Understanding Heisenberg’s “magical” paper of July 1925: A new look at the
calculational details

lan J. R. Aitchison, David A. MacManus, and Thomas M. Snyder

Citation: American Journal of Physics 72, 1370 (2004);

View online: https://doi.org/10.1119/1.1775243

View Table of Contents: http://aapt.scitation.org/toc/ajp/72/11
Published by the American Association of Physics Teachers

Articles you may be interested in

The 1925 Born and Jordan paper “On quantum mechanics”
American Journal of Physics 77, 128 (2009); 10.1119/1.3009634

Max Born and the quantum theory
American Journal of Physics 73, 999 (2005); 10.1119/1.2060717

Quantum jumps and classical harmonics
American Journal of Physics 70, 332 (2002); 10.1119/1.1445405

QUANTUM MEASUREMENTS
American Journal of Physics 85, 5 (2017); 10.1119/1.4967925

Erratum: “Max Born and the quantum theory” [Am. J. Phys. 73 (11), 999-1008 (2005)]
American Journal of Physics 74, 160 (2006); 10.1119/1.2149874

Nine formulations of quantum mechanics
American Journal of Physics 70, 288 (2002); 10.1119/1.1445404

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%#E!
http://jobs.aapt.org mﬁ



http://jobs.aapt.org/
http://aapt.scitation.org/author/Aitchison%2C+Ian+J+R
http://aapt.scitation.org/author/MacManus%2C+David+A
http://aapt.scitation.org/author/Snyder%2C+Thomas+M
/loi/ajp
https://doi.org/10.1119/1.1775243
http://aapt.scitation.org/toc/ajp/72/11
http://aapt.scitation.org/publisher/
http://aapt.scitation.org/doi/abs/10.1119/1.3009634
http://aapt.scitation.org/doi/abs/10.1119/1.2060717
http://aapt.scitation.org/doi/abs/10.1119/1.1445405
http://aapt.scitation.org/doi/abs/10.1119/1.4967925
http://aapt.scitation.org/doi/abs/10.1119/1.2149874
http://aapt.scitation.org/doi/abs/10.1119/1.1445404

Understanding Heisenberg’'s “magical”’ paper of July 1925: A new look at
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In July 1925 Heisenberg published a paper that ushered in the new era of quantum mechanics. This
epoch-making paper is generally regarded as being difficult to follow, partly because Heisenberg
provided few clues as to how he arrived at his results. We give details of the calculations of the type
that Heisenberg might have performed. As an example we consider one of the anharmonic oscillator
problems considered by Heisenberg, and use our reconstruction of his approach to solve it up to
second order in perturbation theory. The results are precisely those obtained in standard quantum
mechanics, and we suggest that a discussion of the approach, which is based on the direct
calculation of transition frequencies and amplitudes, could usefully be included in undergraduate
courses on quantum mechanics. 2@8b4 American Association of Physics Teachers.
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[. INTRODUCTION assumption that, having formulated a method that was ca-
pable of determining the relevant physical quantitidse

Heisenberg’s paper of July 19250on “Quantum- transition frequencies and amplitudebleisenberg then ap-
mechanical reinterpretation of kinematic and mechanicaPlied it to various simple mechanical systems, without any
relations,”>® was the breakthrough that quickly led to the further recourse to the kind of “inspired guesswork” that
first complete formulation of quantum mecharficéDespite ~ characterized the old quantum theory. Surprisingly, this point
its undoubtedly crucial historical role, Heisenberg's approactPf View appears to be novel. For example, MacKintiand
in this paper is not generally followed in undergraduateMehra and Rechenbefghave suggested that Heisenberg ar-
quantum mechanics courses, in contrast, for example, to Eifived at the crucial recursion relatiofsee Eqs(33)-(36) in
stein’s approach in the teaching of relativity. Indeed HeisenS€C- 11 B] by essentially guessing the appropriate generali-
berg’s paper is widely regarded as being difficult to underZation of their classical counterparts. We are unaware of any
stand and of mainly historical interest today. For example€vidence that can settle the issue. In any case, our analysis
Weinberd has written that “If the reader is mystified at what ShOWs that it is possible to read Heisenberg's paper as pro-
Heisenberg was doing, he or she is not alone. | have trie¥iding a completel(if limited) calculational method, the re-

several times to read the paper that Heisenberg wrote optlts of which are consistent with those of standard quantum

returning from Heligoland, and, although I think | under- mechanics. We also stress both the correctness and the prac-

stand quantum mechanics, | have never understood HeiseHQ"]‘mIy of ‘k’]"h(?t we r(]:onjec;ure to be Heis_entl)erglis C.aICLIJIa'
berg’s motivations for the mathematical steps in his papeftional method. We hope that our reappraisal will stimulate
nstructors to include at least some discussion of it in their

Theoretical physicists in their most successful work tend td
play one of two roles: they are eithesgesor magicians... It undergraduate courses.

is usually not difficult to understand the papers of sage-

physicists, but the papers of magician-physicists are oftel. HEISENBERG'S TRANSITION AMPLITUDE
incomprehensible. In this sense, Heisenberg’'s 1925 pap&PPROACH

was pure magic.”

There have been many discussions aimed at elucidati
the main ideas in Heisenberg's paper of which Refs. 3 and Heisenberg began his paper with a programmati¢c#l
8-18 represent only a partial selectidrOf course, it may to “discard all hope of observing hitherto unobservable
not be possible to render completely comprehensible thgquantities, such as the position and period of the electron,”
mysterious processes whereby physicists “jump over all inand instead to “try to establish a theoretical quantum me-
termediate steps to a new insight about natutefh our  chanics, analogous to classical mechanics, but in which only
opinion, however, one of the main barriers to understandingelations between observable quantities occur.” As an ex-
Heisenberg's paper is a more prosaic one: namely, he gaw@nple of such latter quantities, he immediately pointed to the
remarkably few details of the calculations he performed. energiesw(n) of the Bohr stationary states, together with

In Sec. Il we briefly review Heisenberg’s reasoning in set-the associated Einstein—Bohr frequenties
ting up his new calculational method. Then we present in 1
Sec. Il the details of a calculation typical of those we con- N _ _
jecture that he performed. Our reconstruction is based on the o(nn-a)= h [W(n)=W(n=a)], @

r@' Quantum kinematics
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and noted that these frequencies, which characterize the ra- _ ,

diation emitted in the transition—n— «, depend on two [X()]2=2 2 Xa(n) X, (n)elteraemt, )

variables. An example of a quantity he wished to exclude ¢

from the new theory is the time-dependent position coordi\We setB=a+ «’, and rewrite Eq(5) as

natex(t). In considering what might replace it, he turned to

the probabilities for transitions between stationary states. [X()]2=2 Y4(n)e'B=mt, (6)
Consider a simple one-dimensional model of an atom con- B P

sisting of an electron undergoing periodic motion, which isWhere

the type of system studied by Heisenberg. For a state char-

acterized by the labeh, the fundamental frequenay(n),

and the coordinate(n,t), we can represemt(n,t) as a Fou- Yg(n)= za: Xa(MXg—o(N). (@)

rier series

Thus[x(t)]? is represented classicallyia a Fourier serigs

_ . by the set of quantitie¥ z(n)exdiBw(n)t], the frequency

X(”at):a;w Xo(m)e' e, (20 Bw(n) being the simple combination[aw(n)+ (3
—a)w(n)]. In quantum theory, the corresponding represen-
where a is an integef* According to classical theory, the tative quantities must be written a8(n,n— g)exdiw(n,n

[

energy emitted per unit timghe powey in a transition cor- —p)t], and the question is what is the analogue of &?
responding to thexth harmonicaw(n) is® The crucial difference in the quantum case is that the fre-
quencies do not combine in the same way as the classical
dE e 4 5 harmonics, but rather in accordance with the Ritz combina-
“at _W[“w(”)] [Xa(m)*. 3 tion principle:

n,n—a)+ow(n—a,n—pB)=w(n,n—7H), 8
In the quantum theory, however, the transition frequency cor- g @)t wn=a B =wl A) @

multiple of a fundamental frequency, but is given by Er),  the particular frequency(n,n— f), it seems “almost nec-
Heisenberg introduced the quantum analogué i), writ- am_plltudes in such. a way as to ensure the frequency combi-
ten (in our notation asX(n,n— a).2’ Furthermore, the left- "ation Eq.(8), that is, as

hand side of Eq(3) has to be replaced by the product of the . - . B

transition probability per unit timeP(n,n—«), and the Y(n,n—pern mt:; X(n,n—a)e'emn=alt

emitted energytw(n,n—«). Thus Eq.(3) becomes

X _ _ io(n—a,n—p)t
, X(h—a,n—pB)e )

e
B — 13 — a2 (9)
P(n,n—a) 371_Eoﬁcs[w(n,n a)’|X(n,n—a)|*.
(4) or
It is the transition amplitudeX(n,n— «) which Heisenberg Y(n,n—ﬁ):E X(n,n—a)X(n—a,n—pB), (10
took to be “obseryable;” Iike' the transition frequencies, they a
depend on two discrete variabfés. which is Heisenberg’s rule for multiplying transition ampli-

_ Equation(4) refers, however, to only one specific transi- yges. Note particularly that the replacemens,(n)
tion. For a full description of atomic dynami¢as then con- —X(n,n—a), and similarly forY s(n) andX,_.(n) in Eq
ceived, we need to consider all the quantitie§(n,n @ pr(,Jduce ,a quite different resﬁult. Bra '

—a)exfio(nn—a)t]. In the classical case, the terms ejsenberg indicated the simple extension of the rule
Xq(n)exdiaw(n)t] may be combined to yiela(t) via Ed.  given in Eq.(10) to higher powergx(t)]", but noticed at
(2). But in the quantum theory, Heisenberg widtthat a  oncd! that a “significant difficulty arises, however, if we
similar combination of the corresponding quantum- consider two quantities(t),y(t) and ask after their product
theoretical quantities seems to be impossible in a un'un(t)y(t)... Whereas in classical theony(t)y(t) is always
manner and therefore not meaningful, in view of the equa . . .
weight of the variables andn— a [that is, in the amplitude equal toy(t)x(t), this is not necessarily the case in quantum
' theory.” Heisenberg used the word “difficulty” three times

X(n,n—a) and frequencyw(n,n—a)] ... HOWEVEr, ONe j, yoferring to this unexpected consequence of his multipli-
may readily regard the ensemble of quantiti¥tn,n  cation rule, but it very quickly became clear that the non-
—a)exdio(nn—a)t] as a representation of the quantity commutativity(in general of kinematical quantities in quan-
x(t)....” This way of representing(t), that is, as we would tum theory was the essential new idea in the paper.
now say, by a matrix, is the first of Heisenberg’'s “magical Born recognized E¢(10) as matrix multiplication(some-
jumps,” and surely a very large one. Representk{t) in  thing unknown to Heisenberg in July 192%nd he and Jor-
this way seems to be the sense in which Heisenberg considan rapidly produced the first pafi¢o state the fundamental
ered that he was offering a “reinterpretation of kinematiccommutation relatiortin modern notation
relations.” cn me

Heisenberg immediately posed the question: how is the Xp—px=it. 1D
quantityx(t)? to be represented? In classical theory, the anDirac's paper followed soon aftérand then the paper of
swer is straightforward. From E¢2) we obtain Born, Heisenberg, and Jord&n.
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The economy and force of Heisenberg’'s argument in *

reaching Eq(10) is remarkable, and it is at least worth con- h=47m, [|X(n+a,n)2o(n+a,n)—|X(n,n
sidering whether presenting it to undergraduates might help a=0
them to understand the “almost necessity” of non- — &)o(nn-a)] (16)

commuting quantities in quantum theory.
which is Eq.(H16) in our notatior>* As he later recalled, he
had noticed that “if | wrote down thifpresumably Eq(15)]
and tried to translate it according to the scheme of dispersion
B. Quantum dynamics theory, | got the Thomas-Kuhn sum rJlgq. (16)%39. And
) ) . . ) that is the point. Then | thought, That is apparently how it is
Having identified the transition amplitudes(n,n— «) done.”37
and frequencies(n,n— ) as the observables of interestin By “the scheme of dispersion theory,” Heisenberg re-
the new theory, Heisenberg then turned his attention to hovierred to what Jamméd calls Born’s correspondence rule,
they could be determined from the dynamics of the systempamely?®
In the old quantum theory, this determination would have

. Thy i - i dd(n)

E)neot?[ir:)r?one in two stages: by integration of the equation of a—- —®d(n)—d(N—a), (17)
X+f(x)=0, (12)  or rather to its iteration to the forth

and by determining the constants of the periodic motion ‘?(D(”'“)H n _ _

through the “quantum condition” “"an ®(n+a,n)=®(nn-a), (18

as used in the Kramers—Heisenberg theory of dispefSith.
jg pdg= fﬁ mx2dt=J(=nh), (13 It took Born only a few days to show that Heisenberg’s quan-
tum condition, Eq(16), was the diagonal matrix element of
where the integral is evaluated over one period. In regard t&q. (11), and to guess that the off-diagonal elements of
Eq. (12), Heisenberg wrof that it is “very natural” to take ~ Xp— pX were zero, a result that was shown to be compatible
the classical equation of motion over to quantum theory bywith the equations of motion by Born and Jordan.
replacing the classical quantitiegt) and f(x) by their ki- At this point it is appropriate to emphasize that Heisen-
nematical reinterpretatioris as in Sec. Il A(or, as we would  berg’s transition amplitudé(n,n—«a) is the same as the
say today, by taking matrix elements of the correspondingjuantum-mechanical matrix elemem— a|%X|n), where|n)
operator equation of motignHe noted that in the classical is the eigenstate with energy(n). The relation of Eq(16)
case a solution can be obtained by expreszi{ty as a Fou-  to the fundamental commutator E@.1) is discussed briefly
rier series, substitution of which into the equation of motionin Appendix A.
leads(in special casggo a set of recursion relations for the  Heisenberg notéd that the undetermined constant still
Fourier coefficients. In the quantum theory, Heisenbergtontained in the quantitie¥ of Eq. (16) [assuming the fre-
wrote tha ? “we are at present forced to adopt this method quencies known from Eq12)] would be determined by the
of solving equation Eq(12) [his Eq.(H11)] ... since it was  condition that a ground state should exist, from which no
not possible to define a quantum-theoretical function analoradiation is emittedisee Eqs(51) and(52) below]. He there-
gous to theclassical functionx(n,t).” In Sec. lll we shall  fore summarized the state of affairs thus far by the
consider the simple examplghe first of those chosen by statemerif that Egs.(12) and (16) “if soluble, contain a
Heisenbergf(x) = w3x+ Ax?, and obtain the appropriate re- complete determination not only of frequencies and energy
cursion relations in the classical and the quantum cases. Vvalues, but also of quantum-theoretical transition probabili-
A guantum-theoretical reinterpretation of H@3) is simi-  ties.” We draw attention to the strong claim here: that he has
larly required in terms of the transition amplitud¥¢n,n arrived at a new calculational method, which will completely
—a). In the classical case, the substitution of E2). into  determine the observable quantities. Let us now see in detail
Eq. (13) gives how this method works, for a harmonic oscillator perturbed
by an anharmonic force of the forix? per unit masé4®

A — 2 2 —
jg mdt=2am > [Xu(n)[?a’o(m=nh, (14 | HEISENBERG'S CALCULATIONAL METHOD
AND ITS APPLICATION TO THE ANHARMONIC

using X,(n)=[X_,(n)]*. Heisenberg argued that EQL4  OSCILLATOR
appeared arbitrary in the sense of the correspondence pri

ciple, because the latter determingadnly up to an additive I'z‘ Recursion relations in the quantum case

constant(times h). He therefore replaced Eq14) by the The classical equation of motion is
derivative form[Eqg. (H15)] “r w§x+)\x2=0. (19
o d We depart from the order of Heisenberg’ tation and
_ a 2 part from the order of Heisenberg's presentation an
h‘z”ma;w adn(ap(“(n)| @(n)). (19 begin by showing how—as he stated—E#9) leads to re-

cursion relations for the transition amplitud¥¢n,n— «).

The summation can alternatively be written as over positiverne (n,n—«) representati® of the first two terms in Eq.
values of @, replacing 2rm by 47m. In another crucial (19 is straightforward, being

jump, Heisenberg then replaced the differential in Ekf) . B
by a difference, giving [~ @?(n,n—a)+wg]X(n,n—a)e' =t (20)

1372 Am. J. Phys., Vol. 72, No. 11, November 2004 Aitchison, MacManus, and Snyder 1372



while that of the third term is, by Eq10),

N> X(n,n—B)X(n—B,n—a)eemn-ar, (22)
B

The (n,n— a) representative of Eq19) therefore yield¥’
[w2— w?(n,n—a)]X(n,n—a)+ 1>, X(n,n—p)
B

XX(n—B,n—a)=0, (22

which generates a recursion relation for each value ¢
=0,=1,£2,...). Forexample, fora=0 we obtain

w2X(n,n)+A[X(n,n)X(n,n)+X(n,n—1)X(n—1,n)

+X(n,n+1)X(n+1n)+---]=0. (23

(—40%+ wd)a,+ 3a2=0, (280

(280d)

which is the same as EqH18).*° The lowest order imn\
solution is obtained from Eq28) by settingw= w,, and
replacing eacla, by the corresponding one with a super-
script© [see Eq(25)].

In the quantum case, Heisenberg proposed to seek a solu-
tion analogous to Eq24). Of course, it is now a matter of
using the representation of(t) in terms of the quantities
X(n,n—a)exdio(n,n—a)t]. But it seems reasonable to as-
sume that, as the index increases from zero in integer
steps, each successive amplitude \@idl leading order in)
be suppressed by an additional powehpés in the classical
case. Thus Heisenberg suggested that, in the quantum case,
X(t) should be represented by terms of the form

(— 9w+ wd)az+a,a,=0,

No general solution for this infinite set of nonlinear algebraic
equations seems to be possible, so, following Heisenberg, we Aa(n,n), a(n,n—1)cosw(n,n—1)t,

turn to a perturbative approach.

B. Perturbation theory

To make the presentation self-contained, we need to dis-
cuss several ancillary results. Heisenberg began by consider-

ing the perturbative solution of the classical equati®g).
He wrote the solution in the form

X(t)=\ag+a; coswt+\a, cos 2wt + \%az cos 3wt

+-+\*"ta, cosawt+- -, (24)

where the coefficienta,, and w, are to be expanded as a
pmgver series i, the first terms of which are independent of

\A
ap=al+raV+ %P+, (259
a;=a®+ralV+a%a@+- -, (250
and
0=t No®+N\20@+--- (26)

We substitute Eq(24) into Eqg. (12), use standard trigono-
metric identities, and equate to zero the terms that are con- ,»2(n,n—1)+ a)(2)=0,

stant and which multiply cost, cos 2ut, etc., to obtain

Mowdag+ 2a2+[\%(ag+ 3a3)+:--]}=0, (273
(— 0?+ wd)a;+[N\%(a;a,+2aga,) +++]1=0, (27b
M(— 40+ wd)a,+ 32+ [\%(aja5+2agay) + -1}

=0, (270
N2{(— 9w+ wi)as+aja,+ [ N2(aja,+2apa3) +- -1}

=0, (270

where the dots stand for higher powers\oflf we drop the

terms of order? (and higher poweps and cancel overall

factors of\, Eq. (27) becomegfor A #0 anda;#0)
wlag+ 2a2=0,

(28a

(— 0’+wd)=0, (28b)

1373 Am. J. Phys., Vol. 72, No. 11, November 2004

Na(n,n—2)cosw(n,n—2)t,...,

A*"a(n,n—a)cosw(n,n—alt,..., (29
where, as in Eqs25) and (26),
a(n,n)=a®(n,n)+xa®(n,n)+r2a@(n,n)+---,
(30
a(n,n—1)=a®(n,n—1)+rxa®(n,n—1)
+2%2a®(n,n—1)+:--, (31)
and
o(n,n—a)=o@n,n-a)+ro®(n,n—a)
+N20P(nn—a)+---. (32

As Born and Jordan pointed otisome use of correspon-
dence arguments has been made here in assuming that as
—0, only transitions between adjacent states are possible.
We shall return to this point in Sec. Il C.

Heisenberg then simply wrote down what he asserted to be
the quantum version of E¢28), namely®

wda(n,n)+ i[a®(n+1n)+a%(n,n—1)]=0 (33
(34)
[—w?(n,n—2)+ w3la(n,n—2)+ 3[a(n,n—1)
xXa(n—1n—2)]=0, (35
[—w?(n,n—3)+w3la(n,n—3)+ 2a(n,n—1)
xa(n—1n—-3)+ ta(n,n—2)a(n—2n—-3)=0. (36)

The question we now address is how did Heisenberg arrive at
Egs.(33)-(36)?

We shall show that these equations can be straightfor-
wardly derived from Eq(22) using the ansat#29), and we
suggest that this is what Heisenberg did. This seems to be a
novel proposal. Tomonafalerived Eq.(22) but then dis-
cussed only the\—0 limit, that is, the simple harmonic
oscillator, a special case to which we shall return in Sec.
IIIC. The only other authors, to our knowledge, who have
discussed the presumed details of Heisenberg’s calculations
are’* Mehra and RechenbetyThey suggest that Heisenberg

Aitchison, MacManus, and Snyder 1373



guessed how to “translate,” “reinterpret,” or “reformulate” The casex=0 is clearly special, witiX(n,n)=\a(n,n).
(their words the classical equatiof28) into the quantum We may now write out the recurrence relations E2p)
ones, Eqs(33)—(36), in a way that was consistent with his explicitly for #=0,1,2, .., interms ofa(n,n— a) rather than
multiplication rule, Eq(10). Although such “inspired guess- x(n n—a). We shall include terms up to and including
work” was undoubtedly necessary in the stages leading Up tQrms of ordeir2. For =0 we obtain

Heisenberg’s papéiit seems more plausible to us that by the

time of the paper’s final formulation, Heisenberg realized\{w3a(n,n)+ [a?(n+1,n)+a?(n,n—1)]+\*[a%(n,n)

that he had a calculational method in which guesswork was

no longer necessary, and in which E(&3)—(36), in particu- + %(a’(n+2n)+a%(n,n—2))]}=0. (43)
lar, could be derived. . :

Unfortunately, we know of no documentary evidence that'V& note the connection with '25‘“273)' and that Eq(43)
directly proves(or disproves this suggestion, but we think "educes to Eq(33) when the\” term is dropped and an
there is some internal evidgpce for it. In the passage to whicRverall factor ofA is canceled. Similarly, forr=1 we obtain
attention was drawn earli€t, Heisenberg asserted that his ,_ 2 _ 2 _ 2 _
formalism constituted a complete method for calculating ev—( oi(nn=1Fwp)a(n,n=1)+rHa(nman,n-1)
erything that needs to be calculated. It is difficult to believe | 5y n—1)a(n—1n—1)+ L[a(n,n+1)
that Heisenberg did not realize that his method led directly to ’ ’ ’

Egs. (33)—(36), without the need for any “translations” of Xa(n+1ln—1)+a(n,n—2)a(n—2n—-1)]}=0 (44
the classical relations.

To apply the ansatz of Eq29) to Eq. (22), we need to [5€€ EQ(27D]. Fora=2 we have
relate the amplitudeX(n,n— «) to the corresponding quan- )\{(—wz(n,n—2)+w§)a(n,n—2)+ la(n,n—1)
tities A 'a(n,n—a). We first note that in the classical
case, xa(n—1n—2)+\[a(n,n)a(n,n—2)+a(n,n—2)

Xo(n)=XZ (n), (37 Xa(n—2n—2)+ 3a(n,n+1)a(n+1n—2)

because&(t) in Eq. (2) has to be real. Consider, without loss 1 B
of generality, the case>0. Then the quantum-theoretical +2a(n,n=3)a(n=3n-2)]}=0 (45)
analogue of the left-hand side of E&7) is X(n,n—«a), and  [see EQq.(270)]. For a=3 [see Eq.(27d)] we obtain

that of the right-hand side iX*(n—a,n) (see Ref. 2¥.
Hence the quantum-theoretical analogue of &7) is

X(n,n—a)=X*(n—a,n), (39 Xa(n—1n-3)+a(n,n—-2)a(n—2,n-3)]

which is nothing but the relation{n— «|X|n)=(n|X|n +\?[a(n,n)a(n,n—3)+a(n,n—3)a(n—3n-3)
—a)* for the Hermitian observabl&. Although X(n,n N .
—a) can in principle be completand Heisenberg twice dis- +za(nn+la(n+1n=3)+ za(n,n-4)

cus_sed the significance of the phas_es of s_uch amp_mudes xa(n—4n—-3)]}=0. (46)
Heisenberg seems to have assurtaslis certainly plausibje

that in the context of the classical cosine expansion in Eqlf we drop the terms multiplied bx?, Egs.(43)—(46) reduce
(24) and the corresponding quantum terms in E2§), the to Eqs.(33)—(36). This appears to be the first published deri-
X(n,n—a)’s should be chosen to be real, so that &)  Vation of the latter equations.

\2{(— w?(n,n—3)+ w)a(n,n—3)+ 3[a(n,n—1)

becomes In addition to these recurrence relations which follow
from the equations of motion, we also need the perturbative
X(n,n—a)=X(n—a,n), (B9  version of the quantum condition EG16).52 We include
that is, the matrix with elemen{(n,n— @)} is symmetric. terms of orden?, consistent with Eqs43)—(46), so that Eq.
Consider a typical term of Ed29), (16) becomes
a—1 _ _ h
Ara(nn—ajcogw(nn—ajt] %=az(n+1,n)w(n+1,n)—a2(n,n—1)w(n,n—1)
et S o
- a(n,n—a)[e'“(tNItyeriennmal] +2qa%(n+2n)w(n+2n)—a%(n,n—2)
na-1 » ) » | Xw(n,n—-2)]. (47)
_ _ fo(n,Nn—a)t fo(nN—a,n)t
) a(n,n—ajle +e Ik (40 We are now ready to obtain the solutions.

usingw(n,n—a)=—w(n—a,n) from Eq.(1). If we assume
that a(n,n—a)=a(n—a,n) as discussed for Eq39), we
see that it is consistent to write

C. The lowest-order solutions for the amplitudes and
frequencies

a—1 We begin by considering the lowest-order solutions in
X(n,n—a)= 5 a(n,n—a) (a>0) (41)  which all \? terms are dropped from Eq&t3) to (47), and
all quantities &’s andw’s) are replaced by the corresponding
and in general ones with a superscrigf) [compare Eqs(30)—(32)].>% In
Nlal-1 this case, Eq(44) reduces to
X(n,n—a)= 5 a(n,n—a) (a#0). (42 [—(0©(n,n—1))2+ w2]a©@(n,n—1)=0, (48)
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so that assuming®(n,n—1)+0, we obtain
w(o)(n,n—l)Zwo (49

for all n. If we substitute Eq(49) into the lowest-order ver-
sion of Eq.(47), we find

=1a® 2_14(0) _ 112
por [a™(n+1n)]°—[a™(n,n—1)]". (50
The solution of this difference equation is
0 —1)1%=
[@a™(n,n=1)] 7meo(nJrconstanl, (51

as given in Eq(H20).>® To determine the value of the con-
stant, Heisenberg used the idea that in the ground state th
can be no transition to a lower state. Thus

[al®(0,-1)]%=0, (52)

and the constant in E@51) is determined to be zero. Equa-
tion (51) then gives(up to a convention as to sign

a©®(n,n—1)=p4n, (53)
where
B=(h/mmawg)*2. (54)

Equations(49) and (53) were Heisenberg's first results,
and they pertain to the simpl@nperturbedl oscillator. We

can check Eq(53) against the usual quantum mechanical

calculation via

a@(n,n-1)=2XO(n,n-1)=2¢(n—1|x|nYy, (55

ﬂa/

w(z)(“_l)

a®(n,n—a)=A, (63)

[ n

(n—a)!’
whereA,, is a numerical factor depending en Eq. (63) is
equivalent to Eq(H21).

It is instructive to comment on the relation of the above
results to those that would be obtained in standard quantum-
mechanical perturbation theory. At first sight, it is surprising
to see nonzero amplitudes for two-quantiig. (61)], three-
quantum[Eqg. (62)], or a-quantum[Eq. (63)] transitions ap-
pearing at lowest order. But we have to remember that in
Heisenberg's perturbative ansatz, Eg9), the a-quantum
amplitude appears multiplied by a factaf~ . Thus, for

e%ample, the lowest order two-quantum amplitude is really
ra®(n,n—2), not justa®(n,n—2). Indeed, such a transi-
tion is to be expected precisely at ordef in conventional
perturbation theory. The amplitude {8 —2|%X|n) where, to
order\,

o<k|3<3|”>o

M =Injo+ 33

& (n—Khwo (64

K)o
The operator 3 connects [n)y to |[n+3)q,|n+1)g,|N
—1)4, and|n—3),, and similar connections occur fg(n
—2|, so that a nonzer®(\) amplitude is generated im
—2|%|n).

It is straightforward to check that E¢61) is indeed cor-
rect quantum-mechanically, but it is more tedious to check
Eq.(62), and distinctly unpromising to contemplate checking
Eq. (63) by doing a conventional perturbation calculation to

where the statefn), are unperturbed oscillator eigenstates.ordera— 1. For this particular problem, the improved pertur-

It is well known that*

o{n—1|X|n)o=

(56)

&

which agrees with Eq(53), using Eq.(54). A similar treat-
ment of Eq.(43) leads to

2

2m(l)o

a<°)(n,n)=—ﬂ—2(2n+1). (57)
4wy
Turning next to Eq(45), the lowest-order form is
(—[0@(n,n—2)1%+ w3)a®(n,n—2)
+1a@(n,n-1)a®(n-1n-2)=0. (58

Because the combination law E(B) must be true for the
lowest-order frequencies, we have

oOn,n-2)=0@(n,n-1)+0@(n—1n-2)=2w,,

(59
where we have used E(49), and in general
oOnn—a)=aw, (a=1273,..). (60)
If we use Eqs(53), (59), and(60), we obtain
,82
(0) —2)= _
a¥’(n,n—-2) G_wg n(n—1). (61
A similar treatment of Eq(46) yields
ﬁ3
(0) 3= —_ _
a¥’(n,n—3) 48w8 Vyn(n—=1)(n—2). (62

Consideration of the lowest-order term in Eg2) leads to
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bation theory represented by BEQ9) is clearly very useful.

After having calculated the amplitudes for this problem to
lowest order, Heisenberg next considered the energy. Unfor-
tunately he again gave no details of his calculation, beyond
saying that he used the classical expression for the energy,
namely

_1

2

W= im¥+ Imwdx®+ $maxs. (65)

It seems a reasonable conjecture, however, that he replaced
each term in Eq(65) by its corresponding matrix, as dis-
cussed in Sec. Il A. Thus?, for example, is represented by

a matrix whose if,n— «) element is

2 X(n,n—lB)X(n—IB’n_a)eiw(n,n—a)t, (66)
B

according to his multiplication rule, Eq10). A similar re-
placement is made for®, andx? is replaced by

> iw(n,n—B)X(n,n— B)e“nn-pt
5

><iw(n_ﬁ,n—a)x(n—ﬂin_a)eiw(n—'B,n—a)t

=> w(n,n—B)o(n—a,n-B)X(n,n—pB)
B

XX(n_B,n_ a,)eiw(n,nfa)t,

(67)

using w(n,m)=—w(m,n). The total energy is represented
by the matrix with elements

W(n,n—a)e'@mn-at, (68)
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It follows that if energy is to be conservdthat is, time- through the apparent device of introducing a perturbation,
independentthe off-diagonal elements must vanish: and then retaining only those parts of the solution that sur-
vive as the perturbation vanishes?
W(n,n—a)=0. (a#0). (69 For the sir%ple harmonic oscillator, the equation of motion

The terma=0 is time-independent, and may be taken to beis %+ w3x=0, which yields
the energy in the state. The crucial importance of checking 2 9 _
the condition Eq.(69) was clearly appreciated by Heisen- ~ [©@0~ @ (Mn=a)]X(n.n=a)=0 7D
berg. for the amplitudesX and frequenciew. It is reasonable to

To lowest order in\, the last term in Eq(65) may be retain the quantum condition, E¢L6), because this condi-
dropped. Furthermore, referring to Eq29), the only tion is supposed to hold for any force law. If we assume that
\-independent terms in thé-amplitudes are those involving the only nonvanishing amplitudes are those involving adja-
one-quantum jumps such as-n—1, corresponding in low- cent stategbecause, for example, in the classical case only a
est order to amplitudes such a€%(n,n—1)=2%a®(n,n  single harmonic is presefil, then becauseX(n,n—1)
—1). It then follows from Eqs(66) and (67) that the ele- =1a(n,n—1), Egs.(16) and (71) reduce to Eqs(50) and
mentsW(n,n), W(n,n—2) andW(n,n+2), and only these (48), respectively, and we quickly recover our previous re-
elements, are independent Bfwhen evaluated to lowest sults. This is indeed an efficient way to solve the quantum
order. In Appendix B we show that(n,n—2) vanishes to simple harmonic oscillatoY. For completeness, h_owever, it
lowest order, andN(n,n+2) vanishes similarly. Thus, to Would be desirable not to have to make the adjacent states
lowest order in\, the energy is indeed conservs Heisen-  2Ssumption. Born and quo‘aahowed how this could be
berg note¢l and is givenusing Eq.(66) and Eq.(67) with done, but their argument is somewhat involved. Soon there-

a=0 andB=+1] by after, of course, the wave mechanics of Sdimger and the
- operator approach of Dirac provided the derivations used
w(n,n)= 3m[(n,n—1)]7[X*(n,n—1)] ever since.
+3mLoP(n+1mPP[XO(n+1,0)]? D. The solutions up to and includingA? terms
+ Imw[XO(n,n—1)1?+ tmo] We now turn to the higher order corrections for the?
%(0) 172 term. Consider Eq(44) and retain terms of ordex. We set
XX (n+1n)] [see Eqs(25) and (26)]
=(n+ Htiwg, (70 w(n,n—1)=wo+ro®(n,n-1), (72
where we have used Eqg9), (53), and(54). Equation(70) a(n,n—1)=a®(n,n—-1)+rxa®(n,n—1), (73

is the result given by Heisenberg in Ei23). .

These lowest order results are the only ones Heisenber?f'd find
reported for the\x? term. We do not know whether he car- 2 wooM(n,n—1)a®(n,n—1)=0, (74)
ried out higher-order calculations for this case or not. Whats0 that
he wrote next is that the “more precise calculation, taking
into account higher order approximations\i, a, o will oM(n,n—1)=0. (75
now be carried out for the simpler example of an anharmoni(,ff we consider Eq(44) up to terms of ordek? and employ
oscillator+ w3+ Ax*=0.” This case is slightly simpler be- Egs.(53), (57), and(61) for the zeroth-order amplitudes, we

cause in the expression corresponding to the ari@8ionly  jpiain theO(\2) correction tow(n,n—1) [see Eq.(26)]:
the odd terms are present, thatag,\az,\%as, etc.

2
The results Heisenberg stated for the® problem include ) .. OB
terms up to ordek in the amplitudes, and terms up to order @(nn-1)= 12w03n. (76)

\? in the frequencyw(n,n—1) and in the energyv. Once . _
again, he gave no details of how he did the calculations. W The corresponding corrections @(n,n—1) are found
believe there can be little doubt that he went through th rom the quantum condition E416). To order\ we set
algebra of solving the appropriate recurrence relations up to  a(n+1,n)=a®(n+1n)+xa®(n+1n), (77
order\? in the requisite quantities. As far as we know, the . d find
details of such a calculation have not been given before, ang® " Eq.(73), and fin
we believe that it is worth giving them here, as they are of  \n+1a®(n+1,n)—Vna®(n,n—1)=0. (78)
both pedagogical and historical interest. In the following sec- . )
tion we shall obtain the solutions for thex? term (up to ~ Equation(78) has (tlr)]e solutiora (n,n—1)=c_onst_ant,(/ﬁ,
ordern?) which we have been considering, rather than starPut the conditiora'*’(0,~1)=0 [see Eq/(52)] implies that
afresh with thevx® term. The procedure is the same for both, (e constant must be zero, and so

Before leaving the lowest order calculations, we address a a®(n,n—1)=0. (79
guestion that may have occurred to the reader. Given that, at - . 2
this stage in his paper, the main results actually relate to thi! & Similar way, we obtain to order
simple harmonic oscillator rather than to the anharmonic 1133
one, why did Heisenberg not begin his discussion of toy  n+1a®(n+1n)— \/ﬁa(z)(n,n—1)=F(2n+1),
models with the simplest one of all, namely the simple har- “o
monic oscillator? And indeed, is it not possible to apply his (80)
procedure to the simple harmonic oscillator without goingwhich has the solution
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) 1138 for this term in the energy. If we combine Eq85), (86),
a®@(n,n-1)= W”\/ﬁ- (81)  and(88), we obtain the energy up to ordg?,
0
, . : 1 5\2h?
We now find the higher order corrections &n,n) by W(n,n)=| n+ 5 hwo— ———2(n?+n+11/30, (89
considering Eq(43). We obtaina(n,n)=0 and 12mwg
4 a result® that agrees with classical perturbation theory when
a®(n,n)=- ig(gmur 30n+11). (82) nNis Iarge.‘,50 and is in agreement with standard second-order
72wy perturbation theory in quantum mecharfis.

As mentioned, Heisenberg did not give results for xixé

Similarly, we find from Eq.(45) a™*/(n,n—=2)=0 and term beyond zeroth order. He did, however, give the results

, 3p* for the A\x® term up to and includin@? terms in the energy,
a®(n,n-2)= F(Zn—l)vn(n—l), (83 and\ terms in the amplitudes. By “the energy” we mean, as
wg . )
usual, the ,n) element of the energy matrix, which as
where we have used noted in Sec. llIC is independent of time. We also should

check that the off-diagonal elemeMgn,n— «) vanish[see

2 — 2 2
o®P(n,n-2)=w®(nn-1)+0@n-1n-2) Eq.(69)]. These are the terms that woultinonzerg carry a

532 periodic time-dependence, and Heisenberg \ifotkeat “|
=———=(2n-1). (84) could not prove in general that all periodic terms actually
12w vanish, but this was the case for all the terms evaluated.” We

do not know how many off-diagonal term&(n,n—«) he
evaluated, but he clearly regarded their vanishing as a crucial
test of the formalism. In Appendix B we outline the calcula-
tion of all off-diagonal terms for th& x> term up to orden,

as an example of the kind of calculation Heisenberg probably
did, finishing it late one night on Heligolarfd.

These results suffice for our purposenlis large, they agree
with those obtained for the classicak? anharmonic oscil-
lator using the method of successive approximatins.

As an indirect check of their quantum mechanical validity,
we now turn to the energy evaluated to ordér Consider
first the (n,n) element of%mwgkz. This matrix element is
given to orden?, by

%mw%{ %[(a(o)(n,n— 1))+ (a®(n.n+1))7] IV. CONCLUSION

We have tried to remove some of the barriers to under-
A2 0 ) ) 0 standing Heisenberg’s 1925 paper by providing the details of
+ 7[4(3( )(n,n))?+2a®(n,n—1)a®(n-1n) calculations of the type we believe he performed. We hope
that more people will thereby be encouraged to appreciate

+2a@(n,n+1)a®(n+1,n)+(a®n,n-2))2 this remarkable paper.
1 5 1 'Irhe f?ct ii tha}t Hiaisenb%(g’s “amplitlude tc):lalculus” V\;]err(]sr,1
(0) 29l =y 2| P - at least for the simple one-dimensional problems to which he
+(@(n.n+2)) ]] 2 Mo 2 n+ 2) applied it. It is an eminently practical procedure, requiring no

a2 sophisticated mathematical knowledge to implement. Be-
SB™\ (24 n+11/30 85) cause it uses the correct equations of motion and incorpo-
120 ' rates the fundamental commutator, Effl), via the quantum
condition, Eg.(16), the answers obtained are correct, in
Similarly, using Eq.(67) up to order\? with a=0, the  agreement with conventional quantum mechanics.
(n,n) element of%mé(2 is found to be We believe that Heisenberg's approach, as applied to
simple dynamical systems, has much pedagogical value, and
B 1) 58°\? could usefully be included in undergraduate courses on quan-
2"  240f tum mechanics. The multiplication rule, E4.0), has a con-
vincing physical rationale, even for those wfiixe Heisen-
Finally we consider ther(,n) element of the potential energy berg do not recognize it as matrix multiplication. Indeed,
imA%3. To obtain the result to order?, we need to calculate this piece of quantum physics could provide an exciting ap-
the (n,n) element ofk® only to order\. If we use plication for those learning about matrices in a concurrent
mathematics course. The simple examples of @), in
equations such as ER2) or the analogous one for thex®

+

1
E mwg

2

(n?+n+ 11/3@} (86)

&3 — _ _ —
X (”’”)‘g EB X(n,n=e)X(n=a,n=p) term, introduce students directly to the fundamental quantum
idea that a transition from one state to another occurs via all
XX(n—=p,n), (87)  possible intermediate states, something that can take time to

we find that there are no zeroth-order terms, but twelve termg - < 92 " the traditional wave-mechanical approach. The so-
f order A [ I that litud h ax d fUtion of the quantum_swn_ple ha_rmonlc os_cﬂlator3 sketched at

of order reca at ampiitudes suc (n,n) an the end of Sec IlI D, is simple in comparison with the stan-

X(n,n—2) each carry one power of]. We evaluate these qarg methods. Finally, the type of perturbation theory em-

terms using Eqs(53), (57), and(61), and obtain ployed here provides an instructive introduction to the tech-
5mA2B* nigue, being more easily related to the classical analysis than
— —2(n2+n+ 11/30 (88) is conventional quantum-mechanical perturbation theory
24w (which students tend to find very formal
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It i§ true that many important_problems in quantum me-will contribute, because the amplitud&¢n,n— «) are sup-
chanics are much more conveniently handled in the wavepressed by increasing powers)obs« increases. In fact, for
mechanical formalism: unbound problems are an obvious exa=2 the leading power ok in W(n,n— a) is A%~ 2, which

ample, but even the Coulomb problem required a famougyises from terms such a¥(n,n—1)X(n—1n-«) and
tour de forceby Pauli® Nevertheless, a useful seed may be)\X(n n—1)X(n—1n—2)X(n—2n—a). Thus to ordemn

sown, so that when students meet problems involving a finit - _
number of discrete states—for example, in the treatment Oﬁ_v%)need to calculate onlyv(n,n—1),W(n,n=2),W(n,n

spin—the introduction of matrices will come as less of a N
shock. And they may enjoy the realization that the somewhat (@ W(n,n—1). There are foud(\) contributions to the

. : . 1 200
mysteriously named “matrix elements” of wave mechanics(n.n—1) element of;mwgX*:

are indeed the elements of Heisenberg’s matrices.

APPENDIX A: THE QUANTUM CONDITION, EQ.
(16), AND Xp—pX=i#

Consider the f,n) element of &X—XX), which is

> X(n,n—a)iw(n—a,n)X(n—a,n)

— D iw(n,n—a)X(n,n—a)X(n—a,n). (A1)

In the first term of Eq.(Al), the sum overa>0 may be
rewritten as

—i Y w(nn—a)|X(n,n-a)|?

a>0

(A2)

using w(n,n—a)=—-w(n—a,n) from Eqg. (1) and X(n
—a,n)=X*(n,n—«a) from Eq.(38). Similarly, the sum over
a<0 becomes

izo o(n+ a,n)|X(n+ a,n)|? (A3)

on changinge to — «. Similar steps for the second term of
Eqg. (Al) lead to the result

(KX —&X)(n,n) = 2i 20 [w(n+a,n)|[X(n+a,n)|?

—w(n,n—a)|X(n,n—a)|?]
=2ih/(4mm), (A4)

where the last step follows from E€L6). We setp=m% and
find
(Xp—pX)(n,n)=if (A5)

for all values ofn. Equation(A5) was found by Borff

tmwir{a@(n,na®(n,n-1)+a®(n,n-1)
xa®(n—-1n-1)+ i[a®@(n,n+1)a®(n+1n-1)
+a@n,n-2)a®@n-2n-1)]}
=— Zmng3nyn.

There are twdO(\) contributions to therf,n—1) element
of Im%&:

(B1)

— Ixm{o@(n,n+1)0@n+1n-1)a®(n,n+1)
xaO(n+1n-1)+0®(n,n-2)0®(n-2n-1)
xa®(n,n-2)a®@mn-2n-1)}= Lmrgnyn. (B2

There are thre©(\) contributions to therf,n—1) element

of smA%®:

Zm{a®n,n-1)a®n-1na®n,n—1)
+a®(n,n-1)a@mn-1n-2)a®n-2n-1)
+a®(n,n+1)a®(n+1n)a@n,n-1)}
=Limrgenyn.

The sum of Eqs(B1)—(B3) vanishes, as required.
(b) W(n,n—2). The leading contribution is independent
of . From the termsmw3%?, it is

(B3)

tmwia@(n,n-1)a®(n-1,n-2), (B4)
which is canceled by the corresponding term frgm3@.
The next terms ar@®(\?), for example from the leading
term in the f,n—2) element ofsAm3C.

(c) W(n,n—3). There are twdD(\) contributions from
IMwik?:

shortly after reading Heisenberg’s paper. In further develops moir{a®(n,n—1)a@(n—1,n-3)

ments the value of the fundamental commutak@r— pX,

namelyi#, was taken to be a basic postulate. The sum rule

in Eq. (16) is then derived by taking then(n) matrix ele-
ment of the relatiod &,[H,X]]=%2/m.

APPENDIX B: CALCULATION OF THE OFF-
DIAGONAL MATRIX ELEMENTS OF THE ENERGY
W(n,n—a) FOR THE Ax? TERM

We shall show that, forr# 0, all the elementsn,n— «)
of the energy operatgm3+ mw3%?+ :Am3¢ vanish up to
order\. We begin by noting that at any given ordemponly
a limited number of elementg/(n,n—1),W(n,n—2), ...
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+a®(n,n-2)a®(n—2n-3)}
=L2mrB3/n(n—1)(n—2).

There are twdD(\) contributions fromm3:

(B5)

— M\ {0@(,n-1)a®(n,n-1)0@(n-1n-3)
xa®(n—1n-3)+w®(n,n-2)
xa®(n,n-2)w@n-2n-3)a®n-2n-3)}

=—HAmB3Yn(n—1)(n—2).

There is only onéD(\) contribution from3max®:

(B6)
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2;4'1])\(,:1(0)“],”_:I_)a(O)(n_ 1,n_2)a(0)(n_2,n_3) 28Convent?onal notation, subsequent to R(_af. 4, would repraeex_ by a
second indexm, say. We prefer to remain as close as possible to the

=1 3./ _ _ notation of Heisenberg's paper.
zahmByn(n=1)(n-2). (B7) Reference 2, p. 264.
The sum of Eqs(B5)—(B7) vanishes, as required. “Reference 2, p. 265.

3lReference 2, p. 266.
32
dEJectronic mail: i.aitchisonl@physics.oxford.ac.uk 3 Re)‘erence 2 p. 267. ) o .
. Heisenberg, “Uer quantentheoretische Umdeutung kinematischer und34aLrhIS step appar_ently did not occur to h".n immediately. _See Ref. 11, p. 231.
Actually not quite. We have taken the liberty of changing the order of the

mechanischer Beziehungen,” Z. Phy8, 879—-893(1925. . ] . e . . -
2This is the title of the English translation, which is paper 12 in Ref. 3, pp. ?r:guemﬁgiisor thsfgigrm;rgéhge%?gegég;yrec) order is as given in
261-276. We shall refer exclusively to this translation, and to the equa-35W Thqomas “Uber die Z%hl der Dispersioneléktronen die einem station-

tions in it as(H1), (H2), .... . 7 d d ¥orlaufige Mitteil "N )
33ources of Quantum Mechanjegited by B. L. van der Waerdeplorth- aren Zustande zugeordnet siriorlaufige Mitteilung,” Naturwissen-
schaftenl3, 627(1925.

Holland, Amsterdam, 1967A collection of reprints in translation. 36y > ; . .
M. Born and P. Jordan, “Zur Quantenmechanik,” Z. Phgd, 858—888 . Kuhn, “Uber die Gesamtstiee der von einem Zustande ausgehenden

(1925, paper 13 in Ref. 3. Absorptionslinien,” Z. Phys33, 408—-412(1925, paper 11 in Ref. 3.

3 ) : .
5P. A. M. Dirac, “The fundamental equations of quantum mechanics,” 38W' Heisenberg, as discussed in Ref. 11, pp. 243 ff.
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SM. Born, W. Heisenberg, and P. Jordan, “Zur Quantenmechanik 11,” z. ~ M- Born, “Uber Quantenmechanik,” Z. Phy86, 379-395(1924, paper

Phys.35, 557—615(1926, paper 15 in Ref. 3. 4o InRef. 3.
’S. WeinbergDreams of a Final TheoryPantheon, New York, 1992pp. Reference 9, p. 202. .
i . ' 414, A. Kramers and W. Heisenberg, fiér die Streuung von Strahlen durch

53-54. Weinberg goes on to say that “Perhaps we should not look too At- : Z. Phys.31 681 707(19%5 10 Rgf 3

i s fi ” i i i ome,” Z. S. - , paper 10 in Ref. 3.
f]lgrszly at Helsenberg's first paper ...." We will not follow his suggestion “2For consideraﬁle further detail on di’;pgrsion theory, sum rules, and the
83 .-, Tomonaga,Quantum Mechanics: Old Quantum Theofiorth- “discretization” rules, see Ref. 8, pp. 142—-147, 206—-208, and Ref. 9, Sec.
Holland, Amsterdam, 1962Vol. 1. 434-3-
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