PHYS3701 Intro Quantum Mechanics |  HW#1 Due 23 Jan 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A beam of silver atoms is created by heating a vapor to 1500°C, and selecting atoms
with a velocity close to the thermal mean value. The beam moves through a 1.5 m long
magnetic field with a vertical gradient 8 T/m, and impinges a screen 2 m downstream of the
end of the magnet. Assuming the silver atom has spin-1/2 with a magnetic moment of one
Bohr magneton, find the separation distance in mm of the two states on the screen. This is
the calculation Stern and Gerlach had to do in order to design their experiment.

(2) In class we wrote down the states |+x) and |£y) in terms of the two states |+z). Using
these expressions, show that

(a) |[+x) is orthogonal to |—X)

(b) |+y) is orthogonal to |—¥)

(¢) The probability of measuring an electron to have its spin pointing in the +y direction,
when the electron in fact is in the |—z) state, is 1/2

(3) A spin-1/2 particle, say an electron, exists in the state

o) = L1y - L )

What is the probability that a measurement of spin the —y direction gives the value h/27

(4) For an arbitrary unit vector n = sinf cos ¢ X + sinfsin ¢y + cos 6z, I claim that
0 .0
|+n) = cos 3 [4-2) + e sin 5 |—2)

is the state for which a measurement of spin in the +n direction will always give /2.
Construct the corresponding state | — n) in terms of |+z) and |—2z) by forcing it to be
normalized, orthogonal to |+n), and with a positive, real coefficient of |+2z). If you recognize
that 6 and ¢ are just the normal polar angles in three dimensions, can you see why you could
have easily guessed your result for | — n)?

(5) Suppose you made a very large number of measurements of the spin in the z direction
for a bunch of electrons all in the state

o = /51 + 2 1-2)

In terms of A, what would be the average value of all of your measurements?
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(1) See the MATHEMATICA notebook. We find a separation of 6 mm.

(2) The expressions we came up with in class are

1 1 1 1
+x)=—1|4+2) £t — |-z and +y)=—|+2z2) £ — |-z
|>\/§|>\/§|> |Y>\/§|>\/§|>

The dual vectors are given by
(4% = o= (4] £ = (2] and (5] = — (42 F —= (2]
X| = —{(+2 —(—2z an = —= (T2 —F=\"Z
NG V2 ARG NG
Now just form the inner products, so that
1 1 1 1
x|+ %) = | (2] — —= (2| | == |+2) + —= |2
(K48 = |2 ol - s al] [ v+ o5 1-0)]
1, . R 1 . R 1 . 1, . .
= Sl +2) - S(-2] +5) + 5 (4al —2) — (2] - 2)
1 1 1 1
51 = 5(0) +5(0) = 5(1) =0
(31450 = |5l + s tal] [ o5+ 510
— = |—=(+z|+ —=(—2z|| | —=|+2)+ —= |-z
ey NG V2 2 V2
) 1
= %<+i|+i>+%<—21+z>+%<+z|—z>—§<—z]—z>
1 1 1 1
= = ~(0) 4+ =(0) — =(1) =0
S0+ 20+ 5(0) = 5 (1)
The probability requested is given by
31 - ) = || 75 al+ s -] | 250+ A
-2 =||—=Hz| + —=(—32|| |-2)| =|— — = ——
Y NG NG V2 e V2V2
(3) The probability requested is given by
2
2 1, . i } i V3, .
— = —(tz|+ —=(—z|| |z |+t2) — — |—%
(sl = || 5 el + 25 t-al] |3 e - S 1-a)

R
2V2  2v/2

ool




(4) Write | — ) = a|+2) + b|—2) where |a|?> + [b]*> = 1 and a is real and positive. Imposing
the orthogonality condition means (+n|—n) = 0, so

0 ‘ 6 . 0
a cos 3 + be~ " sin 2 =0 therefore b= —ae® cot 3

We can then calculate

0 20/2 2 0
a2+a2cot2§:a2[1—l—cos /1 a 1 i

sin /2 ~ sin? 0/2 B

where we note that 0 < 6 < 7 so that a > 0 for all . Therefore, we find that
| —n) = siné [4+2z) — € cos 3 |—2z)
which agrees with Problem 1.6 in Townsend.

It is clear that in order to flip +n to the opposite direction, we take § — 7 —6 and ¢ — ¢+,
so we would have naturally expected that

T—0

—0 0 - 0
i 5 |—2z) = sin§ |+z) — ewcosi |—2z)

—1n) = cos +2) + /@t gin
| — 1) |+2)

(5) The probability of measuring +h/2 is 1/3, and the probability of measuring —h/2 is 2/3,
so after a large number of measurements, the averagte value will be

{(4)+3(2) -t
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PHYS3701 Intro Quantum Mechanics |  HW#2 Due 30 Jan 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) The trace of an operator X is defined as

Tr(X) =) (a'|X]|a)

a/

where the |a’) are a set of eigenstates based on some Hermitian operator A. Prove that

(a) Tr(X) = >, (V| X|b') where the [b') are any other complete set of eigenvectors, that
is, it doesn’t matter which basis you use to evaluate the trace.

(b) Tr(XY) = Tr(Y X) for any two operators X and Y.
You will find it useful to invoke completeness by “inserting the identity operator.”

(2) Using the outer product expressions for the spin operators derived in class, show that

S8, =—5,9, and  [S,,S,]=S,S, — 5,8, = ihS.

(3) In a certain two state system, an operator H has the form
H = a|1)(1] + a|2)(2] + ib|1) (2] — ib|2) (1]
where a and b are real numbers.

(a) Show that H is Hermitian.
(b) Find the eigenvalues of H in terms of a and b and show that they are real.

(c) Find the eigenvectors of H in terms of a, b, |1), and |2). Normalize the eigenvectors,
but you should find that this is simple.

(4) For an arbitrary unit vector n = sinf cos ¢ X + sinfsin ¢y + cosf z, form the spin-1/2
operator S,, = S -n. Show that the eigenvalues of S,, are exactly what you expect. Find the
eigenvectors and compare to your answer for Problem 4 on Homework 1.

(5) Calculate expectation value of the operator S, that is (S.), for the spin-1/2 state

oy = /1) + 2 -2

and compare to your answer for Problem 5 on Homework 1. Then calculate the expectation

values (S5;) and (S,).
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1) Making use of the operator 1 = >, [b') (/| = >, |b")(b"| we write
b b

Tr(X) = Z( ']X|a/>—z IX1a) =D 0D (VX ()

/ bl/

= ZZZ (O"[a") (@ |) (V| X[B7) = ) @)X )

/ b// / b//

= D ) WX =D 0> sy VX = XY

/ bl/ / b/l bl

and  Tr(XY) = Y (d|XY]a) =) (d|X1Y]d)
SO XYW Y] =Y WY |a) (@ | X|Y)

= Y _WYIX|) => (H[YX|V) = Tr(YX)

b b
(2) Just do the work and the answers fall out. First the commutator, so
oo, N b o o A s
SoSy = |\ 5 lI+2) (2| +|=2) (+2]] | | 5 [-i]+2) (~2| +i|-2) (+2]]
2
7 (0+if+2) (+2] —i[-2) (=2 +0)
2
i +2) (+2] i |-2) (2]

AN Al A\ A ho o, . A\ 7 A
8,5, = (G l-ila) -al-+il-2) (al ) (5 1+ (-l + |-2) (4al)
h? S Ay
7 (0—il+2) (+2] +i]-2) (~2| + 0)

2

T [i142) (+2] + i -2) (~2]) = -5,
and  [S,,5,] = S.S,— 5,5,

h2
= %Z [|+2) (+z| — |—2) (—2z|] = ihS,

(3) It is obvious that H is Hermitian, since taking the adjoint flips the bras and kets and

takes the complex conjugates of the coefficients. The eigenvalue problem reduces to solving

for A using

a— A\ b
—itb a— A\

which are clearly real numbers. For A\ = a + b, we have

— ; (+)
{ ZZ ZZ 1 [ u%ﬂ ] - { X } S0 - ( )+zu§+) =0 or — iugﬂ _ ug+) —0
_ _ ul

‘:(a—)\)2—b220 SO A=axb

0



which both say that uéﬂ = —iugﬂ. For A = a — b, we have

boib ]| ui” 0 O, O -
{—ib Zb}lz%_)]:[o} SO ug)—l—w():O or —zu§)+u():0
which both say that ug_) = —iug_). The normalized eigenkets are therefore
1 1
a+b)=—1|1) —1]2 and a—0b)=—||1)+12
la+b) = 5 1) —il2)] ja = b) = —=[[1) +1[2)]

(4) Using the matrix representation in the |+z) basis, we have

S, = sin@cosqbé[o 1}+sin08ingbg[2 _Z]+COSHE[1 0}

2110 0 210 —1
_h cos 6 sin 6 cos ¢ — i sin 6 sin ¢
2| sinfcos¢+isinfsin ¢ —cos 6
_h cosf e "sinf
~ 2| €?%sinf  —cosf

The eigenvalues are therefore (h/2)\ where we get A by solving

cosf — \ e " sin @
e?sinf —cosf — \

‘:—(00520—/\2)—511120:—1—|—/\2:0

so A = £1 and the eigenvalues are +h/2, as expected. To get the eigenvectors, it is convenient
to write

0 0 0
c059—1:—2sin2§ 0059—1—1:2(:0325 and sin9:2sin§cos—

2
In this case, the eigenvector coefficients for A = +1 come from solving
—2sin?(6/2) e~*2sin(0/2) cos(0/2) A To
e®2sin(0/2) cos(0/2) 2cos?(6/2) WP L0
both of which give u§+) = ugﬂ e sin(0/2)/ cos(0/2). Normalization gives
<92 2 1
(+)>2 1 sSin (Q/Q) :( (+)> 1
(ul [ * cos2(0/2) ul cos?(0/2)
so we have u(1+) = cos(6/2) and u§+) = ¢sin(0/2), which agrees with the statement in
Problem 4 in Homework 1. For A = —1 we get
2cos?(0/2) e 2sin(60/2) cos(6/2) D To
e92sin(6/2) cos(0/2) 2sin?(0/2) oV L0
both of which give u$" = —u{" ¢ cos(6/2)/ sin(6/2). Normalization gives
2 2 1
(+))2 1 COs (9/2) _ < (+)> 1
(i { T2 ] T\ ) G2
so we have ugﬂ = sin(6/2) and ugﬂ = —e' cos(f/2), which agrees with the solution to

Problem 4 in Homework 1.



(5) Calculating the expectation value (S,) just parallels what we did in Homework 1, namely

(52)

(@] 5:|a)

a2 | ]
! [@ (4] - §<—z|]
10)-40)- ¢

o e F1-)

(I+2) (+2 — [-2)

\/%Hi) + \/;I—@]

The calculations for (S,) and (S,) are similarly easy.

(Sa)

(@] Sela)

\/g<+z|+\/§<—z| h \[|+z \[| z]

(|+2z) (—z| + |-2) (+2])

] [Vibr e o)

m v hf
23 23 3
(a]Syla)

1 2 h 1, .

3 (+z] + 3 <—z\] B (—i|+2z) (—z| +i|-2z) (+2z]) \/;|+z> + 3 —z)]
;2 [—i\/%(—i\ —I—i\/;<+z| 3 |+2) + ;y—z>]

h 12 h /2
—lz\/5 Tl 5 =



PHYS3701 Intro Quantum Mechanics |  HW+#3  Due 6 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Consider the possibility of an observable P for which the Hermitian operator is also
unitary, that is Pt = P = P~!. Show that this implies that P> = 1. Can you think of a
practical real world example of such an operator in three-dimensional space?

(2) For a certain two-state system, the Hamiltonian has the time-independent form
H = [1)6(2] + [2)6(1]

where ¢ is a real number. Calculate the eigenvalues and eigenstates of H, and find the
time-evolved state |«;t) assuming the system starts out in the state |o) = |1). Determine
the probability that a measurement finds the system in |1) as a function of time.

(3) A spin-1/2 particle with charge ¢ sits in a static magnetic field B = B2. The particle is
initially in the state |+x), that is, the state for which a measurement of the spin in the +x
direction will always give +h/2. Find the expectation value (S,) as a function of time and
argue that your answer is exactly what you expect.

(4) An electron is subject to a static magnetic field B = Bz. At t = 0 the electron is known
to be in an eigenstate of S,, = S - n with eigenvalue +h/2, where 1 is a unit vector, lying in
the xz-plane, that makes an angle # with the z-axis.

(a) Find the probability for finding the electron in the |[+x) state as a function of time.
(b) Find the expectation value of S, as a function of time.

(c¢) Show that your answers make good sense for § = 0 and 0 = 7/2.
You can make use of your results on Problem 4 of Homework 2.

(5) Neutrinos are very low mass particles that are only detected through the so-called weak
interaction, and are observed only in the eigenstates

|Ve) = cos@|vy) — sin B|vs) and \v,) = sin@|vy) + cos f|vs)

where |v1) and |v») are eigenstates of the (full) Hamiltonian with masses m; and my and
f is a “mixing angle.” Making the assumption that electron neutrinos are produced with
definite momentum p > mc and energy E = (p?c? + m?c*)Y/? at time t = 0, show that the
probability of detecting the neutrino as an electron neutrino at some distance L is given by

L
P(ve = ve) = 1 —sin® 20 sin® [ Am®¢?
(Ve = Ve) sin” 26 sin ( me e
where Am? = m? — m32. Now look up the paper “Precision Measurement of Reactor An-
tineutrino Oscillation at Kilometer-Scale Baselines by Daya Bay”, by F.P. An, et al., Phys.
Rev. Lett. 130, 161802, and use Figure 3 to estimate the sizes of Am?2c? (in eV?) and sin? 26,
which you can compare the the results published in the paper.
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(1) It is simple to show that P? = PP = P~'P = 1. In other words, do the operation twice
and you come back to where you started. The classic (and 1mportant) example is the parity
operation, where the position vector r — —r.

(2) Find the eigenvalues and eigenvectors by diagonalizing H in the given basis. That is

0 o v | U1 —E 0 o o
Follnl=sln] = |75 gfemoee
and the eigenvalues are just £y = +9, for which vs = vy, and Ey = —4, for which vy = —wv;.
Therefore the eigenstates are

V4 L g+

) and |Ey) = /2 E|EQ>

|Ey) = ) — ) 50 1) =

1 2 1 2
\/_ \/_ \/_ \/_
We can now apply the time evolution operator to get

: , 1 1
a;ty = U)|a;t =0) = e /71 —elHt/h[—E + —|F 1——
s t) = U(1)] ) 1) \/5! 1) \/5! 2) 7

and the probability of finding the particle in the state |1) is

—iE1t/h 2

V2

—iFEst/h 5t

€ _ 411 ‘efm/h 4 e+z’6t/h|2 — cos? (_)

e

V2

= [(tas )" = (11Er) + (1] E2)

h

(3) This is very similar to what we worked through in class. The Hamiltonian is

— — B
H=—-218§. B-_us. with w=2
mc mc

The time translation operator is therefore

7 .
U(t) = exp (—%) = exp (zw}fﬁ)

The state of the particle at time ¢ is just given by

iwt/2 —iwt/2

wS,t e e

i+ s 1-0)| = S i+ S |-a
) [\f f V2 V2
It’s probably easiest to calculate the expectation value using the matrix representation, so
) ) AT 0 —i eiwt/Q/\/?
_ . . _ —iwt/2 iwt/2

(50 = (i) = [emrva ey 219 TN S0V
h
2

la;t) = U(t) |[4+X) = exp (

iw —zw eth/Q/\/§ hi iw —iw h :
[ 1€ t/2/\/— t/2/\/‘ } [ e*i“’t/?/\/ﬁ = 55 (e t_ e t) = —§s1nwt
This looks right. At ¢ = 0, the state is a pure |[+x), so (S,) = 0. The expectation value
precesses (apparently in the clockwise direction) about the +z axis. (This will be clear when
we study rotations.)



(4) In this case, the Hamiltonian is

- = B Ht —iwS,t
H=-1§ B= +wS, with w= L U(t) = exp L exp ad
mc mc h h

where ¢ = —e is the charge on the electron. The initial state is, from HW 1 with ¢ = 0,
. 6. 0
| +n) = cos 5 |+2z) + sin 5 |—2z)

The state of the particle at time ¢ is just given by

@:f) = U®)]+4) = exp (_W}fzt> [cosg|+i>+sing|—i)]

. 9 , 6
e~w2 cos 5 |+2) + ¢™!/?sin 3 |—2)

The probability to find the electron in the |[+x) state is

2

N 1 ~ 1 R . 0 , 0.
(4% ;1) = ‘ [% (+z] + 7 (—z|} [e w2 cog 3 |+2) + e™'/?sin 3 |—z)}
1 . o 1 o> 1 0 o
= ‘ \/ie””t/z cos 3 + \/_e“t/z sin 3l =3 cos 3 + et sin 3

! cose—i- s 0 cose—i- Tl 4

= = — 4 €™ sin — —+te in —
2 2 2 2 2
1

6 . 0, . , 1
= = [1 +oos 5 sin 3 (e™* + e‘wf)} =3 [1 + sin 6 cos wt]

N}

In order to find (S,) = (a;t|S.|a;t), first find

I , 0 4 7
Selasty = B [|+2) (—z| + |-2) (+2]] {6—zwt/2 cos 5 |+2) + e™"/?sin 3 |—i)}
Al . 0 , 0
= 3 {ez‘“t/Q sin 3 |+2) + e~“2 cos 3 ]—2)1
Therefore
. . _ iwt/2 Q 5 —iwt/2 : Q _ 5 72 iwt/2 v —iwt/2 v
(a;t| Szl t)y = [e“"=cos 5 (+z| +e sin 5 (—z| 5 [€ sin |+z) + e cos — | —z)
L N R N h.
= — e cos—sin=+e “sin=cos=| = =sinf coswt
2 2 2 2 2 2

For @ = 0, we are in the |+2z) state, so it makes sense that the probability of measuring
the |+x) state is always 1/2, and the expectation value would be 0. For § = 7/2, we are
in the |£x) state (to start) so the probability starts out at unity and reduces to zero at
t = m/w = T/2 when it rotates into the |-x) state. In this case, the expectation value

oscillates between +h/2 with period 27 /w. It’s all good.



(5) The time-evolved state is
Ves t) = e HY ) = e H YN [cos 0|y) — sin Oln)] = e 1 cos O|vy) — e B2/ sin 6|1y
Therefore the survival probability is

Pve = ve) = ’<Ve‘Ve§t>|2
. . = . 2
= 1l — ! 1) — 2
|[cos O(v1| — sin §{us] [e U cos Blvy) — e B2 gin 0| )|
= ‘e_iElt/h cos? ) + e~ F2t/h gin? 0|2

E, — Eb))t
= cos? 6 + sin* 0 + 2 cos? 0 sin? 6 cos [Ml

h

Now make use of the momentum being much higher than the masses to write

m2c2 1/2 m2c2 1/2
E,—FE, = pc<1+ plz ) —pc(l—i— ;2 )

2.2 2.2 3
mic msc c 9
~ 1 — 1 = —A
pc(+2p2) pc(+2p2) o
(El - EQ)ZL, C3 2L 1 2 4 L
— = —Am‘—< = =
S0 h 2p m ch e 2FEhc K

Now it is just some algebra with trigonometric functions. We have

P(ve = v,) = cos" 6+ sin* 6+ 2cos® fsin®  cos
= cos? (1 — sin® @) + sin® O(1 — cos® #) 4 2 cos? O sin? 6 cos
= 1—2sin®fcos? §(1 — cos ju) = 1 — sin® 20 sin(p/2)

which is the formula we were asked to prove.

1.06 T T T T T T T T

The figure is shown here. The difference be- 1.04 1~ fEml fER2 | oEH3 ]
tween unity and the curve at the bottom of the 1oz - Best fit (3-flavor osc. model)
trough gives sin® 20 ~ 0.08, in good agreement o1
with the value 0.0851+0.0024 given in the pa- T ool
per. The position of the trough corresponds to '§ 096 -
/2 =7/2 when L/E ~ 500 m/MeV, so 0.94
L. L 092 - :
Am’e 2Ehe g 0'90_ 30 a0 e0 w0

L /(Ep,)[m/MeV]
Writing fic = 200 MeV - fm =2 x 1077 ¢V -m and L/E =5 x 107 m/eV we get

2% 107
Am?t = 27r5i—184 V2 =251 x 107% eV?

which also agrees well with the published value (2.466 & 0.060) x 1073 eV?.



PHYS3701 Intro Quantum Mechanics |  HW#4 Due 13 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) In class, we showed that the time dependence of the expectation value for an observable
A, where A itself is independent of time, is given by

d 1
S04y = —

Show that this holds for Problem 3 of Homework 3, namely (S,) for a spin-1/2 particle with
charge ¢ in a static magnetic field B = Bz, initially in the state |+X).

a;t|[A, HJas )

(2) Prove the second of “Hamilton’s Equations” for expectation values, namely

G0 = (=)

(a) First prove that [z", p,] = ihna™"! for an integer n, by first showing that it is true for
n = 1, and then showing that if it is true for n, then it is true for n + 1.

(b) Next, using a Taylor expansion for F(z), show that [F(x),p,] = ihOF/0z.
(c) Finally, derive the desired result using the Hamiltonian H = p2/2m + V(z).

(3) In this problem you will derive the Heisenberg Uncertainty Principle AxAp, > h/2, but
using proper quantum mechanical notation and formalism.

(a) Show that ((AA)?) = (A?) — (A)?, where, for an observable A, we define the operator
AA = A— (A). What does ((AA)?*)'/2 remind you of?

(b) Prove the Schwarz (aka “triangle”) inequality (a|a)(8|8) > |(a|B)|* where |a) and |3)
are arbitrary states. Start by taking the inner product of |a) + A|f) with itself and
invoke the positivity postulate. Then make a wise choice for \.

(¢) An anti-Hermitian operator C is one for which C* = —C'. Show that the product XY
of any two Hermitian operators X and Y can be written as the sum of Hermitian and
anti-Hermitian operators. Then prove that the expectation value of any Hermitian
(anti-Hermitian) operator is purely real (imaginary).

(d) Apply the above ideas to states |o) = AA|y) and |3) = AB|y) to prove that

(AA)*){(AB)?) > 411|<[A’ BJ)*

and thereby derive the Heisenberg Uncertainty Principle.

(4) Given a state |a), find the “momentum space wave function” ¢, (p),) = (p,|a) in terms
of the wave function ¢, (2z') and an integral. What is this called? (You've seen it before!)

(5) Two states |a) and |3) are related by |3) = e%/"|a) where x is the position operator
and po is a constant. Using a subscript to indicate the state in which the expectation value
is calculated, show that

()g = (r)a and  (pr)s = (Pa)a + Po
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(1) Problem 3 of Homework 3 found that

iwt/2 e—iwt/Z h
at) = +z) + —7Z and S,) = —=sinwt
jait) = - [+2) + < |-2) (5,0 =3
The Hamiltonian in this case is H = —wS., so we are asked to show that
d hw w
E<Sy> = T coswt = —ﬁi@;ﬂ[sy’ Se]le t)

It is probably simplest to calculate the commutator with matrices, that is
R 0o =i][1 o0 1 0]]0 —i

s = {1l - [o S S
210 i 0 —i i [0 1] ..

B Z{[z 0}‘[—@ 0”_7{1 0}_”@

To get the expectation value, we just follow the example of the solution to Problem 3 of
Homework 3, but switching from S, to S, that is

w

— i t][S), Sullait) = —wlast]Silast)
—iwt /2 iwt /2 hio0 1 eWt/z/ V2
:—w[e //\/ﬁe //\/5]5{10}{6_’”/2/\/5}

hw iwt/2 —iwt/2 eth/2 \/§
= —7[6 //\/5 e //ﬂ]{e—iwtﬂ?\/ﬁ}
_fwl

5 5 (ei“’t + e*i‘“t) = —@ cos wt

2

and, indeed, the two expressions are equal.

(2) I think the proof in (a) is called “proof by induction.” For n = 1, the statement is simply
the canonical conjugation relation. We then have

n+1 1

2" pe] = 2" py = ppa™tt = 2" (ap,) — et = 2" (ih 4 ppx) — pra”t
= Gha" + 2"puw — pax = iha™ + [2", p,)r = iha" 4 ihna"
= ih(n+1)z"

and we are done. Part (b) follows easily, that is

o0 o0 o0 F
[F(z),p] = [Z anx”,px] = Z an [2", ] = Z ihna,z" 1 = ihg_x
n=0 n=0 n=0

Finally, noting that p, of course commutes with itself,

0= ([ L V)| )= (V@ = o V@ = (50)



(3) See Section 1.4.5 of MQM3e. Part (a) is simple, that is
(AA)%) = (A= (4))) = (A%) = 2(A)(4) + (4)” = (A7) — (4)°

For some data sample, we would call this the “variance”, and ((AA)?)'/2 = o would be the
“standard deviation.” Now for Part (a), just follow the instructions to get

({al + X(B]) (lo) + AlB)) = (ela) + MalB) + A" (Bla) + [A*(3]8) = 0

We want to end up with a factor (a|a)(5]5) so it looks like we want A to have (5|5) in the
denominator. Writing A = a/(3|38) and multiplying through by (5|3) gives us

(ala)(BI8) + ale|B) + a*(Bla) + |a]* > 0

This clearly suggests that we put a = —(|a), so

(ala)(B]B) = (Bla)(alB) + (Bla)*(Bla) — [{Bley]* = [{alB)* + [{alB)[* — (el B)]* =

and we're done. For Part (c), it is more or less obvious that

(alB)[*

1 1 1 1
XY = §(XY—|—YX) +§(XY—YX) = 5{X,Y}+ 5 (X, Y]=A+C
where AT = A and CT = —C. Now (a|A|B) = (B|AT|a)* = (B|A]a)* so (a]A]a) = {a|A]a)*
which proves that the expectation value of a Hermitian operator is purely real. Similarly,
(a|Cla) = —(a|Cler)* which proves that the expectation value of an anti-Hermitian operator
is purely imaginary. Putting this together for Part (d) gives us

2

1 1
(AAPH(ABY) > |(AAAB)P = |S({AA, AB}) + (A4, AB)
The first time inside the square on the right is purely real and the second is purely imaginary,
so the square of the sum is just the sum of the squares, where both terms are strictly positive.

Therefore

1 1
(AA?)((AB)?) > ) ([AA, AB))|* = 1 ([A, B])
where the other pieces from AA and AB cancel in the commutator. The canonical commu-
tation relation is [z, p,] = ih,, so

EpdP =2 o (e g s

(Az)"){(Aps)*) > 0

| =



(4) Just insert a complete set of position basis states to get

o o0

baltl) = (Pl = / Wle') o) da! = / Wl Yu(a')d’

From class, we know that (p/ |z") = exp(—ip,2’'/h)/v27h, so

1
vV 2mh

This is just a Fourier transform, easy to see if we write k = p,./h.

¢a (plx) _ / e_ip;x//hi/}a(l‘/)dxl

(5) The first part is simple, since x commutes with exp(ipoz/h).
(@)s = (Blz]B) = (ale” P/ xe™ M a) = (ale” /M z|a) = (a|z]a) = (z)q

For the second part, we have to know how to switch the order of exp(ippz/h) and p,, but
for this we can make use of a result derived in Problem 2, namely

: L0 : :
lexp(ipox/h), ps| = mﬁ_m exp(ipox/h) = —po exp(ipozr/h)
We can now calculate

(po)s = (BlpalB) = {ale ™/ pye™®/Ma)
= <a|e—ipox/ﬁ (eipol‘/ﬁpx +p0€ipox/ﬁ) )

= (a|ps]@) +po = (Pz)a + Po



PHYS3701 Intro Quantum Mechanics |  HW#5 Due 20 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A particle of mass m is initially in the Gaussian wave packet

1 2 2
o —z? /20
¢a(‘”) - 01/27T1/46

(a) Prove that this wave function is properly normalized.
(b) Show that the uncertainty Az = o/v/2.
(c¢) Find the uncertainty Ap, and compare AxzAp, to the Heisenberg uncertainty principle.

It would be useful to review the material on Gaussian integrals in the Concepts textbook.

(2) The height of a vertically bouncing ball is quantized. Numerically solve the Schrodinger
equation for V(z) = mgz with ¢(0) = 0 and adjust the lowest energy eigenvalue until
you see ¥ — 0 at large x. You can choose whatever you like for ¢/(0). It is best to
write the differential equation in terms of dimensionless y = x/xy and € = E/mgz,, where
zo = (h?/m2¢)'/3. (You should find that e is between one and two.) Compare your answer
to the experiment described in V. V. Nesvizhevsky, et al., Phys. Rev. D 67(2003)102002.

(3) A particle of mass m is bound in an infinite one-dimensional square well. If the quantum
mechanical state of the particle is initially given by an equal mixture of the ground and first
excited states, find the probability as a function of time that the particle is found in the left
half of the well. (You can assume that the coefficients of the mixture are relatively real.)
Plot this probability for as a function of time for one period corresponding the frequency of
the ground state component, that is for 0 < ¢ < T where T' = 27 /w with E; = Aiw. Make an
animation showing how the probability density p(z,t) = U*(x,t)¥(x,t) changes over time,
and convince yourself that your animation agrees with your plot.

(4) A particle of mass m is bound by a potential energy function V (z) = —(h?/2m)(\/a)d(z)
where a has the dimensions of length. Show that there is only one bound state, and find the
energy eigenvalue and (normalized) eigenfunction. You will find it useful to integrate the
Schrodinger equation over the range —e < x < +¢€ and then let € — 0.

(5) A particle of mass m and energy E > 0 is incident on a potential energy well given by
V(x) = —(h?/2m)(\/a)d(z) where a has the dimensions of length. Calculate the reflection
and transmission coefficients, and show that they add up to unity, and confirm that you get
the answers you expect for A — 0 and A — oo.
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(1) First recall two results from Concepts Section 1.5.6:

o T o0 1 /x
/ e dy = \/j and / 22e” " dy = = —
oo a oo 2V a
To check that the wave function is properly normalized, we write

o < 1 2,2 1
/_Oow Y dx /_0007?1/26 ey LAYl 1

We know that (Az)? = (2%) — (z)?, but (z) = [¢*zpdr = 0 since ") = ¥? is an even

function of . Therefore

(Az)? = (2%) = /_Z V*a?) de = /_c: z?

and so Az = ¢/+/2. We can find Ap, directly from the wave function, or also by using the
momentum space wave function. Using the former, and noting again that (p,) = 0, we have

* (hd\ (hd o d*p
(Ap.)* = {alpzla) = /_oow (;@) (;%) Ydr = —h? /_Oo”tb @d&:

Now we calculate

d? 1 d 2 /952 1 21 2 /9,2
¢ _ [_ o e~ /20 ] _ |:JZ _:| et /20

dr2 ~ ol2xt/4dr | o2 ol271/4 | g4 52

Therefore we get

1 [~rJa? 1 1 [11 1 B2
(Ap,)* = —h2—/ [x_ — —1 e Ay = —hE—— [ Vot — ;U\/ﬂ =52

ot o2 oml/2 |42
so Ap, = h/o/2 and AzAp, = h/2, the minimum allowed by the uncertainty principle.

(2) The time-independent Schrodinger equation is

h? d%y
- =F
2m dx? +mgry v

Making the recommended substitutions gives
72 m29 2/3 d2¢ B2 1/3 72 1/3
2m ( h? > @ M (ng) v = me (ng) v
K2 K2 -2/3 d2¢ . K2 1/3 w B K2 1/3 ¢
2m2g \ ' m2g dy? m2g y a m2g ¢
d*i

SO d—y2+2(e—y)¢:0




See the MATHEMATICA notebook. With a little poking around, we find a solution for
€ = 1.8557 which translates into a height of about 14 pm. This is in excellent agreement
with Figure 5 of V. V. Nesvizhevsky, et al., Phys. Rev. D 67(2003)102002, which shows that
neutrons are not detected until they are allowed to bounce to at least this height.

(3) See the MATHEMATICA notebook. The probability works out to be

4 2t 1
Prob(0 < z < L/2) = — cos (37r h) .

Here is the plot of the probability as a function of time:

0.2 0.4 0.6 0.8 1.0

Here are scenes from the animation ¢t =0 and ¢t = 1/4 and ¢ = 1/2 of a period:

3.5¢ 3.5¢ 3.5

3.0f 3.0f 3.0f
2.5F 2.5F 2.5F
2.0f 2.0f 2.0
1.5F 1.5F 1.5F
1.0p 1.0f 1.0F
0.5¢ 0.5F 0.5¢

0.0 012 014 016 018 1.0 0.0 012 0‘.4 0‘.6 0‘.8 1i0 0.0 012 0:4 0:6 018 110

(4) The Schrodinger equation is

BT ey = Bow) = ) o U2

2m dx?  2moa

d(x)(x) = K*(x)

2m
Integrating this over —e < x < +-€ gives

) dy

de|  dx

- + %p(o) = K2 [1h(e) —Y(—€)] = 0 for e —0

€

which ends up being a condition on the left and right slopes at 2 = 0 in terms of ¥(0). Now
for x # 0, we have

d2,¢ 2 +rx
T =ry)  so P(a) =d(0)e
which means that ¢(x) = ¢(0)e™* for > 0, and ¢ (z) = ¢(0)e™** for x < 0. Therefore
)\ )\ h2)\2
—ip(0) = hp(0) + ~(0) =0 so k= and E= S o

is the energy eigenvalue. To find 1 (0) we just need to normalize, which means

[ v =20 [T —atok <1 0 w0 =vE=yn

K



(5) Proceed in standard fashion with

. . . h2/€2
Yz < 0) = Ae'*™ 4 Beih® and V(x> 0) = Cek® where E =

2m

Continuity at x = 0 implies that A + B = C. Integrating across z = 0, exactly the same as
we did in Problem 4, gives us

ikC — (ikA — ikB) + 2C = 0
a

The two equations for B/A and C'/A are

C B C A B
Z:1+Z and Z(l—i—.—):l——

The transmission coefficient is therefore

2 B 4k2a?
T 4k2a2 + )2

¢
A

2
2
T:’ :’

2+ \ika

This is clearly right for A — 0, and I guess it is reasonable that nothing gets through an
infinitely deep d-function potential. The reflection coefficient is

)\2
T 4k2a? + N2

2 2 .
R BI" c 4= —)\/zkj‘a
A A 2+ \ika

which again behaves as you'd expect as A — 0. It is also trivial to see that R+ T = 1.



PHYS3701 Intro Quantum Mechanics |  HW#6 Due 26 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A particle of mass m is bound in a one-dimensional finite square well of height Vj.
Assume that the well extends over the range —a < x < a. Remember that the ground (first
excited) state will be even (odd) parity.

(a) Show that there will always be a solution for a ground state eigenvalue, but there may
not be a solution for any other states if V4 is too small.

(b) Find the energy eigenvalues and plot their wave functions for the ground and first
excited states assuming that Vy = 1.2(h?7%/8ma?). You will need to numerically solve
two transcendental equations, one for the each of the two states. (Hint: In addition
to matching boundary conditions, you can easily derive a formula for (ka)? + (¢qa)?
where k and ¢ are the wave numbers inside and outside the well.) Express the energy
eigenvalues as a numerical factor times Vj.

(2) Use induction to prove that the normalized states of the quantum harmonic oscillator
are given by

(3) Find (z) and (p) as a function of time for the initial state

1 ei5
o) = ﬁ‘()) + Em

where 0 is a real number. Explain why this makes sense classically by taking the time
derivative of (z) and showing that it has the expected relationship to (p), and interpret the
physical meaning of the phase §.

(4) The goal here is to find the harmonic oscillator normalized eigenfunction (z|3) using
properties of the creation and annihilation operators.

(a) Find the harmonic oscillator ground state wave function (x|0) by considering (z|a|0)
and solving the resulting simple differential equation.

(b) Now use the result from Problem (2) above to find (z|3) by building up from (z|0).
Show that your result agrees with the result from solving the Schrodinger equation.
Integrate to prove the normalization is correct. (The calculus in this part is messy. I
suggest that you use MATHEMATICA.)

(5) Find Az and Ap for the harmonic oscillator eigenstate |n) and compare the result to
Heisenberg’s uncertainty principle. Show that n = 0 yields the minimum possible result for
the uncertainty product.
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(1) We write the solutions to the Schrédinger equation for the ground state as

27.2
Y(x) = Acos(kx) where Zk =F for —a<z<a
m
h2q2
with Y(x) = Be ¥ where o = VWo—FE for T >a
m
h2q2
and  ¢(x) = DBe®™ where S = Ww—E for z<-—a
m

Matching the wave function and its derivative at x = a gives
Acos(ka) = Be ™1 and — Aksin(ka) = —qBe ™1 SO (ka) tan(ka) = qa

The quantities ka and ga also need to satisfy

2ma? 2
2 _ 2ma m2a

h? 10

2 2ma?

(ka)* + (qa) -

Vo

(Vo —E) =

These two equations will always find a solution for ka and ga because the first says that
qa is a positive function of ka that increases from zero at ka = 0, and the second is just
a circle around the origin, so those curves have to intersect. The first excited state will
have ¢ (z) = Asin(kx) inside the well, the same form for z > a, and the same form except
B — —B for x < 0. Therefore

Asin(ka) = Be ¢ and Ak cos(ka) = —qBe™ 1 SO (ka) cot(ka) = —qa

This will not necessarily have a solution if Vj is too small. In that case, the radius of the circle
is small enough that it will not intersect with (ka)cot(ka) which is positive for ka < /2.
In other words, for a shallow enough well, there will be only a ground state and no other
bound states.

For this problem, the squared radius of the circle is 1.095 x 7/2, so there will be a ground
and excited state. See the MATHEMATICA notebook for details. The eigenvalues are

B (ka)? B2 12
Fos = R0 (0.971)2 = 0319V, and  Ey

(2.908)% = 0.982V}

2ma? 2ma? 2ma?

Note how close the first excited state energy is to the top of the well. The eigenfunctions are
1

-3 -2 -1 1 2 3 -*0
The closeness of the excited state energy to the top of the well leads to long tails on the
wave function.



(2) This is trivially true for n = 0. (Recall that 0! = 1 based on the definition the factorial
through the I'-function.) Therefore, assuming the relation is true for n,

! CLT n) = ! CZT ! a/T " = —1 aT i
A = e (7 0] = e o

which shows that it is true for n 4+ 1, so we are done.

n+1) =

(3) The time-dependent state is

|Oé't> _ e_th/h]a> _ ie—z’wt/2|0> + 6_@'66_3th/2|1> _ e—iwt/2 |:L|O> n e~ i(wt—0) ’1>}
’ V2 V2 V2 V2

Finding the expectation values is straightforward.

w = [0 ] e [ oo+ T )

[(0] + €t 1]] e C-D]0) 4 [1) + e11-0)/2]2)]

Qmw

I
DN | —
aEn

[e711=0) 4 gilet=0)] — cos(wt — 9)

Do
3
&

mw

E
2
1 ei(wt—5) mhw 1 e—i(wt—é)
= |—=(0] + 1 i\/ ——(—a+a') | —=|0) + ——=—|1
W = 500 ] iy P ek a | oo+ i)

1 . , ,

= i —m;‘” [(0] + e =D1]] == tD0) 4+ 1) + e~ 10/2]2)|
1. /mhw il ilwte mhw .

= 5t T[—e (t‘s)%—e(t‘s)]:—\/ 5 sin(wt — 0)

d ho . 1
S0 %(:@ = w5 — sin(wt — 9) = E(p)

which is just what you expect. Clearly ¢ is just the phase of the oscillation, that is 6 /w is
the time lag from ¢ = 0 to the peak of the oscillation.

(4) Defining zo = /A/mw, we know that

Y LI (I S
—V 2n mat ) = zoV2 ntolf
It is simple to find (x|0) using the annihilation operator, that is
1 i 1 5 d >
A 0) = x{x|0) + 25— (x|0
— hw)>xw(<m L )

-
222

However 1 = <O|O>:/ (0|x)(z|0) d:U:/ Nzexp( o ) dx = N7tz
—00 0

—00

0 = (x[al0) = (z]

d 1
o —{z0) = —x—3x<x!0> and  (z]0) = Nexp

7 N\

Theref, (z]0) ! ( “"2)
ererore Xz = — &Xp | —7T=5
1/2 222

/4,



Now we also see that

lallo) = (el (2= fadp) o) = — = |o = L] el

This makes it easy to see that, using the result from Problem (2),

1/ 1\ d d d
(x]3) = 3 <2_:v(2)) [x—xg%} {x—x%a} {x—x%a} (x]0)

3
T/t 2\/3 To 7o

where the derivatives were taken using MATHEMATICA in the accompanying notebook. This
is indeed proportional to the Hermite polynomial Hz(x) o< 222 — 3z. The notebook shows
that this wave function is properly normalized.

(5) Recall that we have

h

2mw

(a+ a') and p=i @(—a—i—cﬁ)

Tr =

which makes it easy to see that (n|z|) = (n|p|) = 0 since the a and a' lower or raise n to
a different (orthogonal) state. This makes sense, since the harmonic oscillator potential is
symmetric. Therefore (Az)? = (2?) and (Ap)? = (p*). Now we also have

.132

huw
(aa + aa' + a'a + a'al) and  p? = _m2 (aa — aa' — a'a + a'al)

- 2mw

The first and fourth terms in each of these two expressions contribute nothing to the expec-
tation value because they raise or lower the quantum number by two. The second and third
terms, however, do not change the quantum number. That is

aa'ln) = a(v/n+1ln + 1)) = (n+ 1)|n) and a'aln) = a'(v/nln — 1)) = n|n)

Therefore

(%) = %(271 +1) = m—z (n + %) and  (p*) = @@TH D) = mh <n+ %>

and we end up with the result

Az Ap = (V2 (p)1/? =k (n + %)

which shows that the lowest eigenstate has the minimum possible uncertainty.



PHYS3701 Intro Quantum Mechanics |  HW#7 Due 12 Mar 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A particle of mass m is confined to a three dimensional “infinite box” of side length L
in the region 0 < z,y, 2z < L. Solve the time-independent Schrodinger equation to find the
energy eigenvalues E,, ., n. = h2k2/2m and eigenfunctions Vo nym. (T, Y, 2) in terms of h,
m, L, and three positive integers n,, n,, and n,. (This is easy to do using the technique
of separation of variables and following what we did for the one-dimensional case.) Make
a table of the lowest three energy levels, including their degeneracy, that is the number of
combinations (n,, n,,n,) that give the same energy.

(2) Write the operator S, for a spin-1/2 system as linear combination of outer products of
the |£z) and show that its rotation exp(+ipS./h)S, exp(—ipS./h) is just what you expect.
(This is written as the transformation of an operator. You might prefer to think of this in
terms of the expectation value of the rotated operator in some state.)

(3) The three Pauli spin matrices are given by

w=|10] 2= e=[0]

(a) Show that the representation of the spin operator S in the |£2z) basis can be written as
S = (h/2)@. (You are free to use results we have derived in class or on prior homework.)

I

(b) Prove that (¢ -ad)* = |EL’|2; where the components of @ are real.
(c) Show that the rotation operator for spin-1/2 systems can be represented in the |+z)

basis as _
2(1/2)(7%7 ¢) = exp {—%g ﬁqb] = lcos (%) — g - nsin (%)

(d) Repeat Problem (2) above using matrix representations of the operators.

(4) Construct the matrix representations of the operators J, and J, for a spin-one system,
in the J, basis, spanned by the kets |+) = |1,1), |0) = |1,0), and |—) = |1, —1). Use these
matrices to find the three analogous eigenstates for each of the two operators J, and J, in
terms of |+), |0), and |—). You are welcome to use MATHEMATICA or some other app to
find the eigenvalues and eigenstates after you've constructed the matrices.

5) Using the fact that J,, J,, J., and Jy = J, £+ iJ, satisfy the usual angular-momentum
8 Yy y Yy g
commutation relations, prove that

JP= TP J2 4 IR =2+ o — R,

Using this result, or otherwise, derive the coefficient c_ that appears in J_|jm) = c_|j,m—1).
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(1) The Schrodinger equation inside the box is

2

n? - h

2m 2m
Divide out the h?/2m, write ¥(x,y,2) = X (2)Y (y)Z(2), divide through by 9 (z,y, 2), and
rearrange to get

1 d*°X 1 d*Y 1d*Z
———k'2 ———k'2 ___kQ —
[X dx? 4 * lY dy? y] N {Z dz? Z} 0

This has to be true for all x, y, and z, and the first term only depends on z, the second
only on y, and the third on z. Therefore each of the three terms must equal zero. The wave
function must vanish at the walls, so ¢(0,0,0) =0, and X (L) =0 =Y (L) = Z(L). This all
leads to sine functions and k,L = n,7, k,L = n,m, and k.L = n,7, where n,, n,, and n, are
all positive integers, and so on, all the same for the box in one dimension. The result is

2\ %2 Ny TT Ny TY n.m2 h2m?
¢(I7y7 Z) = (z) sin < I ) sin ( yL ) sin < i3 ) and E = W(ni—i—ni—i—ni)

The lowest energy is clearly for n, = n, = n, = 1. Make any one of these equal to 2, and
you get the second energy level, which therefore has a degeneracy of 3. Make two of them
equal to 2 is not as high as making one of them equal to 3, so the first three energies are

Ng Ny N FE Degeneracy
1 1 1|3 kr*7?/2mL? 1

2 1 1

2 1 1

2 1 1|6 W*n%/2mL? 3

2 2 1

2 1 2

1 2 2|9 Bx?/2mL? 3

(2) Just do the work and you get exactly what you expect for an active rotation.

ewsz/the—wsz/h _ _ez‘d)Sz/h [|+2> <_2| + ’_2> <+2|] e—i¢sz/h,

[(cos ¢ +isin@) |[+2z) (—2z| + (cos ¢ — isin @) |—2z) (+2]]

h h
= cos¢ B [|+2) (—z| + |—2) (+2|] —sin¢ B [—i|+2z) (—2z| +i|—2) (+2]]
= cos¢ S, —sing S,
ie. p(a|Szla)r = cos¢ (a]Sz|a) —sin ¢ (]S, |a)



(3) It is trivial to show that this is the correct representation of the S operator because we
derived it in the past. Now

(@ 6)2 _ a, Ay — 10y a, Ay — 10y
= Ay + 10, —a, Ay + 10, —a,
[ a2+di+a; 0 _ 7P 1
- 0 a’ 4+ a? + a? =lal"L
T Yy z

This means that, for any non-negative integer m and some unit vector n, (¢ -n)™ = 1 if
m is even, and (& - n)™ = & - n if m is odd. These simple relationships imply that we can
expand the matrix representation of the spin-1 /2 rotation operator as a Taylor series of an
exponential, because the matrices in the exponent all commute. That is

i

D(i, 6) = exp [—Eg- fw} = exp {—z‘%@ - m}

B 1 /¢ 2 1 /6 4
= lll—a@ w(a) L

—’i(

= Leos(§) itz apsin (5)

Now Problem (2) is a rotation of S, about the z-axis through an angle ¢, so 7 = Z and the
matrix representation of the rotation operator is

2 _jsin? —ig/2
1/2),~ . _ | cos 18In 0 _le 0
2(/)(27@_{ ’ 0 ’ cos%%—z’sin%]_[ 0 eid)ﬂ}

[1Qy

>
1
VR
NI RSH
~~

|
K| =
N
NI RSH
~_
w

+
o) —
VRS
NI RSN
~_
ot

+

and the rotated version of .S, is

id/2 —ig/2
/2 (5 (1/2) (2 hje 0 0 1) e 0
2 (27 Qb)ig (Z, ¢) 9 |: 0 e—z¢/2 :| |: 1 0 0 ez¢/2
R e?? 0 0 2] h 0 ¢
T2 0 e/ e"0/2 T 9l e 0

hi{io 1 ., h| 0 —i
—Coség[l()}—smgbg{i O}

= Cos¢i—sin¢&

which is the same result we ended up with when we used operators in Problem (2).

(4) Finding the matrices is straightforward, using J, = (J4+ +J_)/2 and J, = (J4 — J_)/2i,
and applying

Jeljom) = /(5 = m)(j +m+ 1) hlj,m+1) and J_[j,m) = /(j +m)(j —m + 1) hlj,m~1)

to find the matrix elements of J, and J_ in the basis |j,m) = |1,1), |1,0), |1,—1). The
results, easily verified in other books or online, are

p [0 10 b 0 1 0
J,=— 110 1 Jy=—=| -1 0 1
V2 010 V2 0 -1 0



See the accompanying MATHEMATICA notebook to find and normalize the eigenvectors. Find

1 1 1 1 1 1 1
[Jas ) = Sl+) + \/—|0> S1=) 1J2:0) = —ﬁ|+>+ﬁ|—> PARSES §|+>—E|O>+§|—>

1 1 1 1 1 1
[y; +) = —51+) = \/—|0> | ) 14y;0) = \/§|+>+ﬁ’_> |Jy;—>:—§\+>+ﬁ|o>+§|—>

(5) It is easiest to first calculate
Jodo = (Jo + i) (Jy —idy) = J> + J2 —ilJy, J)) = J2 + J2 + k], = J* — J + hJ,

which immediately gives the result we were asked to prove. We then calculate

P o= (GomlID)I-lim) = Goml Ty - |jm) = (j,m|(J* = JZ + ) j.m)

e (
= jG+DR —mPRE+mh® =2 —m*+j+mh* = [ +m)(j —m + 1)]h?

and, by convention, we choose c_ = fin/(j +m)(j — m + 1) to be real and positive.
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This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Recall Problem (4) from Homework #1. Show that the state vector
0 - 0
| +n) = cos 5 [4+2) + ™ sin§ |—2z)

can be obtained by rotating the state |+z) by an angle 6 about the y-axis, and then by an
angle ¢ about the z-axis. You can approach this using the rotation operators, or by using
the matrix representation in the |+z) basis; I'm not sure which one is easiest.

(2) The spin-dependent part of the Hamiltonian for a hydrogen atom (proton plus electron)
in an external magnetic field B = Bz is
2A e d —
H = ﬁSe - Sp + wSe,

where A is a positive constant and w = geB/2mec. Find the energy eigenvalues, and their
expressions to lowest non-vanishing order for the cases (a) A > hw and (b) A < hw. The
calculations for the eigenvalues and their limits is not hard to do by hand, but you are
welcome to resort to MATHEMATICA or some other app if you like.

(3) Consider a spin-3/2 system with the four states |3/2,+3/2) and |3/2,£1/2) made up
from three spin-1/2 particles. Using the operator S, = S, +Ss, + 53, explain why we must

have
3 3

22

Then use the operator S_ to similarly construct the other three states.

>:\+2,+i,+i>

(4) Express the two electron spin-one state |o) = | + z,+2z) in terms of the four states
|+x, +X), |[+X, —X), | —%X, +X), and | —%, —X). Calculate the probability that a measurement
of the z-direction spins of an electron pair in the state |a) yields a result where the two
electrons have spins in the opposite direction.

(5) Two spin-1/2 particles are emitted from the spin-one state | + z,+z) and move in
opposite directions when they are measured independently by observers A and B who make
measurements of the spins in the x-direction. Find the probabilities that A and B determine
the two particles to be in the states |1,+1),, |1,0),, and |1, —1),.
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(1) We need to calculate D(z,¢)D(y,0) |+z). If we did this with operators, then the z-
rotation is easy, but the y-rotation would require us to write the first result in terms of the
|£y) basis, and that sounds tedious. Let’s use the matrix representation, then. You find

D(%,0)D(9,0) [+2)

B [ cos(¢/2) — isin(¢/2) N 0 ] [ 095(9/2) —sin(0/2) } { 1 }
I 0 cos(¢/2) + isin(¢/2) sin(0/2)  cos(0/2) 0
- onlor) isiﬂ(cb/?()) cos(¢/2) + isin(d)/Q()) ] [ Z?rslgzgg }
B b R ER e 2 B P ia ]

, 0 , 7
= Ti9/2 (cos 3 |4+2) + € sin 2 |—i>)

with an additional phase factor in front. Note that if ¢ = 2m, the phase factor is just the
familiar factor of (—1) that we get when we do a full rotation of a spinor.

(2) Work in the same basis that we used in class, namely

We found the matrix elements of 25, - gp in this basis. The matrix elements of S, are simple:

AJ2+ w2 0 0 0
- 0 —AJ2+ hw/2 A 0
- 0 A —AJ2 — hw/2 0

0 0 0 A2 — hw/2

See the accompanying MATHEMATICA notebook to find the eigenvalues, and to take the two
different limits. For the eigenvalues, you find

E:{A‘m’,“h‘” 1(-¢m-A),%(¢m_A)}

2 2 2

It is important to note that this reduces to A/2 (three times) and —3A/2 for w = 0, which
is what we got in class. For hw < A, you find

A hw A h 34 A
E = ___7_+_7__7_
2 22 2 22

which shows that the triplet is split into three energy eigenvalues, the but singlet is un-
changed. For hw > A, you find

{A hw A  hw A_hw hw A}

5 T2t Ty Ty T

namely the normal result for spin-1/2 particles with some adjustment from the hyperfine
interaction.



(3) The only combination of three |+z) states that gives 3i/2 for S, is the one where all
three are |+2), so the given state has to be the only combination. Now recall that

S_|s,m) = [s(s+1)—m(m—1)]"*hls,m—1)
33 35 31772 |31 31
s0 5’§’§> = [55—55} ‘2 2> fﬁ‘ >
and

(S1_+ S +53)|+2,+2,+2) = h(|—z,+z,+z>+|+z —2,+2) + | +2,+2,—2))

‘3 1> 1| 2, +7,+2) + | + Z A+A>+1|+A+A
SO =, = = —|—2Z,1tZ,+2 Z,—7Z,+7Z — Z,+z,—
V3 f V3

22

Now proceed in the same way for the next step down the ladder. First, we have

31 35 111Y% |3 1 3 1
S_|l=,=)=|==4+== hil=,—)=2h|=,—=
‘2’2> {22+22} '2’ 2> ‘2’ 2>
Now we have to do S;_ + S5+ S3_ on three different combinations, but they are all similar.
We know that S_ |+2) = |~2), and S_ |—2) = 0, so, dropping the factor h/v/3,
(S1_+ S + S5 )| —2,+2,+2) + | + 2,—2,4+2) + | + 2, +2, —2))
= 0+|—2,—-2,+2) + | — 2,+2,—12)
+ |—2,-2,+2)+0+|+2,—2,—2)

+ | —2,+2,-2)+ | +2,-2,-2) +0=2| —2,—2,+2) + 2| — 2,+2,—2) + 2| + 2, 2, —2)

Therefore, remembering to put back the factor of h/+/3, we find

3, —%,+2) + —5, —2)

-3 -7 |42 —2) + |+
e ) Z,
2" 2/ V3 f \/_
which is what you would probably have expected. For the final down step, we have
31 35 1317 |3 3 3 3
S |l=,—=)=|==—== hl=,—=)=V3h|=,—=
b)) ) -k
and again holding back a factor of /y/3, we calculate

(S1_ +52 +S3 )| —2,-2,+2)+ | —2,+2,—2) + | +2,—2,—12))
= 2| —2,—2,—2)+2| —2,—2,—2) + 2| —2,—2,—2) = 3| — 2, -2, —2)

Putting the factor of i/ \/§ back, we have

\/§h‘§—§>:%3\—i,—i,—i> or B,—g>:y—z,—z,—z>

which, of course, is exactly what you expect. Indeed, we could have started with this state,
and climbed up the ladder instead of down, using S, instead of S_.

(4) We start by noting that

L SO TP B
+2) = f|+X> \[I x)  and \—Z>—\/§!+> \/51>

z)



It is now straightforward to write |a) = | 4+ z, +2) in terms of z-kets:

o) = !+i>®l+i>=%[\+ﬁ>+|—ﬁ>]®[|+ﬁ>+l—ﬁ>]
1

§H+§<,+f<>+\+>2,—>z>+\—f<,+§<>+\—f<,—§<>]

The probability of getting both measurements with opposite spins is therefore

SO P 1 1 1
P<+7 _) + P<_7+) = ‘<+X7 —X|Oé>’2 + ‘<_X7 —|—X‘Oé>’2 = Z + Z = 5
(5) First we need to note that
N 1 NN N A
1, +1), = | + %, +%) 11,0), = —=[| + %X, —X) + | — X, +X)] 11, -1), = | — x,—X)
V2
and then we realize that we already have |a) = | + 2,42) in z-kets from Problem (4). So,
NI | P N
P(+1) = [(L,+1]+2,+2)|" = §(+x, +X|+x,4+%)| = 1
S b N L
P(-1) = [J(1,—-1|+z,+2)|" = §<—X, —X| —x,—%X)| = 2
2
and  P(0) = |[.(1,0]+ 2, +2)|* = '\/_ +X, —X| + (=%, +x|| | + 2, +2)
1 2

A~ ~ A A

= |—=[(+x, —X| + X, —X) + (=X, +X| — X, +X
273 | )+ | )]

and the three probabilities sum to unity, which they must.
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This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

Note: Most or all of these problems are worked out handily in MATHEMATICA.

(1) Show that the Pauli matrix o, has the effect of a NOT gate by showing that it gives
the expected result on the |+z) representations of the states |[+z) = |0) and |—2z) = |[1).
Then form the tensor product o, ® o, and show that it has the expected result on the |+z)
representations of each of the four states |+2z) @ |+2z).

(2) A “controlled NOT” gate for two qubits can be constructed as a 4 x 4 matrix of 2 x 2
matrices with 1 and g along the diagonal and zeros otherwise. Show that a CNOT gate
flips the second qubit if the first qubit is |0), but does nothing if the first qubit is |1).

(3) The single qubit Hadamard gate is represented in the |4+z) basis as

£l ]

If we interpret |0) and |1) as |£z) respectively, show how we can use rotations to realize a
Hadamard gate. Can you find a solution that does not introduce an overall phase factor?

(4) Show that the two-qubit Hadamard gate H ® H acting on the two-qubit state |0) ® |0)
results in a “fully entangled” state of two qubits. That is, a state which cannot be written
simply as a linear combination of one of the qubits times either |0) or |1).

(5) Find the 4 x 4 matrix representation (in the |£z) basis) for the following two-qubit gate
constructed from four Hadamard gates and a CNOT gate:

—H H

H —&—H

Prove that your construction is a unitary transformation.
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(1) See the accompanying MATHEMATICA notebook.
(2) See the accompanying MATHEMATICA notebook.

(3) Recall that the rotation operator in the |£z) basis is

[~

=1lcos— —i0 -nsin -
= 2 = 2

We can build a Hadamard gate using a 90° rotation about the y-axis, followed by a 180°
rotation about the z-axis:

2.0,(5) =[] | 5= 2] =5 |1 o] [0 ] =0 [0 ]

where we don’t care about the overall phase factor —i = exp(—in/2). We could also write

[cos(¢/2)—inzsin(¢/2) (—n, — in,)sin(¢/2) }: 1 [1 1}

(+n, —ing)sin(¢/2)  cos(¢/2) + in, sin(¢/2) NAREE!

and, in principle, use these four equations to solve for n,, n,, n., and ¢. However, if we add
and subtract the (2,2) and the (1,1) element, we find

2
V2

so ¢ =mand n, = z/\/i, but n, needs to be a real number. So there is no way to form a
Hadamard gate from a rotation without an overall phase shift.

2cos= =0 and — 2in,sin — =
2 2

(4) See the accompanying MATHEMATICA notebook.

(5) See the accompanying MATHEMATICA notebook.
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This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

There is only one problem for this week’s assignment.

Write a program in MATHEMATICA or some other language to simulate Grover’s algorithm.
Use as large a number n of qubits as you think you can manage on your classical, digital
computer. (It might be more than you would expect.) Remember that this means you will
be dealing with column vectors of length N = 2", and with N x N matrices.

You should build the N x N Hadamard matrix using the tensor product of 2 x 2 matrices,
and show that it creates the equal-superposition state from the |0) state. You can build
the matrix called “D” by hand instead of constructing it from gates. Remember that the
elements are D;; = —d;; +2/N. For the oracle, all you need to do is pick a target state, and
change the sign of that element.

A simple way to check that you’ve made the equal-superposition state, and to watch the
result of each Grover iteration, is to just plot the coefficients of each of the qubits, which is
contained in your one N-dimensional qubit. In MATHEMATICA you can do this with ListPlot.

It is tedious to have to put in each Grover iteration by hand. You can try that to start, and
watch what happens to the coefficient of your target bit for the first few iterations. But to
do a large number of operations, you want to put this in a loop. In MATHEMATICA, I think
the simplest way to do this is with For.

What does your array look like for v/ N iterations? Confirm that this is more or less what
you expect. You might find it interesting to also look at what is happening to the other
coefficients.

It’s only a suggestion, but if you want to make an animation of how the amplitudes change
on the qubits with each iteration, that might be a cool demonstration.
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See the accompanying MATHEMATICA notebook. Following are the plots of the qubit am-
plitudes for the initial state, the result of the first iteration, and then ten iterations.
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This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Show that the commutativity of infinitesimal z- and y-translations, in other words
[T(dzx),T(dyy)] = 0, implies that z- and y-momenta commute, that is [p,,p,] = 0. You
will need to carry out the calculation to second order.

(2) A quantum mechanical “symmetry” can be quantified by some unitary operator S where,
for some observable A, (A) is unchanged when the state |a) — S|a).

(a) Show that this symmetry implies that [S, A] = 0.
(b) Assuming S = S(u) where u is continuous, use “Weyl’s trick” to write S(du) in terms
of some Hermitian operator G and show that the symmetry implies that [G, A] = 0.

(c) Illustrate this by showing that the three-dimensional momentum operator p'is invariant
under the translation symmetry operator T'(@). (Don’t be worried if it looks like your
illustration is trivial. We will study more about symmetries next semester.)

(3) Tt is reasonable to define a “vector” as a three component object that transforms under
rotations just the way you’d expect. Use this definition and the transformation from Problem
(2) above to prove the following relationships for a vector operator V' =V, x + V,y + V. z:

(L., V] =ihV, [L.,V,] = —ihV, [L.,V.] =0
You should notice that this definition implies that angular momentum is indeed a vector.

(4) Recall from our Mathematical Physics course, or in the Concepts textbook Eq (4.8),
that the totally antisymmetric symbol €;;, has the property that

€ijk€imn — §Jm5kn - 5jn5km

where the summation over 1, 2, and 3 for repeated indices is implied. Writing the components
of the orbital angular momentum operator as

L; = €ijiripr where T123=1,Y,%

and using the commutation relations [r;, p;| = ihd;;, show that orbital angular momentum
obeys the correct commutation relations for generalized angular momentum that we derived
several weeks ago, namely

[Li, LJ] = ZhGl]kLk

(5) Use the techniques from Problem (4), including writing out [r;, p;] = ihd;; in order to
“fip” position and momentum, to prove the relation

L? = 7P%5% — (F- )2 + il -
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(1) Just write things out to second order and it all falls out. First,

. , )
o\ —ipedx/h _ —ip;dr 1 [ —ipydu .
Tldrx) =e™™ = 1+ ——+5 ; +O(dz?)
i
— 1-= _ 2.2 3
Pede — o pada” + O(dz”)

:
h
Therefore T'(dx x)T'(dyy) = T(dyy)T (dx X) means that

. i 1
T(dyy)=e pydy/h - — pydy — ﬁpzdff + O(da?)

i Loy o 1 1 L 5,0 3 2
1- ﬁpzdx - 2h2pxdac — ﬁpydy - ﬁpmpydxdy - 2h2pydy + O(dz”) + O(dz=dy)
i Lo o 4 1 L oo, s 3 2
= 1- ﬁpydy — 2h2pydy — ﬁpmdx — ﬁpypzdxdy — 2h2pmdx + O(dy”) + O(dzdy”)

and most everything on the left and right cancels, leaving us with p,p, = p,p,.

(2) Since |a) — S|a) means that (a| — («|ST, the mathematical statement of a symmetry
operation is (a|STAS|a) = (a|A|a) for an arbitrary state |a). In other words, STAS = A.
However, STS = 1 since S is unitary. So multiply both sides by S to get AS = SA which is
the same as writing [S, A] = 0. Now, Weyl’s trick is just a way to write a unitary operator
with a continuous variable in terms of a Hermitian operator, namely

§=1-+Gdu
which insures that S is unitary for any Hermitian G. Therefore ST(du)AS(du) = A becomes
[1+ %gdu] A {1 - %gdu] —A o GA-AG=1[G, A =0

keeping terms to first order only. This is trivial to illustrate with the translation operator
and momentum. Just write it out to get

TT(EL’) pT(a) = el G — Wi o= 7
since all components of the momentum operator commute with each other.
(3) If you rotate a vector V about the z-axis through an angle ¢, you expect that
Vy = Vycos ¢ — V,sin¢g Vy — Vysing 4V, cos ¢ V., =V,

A quantum mechanical rotation about the z-axis is given by the unitary operator

—ieLl./h -1 i )’
e el

for an infinitesimal angle ¢ = €. Using what we now know about symmetry operations,

h h h
= Vycose— V,sine =V, — eV, + O(¢?)

elcb= /My emieks /- = {1 + ieLz] Ve [1 — ieLz] =V, + ~€[L., Va] + O(e)



Therefore [L,,V,] = ihV,. Similarly

h h h
= Vpsine+ V,cose =€V, +V, + O(e?)

Therefore [L,,V,] = —ihV,. Finally

it/ iy il fh [1 n %ELZ,} V., {1 - ;—:LELz:| =V, + %e[Lz, V. + O0(&)

= Vi
and so [L,,V.] = 0.

(4) This is all pretty straightforward but you have to be careful with indices. First,

[Lia L]] = [Eimnrmpny Ejlqupq] = €imn€ilgTmPnT1Pq — €imn€jlqgTIPqTmPn

Now flip the order of the “pr” products in the middle so the r’s are on the left and the p’s
are on the right in both terms. We have

€imn€ilgTmPnTIPq = 6imn‘fjlqrm(trlpn - Zh(sln)pq = €mnC€jilgTmT1PnPq — iheimnejnqrmpq
€imn€jlgTIPqTmPn = €Eimn€jigT1 (Tmpq - Zhéqm)pn = €imn€jlqT1I"mPqPn — Zheimnejlmrlpn

Note that the first terms on the right of each of these two equations are equal, because
positions commute with positions and momenta commute with momenta. Therefore

[Li, Lj] = il(—€imn€jng"mPq + €imn€jimT1Pn) = 1P €nim€njqTmPy — Emin€mjiT1Pn)
= iM(0i0mqTmPq — 9iqOmjTmPq — 0ij0niT1Pn + 0it0n;TiDn)
= h(0ijTmPm — OigOm;TmPq — 0ijTnPn + 0itOniT1Pn)
= h(—0igOm;jTmPq + 0itOn;TIDn)
= 00 =0inOmjTmPn + OimOniTmPn)

since 7 Pm = T - P = TP, and in the last step I changed ¢ — n and | — m, which is fine,
since they are just dummy summation indices. Now

EijkLk = €ijk€kmnTmPn = €kij€kmnTmPn = 5im5jnrmpn - 6in6jmrmpn
which is the same as the last line above. Therefore we have proven that

[sz Lj]ﬁijkLk

(5) For whatever it’s worth, this is in fact carried out in MQM3e, Equation (3.226), albeit
with a slightly different notation (x for r) and keeping the summation signs (for some reason).

-

L* = €ijkTiDj€imkTIPm
= (5il5jm - 5im5jl)7“ipj7“lpm
= [0u0jmri(ripj — thdj1) P — Sim0umiDj (Pt + 1Ay )]
= 72P% —ihi - §— SimOji[ripm (rip; — ihdj1) + ihunrip;]
= FzﬁQ—(F~@2+th-ﬁ
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This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

I would encourage you to use MATHEMATICA or some other symbolic manipulation problem
to work through at least some of these problems.

(1) Show by explicit calculation that the kinetic energy of two masses m; and ms is
Lo,

2my 2mso 2M 2m
where M = my + ma, m = mymy /M, P= P+ Do, and p'= (mopy — myps)/M.

(2) A three-dimensional spatial wave function over all space has the form

2

() = N(z +y +22)e "
where « is a real constant.

(a) Find the normalization constant N. (You can assume it is real.)

(b) Determine the possible results from a measurement of L., and the probabilities that
they are in fact the result of a measurement.

(c¢) Determine the possible results from a measurement of EQ, and the probabilities that
they are in fact the result of a measurement.

(3) Defining L, = L, £ 4L, and the expression we derived for (7 |L|a), show that

- o tip (4.0 O\
(7'|Ly|a) = —ihe®™ (iz% — COt98—¢) (")

(4) Use the result of Problem (3) to show that

. 1 o2 1 0 0
—/ L2 e 2 AN I an !
(7| L) h |:Si112 0 002 T sin 6 00 (51n9 )] e

(5) A certain spherical harmonic is given by

Y, (0,¢) = gw %e—zm sin” @ (7 cos® 6 — 1)

(a) Show that this function is properly normalized.

(b) Determine the values of ¢ and m. You might want to use the result of Problem (4),
along with the analogous result for the operator L,.
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(1) We could just substitute into the right and show that it equals the left, but maybe
there’s something to be learned by going in the other direction. So,

—

pL+pe = P
and  mopy —nmupy = Mp
50 (m1 +mg)py = Mpy = m P+ Mp
therefore P o= p+ ™p

M
plus (my +me)py = Mpy, = moP — Mp
and, finally P = —p+ %ﬁ
Now just proceed with the algebra.
2%11512 + 2%712522 - 2—;1 <ﬁ+ %ﬁf + QLmQ (—ﬁ+ %ﬁ)Z
_ QL—Q + ﬁp’z

(2) See the accompanying MATHEMATICA notebook. The total angular momentum quantum
number is £ = 1 so the only possible result of a measurement of L? is 2h?. The probabilities
to measure m = 0, +1 are 2/3 and 1/6, respectively.

(3) Start with the expression we derived in class for (7|L|a) in spherical coordinates and
then convert the unit vectors to the Cartesian form using Concepts Equations (4.15).

/T - h [ 0 ~ 1 0 .,
(ML) = - _¢89 Qsmea(b] (7'|cv)
- E-(_A‘¢+A ¢)2_(A ¢ 0 + ysin ¢ H_A’Q) 1 _<—»/|>
=7 Z sin jeos )5y — (Zcospeost + §sin g cos Zsin 0009 o
h. ., 0 P ) o 5 01
= = -iL’ (— &nqﬁ% — Cos ¢ cot 9%> +y (cos qb% — sin ¢ cot 98—¢) + Z@Tb} (7| x)
Therefore . , )
(7| Ly|o) = 7 <— sm(b% — cos ¢ cot 08725) (' |ax)
and

o _h 0 , Y\ .,
(r"|Ly|a) = : (Cosgbae 51n¢00t98¢) (")



Hence
(F"Lilay = (7'|(Le £iLy)|)

= ? {(—Singbiicosgb) 0

5 (cos ¢ isin ¢) cot 8%] (7| c)

— —ih [:I:i(cosqb +ising) 0

55— (cos @+ ising)cot 93] (7']ar)

d¢
, 0 0
_ _ipEio U v —/
ihe [izae COte@(b] (| )

which is what we set out to prove.

(4) We know from our study of the general properties of angular momentum that
> 1
JE=J+ I+ )= §(J+J_ +J_J )+ J?

so interpret J as L and proceed with the derivatives. Using the dreaded “arrow” notation
for the sake of brevity, we first write

) ho\(hd\ 0
Lﬁ(?a—qb) (z%)—‘h 957

d d cosf —sin?f — cos?d 1
—cotld = =

df " dfsinh sin® 6 T sin?6

we can then do the derivative forms of L, and L_ to get

, 0 0 4 0 0
L Li s Z(z) - . s 7“1) i .
i — ( the {289 cot@a(b})( the { 289 cot&a(b})
2 2
= —p2e? <ei¢’—a + je i L 0 0

Remembering that

— —je ot d

06? sin? @ 0¢ 000¢

2
+ie 7" cot 0 {—zﬁ — cot GE} +ie” " cot 92 + 7 cot? 98—>

90 96 Z 9¢?
L L, — (—ihe_i‘l5 [—2% — cot 0%}) (—ihei‘l5 [z% — cot 0%})
S (eiaﬁaa_; _ jei® sier 68%5 + i€ cot 9808(;5
—ie' cot f [z‘% — cot 98%] —ie' cot 0% — €' cot? 08%)

Lots of things cancel when we add these, including e*?e~* = 1, so

L.L_+L L, — —2h? a—2+cot93+cot203—2
rEs T 002 o0 D2

Combining this with L? we get

- o 0 0? 0?
72 2 v 299 | O
— =N <892+cot986+cot 98¢2+8¢2>



Finally, we realize that

L o sin@2 —8—2+ ! cos¢9£—a—2—|—cot02
sin 6 060 00 ) 962 " sind 00 092 00
and 20 20 in @ 1
coS Ccos“ 0 + sin
0 + sin® 6 * sin® 6 sin® 6

so we indeed end up with what we were trying to prove.

(5) See the accompanying MATHEMATICA notebook. This is Y, %(6, ¢).



PHYS3701 Intro Quantum Mechanics | HW#13 Due 23 Apr 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) We showed in class that when r — 0, the radial wave function for central potential
problems can, in principle, have the form

where A and B are constants. By integrating the probability flux j = (A/m)Im(¢* Vi) over
a small sphere around the origin, show that this would imply that the origin is a source of
probability of both A and B are nonzero have a nonzero relative complex phase.

(2) Find the energy eigenvalues, and plot the radial eigenfunctions, for the following cases
of an infinite spherical box of radius a:

(a) The lowest energy level (aka the ground state) with [ =0
(b) The first excited state with [ =0
(¢) The second excited state with [ = 2

(3) Find the lowest energy eigenvalues with [ = 0 for a finite spherical box with radius a
finite walls of height Vo = A%8?/2ma?, where 8 = 4, 10, 25, and 100. (You need to do
this numerically with MATHEMATICA or some other application.) Show that these results
approach what you found in Problem (2) above.

(4) Construct all of the wave functions ¥y, (r, 0, ¢) for the eigenstates corresponding to the
first excited state energy eigenvalue of the isotropic three dimensional harmonic oscillator for
a particle of mass m and natural frequency w. Using MATHEMATICA or some other graphing
application, make a three dimensional plot of the probability density ¥, (7,8, ¢)nim (7,0, ¢)
for each of the wave functions.

(5) Look up the phenomenon called “magic numbers” in nuclear physics. Imagine that
protons and neutrons move independently in an isotropic harmonic oscillator potential, and
compare what you’d predict for the first five magic numbers to what is observed. Don’t
forget about the Paul Exclusion Principle, which I suppose you learned at some time.



PHYS3701 Intro Quantum Mechanics | HW#13 Solutions

(1) We are going to calculate the surface integral over a sphere centered at the origin, so all
we need is the radial component of the flux and we can ignore the spherical harmonics in
the wave function. (They will just integrate to unity over the sphere.) Therefore we have

jo(r) = 21m KA*rl T ) (lATl_l i 1)£>] _ [ZB*A _(+1)A'B

m i+l rl+2 m r2 r2

If we write B = cAe® where ¢, A, and § are real, then B*A = cA% " and A*B = cA%%, so
the radial flux is

h 1 , , h 1
gr(r) = ECA2T_21H1 [le™® — (1 +1)e”] = _ECAQﬁ(% +1)sind

The factor of 1/r? is critical, because integrating over a (tiny) sphere of radius R means
multiplying by 47 R? and so the flux out of the origin is

5 = Admh
]{j dS = — e A2(20 + 1) sin 6
m
which is nonzero as r — 0 if the relative phase ¢ is nonzero.

(2) See the accompanying MATHEMATICA notebook. The energy eigenvalues are

h? h?
E_ = 2) = 9.87
=01 2ma? (™) 2ma?
h? 5 h?
Ei—op = Sl (2m)° = o 39.5
h? h?
By = 12.32)% = 152
=23 2ma? ( ) 2ma?

and the (unnormalized) wave functions are

1.0

0.8f

0.6¢ — RO1
0.4} — R02
0.2} — R23

-0.2}

(3) Parameterize the energy eigenvalue as £ = h*a?/2ma®. The radial wave function for
r < ais Ajo(kr) = Asin(ar/a)/(ar/a). For r > a, the wave function satisfies

h2 d2 FLQ 2 h2 2

R(r) = ulr) where SR —ﬁu(r) a

r 2m dr? = 2ma?

u(r)

For bound states, we need a? < 32 so v* = 32 — a? > 0. Therefore v”(r) = (v/a)?u(r) and

2ma?

u(r) o< exp (—ﬂ> and R(r) = Bg exp <—ﬂ) for r>a
a a



The procedure is now familiar from 1D wave mechanics. We require jo(ka) = R(a) and
Jo(ka) = R'(a) and then impose that the determinant is zero in the matrix equation for
A and B. At this point, see the accompanying MATHEMATICA notebook. We find the
determinant equation to be

/5% — a?sin(«)
a

and then find the zeros of this to get a = 2.47,2.85,3.02,3.11 for g = 4,10, 25, 100, respec-
tively. As expected, the values for o approach m as the well gets very deep.

+ cos(a) =0

(4) If we approach this using Cartesian coordinates, then the energy eigenvalues are
3
En:<N+§) where N=ny,+n,+n,=0,1,2,...

so the first excited corresponds to one of n,, n,, or n, equal to unity and the other two equal
to zero. The eigenfunctions are just the products of the first excited and ground states of
the simple harmonic oscillator in one dimension. Writing the wave function as ¥y, n,n.,

- &) ) e
Vo100 = (%)1/ % <T>3: 1/4 ye_mwﬂ/%
Poo1 = (%)1/2 % <%>3: v s mwr?/2h

Now we need to find the linear combinations of these that are angular momentum eigenstates,
We know how to write z, y, and z in terms of spherical harmonics using

1 1

2

3 x4y
2T

so the appropriate normalized linear combinations are

3 x—1y z

\/g_

YL, 0) = 51/

r r

1 1/2 T4 V4T for .
7 [wl 0,0 + le,l,O] _E <%> |:; (%) :| 2 %TYII(H, ¢)] e mewr /2R
1/4 [
7 oo = iWosol = % ()" E (%)3] 2\ %ﬂm‘lw,aﬁ)] e/
/2[4 1/4 § ,
and Yoo1 = (%)1 : {; (%)3] {2\/27“}/10(9, (b)} o—mwr?/2h

Writing these with a common overall normalization constant N and the dimensionless length
p = r(mw/h)Y?, we get the eigenfunctions 1 ,, (where the 1 means first excited state),

Uiaa(r,0,6) = NY'(0,¢)pe "/
Uria(r,0,0) = NY7H0,0)pe "/
V1,10(r,0,0) NY(, gzﬁ),oe_”Q/2

and



which would seem to be correct. Of course, we could have gotten here by solving the problem
in spherical coordinates as a central force problem. In this case, as discussed in class, the
energy levels are

3 3
En:<N+§>:(2q+l+§> where q=20,1,2,...

where the radial eigenfunctions R(r) = u(p)/p and

u(p) = p e Pf(p)  where  f(p) =) anp"
n=0

with the a,, is nonzero only for even n, and are determined by the recursion relation

243X ey 2B
n+)m+2a+3) " ~ I

and the series must terminate at n = 2¢. In this problem, the first excited states are for ¢ = 0
and [ = 1, and the radial wave function is proportional to u(p)/p = pe‘pQ/ 2 which agrees
with what we found using Cartesian coordinates. The plots of the probability densities are
below, from the accompanying MATHEMATICA notebook.

where the plot on the left is for the m = 0 state, and the right is for the m = +1 states
(which have the same probability density.)

(5) The “magic numbers” of protons or neutrons (aka nucleons) give nuclei that are especially
stable against decay because these numbers close the “shells”, similar to closed shells of
electrons in atoms. If the nucleons move in a harmonic oscillator potential, this would
correspond to filled energy levels for each N. Remembering the Pauli Exclusion Principle,
we multiply the degeneracy of each level by two, and add them up to get the magic numbers.

N 1 >,(20+1) Sum x2 Expt
0 0 1 1 2 2
1 1 3 4 8 8
2 02 1+5=6 10 20 20
3 1,3 3+7=10 20 40 28
4 024 14549=15 35 70 50

This incredibly simple model of a nucleus works pretty well for the first three shells. After
that, the spin-orbit interaction takes over, but realizing that was worth the Nobel Prize to
Mayer and Jensen.



