

PHYS3101 Analytical Mechanics Homework #11 Due 14 Nov 2023

This homework assignment is due at the start of class on the date shown. Please submit a PDF of your solutions to the Canvas page for the course.

(1) The MOLLER experiment at Jefferson Lab will measure elastic electron-electron, i.e. Møller, scattering with an electron beam impinging on a 125 cm long liquid hydrogen target. What is the target density of electrons in units of cm^{-2} ? If the Møller scattering cross section is $60 \mu\text{barn}$, find the scattering rate if the beam current is $65 \mu\text{A}$? (You will need to look up the density of liquid hydrogen.)

(2) The differential cross section for scattering 6.5-MeV α particles at 120° off a silver nucleus is about 0.5 barns/sr. If a total of 10^{10} α particles impinge on a silver foil of thickness $1 \mu\text{m}$ and if we detect the scattered particles using a counter of area 0.1 mm^2 at 120° and 1 cm from the target, about how many scattered α particles should we expect to count? Silver has a density of 10.5 g/cm^3 , and atomic mass of 108.

(3) Our definition of the scattering cross section, $N_{\text{sc}} = N_{\text{inc}} n_{\text{tar}} \sigma$ applies to an experiment using a narrow beam of projectiles all of which pass through a wide target assembly. Experimenters sometimes use a wide incident beam, which completely engulfs a small target assembly. Show that in this case $N_{\text{sc}} = n_{\text{inc}} N_{\text{tar}} \sigma$ where n_{inc} is the density (number/area) of the incident beam, viewed head-on, and N_{tar} is the total number of targets in the target assembly.

(4) A particle of mass m_1 and total energy $E = T + m_1 c^2$ scatters by an angle θ_{Lab} from a stationary particle of mass m_2 . Use relativistic kinematics to derive an expression between the scattering angle θ_{CM} in the center-of-momentum, and θ_{lab} . In the case where the incident particle is non-relativistic ($T \ll m_1 c^2$) show that

$$\tan \theta_{\text{Lab}} = \frac{\sin \theta_{\text{CM}}}{\lambda + \cos \theta_{\text{CM}}} \quad \text{where} \quad \lambda \equiv \frac{m_1}{m_2}$$

This problem is more difficult than I thought. I can see my way through to a solution, but it is an arduous path and I don't think it is particularly enlightening. It's not so difficult, though, if you start with the assumption that the motion is non-relativistic, but this is essentially done in Taylor Section 14.8, which I didn't cover in class. So, let's skip this problem and this week you get a break, only four homework problems instead of five.

(5) Consider the non-relativistic scattering of two particles of equal mass. First, using the result of the previous problem, show that $\theta_{\text{Lab}} = \theta_{\text{CM}}/2$. Then prove that

$$\left(\frac{d\sigma}{d\Omega} \right)_{\text{Lab}} = 4 \cos \theta_{\text{Lab}} \left(\frac{d\sigma}{d\Omega} \right)_{\text{CM}}$$

Now, given that in the CM frame, the differential cross section is $R^2/4$ where $R = R_1 + R_2$ where R_1 and R_2 are the radii of the two masses, integrate over all directions to verify that the total cross section in the lab frame is πR^2 , as it has to be.