
PHYS3701 Intro Quantum Mechanics I HW#1 Due 23 Jan 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A beam of silver atoms is created by heating a vapor to 1500◦C, and selecting atoms
with a velocity close to the thermal mean value. The beam moves through a 1.5 m long
magnetic field with a vertical gradient 8 T/m, and impinges a screen 2 m downstream of the
end of the magnet. Assuming the silver atom has spin-1/2 with a magnetic moment of one
Bohr magneton, find the separation distance in mm of the two states on the screen. This is
the calculation Stern and Gerlach had to do in order to design their experiment.

(2) In class we wrote down the states |±x̂⟩ and |±ŷ⟩ in terms of the two states |±ẑ⟩. Using
these expressions, show that

(a) |+x̂⟩ is orthogonal to |−x̂⟩
(b) |+ŷ⟩ is orthogonal to |−ŷ⟩
(c) The probability of measuring an electron to have its spin pointing in the +ŷ direction,

when the electron in fact is in the |−ẑ⟩ state, is 1/2

(3) A spin-1/2 particle, say an electron, exists in the state

|α⟩ = i

2
|+ẑ⟩ −

√
3

2
|−ẑ⟩

What is the probability that a measurement of spin the −ŷ direction gives the value ℏ/2?

(4) For an arbitrary unit vector n̂ = sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ, I claim that

|+ n̂⟩ = cos
θ

2
|+ẑ⟩+ eiϕ sin

θ

2
|−ẑ⟩

is the state for which a measurement of spin in the +n̂ direction will always give ℏ/2.
Construct the corresponding state | − n̂⟩ in terms of |+ẑ⟩ and |−ẑ⟩ by forcing it to be
normalized, orthogonal to |+n̂⟩, and with a positive, real coefficient of |+ẑ⟩. If you recognize
that θ and ϕ are just the normal polar angles in three dimensions, can you see why you could
have easily guessed your result for | − n̂⟩?

(5) Suppose you made a very large number of measurements of the spin in the ẑ direction
for a bunch of electrons all in the state

|α⟩ =
√

1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

In terms of ℏ, what would be the average value of all of your measurements?



PHYS3701 Intro Quantum Mechanics I HW#1 Solutions

(1) See the Mathematica notebook. We find a separation of 6 mm.

(2) The expressions we came up with in class are

|±x̂⟩ = 1√
2
|+ẑ⟩ ± 1√

2
|−ẑ⟩ and |±ŷ⟩ = 1√

2
|+ẑ⟩ ± i√

2
|−ẑ⟩

The dual vectors are given by

⟨±x̂| = 1√
2
⟨+ẑ| ± 1√

2
⟨−ẑ| and ⟨±ŷ| = 1√

2
⟨+ẑ| ∓ i√

2
⟨−ẑ|

Now just form the inner products, so that

⟨−x̂|+ x̂⟩ =

[
1√
2
⟨+ẑ| − 1√

2
⟨−ẑ|

] [
1√
2
|+ẑ⟩+ 1√

2
|−ẑ⟩

]
=

1

2
⟨+ẑ|+ ẑ⟩ − 1

2
⟨−ẑ|+ ẑ⟩+ 1

2
⟨+ẑ| − ẑ⟩ − 1

2
⟨−ẑ| − ẑ⟩

=
1

2
(1)− 1

2
(0) +

1

2
(0)− 1

2
(1) = 0

⟨−ŷ|+ ŷ⟩ =

[
1√
2
⟨+ẑ|+ i√

2
⟨−ẑ|

] [
1√
2
|+ẑ⟩+ i√

2
|−ẑ⟩

]
=

1

2
⟨+ẑ|+ ẑ⟩+ i

2
⟨−ẑ|+ ẑ⟩+ i

2
⟨+ẑ| − ẑ⟩ − 1

2
⟨−ẑ| − ẑ⟩

=
1

2
(1) +

i

2
(0) +

i

2
(0)− 1

2
(1) = 0

The probability requested is given by

|⟨+ŷ| − ẑ⟩|2 =
∣∣∣∣[ 1√

2
⟨+ẑ|+ i√

2
⟨−ẑ|

]
|−ẑ⟩

∣∣∣∣2 = ∣∣∣∣ 1√
2
(0) +

i√
2
(1)

∣∣∣∣2 = i√
2

−i√
2
=

1

2

(3) The probability requested is given by

|⟨−ŷ|α⟩|2 =

∣∣∣∣∣
[

1√
2
⟨+ẑ|+ i√

2
⟨−ẑ|

][
i

2
|+ẑ⟩ −

√
3

2
|−ẑ⟩

]∣∣∣∣∣
2

=

∣∣∣∣∣ i

2
√
2
− i

√
3

2
√
2

∣∣∣∣∣
2

=
1

8

(
1−

√
3
)2

=
2−

√
3

4
≈ 0.067



(4) Write | − n̂⟩ = a |+ẑ⟩+ b |−ẑ⟩ where |a|2 + |b|2 = 1 and a is real and positive. Imposing
the orthogonality condition means ⟨+n̂| − n̂⟩ = 0, so

a cos
θ

2
+ be−iϕ sin

θ

2
= 0 therefore b = −aeiϕ cot θ

2

We can then calculate

a2 + a2 cot2
θ

2
= a2

[
1 +

cos2 θ/2

sin2 θ/2

]
=

a2

sin2 θ/2
= 1 so a = sin

θ

2

where we note that 0 ≤ θ ≤ π so that a > 0 for all θ. Therefore, we find that

| − n̂⟩ = sin
θ

2
|+ẑ⟩ − eiϕ cos

θ

2
|−ẑ⟩

which agrees with Problem 1.6 in Townsend.

It is clear that in order to flip +n̂ to the opposite direction, we take θ → π−θ and ϕ→ ϕ+π,
so we would have naturally expected that

| − n̂⟩ = cos
π − θ

2
|+ẑ⟩+ ei(ϕ+π) sin

π − θ

2
|−ẑ⟩ = sin

θ

2
|+ẑ⟩ − eiϕ cos

θ

2
|−ẑ⟩

(5) The probability of measuring +ℏ/2 is 1/3, and the probability of measuring −ℏ/2 is 2/3,
so after a large number of measurements, the averagte value will be

1

3

(
+
ℏ
2

)
+

2

3

(
−ℏ
2

)
=

ℏ
6
(1− 2) = −ℏ

6
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PHYS3701 Intro Quantum Mechanics I HW#2 Due 30 Jan 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) The trace of an operator X is defined as

Tr(X) =
∑
a′

⟨a′|X|a′⟩

where the |a′⟩ are a set of eigenstates based on some Hermitian operator A. Prove that

(a) Tr(X) =
∑

b′⟨b′|X|b′⟩ where the |b′⟩ are any other complete set of eigenvectors, that
is, it doesn’t matter which basis you use to evaluate the trace.

(b) Tr(XY ) = Tr(Y X) for any two operators X and Y .

You will find it useful to invoke completeness by “inserting the identity operator.”

(2) Using the outer product expressions for the spin operators derived in class, show that

SxSy = −SySx and [Sx, Sy] ≡ SxSy − SySx = iℏSz

(3) In a certain two state system, an operator H has the form

H = a|1⟩⟨1|+ a|2⟩⟨2|+ ib|1⟩⟨2| − ib|2⟩⟨1|

where a and b are real numbers.

(a) Show that H is Hermitian.

(b) Find the eigenvalues of H in terms of a and b and show that they are real.

(c) Find the eigenvectors of H in terms of a, b, |1⟩, and |2⟩. Normalize the eigenvectors,
but you should find that this is simple.

(4) For an arbitrary unit vector n̂ = sin θ cosϕ x̂ + sin θ sinϕ ŷ + cos θ ẑ, form the spin-1/2

operator Sn = S⃗ · n̂. Show that the eigenvalues of Sn are exactly what you expect. Find the
eigenvectors and compare to your answer for Problem 4 on Homework 1.

(5) Calculate expectation value of the operator Sz, that is ⟨Sz⟩, for the spin-1/2 state

|α⟩ =
√

1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

and compare to your answer for Problem 5 on Homework 1. Then calculate the expectation
values ⟨Sx⟩ and ⟨Sy⟩.



PHYS3701 Intro Quantum Mechanics I HW#2 Solutions

(1) Making use of the operator 1 =
∑

b′ |b′⟩⟨b′| =
∑

b′′ |b′′⟩⟨b′′| we write

Tr(X) =
∑
a′

⟨a′|X|a′⟩ =
∑
a′

⟨a′|1X1|a′⟩ =
∑
a′

∑
b′

∑
b′′

⟨a′|b′⟩⟨b′|X|b′′⟩⟨b′′|a′⟩

=
∑
a′

∑
b′

∑
b′′

⟨b′′|a′⟩⟨a′|b′⟩⟨b′|X|b′′⟩ =
∑
b′

∑
b′′

⟨b′′|1|b′⟩⟨b′|X|b′′⟩

=
∑
b′

∑
b′′

⟨b′′|b′⟩⟨b′|X|b′′⟩ =
∑
b′

∑
b′′

δb′′,b′⟨b′|X|b′′⟩ =
∑
b′

⟨b′|X|b′⟩

and Tr(XY ) =
∑
a′

⟨a′|XY |a′⟩ =
∑
a′

⟨a′|X1Y |a′⟩

=
∑
a′

∑
b′

⟨a′|X|b′⟩⟨b′|Y |a′⟩ =
∑
a′

∑
b′

⟨b′|Y |a′⟩⟨a′|X|b′⟩

=
∑
b′

⟨b′|Y 1X|b′⟩ =
∑
b′

⟨b′|Y X|b′⟩ = Tr(Y X)

(2) Just do the work and the answers fall out. First the commutator, so

SxSy =

(
ℏ
2
[|+ẑ⟩ ⟨−ẑ|+ |−ẑ⟩ ⟨+ẑ|]

)(
ℏ
2
[−i |+ẑ⟩ ⟨−ẑ|+ i |−ẑ⟩ ⟨+ẑ|]

)
=

ℏ2

4
(0 + i |+ẑ⟩ ⟨+ẑ| − i |−ẑ⟩ ⟨−ẑ|+ 0)

=
ℏ2

4
[i |+ẑ⟩ ⟨+ẑ| − i |−ẑ⟩ ⟨−ẑ|]

SySx =

(
ℏ
2
[−i |+ẑ⟩ ⟨−ẑ|+ i |−ẑ⟩ ⟨+ẑ|]

)(
ℏ
2
[|+ẑ⟩ ⟨−ẑ|+ |−ẑ⟩ ⟨+ẑ|]

)
=

ℏ2

4
(0− i |+ẑ⟩ ⟨+ẑ|+ i |−ẑ⟩ ⟨−ẑ|+ 0)

=
ℏ2

4
[−i |+ẑ⟩ ⟨+ẑ|+ i |−ẑ⟩ ⟨−ẑ|] = −SxSy

and [Sx, Sy] = SxSy − SySx

= 2i
ℏ2

4
[|+ẑ⟩ ⟨+ẑ| − |−ẑ⟩ ⟨−ẑ|] = iℏSz

(3) It is obvious that H is Hermitian, since taking the adjoint flips the bras and kets and
takes the complex conjugates of the coefficients. The eigenvalue problem reduces to solving
for λ using ∣∣∣∣ a− λ ib

−ib a− λ

∣∣∣∣ = (a− λ)2 − b2 = 0 so λ = a± b

which are clearly real numbers. For λ = a+ b, we have[
−b ib
−ib −b

] [
u
(+)
1

u
(+)
2

]
=

[
0
0

]
so − u

(+)
1 + iu

(+)
2 = 0 or − iu

(+)
1 − u

(+)
2 = 0



which both say that u
(+)
2 = −iu(+)

1 . For λ = a− b, we have[
b ib

−ib b

][
u
(−)
1

u
(−)
2

]
=

[
0
0

]
so u

(−)
1 + iu

(−)
2 = 0 or − iu

(−)
1 + u

(−)
2 = 0

which both say that u
(−)
2 = −iu(−)

1 . The normalized eigenkets are therefore

|a+ b⟩ = 1√
2
[|1⟩ − i|2⟩] and |a− b⟩ = 1√

2
[|1⟩+ i|2⟩]

(4) Using the matrix representation in the |±ẑ⟩ basis, we have

Sn = sin θ cosϕ
ℏ
2

[
0 1
1 0

]
+ sin θ sinϕ

ℏ
2

[
0 −i
i 0

]
+ cos θ

ℏ
2

[
1 0
0 −1

]
=

ℏ
2

[
cos θ sin θ cosϕ− i sin θ sinϕ

sin θ cosϕ+ i sin θ sinϕ − cos θ

]
=

ℏ
2

[
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

]
The eigenvalues are therefore (ℏ/2)λ where we get λ by solving∣∣∣∣ cos θ − λ e−iϕ sin θ

eiϕ sin θ − cos θ − λ

∣∣∣∣ = −(cos2 θ − λ2)− sin2 θ = −1 + λ2 = 0

so λ = ±1 and the eigenvalues are±ℏ/2, as expected. To get the eigenvectors, it is convenient
to write

cos θ − 1 = −2 sin2 θ

2
cos θ + 1 = 2 cos2

θ

2
and sin θ = 2 sin

θ

2
cos

θ

2

In this case, the eigenvector coefficients for λ = +1 come from solving[
−2 sin2(θ/2) e−iϕ2 sin(θ/2) cos(θ/2)

eiϕ2 sin(θ/2) cos(θ/2) 2 cos2(θ/2)

][
u
(+)
1

u
(+)
2

]
=

[
0
0

]
both of which give u

(+)
2 = u

(+)
1 eiϕ sin(θ/2)/ cos(θ/2). Normalization gives(

u
(+)
1

)2
[
1 +

sin2(θ/2)

cos2(θ/2)

]
=

(
u
(+)
1

)2 1

cos2(θ/2)
= 1

so we have u
(+)
1 = cos(θ/2) and u

(+)
2 = eiϕ sin(θ/2), which agrees with the statement in

Problem 4 in Homework 1. For λ = −1 we get[
2 cos2(θ/2) e−iϕ2 sin(θ/2) cos(θ/2)

eiϕ2 sin(θ/2) cos(θ/2) 2 sin2(θ/2)

][
u
(+)
1

u
(+)
2

]
=

[
0
0

]
both of which give u

(+)
2 = −u(+)

1 eiϕ cos(θ/2)/ sin(θ/2). Normalization gives(
u
(+)
1

)2
[
1 +

cos2(θ/2)

sin2(θ/2)

]
=

(
u
(+)
1

)2 1

sin2(θ/2)
= 1

so we have u
(+)
1 = sin(θ/2) and u

(+)
2 = −eiϕ cos(θ/2), which agrees with the solution to

Problem 4 in Homework 1.



(5) Calculating the expectation value ⟨Sz⟩ just parallels what we did in Homework 1, namely

⟨Sz⟩ = ⟨α|Sz|α⟩

=

[√
1

3
⟨+ẑ|+

√
2

3
⟨−ẑ|

]
ℏ
2
(|+ẑ⟩ ⟨+ẑ| − |−ẑ⟩ ⟨−ẑ|)

[√
1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

]

=
ℏ
2

[√
1

3
⟨+ẑ| −

√
2

3
⟨−ẑ|

][√
1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

]

=
ℏ
2

(
1

3

)
− ℏ

2

(
2

3

)
= −ℏ

6

The calculations for ⟨Sx⟩ and ⟨Sy⟩ are similarly easy.

⟨Sx⟩ = ⟨α|Sx|α⟩

=

[√
1

3
⟨+ẑ|+

√
2

3
⟨−ẑ|

]
ℏ
2
(|+ẑ⟩ ⟨−ẑ|+ |−ẑ⟩ ⟨+ẑ|)

[√
1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

]

=
ℏ
2

[√
1

3
⟨−ẑ|+

√
2

3
⟨+ẑ|

][√
1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

]

=
ℏ
2

√
2

3
+

ℏ
2

√
2

3
= ℏ

√
2

3
⟨Sy⟩ = ⟨α|Sy|α⟩

=

[√
1

3
⟨+ẑ|+

√
2

3
⟨−ẑ|

]
ℏ
2
(−i |+ẑ⟩ ⟨−ẑ|+ i |−ẑ⟩ ⟨+ẑ|)

[√
1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

]

=
ℏ
2

[
−i

√
1

3
⟨−ẑ|+ i

√
2

3
⟨+ẑ|

][√
1

3
|+ẑ⟩+

√
2

3
|−ẑ⟩

]

= −iℏ
2

√
2

3
+ i

ℏ
2

√
2

3
= 0



PHYS3701 Intro Quantum Mechanics I HW#3 Due 6 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Consider the possibility of an observable P for which the Hermitian operator is also
unitary, that is P † = P = P−1. Show that this implies that P 2 = 1. Can you think of a
practical real world example of such an operator in three-dimensional space?

(2) For a certain two-state system, the Hamiltonian has the time-independent form

H = |1⟩δ⟨2|+ |2⟩δ⟨1|

where δ is a real number. Calculate the eigenvalues and eigenstates of H, and find the
time-evolved state |α; t⟩ assuming the system starts out in the state |α⟩ = |1⟩. Determine
the probability that a measurement finds the system in |1⟩ as a function of time.

(3) A spin-1/2 particle with charge q sits in a static magnetic field B⃗ = Bẑ. The particle is
initially in the state |+x̂⟩, that is, the state for which a measurement of the spin in the +x̂
direction will always give +ℏ/2. Find the expectation value ⟨Sy⟩ as a function of time and
argue that your answer is exactly what you expect.

(4) An electron is subject to a static magnetic field B⃗ = Bẑ. At t = 0 the electron is known

to be in an eigenstate of Sn = S⃗ · n̂ with eigenvalue +ℏ/2, where n̂ is a unit vector, lying in
the xz-plane, that makes an angle θ with the z-axis.

(a) Find the probability for finding the electron in the |+x̂⟩ state as a function of time.

(b) Find the expectation value of Sx as a function of time.

(c) Show that your answers make good sense for θ = 0 and θ = π/2.

You can make use of your results on Problem 4 of Homework 2.

(5) Neutrinos are very low mass particles that are only detected through the so-called weak
interaction, and are observed only in the eigenstates

|νe⟩ = cos θ|ν1⟩ − sin θ|ν2⟩ and |νµ⟩ = sin θ|ν1⟩+ cos θ|ν2⟩

where |ν1⟩ and |ν2⟩ are eigenstates of the (full) Hamiltonian with masses m1 and m2 and
θ is a “mixing angle.” Making the assumption that electron neutrinos are produced with
definite momentum p ≫ mc and energy E = (p2c2 +m2c4)1/2 at time t = 0, show that the
probability of detecting the neutrino as an electron neutrino at some distance L is given by

P (νe → νe) = 1− sin2 2θ sin2

(
∆m2c4

L

4Eℏc

)
where ∆m2 ≡ m2

1 − m2
2. Now look up the paper “Precision Measurement of Reactor An-

tineutrino Oscillation at Kilometer-Scale Baselines by Daya Bay”, by F.P. An, et al., Phys.
Rev. Lett. 130, 161802, and use Figure 3 to estimate the sizes of ∆m2c2 (in eV2) and sin2 2θ,
which you can compare the the results published in the paper.



PHYS3701 Intro Quantum Mechanics I HW#3 Solutions

(1) It is simple to show that P 2 = PP = P−1P = 1. In other words, do the operation twice
and you come back to where you started. The classic (and important) example is the parity
operation, where the position vector r⃗ → −r⃗.

(2) Find the eigenvalues and eigenvectors by diagonalizing H in the given basis. That is[
0 δ
δ 0

] [
v1
v2

]
= E

[
v1
v2

]
so

∣∣∣∣ −E δ
δ −E

∣∣∣∣ = E2 − δ2 = 0

and the eigenvalues are just E1 = +δ, for which v2 = v1, and E2 = −δ, for which v2 = −v1.
Therefore the eigenstates are

|E1⟩ =
1√
2
|1⟩+ 1√

2
|2⟩ and |E2⟩ =

1√
2
|1⟩− 1√

2
|2⟩ so |1⟩ = 1√

2
|E1⟩+

1√
2
|E2⟩

We can now apply the time evolution operator to get

|α; t⟩ = U(t)|α; t = 0⟩ = e−iHt/ℏ|1⟩ = e−iHt/ℏ
[

1√
2
|E1⟩+

1√
2
|E2⟩

]
=
e−iE1t/ℏ
√
2

|E1⟩+
e−iE2t/ℏ
√
2

|E2⟩

and the probability of finding the particle in the state |1⟩ is

P = |⟨1|α; t⟩|2 =
∣∣∣∣e−iE1t/ℏ

√
2

⟨1|E1⟩+
e−iE2t/ℏ
√
2

⟨1|E2⟩
∣∣∣∣2 = 1

4

∣∣e−iδt/ℏ + e+iδt/ℏ∣∣2 = cos2
(
δt

ℏ

)

(3) This is very similar to what we worked through in class. The Hamiltonian is

H = − q

mc
S⃗ · B⃗ = −ωSz with ω ≡ qB

mc

The time translation operator is therefore

U(t) = exp

(
−iHt

ℏ

)
= exp

(
iωSzt

ℏ

)
The state of the particle at time t is just given by

|α; t⟩ = U(t) |+x̂⟩ = exp

(
iωSzt

ℏ

)[
1√
2
|+ẑ⟩+ 1√

2
|−ẑ⟩

]
=
eiωt/2√

2
|+ẑ⟩+ e−iωt/2

√
2

|−ẑ⟩

It’s probably easiest to calculate the expectation value using the matrix representation, so

⟨Sy⟩ = ⟨α; t|Sy|α; t⟩ =
[
e−iωt/2/

√
2 eiωt/2/

√
2
] ℏ
2

[
0 −i
i 0

] [
eiωt/2/

√
2

e−iωt/2/
√
2

]
=

ℏ
2

[
ieiωt/2/

√
2 −ie−iωt/2/

√
2
] [ eiωt/2/

√
2

e−iωt/2/
√
2

]
=

ℏ
2

i

2

(
eiωt − e−iωt

)
= −ℏ

2
sinωt

This looks right. At t = 0, the state is a pure |+x̂⟩, so ⟨Sy⟩ = 0. The expectation value
precesses (apparently in the clockwise direction) about the +z axis. (This will be clear when
we study rotations.)



(4) In this case, the Hamiltonian is

H = − q

mc
S⃗ · B⃗ = +ωSz with ω ≡ eB

mc
so U(t) = exp

(
−iHt

ℏ

)
= exp

(
−iωSzt

ℏ

)
where q = −e is the charge on the electron. The initial state is, from HW 1 with ϕ = 0,

|+ n̂⟩ = cos
θ

2
|+ẑ⟩+ sin

θ

2
|−ẑ⟩

The state of the particle at time t is just given by

|α; t⟩ = U(t)|+ n̂⟩ = exp

(
−iωSzt

ℏ

)[
cos

θ

2
|+ẑ⟩+ sin

θ

2
|−ẑ⟩

]
= e−iωt/2 cos

θ

2
|+ẑ⟩+ eiωt/2 sin

θ

2
|−ẑ⟩

The probability to find the electron in the |+x̂⟩ state is

|⟨+x̂|α; t⟩|2 =

∣∣∣∣[ 1√
2
⟨+ẑ|+ 1√

2
⟨−ẑ|

] [
e−iωt/2 cos

θ

2
|+ẑ⟩+ eiωt/2 sin

θ

2
|−ẑ⟩

]∣∣∣∣2
=

∣∣∣∣ 1√
2
e−iωt/2 cos

θ

2
+

1√
2
eiωt/2 sin

θ

2

∣∣∣∣2 = 1

2

∣∣∣∣cos θ2 + eiωt sin
θ

2

∣∣∣∣2
=

1

2

[
cos

θ

2
+ eiωt sin

θ

2

)(
cos

θ

2
+ e−iωt sin

θ

2

]
=

1

2

[
1 + cos

θ

2
sin

θ

2

(
eiωt + e−iωt

)]
=

1

2
[1 + sin θ cosωt]

In order to find ⟨Sx⟩ = ⟨α; t|Sx|α; t⟩, first find

Sx|α; t⟩ =
ℏ
2
[|+ẑ⟩ ⟨−ẑ|+ |−ẑ⟩ ⟨+ẑ|]

[
e−iωt/2 cos

θ

2
|+ẑ⟩+ eiωt/2 sin

θ

2
|−ẑ⟩

]
=

ℏ
2

[
eiωt/2 sin

θ

2
|+ẑ⟩+ e−iωt/2 cos

θ

2
|−ẑ⟩

]
Therefore

⟨α; t|Sx|α; t⟩ =

[
eiωt/2 cos

θ

2
⟨+ẑ|+ e−iωt/2 sin

θ

2
⟨−ẑ|

]
ℏ
2

[
eiωt/2 sin

θ

2
|+ẑ⟩+ e−iωt/2 cos

θ

2
|−ẑ⟩

]
=

ℏ
2

[
eiωt cos

θ

2
sin

θ

2
+ e−iωt sin

θ

2
cos

θ

2

]
=

ℏ
2
sin θ cosωt

For θ = 0, we are in the |+ẑ⟩ state, so it makes sense that the probability of measuring
the |+x̂⟩ state is always 1/2, and the expectation value would be 0. For θ = π/2, we are
in the |±x̂⟩ state (to start) so the probability starts out at unity and reduces to zero at
t = π/ω = T/2 when it rotates into the |−x̂⟩ state. In this case, the expectation value
oscillates between ±ℏ/2 with period 2π/ω. It’s all good.



(5) The time-evolved state is

|νe; t⟩ = e−iHt/ℏ|νe⟩ = e−iHt/ℏ [cos θ|ν1⟩ − sin θ|ν2⟩] = e−iE1t/ℏ cos θ|ν1⟩ − e−iE2t/ℏ sin θ|ν2⟩

Therefore the survival probability is

P (νe → νe) = |⟨νe|νe; t⟩|2

=
∣∣[cos θ⟨ν1| − sin θ⟨ν2|]

[
e−iE1t/ℏ cos θ|ν1⟩ − e−iE2t/ℏ sin θ|ν2⟩

]∣∣2
=

∣∣e−iE1t/ℏ cos2 θ + e−iE2t/ℏ sin2 θ
∣∣2

= cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos

[
(E1 − E2)t

ℏ

]
Now make use of the momentum being much higher than the masses to write

E2 − E1 = pc

(
1 +

m2
1c

2

p2

)1/2

− pc

(
1 +

m2
2c

2

p2

)1/2

≈ pc

(
1 +

m2
1c

2

2p2

)
− pc

(
1 +

m2
2c

2

2p2

)
=
c3

2p
∆m2

so
(E1 − E2)t

ℏ
=

c3

2p
∆m2L

c

1

ℏ
= ∆m2c4

L

2Eℏc
≡ µ

Now it is just some algebra with trigonometric functions. We have

P (νe → νe) = cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cosµ

= cos2 θ(1− sin2 θ) + sin2 θ(1− cos2 θ) + 2 cos2 θ sin2 θ cosµ

= 1− 2 sin2 θ cos2 θ(1− cosµ) = 1− sin2 2θ sin(µ/2)

which is the formula we were asked to prove.

The figure is shown here. The difference be-
tween unity and the curve at the bottom of the
trough gives sin2 2θ ≈ 0.08, in good agreement
with the value 0.0851±0.0024 given in the pa-
per. The position of the trough corresponds to
µ/2 = π/2 when L/E ≈ 500 m/MeV, so

∆m2c4
L

2Eℏc
= π

yields sin22θ13 ¼ 0.0851" 0.0024, and Δm2
32 ¼ ð2.466"

0.060Þ × 10−3 eV2 for the normal mass hierarchy or
Δm2

32 ¼ −ð2.571" 0.060Þ × 10−3 eV2 for the inverted
mass hierarchy. Using Eq. (2), we obtained sin22θ13 ¼
0.0852" 0.0024 and Δm2

ee¼ð2.519"0.060Þ×10−3 eV2

with the same reduced-χ2 value. Results determined with
the other fitting methods described in Ref. [16] were
consistent to < 0.2 standard deviations.
The best-fit prompt-energy distribution is in excellent

agreement with the observed spectra in each experimental
hall, as shown in Fig. 2.
Figure 3 depicts the normalized signal rate of the three

halls as a function of Leff=hEν̄ei with the best-fit curve
superimposed, where Leff and hEν̄ei are the effective

baseline and average ν̄e energy, respectively [16]. The
oscillation pattern related to θ13 is unambiguous.
The present improved result in sin2 2θ13 is consistent

with our previous determinations [3,16,17] and agrees with
other measurements of reactor ν̄e disappearance by RENO
[28] and Double Chooz [29,30] as well as electron neutrino
and antineutrino appearance measurements by T2K [6].
Daya Bay’s measured Δm2

32 is consistent with the results of
NOvA [5], T2K [6], MINOS/MINOS+ [31], IceCube [32],
and SuperK [33] that were obtained with muon (anti)
neutrino disappearance. The agreement in sin2 2θ13 and
Δm2

32 between Daya Bay measurements using ν̄e and the
muon neutrino and antineutrino determinations provides
strong support of the three-neutrino paradigm.
To conclude, we have presented a new determination of

sin2 2θ13 with a precision of 2.8% and the mass-squared
differences reaching a precision of about 2.4%. The
reported sin2 2θ13 will likely remain the most precise
measurement of θ13 in the foreseeable future and be crucial
to the investigation of the mass hierarchy and CP violation
in neutrino oscillation [34,35].

The Daya Bay experiment is supported in part by the
Ministry of Science and Technology of China, the U.S.
Department of Energy, the Chinese Academy of Sciences,
the CAS Center for Excellence in Particle Physics, the
National Natural Science Foundation of China, the
Guangdong provincial government, the Shenzhen munici-
pal government, the China General Nuclear Power Group,
the Research Grants Council of the Hong Kong Special
Administrative Region of China, the Ministry of Education
in Taiwan, the U.S. National Science Foundation, the
Ministry of Education, Youth, and Sports of the Czech
Republic, the Charles University Research Centre UNCE,
and the Joint Institute of Nuclear Research in Dubna,

FIG. 2. The measured prompt-energy spectra of EH1, EH2, and EH3 with the best-fit and no-oscillation curves superimposed in the
upper panels. The shape of the backgrounds are apparent in the spectra with a logarithmic ordinate shown in the insets. The backgrounds
shown in the legend are in descending order according to their contribution. The lower panels shows the ratio of the observed spectrum
to the predicted no-oscillation distribution. The error bars are statistical.

FIG. 3. Measured disappearance probability as a function of
the ratio of the effective baseline Leff to the mean antineutrino
energy hEν̄ei.
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Writing ℏc = 200 MeV · fm = 2× 10−7 eV ·m and L/E = 5× 10−4 m/eV we get

∆m2c4 = 2π
2× 10−7

5× 10−4
eV2 = 2.51× 10−3 eV2

which also agrees well with the published value (2.466± 0.060)× 10−3 eV2.



PHYS3701 Intro Quantum Mechanics I HW#4 Due 13 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) In class, we showed that the time dependence of the expectation value for an observable
A, where A itself is independent of time, is given by

d

dt
⟨A⟩ = 1

iℏ
⟨a; t|[A,H]|α; t⟩

Show that this holds for Problem 3 of Homework 3, namely ⟨Sy⟩ for a spin-1/2 particle with

charge q in a static magnetic field B⃗ = Bẑ, initially in the state |+x̂⟩.

(2) Prove the second of “Hamilton’s Equations” for expectation values, namely

d

dt
⟨px⟩ =

〈
−dV
dx

〉
(a) First prove that [xn, px] = iℏnxn−1 for an integer n, by first showing that it is true for

n = 1, and then showing that if it is true for n, then it is true for n+ 1.

(b) Next, using a Taylor expansion for F (x), show that [F (x), px] = iℏ∂F/∂x.
(c) Finally, derive the desired result using the Hamiltonian H = p2x/2m+ V (x).

(3) In this problem you will derive the Heisenberg Uncertainty Principle ∆x∆px ≥ ℏ/2, but
using proper quantum mechanical notation and formalism.

(a) Show that ⟨(∆A)2⟩ = ⟨A2⟩ − ⟨A⟩2, where, for an observable A, we define the operator

∆A = A− ⟨A⟩. What does ⟨(∆A)2⟩1/2 remind you of?

(b) Prove the Schwarz (aka “triangle”) inequality ⟨α|α⟩⟨β|β⟩ ≥ |⟨α|β⟩|2 where |α⟩ and |β⟩
are arbitrary states. Start by taking the inner product of |α⟩ + λ|β⟩ with itself and
invoke the positivity postulate. Then make a wise choice for λ.

(c) An anti-Hermitian operator C is one for which C† = −C. Show that the product XY
of any two Hermitian operators X and Y can be written as the sum of Hermitian and
anti-Hermitian operators. Then prove that the expectation value of any Hermitian
(anti-Hermitian) operator is purely real (imaginary).

(d) Apply the above ideas to states |α⟩ = ∆A|γ⟩ and |β⟩ = ∆B|γ⟩ to prove that

⟨(∆A)2⟩⟨(∆B)2⟩ ≥ 1

4
|⟨[A,B]⟩|2

and thereby derive the Heisenberg Uncertainty Principle.

(4) Given a state |α⟩, find the “momentum space wave function” ϕα(p
′
x) = ⟨p′x|α⟩ in terms

of the wave function ψα(x
′) and an integral. What is this called? (You’ve seen it before!)

(5) Two states |α⟩ and |β⟩ are related by |β⟩ = eip0x/ℏ|α⟩ where x is the position operator
and p0 is a constant. Using a subscript to indicate the state in which the expectation value
is calculated, show that

⟨x⟩β = ⟨x⟩α and ⟨px⟩β = ⟨px⟩α + p0



PHYS3701 Intro Quantum Mechanics I HW#4 Solutions

(1) Problem 3 of Homework 3 found that

|α; t⟩ = eiωt/2√
2

|+ẑ⟩+ e−iωt/2

√
2

|−ẑ⟩ and ⟨Sy⟩ = −ℏ
2
sinωt

The Hamiltonian in this case is H = −ωSz, so we are asked to show that

d

dt
⟨Sy⟩ = −ℏω

2
cosωt = − ω

iℏ
⟨α; t|[Sy, Sz]|α; t⟩

It is probably simplest to calculate the commutator with matrices, that is

[Sy, Sz]
.
=

ℏ2

4

{[
0 −i
i 0

] [
1 0
0 −1

]
−

[
1 0
0 −1

] [
0 −i
i 0

]}
=

ℏ2

4

{[
0 i
i 0

]
−
[

0 −i
−i 0

]}
=
iℏ2

2

[
0 1
1 0

]
.
= iℏSx

To get the expectation value, we just follow the example of the solution to Problem 3 of
Homework 3, but switching from Sy to Sx, that is

− ω

iℏ
⟨α; t|[Sy, Sz]|α; t⟩ = −ω⟨α; t|Sx|α; t⟩

= −ω
[
e−iωt/2/

√
2 eiωt/2/

√
2
] ℏ
2

[
0 1
1 0

] [
eiωt/2/

√
2

e−iωt/2/
√
2

]
= −ℏω

2

[
eiωt/2/

√
2 e−iωt/2/

√
2
] [ eiωt/2/

√
2

e−iωt/2/
√
2

]
= −ℏω

2

1

2

(
eiωt + e−iωt

)
= −ℏω

2
cosωt

and, indeed, the two expressions are equal.

(2) I think the proof in (a) is called “proof by induction.” For n = 1, the statement is simply
the canonical conjugation relation. We then have

[xn+1, px] = xn+1px − pxx
n+1 = xn(xpx)− pxx

n+1 = xn(iℏ+ pxx)− pxx
n+1

= iℏxn + xnpxx− pxx
nx = iℏxn + [xn, px]x = iℏxn + iℏnxn−1x

= iℏ(n+ 1)xn

and we are done. Part (b) follows easily, that is

[F (x), px] =

[
∞∑
n=0

anx
n, px

]
=

∞∑
n=0

an [x
n, px] =

∞∑
n=0

iℏnanxn−1 = iℏ
∂F

∂x

Finally, noting that px of course commutes with itself,

d

dt
⟨px⟩ =

1

iℏ

〈[
px,

p2x
2m

+ V (x)

]〉
=

1

iℏ
⟨[px, V (x)]⟩ = 1

iℏ
⟨− [V (x), px]⟩ =

〈
−dV
dx

〉



(3) See Section 1.4.5 of MQM3e. Part (a) is simple, that is

⟨(∆A)2⟩ = ⟨(A− ⟨A⟩)2⟩ = ⟨A2⟩ − 2⟨A⟩⟨A⟩+ ⟨A⟩2 = ⟨A2⟩ − ⟨A⟩2

For some data sample, we would call this the “variance”, and ⟨(∆A)2⟩1/2 ≡ σ would be the
“standard deviation.” Now for Part (a), just follow the instructions to get

(⟨α|+ λ∗⟨β|) (|α⟩+ λ|β⟩) = ⟨α|α⟩+ λ⟨α|β⟩+ λ∗⟨β|α⟩+ |λ|2⟨β|β⟩ ≥ 0

We want to end up with a factor ⟨α|α⟩⟨β|β⟩ so it looks like we want λ to have ⟨β|β⟩ in the
denominator. Writing λ = a/⟨β|β⟩ and multiplying through by ⟨β|β⟩ gives us

⟨α|α⟩⟨β|β⟩+ a⟨α|β⟩+ a∗⟨β|α⟩+ |a|2 ≥ 0

This clearly suggests that we put a = −⟨β|α⟩, so

⟨α|α⟩⟨β|β⟩ ≥ ⟨β|α⟩⟨α|β⟩+ ⟨β|α⟩∗⟨β|α⟩ − |⟨β|α⟩|2 = |⟨α|β⟩|2 + |⟨α|β⟩|2 − |⟨α|β⟩|2 = |⟨α|β⟩|2

and we’re done. For Part (c), it is more or less obvious that

XY =
1

2
(XY + Y X) +

1

2
(XY − Y X) ≡ 1

2
{X, Y }+ 1

2
[X, Y ] ≡ A+ C

where A† = A and C† = −C. Now ⟨α|A|β⟩ = ⟨β|A†|α⟩∗ = ⟨β|A|α⟩∗ so ⟨α|A|α⟩ = ⟨α|A|α⟩∗
which proves that the expectation value of a Hermitian operator is purely real. Similarly,
⟨α|C|α⟩ = −⟨α|C|α⟩∗ which proves that the expectation value of an anti-Hermitian operator
is purely imaginary. Putting this together for Part (d) gives us

⟨(∆A)2⟩⟨(∆B)2⟩ ≥ |⟨∆A∆B⟩|2 =
∣∣∣∣12⟨{∆A,∆B}⟩+ 1

2
⟨[∆A,∆B]⟩

∣∣∣∣2
The first time inside the square on the right is purely real and the second is purely imaginary,
so the square of the sum is just the sum of the squares, where both terms are strictly positive.
Therefore

⟨(∆A)2⟩⟨(∆B)2⟩ ≥ 1

4
|⟨[∆A,∆B]⟩|2 = 1

4
|⟨[A,B]⟩|2

where the other pieces from ∆A and ∆B cancel in the commutator. The canonical commu-
tation relation is [x, px] = iℏ,, so

⟨(∆x)2⟩⟨(∆px)2⟩ ≥
1

4
|⟨[x, px]⟩|2 =

ℏ2

4
or ⟨(∆x)2⟩1/2⟨(∆px)2⟩1/2 ≥

ℏ
2



(4) Just insert a complete set of position basis states to get

ϕα(p
′
x) = ⟨p′x|α⟩ =

∫ ∞

−∞
⟨p′x|x′⟩⟨x′|α⟩dx′ =

∫ ∞

−∞
⟨p′x|x′⟩ψα(x

′)dx′

From class, we know that ⟨p′x|x′⟩ = exp(−ip′xx′/ℏ)/
√
2πℏ, so

ϕα(p
′
x) =

1√
2πℏ

∫ ∞

−∞
e−ip′xx

′/ℏψα(x
′)dx′

This is just a Fourier transform, easy to see if we write k = px/ℏ.

(5) The first part is simple, since x commutes with exp(ip0x/ℏ).

⟨x⟩β = ⟨β|x|β⟩ = ⟨α|e−ip0x/ℏxeip0x/ℏ|α⟩ = ⟨α|e−ip0x/ℏeip0x/ℏx|α⟩ = ⟨α|x|α⟩ = ⟨x⟩α

For the second part, we have to know how to switch the order of exp(ip0x/ℏ) and px, but
for this we can make use of a result derived in Problem 2, namely

[exp(ip0x/ℏ), px] = iℏ
∂

∂x
exp(ip0x/ℏ) = −p0 exp(ip0x/ℏ)

We can now calculate

⟨px⟩β = ⟨β|px|β⟩ = ⟨α|e−ip0x/ℏpxe
ip0x/ℏ|α⟩

= ⟨α|e−ip0x/ℏ
(
eip0x/ℏpx + p0e

ip0x/ℏ
)
|α⟩

= ⟨α|px|α⟩+ p0 = ⟨px⟩α + p0



PHYS3701 Intro Quantum Mechanics I HW#5 Due 20 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A particle of mass m is initially in the Gaussian wave packet

ψα(x) =
1

σ1/2π1/4
e−x2/2σ2

(a) Prove that this wave function is properly normalized.

(b) Show that the uncertainty ∆x = σ/
√
2.

(c) Find the uncertainty ∆px and compare ∆x∆px to the Heisenberg uncertainty principle.

It would be useful to review the material on Gaussian integrals in the Concepts textbook.

(2) The height of a vertically bouncing ball is quantized. Numerically solve the Schrödinger
equation for V (x) = mgx with ψ(0) = 0 and adjust the lowest energy eigenvalue until
you see ψ → 0 at large x. You can choose whatever you like for ψ′(0). It is best to
write the differential equation in terms of dimensionless y = x/x0 and ϵ = E/mgx0, where
x0 = (ℏ2/m2g)1/3. (You should find that ϵ is between one and two.) Compare your answer
to the experiment described in V. V. Nesvizhevsky, et al., Phys. Rev. D 67(2003)102002.

(3) A particle of mass m is bound in an infinite one-dimensional square well. If the quantum
mechanical state of the particle is initially given by an equal mixture of the ground and first
excited states, find the probability as a function of time that the particle is found in the left
half of the well. (You can assume that the coefficients of the mixture are relatively real.)
Plot this probability for as a function of time for one period corresponding the frequency of
the ground state component, that is for 0 ≤ t ≤ T where T = 2π/ω with E1 = ℏω. Make an
animation showing how the probability density ρ(x, t) = Ψ∗(x, t)Ψ(x, t) changes over time,
and convince yourself that your animation agrees with your plot.

(4) A particle of massm is bound by a potential energy function V (x) = −(ℏ2/2m)(λ/a)δ(x)
where a has the dimensions of length. Show that there is only one bound state, and find the
energy eigenvalue and (normalized) eigenfunction. You will find it useful to integrate the
Schrödinger equation over the range −ϵ ≤ x ≤ +ϵ and then let ϵ→ 0.

(5) A particle of mass m and energy E > 0 is incident on a potential energy well given by
V (x) = −(ℏ2/2m)(λ/a)δ(x) where a has the dimensions of length. Calculate the reflection
and transmission coefficients, and show that they add up to unity, and confirm that you get
the answers you expect for λ→ 0 and λ→ ∞.



PHYS3701 Intro Quantum Mechanics I HW#5 Solutions

(1) First recall two results from Concepts Section 1.5.6:∫ ∞

−∞
e−ax2

dx =

√
π

a
and

∫ ∞

−∞
x2e−ax2

dx =
1

2

√
π

a3

To check that the wave function is properly normalized, we write∫ ∞

−∞
ψ∗ψ dx =

∫ ∞

−∞

1

σπ1/2
e−x2/σ2

=
1

σπ1/2
σ
√
π = 1

We know that (∆x)2 = ⟨x2⟩ − ⟨x⟩2, but ⟨x⟩ =
∫
ψ∗xψ dx = 0 since ψ∗ψ = ψ2 is an even

function of x. Therefore

(∆x)2 = ⟨x2⟩ =
∫ ∞

−∞
ψ∗x2ψ dx =

∫ ∞

−∞
x2

1

σπ1/2
e−x2/σ2

dx =
1

σπ1/2

1

2

√
πσ6 =

σ2

2

and so ∆x = σ/
√
2. We can find ∆px directly from the wave function, or also by using the

momentum space wave function. Using the former, and noting again that ⟨px⟩ = 0, we have

(∆px)
2 = ⟨α|p2x|α⟩ =

∫ ∞

−∞
ψ∗

(
ℏ
i

d

dx

)(
ℏ
i

d

dx

)
ψ dx = −ℏ2

∫ ∞

−∞
ψ∗d

2ψ

dx2
dx

Now we calculate

d2ψ

dx2
=

1

σ1/2π1/4

d

dx

[
− x

σ2
e−x2/2σ2

]
=

1

σ1/2π1/4

[
x2

σ4
− 1

σ2

]
e−x2/2σ2

Therefore we get

(∆px)
2 = −ℏ2

1

σπ1/2

∫ ∞

−∞

[
x2

σ4
− 1

σ2

]
e−x2/σ2

dx = −ℏ2
1

σπ1/2

[
1

σ4

1

2

√
πσ6 − 1

σ2
σ
√
π

]
=

ℏ2

2σ2

so ∆px = ℏ/σ
√
2 and ∆x∆px = ℏ/2, the minimum allowed by the uncertainty principle.

(2) The time-independent Schrödinger equation is

− ℏ2

2m

d2ψ

dx2
+mgxψ = E ψ

Making the recommended substitutions gives

− ℏ2

2m

(
m2g

ℏ2

)2/3
d2ψ

dy2
+mg

(
ℏ2

m2g

)1/3

y ψ = mg

(
ℏ2

m2g

)1/3

ϵ ψ

− ℏ2

2m2g

(
ℏ2

m2g

)−2/3
d2ψ

dy2
+

(
ℏ2

m2g

)1/3

y ψ =

(
ℏ2

m2g

)1/3

ϵ ψ

so
d2ψ

dy2
+ 2(ϵ− y)ψ = 0



See the Mathematica notebook. With a little poking around, we find a solution for
ϵ = 1.8557 which translates into a height of about 14 µm. This is in excellent agreement
with Figure 5 of V. V. Nesvizhevsky, et al., Phys. Rev. D 67(2003)102002, which shows that
neutrons are not detected until they are allowed to bounce to at least this height.

(3) See the Mathematica notebook. The probability works out to be

Prob(0 ≤ x ≤ L/2) =
4

3π
cos

(
3π2tℏ
2L2m

)
+

1

2

Here is the plot of the probability as a function of time:
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(4) The Schrödinger equation is

− ℏ2

2m

d2ψ

dx2
− ℏ2

2m

λ

a
δ(x)ψ(x) = Eψ(x) ≡ −ℏ2κ2

2m
ψ(x) or

d2ψ

dx2
+
λ

a
δ(x)ψ(x) = κ2ψ(x)

Integrating this over −ϵ ≤ x ≤ +ϵ gives

dψ

dx

∣∣∣∣
ϵ

− dψ

dx

∣∣∣∣
−ϵ

+
λ

a
ψ(0) = κ2 [ψ(ϵ)− ψ(−ϵ)] → 0 for ϵ→ 0

which ends up being a condition on the left and right slopes at x = 0 in terms of ψ(0). Now
for x ̸= 0, we have

d2ψ

dx2
= κ2ψ(x) so ψ(x) = ψ(0)e±κx

which means that ψ(x) = ψ(0)e−κx for x > 0, and ψ(x) = ψ(0)e+κx for x < 0. Therefore

−κψ(0)− κψ(0) +
λ

a
ψ(0) = 0 so κ =

λ

2a
and E = − ℏ2λ2

8ma2

is the energy eigenvalue. To find ψ(0) we just need to normalize, which means∫ ∞

−∞
ψ∗(x)ψ(x) dx = 2ψ2(0)

∫ ∞

0

e−2κx dx = 2ψ2(0)
1

2κ
= 1 so ψ(0) =

√
κ =

√
λ

2a



(5) Proceed in standard fashion with

ψ(x < 0) = Aeikx +Be−ikx and ψ(x > 0) = Ceikx where E =
ℏ2k2

2m

Continuity at x = 0 implies that A+ B = C. Integrating across x = 0, exactly the same as
we did in Problem 4, gives us

ikC − (ikA− ikB) +
λ

a
C = 0

The two equations for B/A and C/A are

C

A
= 1 +

B

A
and

C

A

(
1 +

λ

ika

)
= 1− B

A

The transmission coefficient is therefore

T =

∣∣∣∣CA
∣∣∣∣2 = ∣∣∣∣ 2

2 + λ/ika

∣∣∣∣2 = 4k2a2

4k2a2 + λ2

This is clearly right for λ → 0, and I guess it is reasonable that nothing gets through an
infinitely deep δ-function potential. The reflection coefficient is

R =

∣∣∣∣BA
∣∣∣∣2 = ∣∣∣∣CA − 1

∣∣∣∣2 = ∣∣∣∣ −λ/ika
2 + λ/ika

∣∣∣∣2 = λ2

4k2a2 + λ2

which again behaves as you’d expect as λ→ 0. It is also trivial to see that R + T = 1.



PHYS3701 Intro Quantum Mechanics I HW#6 Due 26 Feb 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A particle of mass m is bound in a one-dimensional finite square well of height V0.
Assume that the well extends over the range −a ≤ x ≤ a. Remember that the ground (first
excited) state will be even (odd) parity.

(a) Show that there will always be a solution for a ground state eigenvalue, but there may
not be a solution for any other states if V0 is too small.

(b) Find the energy eigenvalues and plot their wave functions for the ground and first
excited states assuming that V0 = 1.2(ℏ2π2/8ma2). You will need to numerically solve
two transcendental equations, one for the each of the two states. (Hint: In addition
to matching boundary conditions, you can easily derive a formula for (ka)2 + (qa)2

where k and q are the wave numbers inside and outside the well.) Express the energy
eigenvalues as a numerical factor times V0.

(2) Use induction to prove that the normalized states of the quantum harmonic oscillator
are given by

|n⟩ = 1√
n!

(
a†
)n |0⟩

(3) Find ⟨x⟩ and ⟨p⟩ as a function of time for the initial state

|α⟩ = 1√
2
|0⟩+ eiδ√

2
|1⟩

where δ is a real number. Explain why this makes sense classically by taking the time
derivative of ⟨x⟩ and showing that it has the expected relationship to ⟨p⟩, and interpret the
physical meaning of the phase δ.

(4) The goal here is to find the harmonic oscillator normalized eigenfunction ⟨x|3⟩ using
properties of the creation and annihilation operators.

(a) Find the harmonic oscillator ground state wave function ⟨x|0⟩ by considering ⟨x|a|0⟩
and solving the resulting simple differential equation.

(b) Now use the result from Problem (2) above to find ⟨x|3⟩ by building up from ⟨x|0⟩.
Show that your result agrees with the result from solving the Schrödinger equation.
Integrate to prove the normalization is correct. (The calculus in this part is messy. I
suggest that you use Mathematica.)

(5) Find ∆x and ∆p for the harmonic oscillator eigenstate |n⟩ and compare the result to
Heisenberg’s uncertainty principle. Show that n = 0 yields the minimum possible result for
the uncertainty product.



PHYS3701 Intro Quantum Mechanics I HW#6 Solutions

(1) We write the solutions to the Schrödinger equation for the ground state as

ψ(x) = A cos(kx) where
ℏ2k2

2m
= E for − a ≤ x ≤ a

with ψ(x) = Be−qx where
ℏ2q2

2m
= V0 − E for x > a

and ψ(x) = Beqx where
ℏ2q2

2m
= V0 − E for x < −a

Matching the wave function and its derivative at x = a gives

A cos(ka) = Be−qa and − Ak sin(ka) = −qBe−qa so (ka) tan(ka) = qa

The quantities ka and qa also need to satisfy

(ka)2 + (qa)2 =
2ma2

ℏ2
E +

2ma2

ℏ2
(V0 − E) =

2ma2

ℏ2
V0

These two equations will always find a solution for ka and qa because the first says that
qa is a positive function of ka that increases from zero at ka = 0, and the second is just
a circle around the origin, so those curves have to intersect. The first excited state will
have ψ(x) = A sin(kx) inside the well, the same form for x > a, and the same form except
B → −B for x < 0. Therefore

A sin(ka) = Be−qa and Ak cos(ka) = −qBe−qa so (ka) cot(ka) = −qa

This will not necessarily have a solution if V0 is too small. In that case, the radius of the circle
is small enough that it will not intersect with (ka) cot(ka) which is positive for ka < π/2.
In other words, for a shallow enough well, there will be only a ground state and no other
bound states.

For this problem, the squared radius of the circle is 1.095 × π/2, so there will be a ground
and excited state. See the Mathematica notebook for details. The eigenvalues are

EGS =
ℏ2(ka)2

2ma2
=

ℏ2

2ma2
(0.971)2 = 0.319V0 and E1e =

ℏ2

2ma2
(2.908)2 = 0.982V0

Note how close the first excited state energy is to the top of the well. The eigenfunctions are
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The closeness of the excited state energy to the top of the well leads to long tails on the
wave function.



(2) This is trivially true for n = 0. (Recall that 0! = 1 based on the definition the factorial
through the Γ-function.) Therefore, assuming the relation is true for n,

|n+ 1⟩ = 1√
n+ 1

a†|n⟩ = 1√
n+ 1

a†
[

1√
n!

(
a†
)n |0⟩] =

1√
(n+ 1)!

(
a†
)n+1 |0⟩

which shows that it is true for n+ 1, so we are done.

(3) The time-dependent state is

|α; t⟩ = e−iHt/ℏ|α⟩ = 1√
2
e−iωt/2|0⟩+ eiδ√

2
e−3iωt/2|1⟩ = e−iωt/2

[
1√
2
|0⟩+ e−i(ωt−δ)

√
2

|1⟩
]

Finding the expectation values is straightforward.

⟨x⟩ =

[
1√
2
⟨0|+ ei(ωt−δ)

√
2

⟨1|
]√

ℏ
2mω

(a+ a†)

[
1√
2
|0⟩+ e−i(ωt−δ)

√
2

|1⟩
]

=
1

2

√
ℏ

2mω

[
⟨0|+ ei(ωt−δ)⟨1|

] [
e−i(ωt−δ)|0⟩+ |1⟩+ e−i(ωt−δ)

√
2|2⟩

]
=

1

2

√
ℏ

2mω

[
e−i(ωt−δ) + ei(ωt−δ)

]
=

√
ℏ

2mω
cos(ωt− δ)

⟨p⟩ =

[
1√
2
⟨0|+ ei(ωt−δ)

√
2

⟨1|
]
i

√
mℏω
2

(−a+ a†)

[
1√
2
|0⟩+ e−i(ωt−δ)

√
2

|1⟩
]

=
1

2
i

√
mℏω
2

[
⟨0|+ ei(ωt−δ)⟨1|

] [
−e−i(ωt−δ)|0⟩+ |1⟩+ e−i(ωt−δ)

√
2|2⟩

]
=

1

2
i

√
mℏω
2

[
−e−i(ωt−δ) + ei(ωt−δ)

]
= −

√
mℏω
2

sin(ωt− δ)

so
d

dt
⟨x⟩ = −ω

√
ℏ

2mω
sin(ωt− δ) =

1

m
⟨p⟩

which is just what you expect. Clearly δ is just the phase of the oscillation, that is δ/ω is
the time lag from t = 0 to the peak of the oscillation.

(4) Defining x0 ≡
√

ℏ/mω, we know that

a† =

√
mω

2ℏ

(
x− i

mω
p

)
=

1

x0
√
2

(
x− i

ℏ
x20 p

)
It is simple to find ⟨x|0⟩ using the annihilation operator, that is

0 = ⟨x|a|0⟩ = ⟨x| 1

x0
√
2

(
x+

i

ℏ
x20 p

)
|0⟩ = 1

x0
√
2

(
x⟨x|0⟩+ x20

d

dx
⟨x|0⟩

)
so

d

dx
⟨x|0⟩ = − 1

x20
x⟨x|0⟩ and ⟨x|0⟩ = N exp

(
− x2

2x20

)
However 1 = ⟨0|0⟩ =

∫ ∞

−∞
⟨0|x⟩⟨x|0⟩ dx =

∫ ∞

−∞
N2 exp

(
−x

2

x20

)
dx = N2π1/2x0

Therefore ⟨x|0⟩ =
1

π1/4x
1/2
0

exp

(
− x2

2x20

)



Now we also see that

⟨x|a†|α⟩ = ⟨x| 1

x0
√
2

(
x− i

ℏ
x20 p

)
|α⟩ = 1

x0
√
2

[
x− x20

d

dx

]
⟨x|α⟩

This makes it easy to see that, using the result from Problem (2),

⟨x|3⟩ =
1

3!

(
1

2x20

)3/2 [
x− x20

d

dx

] [
x− x20

d

dx

] [
x− x20

d

dx

]
⟨x|0⟩

=
1

π1/4x
1/2
0

√
3

[
2

(
x

x0

)3

− 3
x

x0

]
e−x2/2x2

0

where the derivatives were taken using Mathematica in the accompanying notebook. This
is indeed proportional to the Hermite polynomial H3(x) ∝ 2x2 − 3x. The notebook shows
that this wave function is properly normalized.

(5) Recall that we have

x =

√
ℏ

2mω
(a+ a†) and p = i

√
mℏω
2

(−a+ a†)

which makes it easy to see that ⟨n|x|⟩ = ⟨n|p|⟩ = 0 since the a and a† lower or raise n to
a different (orthogonal) state. This makes sense, since the harmonic oscillator potential is
symmetric. Therefore (∆x)2 = ⟨x2⟩ and (∆p)2 = ⟨p2⟩. Now we also have

x2 =
ℏ

2mω
(aa+ aa† + a†a+ a†a†) and p2 = −mℏω

2
(aa− aa† − a†a+ a†a†)

The first and fourth terms in each of these two expressions contribute nothing to the expec-
tation value because they raise or lower the quantum number by two. The second and third
terms, however, do not change the quantum number. That is

aa†|n⟩ = a(
√
n+ 1|n+ 1⟩) = (n+ 1)|n⟩ and a†a|n⟩ = a†(

√
n|n− 1⟩) = n|n⟩

Therefore

⟨x2⟩ = ℏ
2mω

(2n+ 1) =
ℏ
mω

(
n+

1

2

)
and ⟨p2⟩ = mℏω

2
(2n+ 1) = mℏω

(
n+

1

2

)
and we end up with the result

∆x∆p = ⟨x2⟩1/2⟨p2⟩1/2 = ℏ
(
n+

1

2

)
which shows that the lowest eigenstate has the minimum possible uncertainty.



PHYS3701 Intro Quantum Mechanics I HW#7 Due 12 Mar 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A particle of mass m is confined to a three dimensional “infinite box” of side length L
in the region 0 ≤ x, y, z ≤ L. Solve the time-independent Schrödinger equation to find the
energy eigenvalues Enx,ny ,nz = ℏ2k⃗2/2m and eigenfunctions ψnx,ny ,nz(x, y, z) in terms of ℏ,
m, L, and three positive integers nx, ny, and nz. (This is easy to do using the technique
of separation of variables and following what we did for the one-dimensional case.) Make
a table of the lowest three energy levels, including their degeneracy, that is the number of
combinations (nx, ny, nz) that give the same energy.

(2) Write the operator Sx for a spin-1/2 system as linear combination of outer products of
the |±ẑ⟩ and show that its rotation exp(+iϕSz/ℏ)Sx exp(−iϕSz/ℏ) is just what you expect.
(This is written as the transformation of an operator. You might prefer to think of this in
terms of the expectation value of the rotated operator in some state.)

(3) The three Pauli spin matrices are given by

σx ≡
[
0 1
1 0

]
σy ≡

[
0 −i
i 0

]
σz ≡

[
1 0
0 −1

]
(a) Show that the representation of the spin operator S⃗ in the |±ẑ⟩ basis can be written as

S⃗ = (ℏ/2)σ⃗. (You are free to use results we have derived in class or on prior homework.)

(b) Prove that (σ⃗ · a⃗)2 = |⃗a|2 1 where the components of a⃗ are real.

(c) Show that the rotation operator for spin-1/2 systems can be represented in the |±ẑ⟩
basis as

D(1/2)(n̂, ϕ) = exp

[
− i

ℏ
S⃗ · n̂ϕ

]
= 1 cos

(
ϕ

2

)
− iσ⃗ · n̂ sin

(
ϕ

2

)
(d) Repeat Problem (2) above using matrix representations of the operators.

(4) Construct the matrix representations of the operators Jx and Jy for a spin-one system,
in the Jz basis, spanned by the kets |+⟩ ≡ |1, 1⟩, |0⟩ ≡ |1, 0⟩, and |−⟩ ≡ |1,−1⟩. Use these
matrices to find the three analogous eigenstates for each of the two operators Jx and Jy in
terms of |+⟩, |0⟩, and |−⟩. You are welcome to use Mathematica or some other app to
find the eigenvalues and eigenstates after you’ve constructed the matrices.

(5) Using the fact that Jx, Jy, Jz, and J± ≡ Jx ± iJy satisfy the usual angular-momentum
commutation relations, prove that

J⃗ 2 ≡ J2
x + J2

y + J2
z = J2

z + J+J− − ℏJz

Using this result, or otherwise, derive the coefficient c− that appears in J−|jm⟩ = c−|j,m−1⟩.



PHYS3701 Intro Quantum Mechanics I HW#7 Solutions

(1) The Schrödinger equation inside the box is

− ℏ2

2m
∇⃗2ψ(x, y, z) = Eψ(x, y, z) =

ℏ2

2m
(k2x + k2y + k2z)ψ(x, y, z)

Divide out the ℏ2/2m, write ψ(x, y, z) = X(x)Y (y)Z(z), divide through by ψ(x, y, z), and
rearrange to get [

1

X

d2X

dx2
− k2x

]
+

[
1

Y

d2Y

dy2
− k2y

]
+

[
1

Z

d2Z

dz2
− k2z

]
= 0

This has to be true for all x, y, and z, and the first term only depends on x, the second
only on y, and the third on z. Therefore each of the three terms must equal zero. The wave
function must vanish at the walls, so ψ(0, 0, 0) = 0, and X(L) = 0 = Y (L) = Z(L). This all
leads to sine functions and kxL = nxπ, kyL = nyπ, and kzL = nzπ, where nx, ny, and nz are
all positive integers, and so on, all the same for the box in one dimension. The result is

ψ(x, y, z) =

(
2

L

)3/2

sin
(nxπx

L

)
sin

(nyπy

L

)
sin

(nzπz

L

)
and E =

ℏ2π2

2mL2
(n2

x+n
2
y+n

2
z)

The lowest energy is clearly for nx = ny = nz = 1. Make any one of these equal to 2, and
you get the second energy level, which therefore has a degeneracy of 3. Make two of them
equal to 2 is not as high as making one of them equal to 3, so the first three energies are

nx ny nz E Degeneracy
1 1 1 3 ℏ2π2/2mL2 1
2 1 1
2 1 1
2 1 1 6 ℏ2π2/2mL2 3
2 2 1
2 1 2
1 2 2 9 ℏ2π2/2mL2 3

(2) Just do the work and you get exactly what you expect for an active rotation.

eiϕSz/ℏSxe
−iϕSz/ℏ =

ℏ
2
eiϕSz/ℏ [|+ẑ⟩ ⟨−ẑ|+ |−ẑ⟩ ⟨+ẑ|] e−iϕSz/ℏ

=
ℏ
2

[
eiϕ/2 |+ẑ⟩ ⟨−ẑ| eiϕ/2 + e−iϕ/2 |−ẑ⟩ ⟨+ẑ| eiϕ/2

]
=

ℏ
2
[(cosϕ+ i sinϕ) |+ẑ⟩ ⟨−ẑ|+ (cosϕ− i sinϕ) |−ẑ⟩ ⟨+ẑ|]

= cosϕ
ℏ
2
[|+ẑ⟩ ⟨−ẑ|+ |−ẑ⟩ ⟨+ẑ|]− sinϕ

ℏ
2
[−i |+ẑ⟩ ⟨−ẑ|+ i |−ẑ⟩ ⟨+ẑ|]

= cosϕSx − sinϕSy

i.e. R⟨α|Sx|α⟩R = cosϕ ⟨α|Sx|α⟩ − sinϕ ⟨α|Sy|α⟩



(3) It is trivial to show that this is the correct representation of the S⃗ operator because we
derived it in the past. Now

(σ⃗ · a⃗)2 =

[
az ax − iay

ax + iay −az

] [
az ax − iay

ax + iay −az

]
=

[
a2z + a2x + a2y 0

0 a2x + a2y + a2z

]
= |⃗a|2 1

This means that, for any non-negative integer m and some unit vector n̂, (σ⃗ · n̂)m = 1 if
m is even, and (σ⃗ · n̂)m = σ⃗ · n̂ if m is odd. These simple relationships imply that we can
expand the matrix representation of the spin-1/2 rotation operator as a Taylor series of an
exponential, because the matrices in the exponent all commute. That is

D(1/2)(n̂, ϕ) = exp

[
− i

ℏ
S⃗ · n̂ϕ

]
= exp

[
−iϕ

2
(σ⃗ · n̂)

]
= 1

[
1− 1

2!

(
ϕ

2

)2

+
1

4!

(
ϕ

2

)4

+ · · ·

]

−i(σ⃗ · n̂)

[(
ϕ

2

)
− 1

3!

(
ϕ

2

)3

+
1

5!

(
ϕ

2

)5

+ · · ·

]

= 1 cos

(
ϕ

2

)
− i(σ⃗ · n̂) sin

(
ϕ

2

)
Now Problem (2) is a rotation of Sx about the z-axis through an angle ϕ, so n̂ = ẑ and the
matrix representation of the rotation operator is

D(1/2)(ẑ, ϕ) =

[
cos ϕ

2
− i sin ϕ

2
0

0 cos ϕ
2
+ i sin ϕ

2

]
=

[
e−iϕ/2 0
0 eiϕ/2

]
and the rotated version of Sx is

D(1/2)†(ẑ, ϕ)Sx D(1/2)(ẑ, ϕ) =
ℏ
2

[
eiϕ/2 0
0 e−iϕ/2

] [
0 1
1 0

] [
e−iϕ/2 0
0 eiϕ/2

]
=

ℏ
2

[
eiϕ/2 0
0 e−iϕ/2

] [
0 eiϕ/2

e−iϕ/2 0

]
=

ℏ
2

[
0 eiϕ

e−iϕ 0

]
= cosϕ

ℏ
2

[
0 1
1 0

]
− sinϕ

ℏ
2

[
0 −i
i 0

]
= cosϕSx − sinϕSy

which is the same result we ended up with when we used operators in Problem (2).

(4) Finding the matrices is straightforward, using Jx = (J+ + J−)/2 and Jy = (J+ − J−)/2i,
and applying

J+|j,m⟩ =
√
(j −m)(j +m+ 1) ℏ|j,m+1⟩ and J−|j,m⟩ =

√
(j +m)(j −m+ 1) ℏ|j,m−1⟩

to find the matrix elements of J+ and J− in the basis |j,m⟩ = |1, 1⟩, |1, 0⟩, |1,−1⟩. The
results, easily verified in other books or online, are

Jx
.
=

ℏ√
2

 0 1 0
1 0 1
0 1 0

 Jy
.
=

ℏ
i
√
2

 0 1 0
−1 0 1
0 −1 0





See the accompanyingMathematica notebook to find and normalize the eigenvectors. Find

|Jx; +⟩ = 1

2
|+⟩+ 1√

2
|0⟩+ 1

2
|−⟩ |Jx; 0⟩ = − 1√

2
|+⟩+ 1√

2
|−⟩ |Jx;−⟩ = 1

2
|+⟩− 1√

2
|0⟩+ 1

2
|−⟩

|Jy; +⟩ = −1

2
|+⟩− i√

2
|0⟩+1

2
|−⟩ |Jy; 0⟩ =

1√
2
|+⟩+ 1√

2
|−⟩ |Jy;−⟩ = −1

2
|+⟩+ i√

2
|0⟩+1

2
|−⟩

(5) It is easiest to first calculate

J+J− = (Jx + iJy)(Jx − iJy) = J2
x + J2

y − i[Jx, Jy] = J2
x + J2

y + ℏJz = J⃗2 − J2
z + ℏJz

which immediately gives the result we were asked to prove. We then calculate

|c−|2 = (⟨j,m|J†
−)(J−|j.m⟩) = ⟨j,m|J+J−|j.m⟩ = ⟨j,m|(J⃗2 − J2

z + ℏJz)|j.m⟩
= j(j + 1)ℏ2 −m2ℏ2 +mℏ2 = [j2 −m2 + j +m]ℏ2 = [(j +m)(j −m+ 1)]ℏ2

and, by convention, we choose c− = ℏ
√
(j +m)(j −m+ 1) to be real and positive.



PHYS3701 Intro Quantum Mechanics I HW#8 Due 19 Mar 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Recall Problem (4) from Homework #1. Show that the state vector

|+ n̂⟩ = cos
θ

2
|+ẑ⟩+ eiϕ sin

θ

2
|−ẑ⟩

can be obtained by rotating the state |+ẑ⟩ by an angle θ about the y-axis, and then by an
angle ϕ about the z-axis. You can approach this using the rotation operators, or by using
the matrix representation in the |±ẑ⟩ basis; I’m not sure which one is easiest.

(2) The spin-dependent part of the Hamiltonian for a hydrogen atom (proton plus electron)

in an external magnetic field B⃗ = Bẑ is

H =
2A

ℏ2
S⃗e · S⃗p + ωSez

where A is a positive constant and ω = geB/2mc. Find the energy eigenvalues, and their
expressions to lowest non-vanishing order for the cases (a) A ≫ ℏω and (b) A ≪ ℏω. The
calculations for the eigenvalues and their limits is not hard to do by hand, but you are
welcome to resort to Mathematica or some other app if you like.

(3) Consider a spin-3/2 system with the four states |3/2,±3/2⟩ and |3/2,±1/2⟩ made up
from three spin-1/2 particles. Using the operator Sz = S1z +S2z +S3z , explain why we must
have ∣∣∣∣32 , 32

〉
= |+ ẑ,+ẑ,+ẑ⟩

Then use the operator S− to similarly construct the other three states.

(4) Express the two electron spin-one state |α⟩ = | + ẑ,+ẑ⟩ in terms of the four states
|+x̂,+x̂⟩, |+x̂,−x̂⟩, |−x̂,+x̂⟩, and |−x̂,−x̂⟩. Calculate the probability that a measurement
of the x-direction spins of an electron pair in the state |α⟩ yields a result where the two
electrons have spins in the opposite direction.

(5) Two spin-1/2 particles are emitted from the spin-one state | + ẑ,+ẑ⟩ and move in
opposite directions when they are measured independently by observers A and B who make
measurements of the spins in the x-direction. Find the probabilities that A and B determine
the two particles to be in the states |1,+1⟩x, |1, 0⟩x, and |1,−1⟩x.
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(1) We need to calculate D(ẑ, ϕ)D(ŷ, θ) |+ẑ⟩. If we did this with operators, then the z-
rotation is easy, but the y-rotation would require us to write the first result in terms of the
|±ŷ⟩ basis, and that sounds tedious. Let’s use the matrix representation, then. You find

D(ẑ, ϕ)D(ŷ, θ) |+ẑ⟩
.
=

[
cos(ϕ/2)− i sin(ϕ/2) 0

0 cos(ϕ/2) + i sin(ϕ/2)

] [
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

] [
1
0

]
=

[
cos(ϕ/2)− i sin(ϕ/2) 0

0 cos(ϕ/2) + i sin(ϕ/2)

] [
cos(θ/2)
sin(θ/2)

]
=

[
e−iϕ/2 0

0 eiϕ/2

] [
cos(θ/2)
sin(θ/2)

]
= e−iϕ/2

[
1 0
0 eiϕ

] [
cos(θ/2)
sin(θ/2)

]
= e−iϕ/2

[
cos(θ/2)

eiϕ sin(θ/2)

]
.
= e−iϕ/2

(
cos

θ

2
|+ẑ⟩+ eiϕ sin

θ

2
|−ẑ⟩

)
with an additional phase factor in front. Note that if ϕ = 2π, the phase factor is just the
familiar factor of (−1) that we get when we do a full rotation of a spinor.

(2) Work in the same basis that we used in class, namely

|1⟩ = |+ ẑ,+ẑ⟩ |2⟩ = |+ ẑ,−ẑ⟩ |3⟩ = | − ẑ,+ẑ⟩ |4⟩ = | − ẑ,−ẑ⟩

We found the matrix elements of 2S⃗e · S⃗p in this basis. The matrix elements of Sez are simple:

H
.
=


A/2 + ℏω/2 0 0 0

0 −A/2 + ℏω/2 A 0
0 A −A/2− ℏω/2 0
0 0 0 A/2− ℏω/2


See the accompanying Mathematica notebook to find the eigenvalues, and to take the two
different limits. For the eigenvalues, you find

E =

{
A− ℏω

2
,
A+ ℏω

2
,
1

2

(
−
√
4A2 + ℏω2 − A

)
,
1

2

(√
4A2 + ℏω2 − A

)}
It is important to note that this reduces to A/2 (three times) and −3A/2 for ω = 0, which
is what we got in class. For ℏω ≪ A, you find

E =

{
A

2
− ℏω

2
,
A

2
+

ℏω
2
,−3A

2
,
A

2

}
which shows that the triplet is split into three energy eigenvalues, the but singlet is un-
changed. For ℏω ≫ A, you find{

A

2
− ℏω

2
,
A

2
+

ℏω
2
,−A

2
− ℏω

2
,
ℏω
2

− A

2

}
namely the normal result for spin-1/2 particles with some adjustment from the hyperfine
interaction.



(3) The only combination of three |±ẑ⟩ states that gives 3ℏ/2 for Sz is the one where all
three are |+ẑ⟩, so the given state has to be the only combination. Now recall that

S−|s,m⟩ = [s(s+ 1)−m(m− 1)]1/2 ℏ|s,m− 1⟩

so S−

∣∣∣∣32 , 32
〉

=

[
3

2

5

2
− 3

2

1

2

]1/2
ℏ
∣∣∣∣32 , 12

〉
=

√
3ℏ

∣∣∣∣32 , 12
〉

and

(S1− + S2− + S3−)|+ ẑ,+ẑ,+ẑ⟩ = ℏ(| − ẑ,+ẑ,+ẑ⟩+ |+ ẑ,−ẑ,+ẑ⟩+ |+ ẑ,+ẑ,−ẑ⟩)

so

∣∣∣∣32 , 12
〉

=
1√
3
| − ẑ,+ẑ,+ẑ⟩+ 1√

3
|+ ẑ,−ẑ,+ẑ⟩+ 1√

3
|+ ẑ,+ẑ,−ẑ⟩

Now proceed in the same way for the next step down the ladder. First, we have

S−

∣∣∣∣32 , 12
〉

=

[
3

2

5

2
+

1

2

1

2

]1/2
ℏ
∣∣∣∣32 ,−1

2

〉
= 2ℏ

∣∣∣∣32 ,−1

2

〉
Now we have to do S1− +S2− +S3− on three different combinations, but they are all similar.

We know that S− |+ẑ⟩ = |−ẑ⟩, and S− |−ẑ⟩ = 0, so, dropping the factor ℏ/
√
3,

(S1− + S2− + S3−)(| − ẑ,+ẑ,+ẑ⟩+ |+ ẑ,−ẑ,+ẑ⟩+ |+ ẑ,+ẑ,−ẑ⟩)
= 0 + | − ẑ,−ẑ,+ẑ⟩+ | − ẑ,+ẑ,−ẑ⟩
+ | − ẑ,−ẑ,+ẑ⟩+ 0 + |+ ẑ,−ẑ,−ẑ⟩
+ | − ẑ,+ẑ,−ẑ⟩+ |+ ẑ,−ẑ,−ẑ⟩+ 0 = 2| − ẑ,−ẑ,+ẑ⟩+ 2| − ẑ,+ẑ,−ẑ⟩+ 2|+ ẑ,−ẑ,−ẑ⟩

Therefore, remembering to put back the factor of ℏ/
√
3, we find∣∣∣∣32 ,−1

2

〉
=

1√
3
| − ẑ,−ẑ,+ẑ⟩+ 1√

3
| − ẑ,+ẑ,−ẑ⟩+ 1√

3
|+ ẑ,−ẑ,−ẑ⟩

which is what you would probably have expected. For the final down step, we have

S−

∣∣∣∣32 ,−1

2

〉
=

[
3

2

5

2
− 1

2

3

2

]1/2
ℏ
∣∣∣∣32 ,−3

2

〉
=

√
3ℏ

∣∣∣∣32 ,−3

2

〉
and again holding back a factor of ℏ/

√
3, we calculate

(S1− + S2− + S3−)(| − ẑ,−ẑ,+ẑ⟩+ | − ẑ,+ẑ,−ẑ⟩+ |+ ẑ,−ẑ,−ẑ⟩)
= 2| − ẑ,−ẑ,−ẑ⟩+ 2| − ẑ,−ẑ,−ẑ⟩+ 2| − ẑ,−ẑ,−ẑ⟩ = 3| − ẑ,−ẑ,−ẑ⟩

Putting the factor of ℏ/
√
3 back, we have

√
3ℏ

∣∣∣∣32 ,−3

2

〉
=

ℏ√
3
3| − ẑ,−ẑ,−ẑ⟩ or

∣∣∣∣32 ,−3

2

〉
= | − ẑ,−ẑ,−ẑ⟩

which, of course, is exactly what you expect. Indeed, we could have started with this state,
and climbed up the ladder instead of down, using S+ instead of S−.

(4) We start by noting that

|+ẑ⟩ = 1√
2
|+x̂⟩+ 1√

2
|−x̂⟩ and |−ẑ⟩ = 1√

2
|+x̂⟩ − 1√

2
|−x̂⟩



It is now straightforward to write |α⟩ = |+ ẑ,+ẑ⟩ in terms of x-kets:

|α⟩ = |+ẑ⟩ ⊗ |+ẑ⟩ = 1

2
[|+x̂⟩+ |−x̂⟩]⊗ [|+x̂⟩+ |−x̂⟩]

=
1

2
[|+ x̂,+x̂⟩+ |+ x̂,−x̂⟩+ | − x̂,+x̂⟩+ | − x̂,−x̂⟩]

The probability of getting both measurements with opposite spins is therefore

P (+,−) + P (−,+) = |⟨+x̂,−x̂|α⟩|2 + |⟨−x̂,+x̂|α⟩|2 = 1

4
+

1

4
=

1

2

(5) First we need to note that

|1,+1⟩x = |+ x̂,+x̂⟩ |1, 0⟩x =
1√
2
[|+ x̂,−x̂⟩+ | − x̂,+x̂⟩] |1,−1⟩x = | − x̂,−x̂⟩

and then we realize that we already have |α⟩ = |+ ẑ,+ẑ⟩ in x-kets from Problem (4). So,

P (+1) = |x⟨1,+1|+ ẑ,+ẑ⟩|2 =
∣∣∣∣12⟨+x̂,+x̂|+ x̂,+x̂⟩

∣∣∣∣2 = 1

4

P (−1) = |x⟨1,−1|+ ẑ,+ẑ⟩|2 =
∣∣∣∣12⟨−x̂,−x̂| − x̂,−x̂⟩

∣∣∣∣2 = 1

4

and P (0) = |x⟨1, 0|+ ẑ,+ẑ⟩|2 =
∣∣∣∣ 1√

2
[⟨+x̂,−x̂|+ ⟨−x̂,+x̂|] |+ ẑ,+ẑ⟩

∣∣∣∣2
=

∣∣∣∣ 1

2
√
2
[⟨+x̂,−x̂|+ x̂,−x̂⟩+ ⟨−x̂,+x̂| − x̂,+x̂⟩]

∣∣∣∣2 = ∣∣∣∣ 1√
2

∣∣∣∣2 = 1

2

and the three probabilities sum to unity, which they must.



PHYS3701 Intro Quantum Mechanics I HW#9 Due 26 Mar 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

Note: Most or all of these problems are worked out handily in Mathematica.

(1) Show that the Pauli matrix σx has the effect of a NOT gate by showing that it gives
the expected result on the |±ẑ⟩ representations of the states |+ẑ⟩ = |0⟩ and |−ẑ⟩ = |1⟩.
Then form the tensor product σx ⊗ σx and show that it has the expected result on the |±ẑ⟩
representations of each of the four states |±ẑ⟩ ⊗ |±ẑ⟩.

(2) A “controlled NOT” gate for two qubits can be constructed as a 4 × 4 matrix of 2 × 2
matrices with 1 and σ

x
along the diagonal and zeros otherwise. Show that a CNOT gate

flips the second qubit if the first qubit is |0⟩, but does nothing if the first qubit is |1⟩.

(3) The single qubit Hadamard gate is represented in the |±ẑ⟩ basis as

H =
1√
2

[
1 1
1 −1

]
If we interpret |0⟩ and |1⟩ as |±ẑ⟩ respectively, show how we can use rotations to realize a
Hadamard gate. Can you find a solution that does not introduce an overall phase factor?

(4) Show that the two-qubit Hadamard gate H ⊗H acting on the two-qubit state |0⟩ ⊗ |0⟩
results in a “fully entangled” state of two qubits. That is, a state which cannot be written
simply as a linear combination of one of the qubits times either |0⟩ or |1⟩.

(5) Find the 4× 4 matrix representation (in the |±ẑ⟩ basis) for the following two-qubit gate
constructed from four Hadamard gates and a CNOT gate:

Prove that your construction is a unitary transformation.
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(1) See the accompanying Mathematica notebook.

(2) See the accompanying Mathematica notebook.

(3) Recall that the rotation operator in the |±ẑ⟩ basis is

D = 1 cos
ϕ

2
− iσ⃗ · n̂ sin

ϕ

2

We can build a Hadamard gate using a 90◦ rotation about the y-axis, followed by a 180◦

rotation about the z-axis:

D
x
(π) D

y

(π
2

)
=

[
−iσ

x

] [ 1√
2
1− i√

2
σ
y

]
= − i√

2

[
0 1
1 0

] [
1 −1
1 1

]
= (−i) 1√

2

[
1 1
1 −1

]
where we don’t care about the overall phase factor −i = exp(−iπ/2). We could also write[

cos(ϕ/2)− inz sin(ϕ/2) (−ny − inx) sin(ϕ/2)
(+ny − inx) sin(ϕ/2) cos(ϕ/2) + inz sin(ϕ/2)

]
=

1√
2

[
1 1
1 −1

]
and, in principle, use these four equations to solve for nx, ny, nz, and ϕ. However, if we add
and subtract the (2, 2) and the (1, 1) element, we find

2 cos
ϕ

2
= 0 and − 2inz sin

ϕ

2
=

2√
2

so ϕ = π and nz = i/
√
2, but nz needs to be a real number. So there is no way to form a

Hadamard gate from a rotation without an overall phase shift.

(4) See the accompanying Mathematica notebook.

(5) See the accompanying Mathematica notebook.



PHYS3701 Intro Quantum Mechanics I HW#10 Due 2 Apr 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

There is only one problem for this week’s assignment.

Write a program in Mathematica or some other language to simulate Grover’s algorithm.
Use as large a number n of qubits as you think you can manage on your classical, digital
computer. (It might be more than you would expect.) Remember that this means you will
be dealing with column vectors of length N = 2n, and with N ×N matrices.

You should build the N ×N Hadamard matrix using the tensor product of 2× 2 matrices,
and show that it creates the equal-superposition state from the |0⟩ state. You can build
the matrix called “D” by hand instead of constructing it from gates. Remember that the
elements are Dij = −δij +2/N . For the oracle, all you need to do is pick a target state, and
change the sign of that element.

A simple way to check that you’ve made the equal-superposition state, and to watch the
result of each Grover iteration, is to just plot the coefficients of each of the qubits, which is
contained in your one N -dimensional qubit. In Mathematica you can do this with ListPlot.

It is tedious to have to put in each Grover iteration by hand. You can try that to start, and
watch what happens to the coefficient of your target bit for the first few iterations. But to
do a large number of operations, you want to put this in a loop. In Mathematica, I think
the simplest way to do this is with For.

What does your array look like for
√
N iterations? Confirm that this is more or less what

you expect. You might find it interesting to also look at what is happening to the other
coefficients.

It’s only a suggestion, but if you want to make an animation of how the amplitudes change
on the qubits with each iteration, that might be a cool demonstration.
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See the accompanying Mathematica notebook. Following are the plots of the qubit am-
plitudes for the initial state, the result of the first iteration, and then ten iterations.
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PHYS3701 Intro Quantum Mechanics I HW#11 Due 9 Apr 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Show that the commutativity of infinitesimal x- and y-translations, in other words
[T (dx x̂), T (dy ŷ)] = 0, implies that x- and y-momenta commute, that is [px, py] = 0. You
will need to carry out the calculation to second order.

(2) A quantum mechanical “symmetry” can be quantified by some unitary operator S where,
for some observable A, ⟨A⟩ is unchanged when the state |α⟩ → S|α⟩.

(a) Show that this symmetry implies that [S, A] = 0.

(b) Assuming S = S(u) where u is continuous, use “Weyl’s trick” to write S(du) in terms
of some Hermitian operator G and show that the symmetry implies that [G, A] = 0.

(c) Illustrate this by showing that the three-dimensional momentum operator p⃗ is invariant
under the translation symmetry operator T (⃗a). (Don’t be worried if it looks like your
illustration is trivial. We will study more about symmetries next semester.)

(3) It is reasonable to define a “vector” as a three component object that transforms under
rotations just the way you’d expect. Use this definition and the transformation from Problem
(2) above to prove the following relationships for a vector operator V⃗ = Vxx̂+ Vyŷ + Vzẑ:

[Lz, Vx] = iℏVy [Lz, Vy] = −iℏVx [Lz, Vz] = 0

You should notice that this definition implies that angular momentum is indeed a vector.

(4) Recall from our Mathematical Physics course, or in the Concepts textbook Eq (4.8),
that the totally antisymmetric symbol ϵijk has the property that

ϵijkϵimn = δjmδkn − δjnδkm

where the summation over 1, 2, and 3 for repeated indices is implied. Writing the components
of the orbital angular momentum operator as

Li = ϵijkrjpk where r1,2,3 = x, y, z

and using the commutation relations [ri, pj] = iℏδij, show that orbital angular momentum
obeys the correct commutation relations for generalized angular momentum that we derived
several weeks ago, namely

[Li, Lj] = iℏϵijkLk

(5) Use the techniques from Problem (4), including writing out [ri, pj] = iℏδij in order to
“flip” position and momentum, to prove the relation

L⃗2 = r⃗ 2p⃗ 2 − (r⃗ · p⃗)2 + iℏr⃗ · p⃗
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(1) Just write things out to second order and it all falls out. First,

T (dx x̂) = e−ipxdx/ℏ = 1 +
−ipxdx

ℏ
+

1

2!

(
+
−ipxdx

ℏ

)2

+O(dx3)

= 1− i

ℏ
pxdx−

1

2ℏ2
p2xdx

2 +O(dx3)

T (dy ŷ) = e−ipydy/ℏ = 1− i

ℏ
pydy −

1

2ℏ2
p2ydy

2 +O(dx3)

Therefore T (dx x̂)T (dy ŷ) = T (dy ŷ)T (dx x̂) means that

1− i

ℏ
pxdx−

1

2ℏ2
p2xdx

2 − i

ℏ
pydy −

1

ℏ2
pxpydxdy −

1

2ℏ2
p2ydy

2 +O(dx3) +O(dx2dy)

= 1− i

ℏ
pydy −

1

2ℏ2
p2ydy

2 − i

ℏ
pxdx−

1

ℏ2
pypxdxdy −

1

2ℏ2
p2xdx

2 +O(dy3) +O(dxdy2)

and most everything on the left and right cancels, leaving us with pxpy = pypx.

(2) Since |α⟩ → S|α⟩ means that ⟨α| → ⟨α|S†, the mathematical statement of a symmetry
operation is ⟨α|S†AS|α⟩ = ⟨α|A|α⟩ for an arbitrary state |α⟩. In other words, S†AS = A.
However, S†S = 1 since S is unitary. So multiply both sides by S to get AS = SA which is
the same as writing [S, A] = 0. Now, Weyl’s trick is just a way to write a unitary operator
with a continuous variable in terms of a Hermitian operator, namely

S = 1− i

ℏ
G du

which insures that S is unitary for any Hermitian G. Therefore S†(du)AS(du) = A becomes[
1 +

i

ℏ
G du

]
A

[
1− i

ℏ
G du

]
= A or GA− AG = [G, A] = 0

keeping terms to first order only. This is trivial to illustrate with the translation operator
and momentum. Just write it out to get

T †(⃗a) p⃗ T (⃗a) = eip⃗·⃗a p⃗ e−ip⃗·⃗a = eip⃗·⃗a e−ip⃗·⃗a p⃗ = p⃗

since all components of the momentum operator commute with each other.

(3) If you rotate a vector V⃗ about the z-axis through an angle ϕ, you expect that

Vx → Vx cosϕ− Vy sinϕ Vy → Vx sinϕ+ Vy cosϕ Vz → Vz

A quantum mechanical rotation about the z-axis is given by the unitary operator

e−iϵLz/ℏ = 1− i

ℏ
ϵLz

for an infinitesimal angle ϕ = ϵ. Using what we now know about symmetry operations,

eiϵLz/ℏVxe
−iϵLz/ℏ =

[
1 +

i

ℏ
ϵLz

]
Vx

[
1− i

ℏ
ϵLz

]
= Vx +

i

ℏ
ϵ[Lz, Vx] +O(ϵ2)

= Vx cos ϵ− Vy sin ϵ = Vx − ϵVy +O(ϵ2)



Therefore [Lz, Vx] = iℏVy. Similarly

eiϵLz/ℏVye
−iϵLz/ℏ =

[
1 +

i

ℏ
ϵLz

]
Vy

[
1− i

ℏ
ϵLz

]
= Vy +

i

ℏ
ϵ[Lz, Vy] +O(ϵ2)

= Vx sin ϵ+ Vy cos ϵ = ϵVx + Vy +O(ϵ2)

Therefore [Lz, Vy] = −iℏVx. Finally

eiϵLz/ℏVze
−iϵLz/ℏ =

[
1 +

i

ℏ
ϵLz

]
Vz

[
1− i

ℏ
ϵLz

]
= Vz +

i

ℏ
ϵ[Lz, Vz] +O(ϵ2)

= Vz

and so [Lz, Vz] = 0.

(4) This is all pretty straightforward but you have to be careful with indices. First,

[Li, Lj] = [ϵimnrmpn, ϵjlqrlpq] = ϵimnϵjlqrmpnrlpq − ϵimnϵjlqrlpqrmpn

Now flip the order of the “pr” products in the middle so the r’s are on the left and the p’s
are on the right in both terms. We have

ϵimnϵjlqrmpnrlpq = ϵimnϵjlqrm(rlpn − iℏδln)pq = ϵimnϵjlqrmrlpnpq − iℏϵimnϵjnqrmpq

ϵimnϵjlqrlpqrmpn = ϵimnϵjlqrl(rmpq − iℏδqm)pn = ϵimnϵjlqrlrmpqpn − iℏϵimnϵjlmrlpn

Note that the first terms on the right of each of these two equations are equal, because
positions commute with positions and momenta commute with momenta. Therefore

[Li, Lj] = iℏ(−ϵimnϵjnqrmpq + ϵimnϵjlmrlpn) = iℏ(ϵnimϵnjqrmpq − ϵminϵmjlrlpn)

= iℏ(δijδmqrmpq − δiqδmjrmpq − δijδnlrlpn + δilδnjrlpn)

= iℏ(δijrmpm − δiqδmjrmpq − δijrnpn + δilδnjrlpn)

= iℏ(−δiqδmjrmpq + δilδnjrlpn)

= iℏ(−δinδmjrmpn + δimδnjrmpn)

since rmpm = r⃗ · p⃗ = rnpn, and in the last step I changed q → n and l → m, which is fine,
since they are just dummy summation indices. Now

ϵijkLk = ϵijkϵkmnrmpn = ϵkijϵkmnrmpn = δimδjnrmpn − δinδjmrmpn

which is the same as the last line above. Therefore we have proven that

[Li, Lj]ϵijkLk

(5) For whatever it’s worth, this is in fact carried out in MQM3e, Equation (3.226), albeit
with a slightly different notation (x for r) and keeping the summation signs (for some reason).

L⃗ 2 = ϵijkripjϵlmkrlpm

= (δilδjm − δimδjl)ripjrlpm

= [δilδjmri(rlpj − iℏδjl)pm − δimδjlripj(pmrl + iℏδlm)]
= r⃗ 2p⃗ 2 − iℏr⃗ · p⃗− δimδjl[ripm(rlpj − iℏδjl) + iℏδlmripj]
= r⃗ 2p⃗ 2 − (r⃗ · p⃗)2 + iℏr⃗ · p⃗
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PHYS3701 Intro Quantum Mechanics I HW#12 Due 16 Apr 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

I would encourage you to use Mathematica or some other symbolic manipulation problem
to work through at least some of these problems.

(1) Show by explicit calculation that the kinetic energy of two masses m1 and m2 is

1

2m1

p⃗ 2
1 +

1

2m2

p⃗ 2
2 =

1

2M
P⃗ 2 +

1

2m
p⃗ 2

where M ≡ m1 +m2, m = m1m2/M , P⃗ = p⃗1 + p⃗2, and p⃗ = (m2p⃗1 −m1p⃗2)/M .

(2) A three-dimensional spatial wave function over all space has the form

ψ(r⃗) = N(x+ y + 2z)e−α2r2

where α is a real constant.

(a) Find the normalization constant N . (You can assume it is real.)

(b) Determine the possible results from a measurement of Lz, and the probabilities that
they are in fact the result of a measurement.

(c) Determine the possible results from a measurement of L⃗ 2, and the probabilities that
they are in fact the result of a measurement.

(3) Defining L± ≡ Lx ± iLy and the expression we derived for ⟨r⃗ ′|L⃗|α⟩, show that

⟨r⃗ ′|L±|α⟩ = −iℏe±iϕ

(
±i ∂
∂θ

− cot θ
∂

∂ϕ

)
⟨r⃗ ′|α⟩

(4) Use the result of Problem (3) to show that

⟨r⃗ ′|L⃗ 2|α⟩ = −ℏ2
[

1

sin2 θ

∂2

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
⟨r⃗ ′|α⟩

(5) A certain spherical harmonic is given by

Y m
ℓ (θ, ϕ) =

3

8

√
5

2π
e−2iϕ sin2 θ

(
7 cos2 θ − 1

)
(a) Show that this function is properly normalized.

(b) Determine the values of ℓ and m. You might want to use the result of Problem (4),
along with the analogous result for the operator Lz.



PHYS3701 Intro Quantum Mechanics I HW#12 Solutions

(1) We could just substitute into the right and show that it equals the left, but maybe
there’s something to be learned by going in the other direction. So,

p⃗1 + p⃗2 = P⃗

and m2p⃗1 −m1p⃗2 = Mp⃗

so (m1 +m2)p⃗1 =Mp⃗1 = m1P⃗ +Mp⃗

therefore p⃗1 = p⃗+
m1

M
P⃗

plus (m1 +m2)p⃗2 =Mp⃗2 = m2P⃗ −Mp⃗

and, finally p⃗2 = −p⃗+ m2

M
P⃗

Now just proceed with the algebra.

1

2m1

p⃗ 2
1 +

1

2m2

p⃗ 2
2 =

1

2m1

(
p⃗+

m1

M
P⃗
)2

+
1

2m2

(
−p⃗+ m2

M
P⃗
)2

=
1

2

(
1

m1

+
1

m2

)
p⃗ 2 +

1

M
p⃗ · P⃗ − 1

M
p⃗ · P⃗ +

1

2

(m1

M2
+
m2

M2

)
P⃗ 2

=
1

2m
p⃗ 2 +

1

2M
P⃗ 2

(2) See the accompanyingMathematica notebook. The total angular momentum quantum

number is ℓ = 1 so the only possible result of a measurement of L⃗ 2 is 2ℏ2. The probabilities
to measure m = 0,±1 are 2/3 and 1/6, respectively.

(3) Start with the expression we derived in class for ⟨r⃗ ′|L⃗|α⟩ in spherical coordinates and
then convert the unit vectors to the Cartesian form using Concepts Equations (4.15).

⟨r⃗ ′|L⃗|α⟩ =
ℏ
i

[
ϕ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂ϕ

]
⟨r⃗ ′|α⟩

=
ℏ
i

[
(−x̂ sinϕ+ ŷ cosϕ)

∂

∂θ
− (x̂ cosϕ cos θ + ŷ sinϕ cos θ − ẑ sin θ)

1

sin θ

∂

∂ϕ

]
⟨r⃗ ′|α⟩

=
ℏ
i

[
x̂

(
− sinϕ

∂

∂θ
− cosϕ cot θ

∂

∂ϕ

)
+ ŷ

(
cosϕ

∂

∂θ
− sinϕ cot θ

∂

∂ϕ

)
+ ẑ

∂

∂ϕ

]
⟨r⃗ ′|α⟩

Therefore

⟨r⃗ ′|Lx|α⟩ =
ℏ
i

(
− sinϕ

∂

∂θ
− cosϕ cot θ

∂

∂ϕ

)
⟨r⃗ ′|α⟩

and

⟨r⃗ ′|Ly|α⟩ =
ℏ
i

(
cosϕ

∂

∂θ
− sinϕ cot θ

∂

∂ϕ

)
⟨r⃗ ′|α⟩



Hence

⟨r⃗ ′|L±|α⟩ = ⟨r⃗ ′|(Lx ± iLy)|α⟩

=
ℏ
i

[
(− sinϕ± i cosϕ)

∂

∂θ
− (cosϕ± i sinϕ) cot θ

∂

∂ϕ

]
⟨r⃗ ′|α⟩

= −iℏ
[
±i(cosϕ± i sinϕ)

∂

∂θ
− (cosϕ± i sinϕ) cot θ

∂

∂ϕ

]
⟨r⃗ ′|α⟩

= −iℏe±iϕ

[
±i ∂
∂θ

− cot θ
∂

∂ϕ

]
⟨r⃗ ′|α⟩

which is what we set out to prove.

(4) We know from our study of the general properties of angular momentum that

J⃗ 2 = J2
x + J2

y + J2
z =

1

2
(J+J− + J−J+) + J2

z

so interpret J⃗ as L⃗ and proceed with the derivatives. Using the dreaded “arrow” notation
for the sake of brevity, we first write

L2
z →

(
ℏ
i

∂

∂ϕ

)(
ℏ
i

∂

∂ϕ

)
= −ℏ2

∂2

∂ϕ2

Remembering that

d

dθ
cot θ =

d

dθ

cos θ

sin θ
=

− sin2 θ − cos2 θ

sin2 θ
= − 1

sin2 θ

we can then do the derivative forms of L+ and L− to get

L+L− →
(
−iℏeiϕ

[
i
∂

∂θ
− cot θ

∂

∂ϕ

])(
−iℏe−iϕ

[
−i ∂
∂θ

− cot θ
∂

∂ϕ

])
= −ℏ2eiϕ

(
e−iϕ ∂

2

∂θ2
+ ie−iϕ 1

sin2 θ

∂

∂ϕ
− ie−iϕ cot θ

∂2

∂θ∂ϕ

+ie−iϕ cot θ

[
−i ∂
∂θ

− cot θ
∂

∂ϕ

]
+ ie−iϕ cot θ

∂

∂θ
+ e−iϕ cot2 θ

∂2

∂ϕ2

)
L−L+ →

(
−iℏe−iϕ

[
−i ∂
∂θ

− cot θ
∂

∂ϕ

])(
−iℏeiϕ

[
i
∂

∂θ
− cot θ

∂

∂ϕ

])
= −ℏ2e−iϕ

(
eiϕ

∂2

∂θ2
− ieiϕ

1

sin2 θ

∂

∂ϕ
+ ieiϕ cot θ

∂2

∂θ∂ϕ

−ieiϕ cot θ
[
i
∂

∂θ
− cot θ

∂

∂ϕ

]
− ieiϕ cot θ

∂

∂θ
− eiϕ cot2 θ

∂2

∂ϕ2

)
Lots of things cancel when we add these, including eiϕe−iϕ = 1, so

L+L− + L−L+ → −2ℏ2
(
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂ϕ2

)
Combining this with L2

z we get

L⃗ 2 → −ℏ2
(
∂2

∂θ2
+ cot θ

∂

∂θ
+ cot2 θ

∂2

∂ϕ2
+

∂2

∂ϕ2

)



Finally, we realize that

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
=

∂2

∂θ2
+

1

sin θ
cos θ

∂

∂θ
=

∂2

∂θ2
+ cot θ

∂

∂θ

and

cot2 θ + 1 =
cos2 θ

sin2 θ
+ 1 =

cos2 θ + sin2 θ

sin2 θ
=

1

sin2 θ

so we indeed end up with what we were trying to prove.

(5) See the accompanying Mathematica notebook. This is Y −2
2 (θ, ϕ).



PHYS3701 Intro Quantum Mechanics I HW#13 Due 23 Apr 2024

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) We showed in class that when r → 0, the radial wave function for central potential
problems can, in principle, have the form

R(r) = Arl +
B

rl+1

where A and B are constants. By integrating the probability flux j⃗ = (ℏ/m)Im(ψ∗∇⃗ψ) over
a small sphere around the origin, show that this would imply that the origin is a source of
probability of both A and B are nonzero have a nonzero relative complex phase.

(2) Find the energy eigenvalues, and plot the radial eigenfunctions, for the following cases
of an infinite spherical box of radius a:

(a) The lowest energy level (aka the ground state) with l = 0

(b) The first excited state with l = 0

(c) The second excited state with l = 2

(3) Find the lowest energy eigenvalues with l = 0 for a finite spherical box with radius a
finite walls of height V0 = ℏ2β2/2ma2, where β = 4, 10, 25, and 100. (You need to do
this numerically with Mathematica or some other application.) Show that these results
approach what you found in Problem (2) above.

(4) Construct all of the wave functions ψnlm(r, θ, ϕ) for the eigenstates corresponding to the
first excited state energy eigenvalue of the isotropic three dimensional harmonic oscillator for
a particle of mass m and natural frequency ω. Using Mathematica or some other graphing
application, make a three dimensional plot of the probability density ψ∗

nlm(r, θ, ϕ)ψnlm(r, θ, ϕ)
for each of the wave functions.

(5) Look up the phenomenon called “magic numbers” in nuclear physics. Imagine that
protons and neutrons move independently in an isotropic harmonic oscillator potential, and
compare what you’d predict for the first five magic numbers to what is observed. Don’t
forget about the Paul Exclusion Principle, which I suppose you learned at some time.



PHYS3701 Intro Quantum Mechanics I HW#13 Solutions

(1) We are going to calculate the surface integral over a sphere centered at the origin, so all
we need is the radial component of the flux and we can ignore the spherical harmonics in
the wave function. (They will just integrate to unity over the sphere.) Therefore we have

jr(r) =
ℏ
m
Im

[(
A∗rl +

B∗

rl+1

)(
lArl−1 − (l + 1)

B

rl+2

)]
=

ℏ
m
Im

[
lB∗A

r2
− (l + 1)A∗B

r2

]
If we write B = cAeiδ where c, A, and δ are real, then B∗A = cA2e−iδ and A∗B = cA2eiδ, so
the radial flux is

jr(r) =
ℏ
m
cA2 1

r2
Im

[
le−iδ − (l + 1)eiδ

]
= − ℏ

m
cA2 1

r2
(2l + 1) sin δ

The factor of 1/r2 is critical, because integrating over a (tiny) sphere of radius R means
multiplying by 4πR2 and so the flux out of the origin is∮

j⃗ · dS⃗ = −4πℏ
m

cA2(2l + 1) sin δ

which is nonzero as r → 0 if the relative phase δ is nonzero.

(2) See the accompanying Mathematica notebook. The energy eigenvalues are

El=0,1 =
ℏ2

2ma2
(π2) =

ℏ2

2ma2
9.87

El=0,2 =
ℏ2

2ma2
(2π)2 =

ℏ2

2ma2
39.5

El=2,3 =
ℏ2

2ma2
(12.32)2 =

ℏ2

2ma2
152

and the (unnormalized) wave functions are

0.2 0.4 0.6 0.8 1.0
-0.2

0.2

0.4

0.6

0.8

1.0

R01

R02

R23

(3) Parameterize the energy eigenvalue as E = ℏ2α2/2ma2. The radial wave function for
r ≤ a is Aj0(kr) = A sin(αr/a)/(αr/a). For r ≥ a, the wave function satisfies

R(r) =
u(r)

r
where − ℏ2

2m

d2u

dr2
+

ℏ2β2

2ma2
u(r) =

ℏ2α2

2ma2
u(r)

For bound states, we need α2 < β2 so γ2 ≡ β2 − α2 > 0. Therefore u′′(r) = (γ/a)2u(r) and

u(r) ∝ exp
(
−γr
a

)
and R(r) = B

a

r
exp

(
−γr
a

)
for r ≥ a



The procedure is now familiar from 1D wave mechanics. We require j0(ka) = R(a) and
j′0(ka) = R′(a) and then impose that the determinant is zero in the matrix equation for
A and B. At this point, see the accompanying Mathematica notebook. We find the
determinant equation to be √

β2 − α2 sin(α)

α
+ cos(α) = 0

and then find the zeros of this to get α = 2.47, 2.85, 3.02, 3.11 for β = 4, 10, 25, 100, respec-
tively. As expected, the values for α approach π as the well gets very deep.

(4) If we approach this using Cartesian coordinates, then the energy eigenvalues are

En =

(
N +

3

2

)
where N = nx + ny + nz = 0, 1, 2, . . .

so the first excited corresponds to one of nx, ny, or nz equal to unity and the other two equal
to zero. The eigenfunctions are just the products of the first excited and ground states of
the simple harmonic oscillator in one dimension. Writing the wave function as ψnx,ny ,nz ,

ψ1,0,0 =

[
4

π

(mω
ℏ

)3
]1/4

xe−mωx2/2ℏ
(mω
πℏ

)1/2

e−mωy2/2ℏe−mωz2/2ℏ

=
(mω
πℏ

)1/2
[
4

π

(mω
ℏ

)3
]1/4

xe−mωr2/2ℏ

ψ0,1,0 =
(mω
πℏ

)1/2
[
4

π

(mω
ℏ

)3
]1/4

ye−mωr2/2ℏ

ψ0,0,1 =
(mω
πℏ

)1/2
[
4

π

(mω
ℏ

)3
]1/4

ze−mωr2/2ℏ

Now we need to find the linear combinations of these that are angular momentum eigenstates,
We know how to write x, y, and z in terms of spherical harmonics using

Y 1
1 (θ, ϕ) = −1

2

√
3

2π

x+ iy

r
Y −1
1 (θ, ϕ) = +

1

2

√
3

2π

x− iy

r
Y 0
1 (θ, ϕ) =

1

2

√
3

π

z

r

so the appropriate normalized linear combinations are

1√
2
[ψ1,0,0 + iψ0,1,0] = − 1√

2

(mω
πℏ

)1/2
[
4

π

(mω
ℏ

)3
]1/4 [

2

√
2π

3
rY 1

1 (θ, ϕ)

]
e−mωr2/2ℏ

1√
2
[ψ1,0,0 − iψ0,1,0] = +

1√
2

(mω
πℏ

)1/2
[
4

π

(mω
ℏ

)3
]1/4 [

2

√
2π

3
rY −1

1 (θ, ϕ)

]
e−mωr2/2ℏ

and ψ0,0,1 =
(mω
πℏ

)1/2
[
4

π

(mω
ℏ

)3
]1/4 [

2

√
π

3
rY 0

1 (θ, ϕ)

]
e−mωr2/2ℏ

Writing these with a common overall normalization constant N and the dimensionless length
ρ = r(mω/ℏ)1/2, we get the eigenfunctions ψ1,l,m (where the 1 means first excited state),

ψ1,1,1(r, θ, ϕ) = N Y 1
1 (θ, ϕ)ρe

−ρ2/2

ψ1,1,−1(r, θ, ϕ) = N Y −1
1 (θ, ϕ)ρe−ρ2/2

and ψ1,1,0(r, θ, ϕ) = N Y 0
1 (θ, ϕ)ρe

−ρ2/2



which would seem to be correct. Of course, we could have gotten here by solving the problem
in spherical coordinates as a central force problem. In this case, as discussed in class, the
energy levels are

En =

(
N +

3

2

)
=

(
2q + l +

3

2

)
where q = 0, 1, 2, . . .

where the radial eigenfunctions R(r) = u(ρ)/ρ and

u(ρ) = ρl+1e−ρ2/2f(ρ) where f(ρ) =
∞∑
n=0

anρ
n

with the an is nonzero only for even n, and are determined by the recursion relation

an+2 =
2n+ 2l + 3− λ

(n+ 2)(n+ 2l + 3)
an where λ =

2En

ℏλ

and the series must terminate at n = 2q. In this problem, the first excited states are for q = 0
and l = 1, and the radial wave function is proportional to u(ρ)/ρ = ρe−ρ2/2, which agrees
with what we found using Cartesian coordinates. The plots of the probability densities are
below, from the accompanying Mathematica notebook.

where the plot on the left is for the m = 0 state, and the right is for the m = ±1 states
(which have the same probability density.)

(5) The “magic numbers” of protons or neutrons (aka nucleons) give nuclei that are especially
stable against decay because these numbers close the “shells”, similar to closed shells of
electrons in atoms. If the nucleons move in a harmonic oscillator potential, this would
correspond to filled energy levels for each N . Remembering the Pauli Exclusion Principle,
we multiply the degeneracy of each level by two, and add them up to get the magic numbers.

N l
∑

l(2l + 1) Sum ×2 Expt
0 0 1 1 2 2
1 1 3 4 8 8
2 0,2 1 + 5 = 6 10 20 20
3 1,3 3+7=10 20 40 28
4 0,2,4 1+5+9=15 35 70 50

This incredibly simple model of a nucleus works pretty well for the first three shells. After
that, the spin-orbit interaction takes over, but realizing that was worth the Nobel Prize to
Mayer and Jensen.


