

√
1− a2e−iδ, where δ is a real phase. This makes

a∗b e−iωt + b∗a eiωt = a
√

1− a2
[
e−i(ωt+δ) + e+i(ωt+δ)

]
= 2a

√
1− a2 cos(ωt+ δ)

and a∗b e−iωt − b∗a eiωt = a
√

1− a2
[
e−i(ωt+δ) − e+i(ωt+δ)

]
= −2ia

√
1− a2 sin(ωt+ δ)

and the expectation values become

〈x〉 =

√
2h̄

mω

√
n+ 1 a

√
1− a2 cos(ωt+ δ)

and 〈px〉 = −
√

2mωh̄
√
n+ 1 a

√
1− a2 sin(ωt+ δ)

= m
d〈x〉
dt

as it should be.

For a = b = 1/
√

2, which means δ = 0, and n = 0, we get

〈x〉 =

√
h̄

2mω
cosωt and 〈px〉 = −

√
mωh̄

2
sinωt

the first of which agrees with Example 7.3.



The probability density is

ρ(x, t) = |〈x|ψ(t)〉|2

= |a〈x|n〉+ be−iωt〈x|n+ 1〉|2

= |a|2|〈x|n〉|2 + |b|2|〈x|n+ 1〉|2 + a∗be−iωt〈x|n〉∗〈x|n+ 1〉+ ab∗eiωt〈x|n〉〈x|n+ 1〉∗

=
1

2
|〈x|0〉|2 +

1

2
|〈x|1〉|2 + 〈x|0〉〈x|1〉 cosωt

where we put n = 0, a = b = 1/
√

2, and recognize that the wave functions are real. The
textbook gives the wave functions for 〈x|0〉 in (7.44) and 〈x|1〉 in (7.46), namely

〈x|0〉 =
(
mω

πh̄

)1/4

e−mωx
2/2h̄

and 〈x|1〉 =

[
4

π

(
mω

h̄

)3
]1/4

xe−mωx
2/2h̄

Following is the Mathematica reproduction of Figure 7.10:
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PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #9

Due at 5pm to the Grader on Thursday 18 Mar 2021

(1) Prove the relation between the square of the orbital angular momentum operator L̂2 and
the 3D position and momentum operators p̂ and r̂ that we used in class, namely

L̂2 = L̂ · L̂ = L̂iL̂i = r̂2p̂2 − (r̂ · p̂)2 + ih̄r̂ · p̂

Make use of the definition L̂i = εijkx̂j p̂k (Remember: We are using the Einstein summation
convention!), the commutation relation [x̂i, p̂j] = ih̄δij, and the very useful theorem

εijkεilm = δjlδkm − δjmδkl

I’m assigning this problem mostly because I want you to appreciate the power of this notation.
It’s tricky, though, so here are some tips. First, note that, for two vectors A and B, we have
A · B = AiBi = AjBj = δijAiBj where any two repeated indices are summed, so they are
dummy indices. Remember that all three x̂i commute with each other, as do all p̂i, whereas
[x̂i, p̂j] = ih̄δij tells you how to “flip” the order of position and momentum. You also have
δijδik = δkj, and similar examples. Can you convince yourself that δkk = 3?

So use the expression above for εijkεilm, and look at what momenta and positions are “paired”
by the Kronecker delta to guide yourself towards the result you want to obtain. You can get
to the final answer in eight or ten lines of algebra.

(2) The wave function for a particular particle has the form

ψ(r) = (x+ y + z)f(r)

where f(r) is some arbitrary function of the radial spherical coordinate. Express ψ(r) in
terms of spherical harmonics, tabulated in many places including Equations (9.151), (9.152),
and (9.153) in your textbook, and then determine the following:

a. What are the possible results of a measurement of L̂2, and what are the probabilities
for getting these results?

b. What are the possible results of a measurement of L̂z, and what are the probabilities
for getting these results?



Solutions HW #9

(1) Note that this is done in MQM3e (3.226) albeit with some notation changes. We have

L̂2 = L̂ · L̂ = L̂iL̂i = (εijkx̂j p̂k)(εilmx̂lp̂m) = εijkεilmx̂j p̂kx̂lp̂m = (δjlδkm − δjmδkl)x̂j p̂kx̂lp̂m

The first term dots the x’s together and the p’s together, which is what we want in the first
term we are trying to derive, but they are in the wrong order. So flip the inner pair using
the commutation relation, and get

δjlδkmx̂j p̂kx̂lp̂m = δjlδkmx̂j(x̂lp̂k − ih̄δkl)p̂m = x̂jx̂j p̂kp̂k − ih̄δjlδkmδklx̂j p̂m

Now x̂jx̂j p̂kp̂k = r̂2p̂2, which is what we were going for. Also δjlδkmδkl = δjkδkm = δjm, so we

also have −ih̄δjlδkmδklx̂j p̂m = −ih̄r̂ · p̂. Working next on the second term of L̂2, we notice
that it instead dots x’s with p’s, so focus on the term (r̂ · p̂)2 = x̂ip̂ix̂j p̂j. We have

δjmδklx̂j p̂kx̂lp̂m = δjmδklx̂j p̂k(p̂mx̂l + ih̄δlm) = δjmδklx̂j p̂kp̂mx̂l + ih̄δjmδklδlmx̂j p̂k

= δjmδklx̂j p̂mp̂kx̂l + ih̄δjmδklδlmx̂j p̂k

= δjmδklx̂j p̂m(x̂lp̂k − ih̄δkl) + ih̄δjmδklδlmx̂j p̂k

= δjmδklx̂j p̂mx̂lp̂k − ih̄δjmδklδklx̂j p̂m + ih̄δjmδklδlmx̂j p̂k

= x̂j p̂jx̂kp̂k − 3ih̄x̂j p̂j + ih̄x̂j p̂j = (r̂ · p̂)2 − 2ih̄r̂ · p̂

where we recognize that δklδkl = 3. Finally, putting this all together, we get

L̂2 = r̂2p̂2 − ih̄r̂ · p̂− [(r̂ · p̂)2 − 2ih̄r̂ · p̂] = r̂2p̂2 − (r̂ · p̂)2 + ih̄r̂ · p̂

(2) From (9.152) and the definition of spherical coordinates, we see that

Y1,0(θ, φ) =

√
3

4π
cos θ =

√
3

4π

z

r

Y1,1(θ, φ) = −
√

3

8π
(cosφ+ i sinφ) sin θ = −

√
3

8π

1

r
(x+ iy)

and Y1,−1(θ, φ) =

√
3

8π
(cosφ− i sinφ) sin θ =

√
3

8π

1

r
(x− iy)

so x =

√
2π

3
r [Y1,−1(θ, φ)− Y1,1(θ, φ)]

y = i

√
2π

3
r [Y1,−1(θ, φ) + Y1,1(θ, φ)]

z =

√
4π

3
rY1,0(θ, φ)

Therefore 〈r|ψ〉 = R(r)N
[
(i− 1)〈r|1, 1〉+ (i+ 1)〈r|1,−1〉+

√
2〈r|1, 0〉

]
so |ψL〉 =

i− 1√
6
|1, 1〉+

i+ 1√
6
|1,−1〉+

√
1

3
|1, 0〉

is the (normalized) angular part of the state. A measurement of L2 can only yield 1(1+1)h̄2 =
2h̄2 and any measurement of Lz will give ±h̄ or 0, each with equal 1/3 probabilities.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #10

Due at 5pm to the Grader on Thursday 25 Mar 2021

(1) The deuteron is the simplest atomic nucleus, the bound state of one proton and one
neutron. Experiments show that they are in a relative s-state, that is, ` = 0, and that the
binding energy, that is, the energy that needs to be added to separate the proton and neutron,
is 2.2 MeV. Experiments also show that the force that binds the proton and neutron can be
represented by a finite spherical well of radius a = 1.7 fm, that is, twice the RMS radii of
the proton and neutron. Use this data to find the depth, in MeV, of the finite spherical well.
Some computer programming is required to solve the resulting transcendental equations.

Your textbook outlines a graphical approach to estimate the solution, but I think it is easier
to transform the equation to solve for v ≡ V0/|E| using Mathematica or some other tool.
I wrote the appropriately rearranged version of (10.60), plotted both sides to estimate the
solution, then used a numerical function to determine the intersection.

When you have the well depth, make a plot that combines the shape of the potential well,
a line for the energy level, and the (normalized) wave function u(r). This is Figure 10.9 in
your textbook.

You might be amused to know that I solved this problem as an undergraduate in 1976. The
numerical solution required me to write a Fortran program, typed onto punch cards, which
were fed into an IBM 360 Mainframe computer.

(2) An electron is in the ground state of tritium, a nucleus with one proton and two neutrons.
Tritium is radioactive, and beta decays to the nucleus 3He, with two protons and one neutron.
The decay happens, for all purposes, instantaneously. Calculate the (numerical) probability
that the electron remains in the ground state of the 3He+ ion.



Solutions HW #10

(1) The equations are worked out in Section 10.3 in the textbook. We find V0 from

tan


√√√√2µa2

h̄2 |E|
(
V0

|E|
− 1

) = −
√
V0

|E|
− 1

This lets us solve for the dimensionless quantity V0/|E| ≡ v because we can just write down
the value of 2µa2|E|/h̄2 from the information given. With µ = mpmn/(mn +mp) = mN/2,

2µa2

h̄2 |E| =
mNc

2 a2

h̄2c2
|E| = 940× (1.7)2

2002
× 2.2 = 0.1494

The solution is given in the Mathematica notebook. We find v = 22.3 so V0 = 49 MeV.
The plot is straightforward. The result from Mathematica is
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(2) The probability to measure some eigenstate state |a〉 when the system is in a state |ψ〉 is
|〈a|ψ〉|2. Denoting one-electron atom energy eigenstates as |Z;nlm〉, this problem asks what
is the probability of finding the 3He+ ion in the energy eigenstate |2; 100〉 when it is in the
state |1; 100〉. So, referring to (9.151) and (10.43) we calculate

〈2; 100|1; 100〉 =
∫
d3r〈2; 100|r〉〈r|1; 100〉 =

∫
d3rR∗2;10(r)Y ∗00(θ, φ)R1;10(r)Y00(θ, φ)

=
[∫ ∞

0
r2drR∗2;10(r)R1;10(r)

] [∫ π

0
sin θdθ

∫ 2π

0
dφ

1

4π

]
=

∫ ∞
0

r2dr 2
(

2

a0

)3/2

e−2r/a0 2
(

1

a0

)3/2

e−r/a0

=
8
√

2

a3
0

∫ ∞
0

r2dr e−3r/a0 =
8
√

2

a3
0

2!
(
a0

3

)3

=
24
√

2

33

Therefore, the probability is 29/36 = 0.702. That is, there is a 70.2% chance of finding the
3He+ ion in its ground state.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #11

Due at 5pm to the Grader on Thursday 1 Apr 2021

(1) Consider Problem #1 from Homework #10, the assignment from last week. Show that
there exists another solution that satisfies the same criteria, but with a much deeper well.
This is not a physically valid solution only because, in this case, E = −2.2 MeV is the energy
of the first excited state, and there is no experimental evidence for a more deeply bound
ground state in deuterium. Nevertheless, find the energy of this fictional ground state, and
make a plot of the wave functions for the ground and first excited states. How do these plots
compare to the one you made last week?

(2) Consider a particle of mass m bound by an isotropic harmonic oscillator potential in two
dimensions, that is

V (r) =
1

2
mω2r2 =

1

2
mω2(x2 + y2)

a. Show that the Hamiltonian Ĥ naturally splits into the sum of two commuting Hamil-
tonians Ĥx and Ĥy, similar to the way we treated the three dimensional case in class.

b. Show that the energy eigenvalues are En = (n + 1)h̄ω for n = 0, 1, 2, . . ., and express
n in terms of the quantum numbers nx and ny for Ĥx and Ĥy.

c. Discuss the level of energy degeneracy for the lowest few eigenvalues.

d. Define an orbital angular momentum operator in the usual way, namely

L̂ ≡ x̂p̂y − ŷp̂x

You can express L̂ in terms of the creation and annihilation operators corresponding
to Ĥx and Ĥy, as in Equations (7.11) and (7.12) in your textbook. Prove explicitly

that [Ĥ, L̂] = 0. What symmetry argument can you give that says this is exactly what
you should expect?

e. There are two eigenstates |nx, ny〉 with the same energy E1 = 2h̄ω. Determine the

correct linear combinations of these that are eigenstates of L̂. (They have to exist,
because [Ĥ, L̂] = 0, right?) You might be able to guess them, but you can also just
diagonalize L̂ in the |nx, ny〉 space. What are the eigenvalues of L̂?



Solutions HW #11

(1) Repeating the solution from last week, but extending the range of the solution, we find
that in addition to v = V0/|E| = 22.3 we also find a solution v = 154.7. Using this latter
value implies V0 = 340.4 MeV. (See the Mathematica notebook for details.) Solving now
for v using this value of V0, we find the two eigenvalues E = −242.7 MeV and, of course,
E = −2.2 MeV. Here is the plot of the two wave functions:
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Just as we expect, the ground state now has a much smaller extent outside the well, and the
2.2 MeV state has a node inside the well.

(2) Clearly Ĥ = Ĥx + Ĥy where Ĥx = p̂2
x/2m+mω2x̂2/2 and Ĥy = p̂2

y/2m+mω2ŷ2/2, two
operators that commute with each other. Therefore |E〉 = |nx, ny〉 and E = En = Enx +Eny

with Enx = (nx + 1/2)h̄ω and Eny = (ny + 1/2)h̄ω so En = (n + 1)h̄ω where n = nx + ny.
The n = 0 state is nondegenerate, since onl6 nx = ny = 0 gives n = 0. The first excited
state (n = 1) is twofold degenerate, namely |1, 0〉 and |0, 1〉. The three states |2, 0〉, |1, 1〉,
and |0, 2〉 all have n = 2, so the second excited state has degeneracy 3, and so forth. Now,

L̂ = −i
√

h̄

2mω

√
mωh̄

2
(âx + â†x)(ây − â†y)− (ây + â†y)(âx − â†x)

= −ih̄
2

(âxây − âxâ†y + â†xây − â†xâ†y − âyâx + âyâ
†
x − â†yâx + â†yâ

†
x) = ih̄(âxâ

†
y − â†xây)

The Hamiltonian is Ĥ = Ĥx + Ĥy = (â†xâx + â†yây + 1)h̄ω, so for [Ĥ, L̂] = 0 we need to show

[â†xâx + â†yây, âxâ
†
y − â†xây] = [â†xâx, âx]â

†
y − [â†xâx, â

†
x]ây + âx[â

†
yây, â

†
y]− â†x[â†yây, ây]

= −âxâ†y − â†xây + âxâ
†
y + â†xây = 0

where we used (7.19) and (7.20). This is expected since L̂ generates rotations about the z-
axis, and the Hamiltonian is symmetric in the xy plane. Writing |A〉 ≡ |1, 0〉 and |B〉 ≡ |0, 1〉,
we have 〈A|L̂|A〉 = ih̄〈A|B〉 = 0 = 〈B|L̂|B〉, but 〈A|L̂|B〉 = −ih̄ = −〈B|L̂|A〉. Therefore,
writing the eigenvalues of L̂ as λh̄, we find λ from

det

(
−λ −i
i −λ

)
= λ2 − 1 = 0

so the eigenvalues of L̂ are ±h̄. For +h̄, we have i〈+h̄|A〉 − 〈+h̄|B〉 = 0, while for −h̄ we
have −i〈−h̄|A〉 − 〈−h̄|B〉 = 0, so the normalized eigenvectors are

|+ h̄〉 =
1√
2
|A〉+

i√
2
|B〉 and | − h̄〉 =

1√
2
|A〉 − i√

2
|B〉



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #12

Due at 5pm to the Grader on Thursday 8 Apr 2021

(1) Consider a simple harmonic oscillator in one dimension x for a particle of mass m and
with a potential energy function mω2x2/2. Now add a “perturbation” of the form mω2

1x
2/2,

where ω1 � ω. Calculate the energy shifts through second order. Of course, this problem
can be solved exactly. Expand the exact energy eigenvalues in powers of ω1/ω to compare
to the perturbation expansion.

(2) This problem asks you to calculate the effect of the finite size of the proton on the energy
levels of the hydrogen atom. The proton is a “fuzzy” object with a radius close to 1 fm, but
for this calculation let’s assume it is a uniformly charged sphere of radius R. First, show
that, for the radial coordinate r ≤ R, the electrostatic potential energy is

V (r) = −3

2

e2

R3

(
R2 − 1

3
r2
)

It is probably easiest to do this by using Gauss’ Law to get the electric field inside the sphere,
integrating to get the potential, and enforcing continuity at r = R.

The difference between this potential energy and the point-like form we used to solve the
hydrogen atom, can be treated as a perturbation. Calculate the effect of the energy shift on
the 1s, 2s, and 2p states of the hydrogen atom, that is, the states |100〉, |200〉, and |21m〉.
Why do you not need to be concerned about the degeneracy in n = 2?

It will be best to use Mathematica or some similar application to carry out the necessary
integrations. Argue that, physically, R � a0 and use this to simply your expressions. It is
easy in Mathematica to use the Series function to expand any expression in some small
quantity.

If you write your answers for E
(1)
1,0 , E

(1)
2,0 , and E

(1)
2,1 as a numerical value times e2/a0 times a

power of R/a0, you will find that the l = 0 and l = 2 states have very different dependences
on R/a0. What is the physical reason for this difference?



Solutions HW #12

(1) Let’s do the exact solution first. The Hamiltonian is

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 +

1

2
mω2

1x̂
2 =

1

2m
p̂2 +

1

2
m(ω2 + ω2

1)x̂2

Therefore, the energy eigenvalues are

En =
(
n+

1

2

)
h̄
√
ω2 + ω2

1 =
(
n+

1

2

)
h̄ω

(
1 +

ω2
1

2ω2
− ω4

1

8ω4
+ · · ·

)

and so we expect perturbation theory to tell us that

E(1)
n =

(
n+

1

2

)
h̄ω

ω2
1

2ω2
and E(2)

n = −
(
n+

1

2

)
h̄ω

ω4
1

8ω4

Write the perturbation in terms of creation and annihilation operators, that is

Ĥ1 =
1

2
mω2

1x̂
2 =

1

2
mω2

1

h̄

2mω
(â+ â†)2 = h̄ω

ω2
1

4ω2

(
â2 + ââ† + â†â+ â†

2
)

We’ll need the matrix elements of Ĥ1 so let’s go ahead and calculate

〈k|
(
â2 + ââ† + â†â+ â†

2
)
|n〉 =

√
n(n− 1)δk,n−2 +(n+1)δk,n+nδk,n+

√
(n+ 1)(n+ 2)δk,n+2

The first order energy shift is

E(1)
n = 〈n|Ĥ1|n〉 = h̄ω

ω2
1

4ω2
(2n+ 1) =

(
n+

1

2

)
h̄ω

ω2
1

2ω2

which agrees with our expectation. The second order energy shift is

E(2)
n =

∑
k 6=n

|〈k|Ĥ1|n〉|2

E
(0)
n − E(0)

k

= (h̄ω)2 ω4
1

16ω4

[
n(n− 1)

(n+ 1/2)h̄ω − (n− 2 + 1/2)h̄ω
+

(n+ 1)(n+ 2)

(n+ 1/2)h̄ω − (n+ 2 + 1/2)h̄ω

]

= h̄ω
ω4

1

16ω4

[
n(n− 1)

2
+

(n+ 1)(n+ 2)

−2

]
= h̄ω

ω4
1

32ω4

[
n2 − n− (n2 + 3n+ 2)

]
= h̄ω

ω4
1

32ω4
(−4n− 2) = −

(
n+

1

2

)
h̄ω

ω4
1

8ω4

which also agrees with our expectation.



(2) The integral form of Gauss’ law in Gaussian units is∮
E · dA = 4πQenc

Picking a sphere of radius r ≤ R for the Gaussian surface, we have

Qenc =
(

4

3
πr3/

4

3
πR3

)
e = e(r3/R3)

and E(4πr2) = 4πe(r3/R3) so E = e
r

R3

The potential energy on the electron from the electric potential becomes

V (r) = −(−e)
∫ r

0
E(r′) dr′ + C =

e2

2R3
r2 + C

However, the potential energy needs to be continuous at r = R, so

e2

2R3
R2 + C = −e

2

R
so C = −3e2

2R
and V (r) = −3

2

e2

R3

(
R2 − 1

3
r2
)

In order to write down the correct Hamiltonian Ĥ, we need to subtract away the point-
like potential energy function (Ĥ0) for r ≤ R and add in the correct one. Therefore, the
perturbation is

H1 = −3

2

e2

R3

(
R2 − 1

3
r2
)
−
(
−e

2

r

)
=
e2

r
− 3

2

e2

R3

(
R2 − 1

3
r2
)

for r ≤ R

The perturbation is zero for r ≥ R. To get the first order energy corrections to the indi-
cated states, we just take the expectation values of the perturbation. We don’t need to be
concerned that the n = 2 states are degenerate because the perturbation is already diagonal
in this subspace. Physically, this is because the perturbation is spherically symmetric, so it
commutes with the orbital angular momentum operator.

This is clear from an explicit calculation, which we will do in a moment. You calculate
the expectation values in position space, and the integrals over θ and φ just give you unity
because there are no other angular variables than those in the spherical harmonics. We only
need to do the integrals with the radial wave functions Rnl(r). These are carried out in the
Mathematica notebook. We find, to lowest order in R/a0,

E
(1)
1,0 =

2

5

e2

a0

(
R

a0

)2

E
(1)
2,0 =

1

20

e2

a0

(
R

a0

)2

E
(1)
2,1 =

1

1120

e2

a0

(
R

a0

)4

The expansion in R/a0 is justified because R ≈ 1 fm and a0 ≈ 1Å, so R/a0 ≈ 10−5. Notice
that the l = 0 states go like (R/a0)2, while the l = 1 state goes like (R/a0)4. This energy
shift is very small, but is way smaller for l = 1 compared to l = 0. This is because the wave
function near r = 0 goes like rl. There is only an appreciable piece of the wave function near
the origin for l = 0 states.



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #13

Due at 5pm to the Grader on Thursday 15 Apr 2021

(1) These questions are meant to associate numbers with atomic hydrogen phenomena.

a. The red n = 3 → 2 Balmer transition has a wavelength λ ≈ 656 nm. Calculate
the wavelength difference ∆λ (in nm) between the 3p3/2 → 2s1/2 and 3p1/2 → 2s1/2

transitions due to the spin-orbit interaction. Comment on how you might measure this
splitting.

b. How large an electric field E is needed so that the Stark splitting in the n = 2 level
is the same as the correction from relativistic kinetic energy between the 2s and 2p
levels? How easy or difficult is it to achieve an electric field of this magnitude in the
laboratory?

c. The Zeeman effect can be calculated with a “weak” or “strong” magnetic field, depend-
ing on the size of the energy shift relative to the spin-orbit splitting. Give examples of
a weak and a strong field. How easy or difficult is it to achieve such a magnetic field?

(2) Fill in details and complete the calculation of the “total angular momentum” eigenvalues
and eigenstates, in Section 11.5 of your textbook. In particular

a. Find the matrix representation of the operator 2L̂ · Ŝ in the basis

|1〉 ≡ |l,ml,+z〉 and |2〉 ≡ |l,ml + 1,−z〉

b. Show that the eigenvalues of this matrix are λ = l and λ = −l − 1.

c. Show that these correspond to the eigenvalues j(j + 1)h̄2 with j = l ± 1/2 for the
operator Ĵ2 where Ĵ ≡ L̂ + Ŝ.

d. Show that the expressions (11.93) for the total angular momentum eigenstates

|j = l ± 1/2,mj〉 =

√
l ±mj + 1/2

2l + 1
|l,mj − 1/2,+z〉 ±

√
l ∓mj + 1/2

2l + 1
|l,mj + 1/2,−z〉

are normalized and give the correct eigenvalues for Ĵz.



Solutions HW #13

(1) Part of what goes on here will be getting conscious about the use of CGS units.

(a.) Use (11.96) to get the energy splitting for the 3p states.

E
(1)
3p3/2
− E(1)

3p1/2
=

1

2
mc2α

4

33

1

3

[
1

2
+ 1

]
=

1

2233

1

1374
× 511 keV = 1.34× 10−5 eV

Since λ = hc/E where E = 13.6 eV(1/4− 1/9) = 1.89 eV, we have ∆λ/λ = ∆E/E. In this

case ∆E = ∆
(1)
3p3/2
−∆

(1)
3p1/2

, so ∆λ = 656 nm×1.34×10−5/1.89 = 656 nm×7.1×10−6 or ∆λ =

4.65 × 10−3 nm. This magnitude splitting is difficult to observe. See for example Fig.6.12
in Experiments in Modern Physics, 2nd Ed. by Melissinos and Napolitano. Instrumental
effects and thermal broadening give a width ∼ 5 × 10−2 nm for this line, about ten times
too large to see this hyperfine splitting. It is possible to make the measurement with some
care, though. See, for example, “Experiments on Hydrogen and Deuterium Fine Structure”,
by S. Pollack and E. Wong, Am.J.Phys. 39(1971)1386.

(b.) The 2s/2p splitting from relativistic kinetic energy is from (11.74):

∆EK =
1

2
mc2α

4

23

[
1

1/2
− 1

3/2

]
=

1

12
mc2α4 = 1.21× 10−4 eV

The Stark splitting from (11.49) is 3ea0E where a0 = 0.53 × 10−8 cm. This quantity is an
energy, so calculate it in SI units. Converting ∆EK to Joules means multiplying by e, so

E =
1.21× 10−4

3 · 0.53× 10−10
= 7.61× 105 V/m = 7610 V/cm

That’s a lot of voltage to put across a centimeter, but it can be done. The breakdown voltage
in air is about four times higher than this.

(c.) The terms “weak” and “strong” have to do with how large is the Zeeman effect relative
to the spin-orbit splitting. As seen in (a.), the magnitude of the spin-orbit splitting is
several tens of µeV. From (11.109), the size of the Zeeman effect between different m states
is ∼ |e|h̄B/2mc, that is, the electron magnetic moment times the magnetic field. Once again,
this is an energy, so we can work in SI units. Take the energy scale to be 5 × 10−5 eV=
8 × 10−24 J. The electron magnetic moment is about 9 × 10−24 J/T, so a “weak” magnetic
field is much less than 1 T, and a “strong” magnetic field (for the hydrogen n = 2 state or
so) is much larger than 1 T. Note that fields of several tenths of a Tesla are easy to achieve
in the lab, but iron saturates at about 1.5 T so much larger fields are not straightforward to
achieve. Nevertheless, we can reach “high” fields for Zeeman splittings in other states where
the spin-orbit splitting is smaller. This is in fact known as the Paschen-Back Effect.



(2) From 2L̂ · Ŝ = L̂+Ŝ− + L̂−Ŝ+ + 2LzSz and J±|jm〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉,

2L̂ · Ŝ|1〉 =
√
l(l + 1)−ml(ml + 1)h̄2|l,ml + 1,−z〉+ 0 + 2ml

(
+

1

2

)
h̄2|l,ml,+z〉

=
√
l(l + 1)−ml(ml + 1) h̄2 |2〉+ml h̄

2 |1〉

2L̂ · Ŝ|2〉 = 0 +
√
l(l + 1)− (ml + 1)mlh̄

2|l,ml,+z〉+ 2(ml + 1)
(
−1

2

)
h̄2|l,ml,+z〉

=
√
l(l + 1)−ml(ml + 1) h̄2 |1〉 − (ml + 1)|2〉

which gives the matrix (11.86). The characteristic equation is

(ml − λ)(−ml − l − λ)−
√
l(l + 1)−ml(ml + 1)

√
l(l + 1)−ml(ml + 1)

= λ2 + λ(ml + 1−ml)−ml(ml + 1)− l(l + 1) +ml(ml + 1)

= λ2 + λ− l(l + 1) = 0

so λ =
1

2

[
−1±

√
1 + 4l(l + 1)

]
=

1

2
[−1± (1 + 2l)] = l or − l − 1

Acting with Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ on |lsjm〉 for λ = l gives

j(j + 1) = l(l + 1) +
1

2

(
1

2
+ 1

)
+ l = l2 + 2l +

3

4
=
(
l +

1

2

)(
l +

3

2

)
so j = l + 1/2. For λ = −l − 1 we get

j(j + 1) = l(l + 1) +
1

2

(
1

2
+ 1

)
− l − 1 = l2 − 1

4
=
(
l − 1

2

)(
l +

1

2

)
and j = l − 1/2. It is trivial to show that the given states are normalized since√ l ±mj + 1/2

2l + 1

2

+

√ l ∓mj + 1/2

2l + 1

2

= 1

Also, since Jz = Lz + Sz, and the two components are eigenstates of Lz and Sz, acting on
these states gives

Jz|j = l ± 1/2,mj〉 = mjh̄|j = l ± 1/2,mj〉

=

√
l ±mj + 1/2

2l + 1
(Lz + Sz)|l,mj − 1/2,+z〉 ±

√
l ∓mj + 1/2

2l + 1
(Lz + Sz)|l,mj + 1/2,−z〉

=

√
l ±mj + 1/2

2l + 1
(mj − 1/2 + 1/2)h̄|l,mj − 1/2,+z〉

±
√
l ∓mj + 1/2

2l + 1
(mj + 1/2− 1/2)h̄|l,mj + 1/2,−z〉

= mjh̄

√ l ±mj + 1/2

2l + 1
|l,mj − 1/2,+z〉 ±

√
l ∓mj + 1/2

2l + 1
|l,mj + 1/2,−z〉


= mjh̄|j = l ± 1/2,mj〉



PHYS3701 Introduction to Quantum Mechanics I Spring 2021

Homework Assignment #14

Due at 5pm to the Grader on Thursday 22 Apr 2021

(1) The Hamiltonian for a spin-1/2 particle of mass m and charge q in a magnetic field B is

Ĥ = −µ̂ ·B = − gq

2mc
Ŝ ·B

where g is the gyromagnetic ratio. The magnetic field has components in the z- and y-
directions, and is written as B = B0k̂ + B1 ĵ. Determine the energy eigenvalues exactly.
Then, taking B1 � B0, find the eigenvalues through second order in perturbation theory.
Compare the two approaches.

(2) A particle of mass m is bound in one dimension x ≥ 0 by an infinite wall at x = 0 and
a linear potential energy V (x) = λx, as shown in the figure below.

Use the variational principle to estimate the ground state E0 using the two different trial
functions (i) ψ(x) = xe−x/2a and (ii) ψ(x) = xe−x

2/2a2 , where a is a variable parameter.
(The calculation can be done analytically, but you are welcome to use Mathematica or
some other application.) Why does choice (ii) give you a better approximation to the exact
answer? (How do you know it is the better approximation?)

Explain how this can be measured by observing the quantized vertical heights to which a
ball can bounce off the floor. Calculate the height to which a neutron must bounce in order
to reach the ground state. Compare your answer to the experiment described in “Quantum
states of neutrons in the Earth’s gravitational field,” V.V. Nesvizhevsky, et al., Nature 415
(17 January 2002) 297.



Solutions HW #14

(1) If we write µ ≡ gqh̄/4mc, then the representation of Ĥ in the |±z〉 basis is

−µ(B0σz +B1σy) =

(
−µB0 iµB1

−iµB1 µB0

)

so the characteristic equation for the eigenvalues E is

(−µB0−E)(µB0−E)−µ2B2
1 = E2−µ2(B2

0 −B2
1) = 0 i.e. E = ±µ

√
B2

0 +B2
1 ≡ E±

We can expand the energy eigenvalues as

E± = ±µB0

(
1 +

B2
1

B2
0

)1/2

= ±µB0

(
1 +

B2
1

2B2
0

)
= ±µB0 ±

µB2
1

2B0

Treating the B1 term as a perturbation, it is clear that E
(0)
± = ±µB0 and |φ(0)

± 〉 = |±z〉, and

Ĥ1 = −gqB1

2mc
Sy = −gqB1

2mc

1

2i
(Ŝ+ − Ŝ−)

Therefore, the first order energy shifts E
(1)
± = −(gqB1/4imc)〈±z|(Ŝ+ − Ŝ−)|±z〉 = 0, in

agreement with the expansion of the exact eigenvalues. For the second order calculation, the
sum over “all other states” just includes the one other state. We have

E
(2)
+ =

|〈φ(0)
− |Ĥ1|φ(0)

+ 〉|2

E
(0)
+ − E

(0)
−

=
(
gqB1

4mc

)2 |〈−z|Ŝ−|+z〉|2

+µB0 − (−µB0)
=
(
gqB1

4mc

)2 h̄2

2µB0

=
µB2

1

2B0

E
(2)
− =

|〈φ(0)
+ |Ĥ1|φ(0)

− 〉|2

E
(0)
− − E

(0)
+

=
(
gqB1

4mc

)2 |〈+z|Ŝ+|−z〉|2

−µB0 − (+µB0)
=
(
gqB1

4mc

)2 h̄2

−2µB0

= −µB
2
1

2B0

which agree with our result from the expansion of the exact eigenvalues.



(2) The approach is straightforward. See the Mathematica notebook for details. You find

(i) 〈E〉 =
1

2a3

(
6a4λ+

ah̄2

4m

)
(ii) 〈E〉 =

4

a3
√
π

(
a4λ

2
+

3ah̄2√π
16m

)

Minimizing with respect to a gives ai = 1/(12)1/3(h̄2/mλ)1/3 and aii = (3
√
π/4)1/3(h̄2/mλ)1/3.

These give the approximations to the ground state energy as

(i) 〈E〉min =
(

3

2

)5/3
(
h̄2λ2

m

)1/3

(ii) 〈E〉min =
(

81

4π

)1/3
(
h̄2λ2

m

)1/3

The ratio of the second to the first is (34/35)1/3(32/4π)1/3 = 2/(3π)1/3 = 0.9468. Since the
second choice gives a smaller answer than the first, it must be closer to the exact result.
This is to be expected. If the potential function was flat, the wave function would fall as an
exponential, i.e. like (i). However, the linear function rises, so we expect the wave function
would fall more quickly, and choice (ii) falls more quickly than does (i).

This is like a bouncing ball because the potential energy for a mass m at a height x above
the Earth’s surface is mgx, that is, λ = mg. The “floor” is impenetrable, so the region x ≤ 0
is not allowed. For the ground state energy E0, the height is just h = E0/mg. Using the
minimum expectation value from (ii) as our estimate for E0, we find for a neutron mass

h =
(

81

4π

)1/3
(
h̄2

m2g

)1/3

= 13.8 µm

Following is Figure 4 from the Nesvizhevsky paper. It clearly shows that neutrons cannot
pass through their apparatus until they are allowed to bounce as high as 14 µm.
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