
PHYS3101 Analytical Mechanics Homework #1 Due 5 Sep 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A man of mass M straddles the gap between a train and the station platform, with
his left foot on the train step and his right on the platform. He lifts his right foot at the
same time as he jerks his bag with mass m onto the train. He pulls the bag with a constant
horizontal acceleration and it lands on the train in a time T . If the distance between the
bag and the train is L and the coefficient of static friction between his left foot and the train
step is µ, derive a condition that can be tested to see if his foot slips and he falls into the
gap. Use the average horizontal velocity of the bag to calculate the impulse on the man. If
M = 110 kg, L = 1 m, T = 1/4 s, m = 20 kg, and µ = 0.4, does the man fall into the gap?

(2) The force F on a particle with mass m and charge q moving with velocity v in an electric
field E and magnetic field B is given by F = q(E + v ×B). If E = Eẑ and B = Bẑ, solve
for the motion r(t) if the initial conditions are that the particle starts at the origin and

(a) v(t = 0) = 0

(b) ẋ = v0, and ẏ = ż = 0

(3) Use Mathematica or some other application to reproduce the plot at the bottom of
Figure 5.15 from Example 5.3 in the textbook. You are welcome to arrive at the solution
with whatever tools you’d like. (I just used DSolve.) This example uses a damping coefficient
β = ω0/20. Now repeat the calculation for β = ω0/5 and for β = ω0/50. Explain the physical
origin of the differences and similarities of these three plots.

(4) Find an equation for the path y = f(x) that makes the integral

S =

∫ b

a

x
[
1− (f ′(x))

2
]1/2

dx

an extremum for fixed values of a and b.

(5) Consider a mass m moving in two dimensions (x, y) or (r, ϕ), subject to a potential
energy function U = kr2/2 where k is a constant. Write down the Lagrangian, find the
equations of motion, and describe their solutions, when the particle’s position is written in
terms of

(a) coordinates x and y.

(b) coordinates r and ϕ.

For part (b), what is the significance of the solution for ϕ(t)?



PHYS3101 Analytical Mechanics Homework #1 Solutions

(1) The acceleration a of the bag is given by L = aT 2/2, so a = 2L/T 2. The velocity
increases linearly with time, so the average velocity is v = aT/2 = L/T . (Of course.) The
momentum of the bag is mv = mL/T so the average backward impulse on the man is
FT = mL/T where F = mL/T 2 is the force pulling the man backward. If this overcomes
the frictional force µMg, the man’s food will slip and he’ll fall through the gap. That is, if

mL/T 2 > µMg

then the man will fall. For the given numbers, mL/T 2 = 20(1)/(1/4)2 = 320 N, and
µMg = 0.4(110)9.8 = 431 N, so he shouldn’t fall. But it’s close.

(2) See Section 2.5 in Taylor. Modified versions of (2.64), (2.65), and (2.66) give us

mv̇x = qBvy mv̇y = −qBvx mv̇z = qE

The z-equation is decoupled from the other two, so for both (a) and (b), the solution is
vz = qEt/m and z = qEt2/2m. From (2.71), vx = A cos(ωt) = v0 cos(ωt) where ω = qB/m,
and vy = −A sin(ωt) = −v0 sin(ωt) which satisfy the initial conditions on the velocity.
For (a), v0 = 0 and the charge just accelerates in a straight line along the z-axis. For
(b), integrate to get x = (v0/ω) sin(ωt) and y = (v0/ω)[cos(ωt) − 1] satisfying the initial
conditions on position.

(3) See the accompanying Mathematica notebook.

(4) Writing S =
∫ b

a
F (f, f ′, x) dx (the notation used in Concepts) we apply the Euler-

Lagrange equation to the function F = x
[
1− (f ′(x))2

]1/2
. Since F does not explicitly

depend on f , this means that ∂F/∂f ′ = constant ≡ a. Therefore

− xf ′(x)[
1− (f ′(x))2

]1/2 = a so f ′(x) =
dy

dx
=

a√
x2 + a2

This is simple to integrate using x = a sinh t since x2 + a2 = a2 cosh2 t and dx = a cosh t so
y = b+ t = b+ sinh−1(x/a). See Problem 6.12 in Taylor.

(5) We know that r2 = x2 + y2 and v2 = ẋ2 + ẏ2 = ṙ2 + r2ϕ̇2 so the Lagrangian is

L =
1

2
m
(
ẋ2 + ẏ2

)
− 1

2
k
(
x2 + y2

)
=

1

2
m
(
ṙ2 + r2ϕ̇2

)
− 1

2
kr2

In Cartesian coordinates, this gives mẍ + kx = 0 and mÿ + ky = 0, so the motion is two
independent simple harmonic oscillators with frequency ω =

√
k/m. In polar coordinates,

the ϕ equation gives mr2ϕ̇ = constant ≡ ℓ, the angular momentum. Then

mrϕ̇2 − kr −mr̈ = 0 or mr̈ = −kr + ℓ2

2mr2

which is a radial simple harmonic oscillation with a “centrifugal” force term. (More on that
when we study non-inertial reference frames.)



PHYS3101 Analytical Mechanics Homework #2 Due 12 Sep 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A simple plane pendulum of length ℓ hangs from the ceiling of an elevator. The elevator
is accelerating upwards at an acceleration a. (If a < 0, then the elevator is accelerating
downwards.) Use the Lagrangian approach to find the frequency of small oscillations in terms
of ℓ, a, and g. (This problem is a demonstration of Einstein’s Principle of Equivalence.) It
is probably easiest to write the Lagrangian first in terms of Cartesian coordinates.

(2) A mass M hang from a massless string that passes over a massless pulley. A similar
pulley hangs from the other end of the string, over which a second massless string supports
a mass m1 on one side and a mass m2 on the other side. Use Lagrange’s equations to find
the accelerations of M and m1 when the system is released, in terms of m1, m2, M , and
g. (If you find the necessary algebra at the end a little messy, I suggest you do it with
Mathematica.) Under what conditions is the acceleration of M equal to zero?

(3) A helix is determined in terms of its radius R and pitch λ using three dimensional
spherical coordinates ρ, ϕ, and z as ρ = R and z = λϕ. If a particle of mass m is constrained
to lie on the helix, which is oriented so that z is vertical, use Lagrange’s equations to find
the acceleration z̈ in terms of R, λ, and g. Discuss the behavior of z̈ for limiting values of R
and λ, that is the cases R ≪ λ and R ≫ λ.

(4) A particle of mass m is constrained to move without friction along a horizontal circular
hoop of radius R. The hoop rotates with a fixed angular velocity ω about a fixed point on the
circle. Show that the motion of the mass is the same as that for a vertical, plane pendulum,
and find the frequency of small oscillations. Check that your answer is dimensionally correct.
(In fact, if you think about the concept of a “centrifugal force”, then you can check that you
got the correct answer very simply.)

(5) Example 7.6 in Taylor derives the equation of motion (7.69) for the “bead on a spinning
hoop” problem. Rewrite this equation in terms of dimensionless time x ≡ ωt and α ≡ g/ω2R.
Assuming the bead starts from rest, numerically solve for θ(x) and plot it for several periods
for each of the following cases:

(a) θ0 = 0.1 and α = 2

(b) θ0 = 1.1 and α = 1/2

(c) θ0 = 0.1 and α = 1/2

Discuss the motion in each case, and compare to what you get from the linearized versions
(7.72) or (7.80) in Taylor.



PHYS3101 Analytical Mechanics Homework #2 Solutions

(1) Let x and y locate the horizontal and vertical position of the pendulum bob. Then

x = ℓ sinϕ and y = ℓ(1− cosϕ) +
1

2
at2

So
ẋ = ℓϕ̇ cosϕ and ẏ = ℓϕ̇ sinϕ+ at

The Lagrangian is therefore

L =
1

2
m(ẋ2 + ẏ2)−mgy =

1

2
m(ℓ2ϕ̇2 cos2 ϕ+ ℓ2ϕ̇2 sin2 ϕ+ 2ℓϕ̇at sinϕ+ a2t2)−mgy

=
1

2
mℓ2ϕ̇2 +mℓϕ̇at sinϕ+ a2t2 −mgℓ(1− cosϕ)− 1

2
mgat2

Lagrange’s equation for ϕ is therefore

d

dt

(
mℓ2ϕ̇+mℓat sinϕ

)
= mℓ2ϕ̈+mℓa sinϕ+mℓatϕ̇ cosϕ = mℓϕ̇at cosϕ−mgℓ sinϕ

which reduces to ϕ̈ = −(g + a)/ℓ sinϕ. This is just the equation for a simple pendulum
but with g replaced by g + a. That is, the acceleration due to gravity is changed by the
acceleration from the elevator, so an upward acceleration appears simply as an increase in
gravity. If the elevator is in free fall, a = −g and there pendulum appears to be “weightless.”
The frequency of small oscillations is just ω =

√
(g + a)/ℓ.

(2) The first step is draw a clear figure, and pick coordinates for the two degrees of freedom.

Let x measure the downward position of M relative to the fixed pulley,
and y for m1 relative to the moving pulley. If L is the length of the strings,
then the downward distances of m1 and m2 relative to the fixed pulley are
q1 = L − x + y = L − (x − y) and q2 = L − x + (L − y) = 2L − (x + y).
Therefore, the Lagrangian is

L =
1

2
Mẋ2 +

1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 +Mgx+m1gq1 +m2gq2

=
1

2
Mẋ2 +

1

2
m1(ẋ− ẏ)2 +

1

2
m2(ẋ+ ẏ)2

+Mgx−m1g(x− y)−m2g(x+ y) + constant

The Lagrange equations are

Mẍ+m1(ẍ− ÿ) +m2(ẍ+ ÿ) = Mg − (m1 +m2)g

−m1(ẍ− ÿ) +m2(ẍ+ ÿ) = (m1 −m2)g

Solve these with Mathematica (see the accompanying notebook) to get

ẍ = −m1 (M − 4m2) +m2M

m2M +m1 (4m2 +M)
g and ÿ =

2 (m1 −m2)M

m2M +m1 (4m2 +M)
g



Note that this gives ẍ = g/7, that is downward, when M = 4m, m1 = 3m, and m2 = m, in
agreement with the solution manual for Problem 7.27 in Taylor.

Now it kind of makes sense that there should be no acceleration if m1 = m2 and M = 2m1,
but let’s confirm it. Writing m ≡ m1, the numerator of ẍ becomes

m(2m− 4m) +m(2m) = −2m2 + 2m2 = 0

and indeed ẍ = 0. (Note that this solution also gives ÿ = 0.) To find other solutions for
ẍ = 0, write m1 = m, m2 = xm, and M = ym. Then we need y − 4x+ xy = 0, so

y =
4x

1 + x

and the acceleration of M is zero, although in general the acceleration of the m1 is nonzero.

(3) The Lagrangian is

L =
1

2
mρ̇2 +

1

2
mρ2ϕ̇2 +

1

2
mż2 −mgz =

1

2
mR2

(
ż

λ

)2

+
1

2
mż2 −mgz

The equation of motion is therefore

m

[
R2

λ2
+ 1

]
z̈ = −mg so z̈ = − λ2

R2 + λ2
g

which agrees with the solution to Problem 7.20 in Taylor. For R ≪ λ, you get z̈ = −g which
is what you expect for a very skinny helix. For R ≫ λ, z̈ → 0, which is what you expect
when the helix becomes, essentially, a flat circle.

(4) The first step is draw a clear figure.

The radius of the circle is R and the angle θ = ωt. The (x, y)
coordinates of the center of the circle are (R cos θ, R sin θ), so the
x and y coordinates of the mass are

x = R cos θ +R cos(θ + ϕ) = R cosωt+R cos(ωt+ ϕ)

y = R sin θ +R sin(θ + ϕ) = R sinωt+R sin(ωt+ ϕ)

There is no potential energy, so the Lagrangian is

L =
1

2
mẋ2 +

1

2
mẏ2

=
1

2
mR2

{[
−ω sinωt− (ω + ϕ̇) sin(ωt+ ϕ)

]2
+
[
ω cosωt+ (ω + ϕ̇) cos(ωt+ ϕ)

]2}
=

1

2
mR2

{
ω2 + 2ω(ω + ϕ̇) [sinωt sin(ωt+ ϕ) + cosωt cos(ωt+ ϕ)] + (ω + ϕ̇)2

}
=

1

2
mR2

[
2ω2 + 2ωϕ̇+ ϕ̇2 + 2ω(ω + ϕ̇) cosϕ

]



The Lagrange equation for ϕ becomes

d

dt

[
2ω + 2ϕ̇+ 2ω cosϕ

]
= 2ϕ̈− 2ωϕ̇ sinϕ = −2ω(ω + ϕ̇) sinϕ

and the differential equation for ϕ̈ is

ϕ̈ = −ω2 sinϕ

which is the same as the pendulum equation, with small oscillation frequency ω. This
makes sense, since in the rotating frame, the centrifugal force at the position of the mass
is m(2Rω2) which is equivalent to mg in the hanging pendulum, and the length of the
pendulum is ℓ = 2R, so the small oscillation frequency would be

√
g/ℓ =

√
2Rω2/2R = ω.

(5) Equation (7.69) becomes θ′′(x) = (cos θ−α) sin θ. See the accompanyingMathematica
notebook for the numerical solution. Following are the plots of the three solutions:
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For (a), the differential equation is θ′′(x) = (cos θ − α) sin θ = −(α − 1)θ for small θ, so we
just have a cosine function with period 2π. For (b), the equilibrium angle is no longer at
θ = 0 but instead at θeq = cos−1(α) = π/3. However, θ0 − θeq is still small, so you expect a
cosine function about π/3 = 1.05. For (c), you are now far away from the equilibrium point,
so the oscillations are no longer sinusoidal.

The first two plots show, in vertical red lines, the expected period based on the small
displacement approximation. For case (a), the frequency is

√
α− 1. For case (b), we write

θ = θeq + ϵ(x) where ϵ≪ 1. Then with α = cos θeq we have

[cos θ − cos θeq] sin θ = [cos(θeq + ϵ)− cos θeq] sin(θeq + ϵ)

= [cos θeq cos ϵ− sin θeq sin ϵ− cos θeq][sin θeq cos ϵ+ sin ϵ cos θeq]

≈ [cos θeq − sin θeqϵ− cos θeq][sin θeq + ϵ cos θeq]

so ϵ̈ = − sin2 θeq ϵ

and the frequency is sin θeq =
√

1− cos2 θeq =
√
1− α2.



PHYS3101 Analytical Mechanics Homework #3 Due 19 Sep 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Two equal masses m are connected by a massless string of length L. The string passes
through a hole in a frictionless horizontal flat table, so one mass slides freely on the table
and the other hangs straight down. Use plane polar coordinates for the mass on the table,
and show that the angular coordinate is ignorable. Find a solution to the equation of motion
where the radial coordinate can be a constant, and then show that that coordinate is stable
under small deviations from that constant.

(2) Consider a system ofN different massive particles described by spherical polar coordinate
(r, θ, ϕ). Assume that the system is symmetric under rotations about the z-axis. That is,
a transformation from (r, θ, ϕ) to (r, θ, ϕ + ϵ) does not change the Lagrangian. (You can
assume that there are no velocity-dependent potential energies.) Determine the associated
conserved quantity, and interpret it physically.

(3) Show that the vector potential A = 1
2
B × r for a uniform, static magnetic field B.

Next express A in cylindrical polar coordinates (ρ, ϕ, z), including its direction with the
appropriate unit vector(s). (Use the “smart choice” for the z-direction.) Now write down
the Lagrangian and derive the equations of motion for a particle with mass m and charge q
in this magnetic field. Describe the solutions of these equations when ρ is a constant. Recall
Problem 2 from Homework 1.

(4) Write down the Lagrangian for a simple plane pendulum of length L and bob mass m
using Cartesian coordinates (x, y) for the bob. Now write down a suitable constraint equation
between x and y. (Many different choices are possible.) Use your constraint equation with
a Lagrange multiplier to find modified Lagrange’s equations, and show that the result is
equivalent to using a single degree of freedom described by the angle θ through which the
pendulum swings.

(5) A block of mass m slides down a frictionless inclined
plane. Using the x and y coordinates shown, and the method
of Lagrange multipliers, find the forces of constraint in the
x and y directions. Show that this is just what you expect
from your introductory physics course.



PHYS3101 Analytical Mechanics Homework #3 Solutions

(1) Use plane polar coordinates (r, ϕ) of the mass on the table to describe the system, and
q be the distance down from the table to the mass that hangs below. Then q + r = L, and
the Lagrangian is

L =
1

2
mq̇2 +

1

2
mṙ2 +

1

2
mr2ϕ̇2 +mgq

= mṙ2 +
1

2
mr2ϕ̇2 −mgr + constant

Since ∂L/∂ϕ = 0 we know that ∂L/∂ϕ̇ = mr2ϕ̇ ≡ ℓ is a constant. The r equation is

d

dt

∂L
∂ṙ

− ∂L
∂r

= 2mr̈ −mrϕ̇2 +mg = 2mr̈ −mr

(
ℓ

mr2

)2

+mg = 2mr̈ − ℓ2

mr3
+mg = 0

We clearly can have ṙ = r̈ = 0 when

r3 =
ℓ2

m2g
≡ r30 that is r0 =

(
ℓ2

m2g

)1/3

Substituting this expression into the equation of motion, we have

r̈ =
1

2

[
ℓ2

m2r3
− g

]
=

1

2

[
r30m

2g

m2r3
− g

]
=
g

2

[
r30
r3

− 1

]
Now put r(t) = r0 + ϵ(t) where ϵ≪ r0, and get

ϵ̈ =
g

2

[
r30

(r0 + ϵ)3
− 1

]
=
g

2

[(
1 +

ϵ

r0

)−3

− 1

]
≈ g

2

[
1− 3

ϵ

r0
− 1

]
= −3

2

g

r0
ϵ

so we indeed have stable oscillations about the point of equilibrium.

(2) Proceeding exactly as we did for linear translational asymmetry in class, we have

δL =
N∑

α=1

∂L
∂ϕα

ϵ = ϵ
d

dt

N∑
α=1

∂L
∂ϕ̇α

= 0 so
N∑

α=1

∂L
∂ϕ̇α

=
N∑

α=1

m2
αr

2
α sin

2 θαϕ̇α = constant

(Exercise 4.10 in Concepts shows how to get the differential dr, which gives ṙ.) Recognize
that r sin θ = ρ is just the distance from the z-axis to the particle in question, so the term in
the sum is the angular momentum ℓα. In other words, rotational symmetry about the z-axis
means that the z-component of angular momentum is conserved.

(3) Just take the curl of A and show that you get B. We have

A =
1

2
B× r =

1

2
x̂(Byz −Bzy) +

1

2
ŷ(Bzx−Bxz) +

1

2
ẑ(Bxy −Byx)

∇×A = x̂

[
∂Az

∂y
− ∂Ay

∂z

]
+ ŷ

[
∂Ax

∂z
− ∂Az

∂x

]
+ ẑ

[
∂Ay

∂x
− ∂Ax

∂y

]
=

1

2
x̂ [Bx − (−Bx)] +

1

2
ŷ [By − (−By)] +

1

2
ẑ [Bz − (−Bz)]

= x̂Bx + ŷBy + ẑBz = B



The only “direction” in the problem is B so make that the z-direction. Then,

A =
1

2
B× r =

B

2
ẑ× (ρ̂ρ+ ẑz) =

Bρ

2
ẑ× (x̂ cosϕ+ ŷ sinϕ) =

Bρ

2
(ŷ cosϕ− x̂ sinϕ) =

Bρ

2
ϕ̂

The Lagrangian is therefore

L =
1

2
mṙ2 + qṙ ·A =

1

2
m(ρ̂ρ̇+ ϕ̂ρϕ̇+ ẑż)2 + q(ρ̂ρ̇+ ϕ̂ρϕ̇+ ẑż) · Bρ

2
ϕ̂

=
1

2
m(ρ̇2 + ρ2ϕ̇2 + ż2) +

1

2
qBρ2ϕ̇

Lagrange’s equations become

mρ̈ = mρϕ̇2 + qBρϕ̇
d

dt

(
mρ2ϕ̇+

1

2
qBρ2

)
= 0 mz̈ = 0

The z-equation just says the particle moves with constant velocity in the z-direction, so
concentrate on what happens in the plane projection. If ρ = R is a constant, then the
middle equation just says that mρ2ϕ̇ is a constant, so ϕ̇ is constant. The first equation
becomes ϕ̇(mϕ̇ + qB) = 0 so either ϕ̇ = 0 and the particle just moves in a straight line in
the z-direction, or ϕ̇ = −qB/m and the particle moves in a circle of radius R at constant
angular frequency qB/m. This is the same result we got in Problem 2 of Homework 1.

(4) Take the origin to be the pivot point, with y pointing downards. Then, simply,

L =
1

2
mẋ2 +

1

2
mẏ2 +mgy

With these coordinates, the constraint equation can be written as

f(x, y) = x2 + y2 = L2 (a constant)

The modified Lagrange equations

∂L
∂x

+ λ
∂f

∂x
=

d

dt

∂L
∂ẋ

and
∂L
∂y

+ λ
∂f

∂y
=

d

dt

∂L
∂ẏ

become the equations
2λx = mẍ and mg + 2λy = mÿ

If θ measures the angle through which the pendulum swings, with θ = 0 being the pendulum
hanging down as usual, then x = L sin θ and y = L cos θ. Using

ẍ =
d

dt
(Lθ̇ cos θ) = Lθ̈ cos θ−Lθ̇2 sin θ and ÿ =

d

dt
(−Lθ̇ sin θ) = −Lθ̈ sin θ−Lθ̇2 cos θ

we can equate 2λ from these two equations to find

m
Lθ̈ cos θ − Lθ̇2 sin θ

L sin θ
= m

−Lθ̈ sin θ − Lθ̇2 cos θ − g

L cos θ

θ̈ cos2 θ − θ̇2 sin θ cos θ = −θ̈ sin2 θ − θ̇2 cos θ sin θ − ω2 sin θ

so θ̈ + ω2 sin θ = 0 where ω2 = g/L. This is indeed the pendulum equation.



(5) The equation of the plane is something like y = k(x − x0) where k = tan θ and x0 is
some constant. So write the constraint as f(x, y) = constant where f(x, y) = y − kx. The
Lagrangian is simple, namely

L =
1

2
mẋ2 +

1

2
mẏ2 −mgy

The modified Lagrange equations (see above in Problem (4)) become the equations

λ(−k) = mẍ and −mg + λ(1) = mÿ

The constraint tells us that ÿ = kẍ, so multiply the first equation by k and subtract to find

−k2λ+mg − λ = 0 so λ =
mg

1 + k2
= mg cos2 θ

Therefore, the constraint forces are

Fx = λ
∂f

∂x
= −kλ = − tan θmg cos2 θ = −mg cos θ sin θ

and Fy = λ
∂f

∂y
= λ = mg cos2 θ

In Introductory Physics, you called the constraints “normal forces” because they were per-
pendicular to the surface on which the mass sits. The magnitude of the normal force must
equal the component of the weight normal to the surface, that is N = mg cos θ:

Referring to the figure, it is clear that

Nx = −N sin θ = −mg cos θ sin θ and Ny = N cos θ = mg cos2 θ



PHYS3101 Analytical Mechanics Homework #4 Due 26 Sep 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) We showed that the Lagrangian for a system of two masses m1 and m2, which only
interact through a “central” potential U(|r1 − r2|), decouples into a center-of-mass (CM)
coordinate R = (m1r1+m2r2)/M whereM = m1+m2, and a relative coordinate r = r1−r2.

(a) Show that the potential energy U(r) = −Fr · n̂ for a uniform force field F = F n̂, where
n̂ is an arbitrary unit vector.

(b) Show that even in the presence of an external force F = man̂, where a is a constant
and m is the mass, the Lagrangian still decouples into CM and relative coordinates.

(c) Explain why the Earth-Moon system can be described (to a very good approximation)
as a two-body central force problem, even though both are orbiting about the Sun.

(2) Two bodies with masses m and M orbit each other based on their mutual gravitational
attraction. If we don’t make the assumption that m ≪ M for Keplerian orbits, show that
the correct form of Kepler’s Third Law is

τ 2 =
4π2

G(M +m)
a3

for period τ and semimajor axis a. Use an elementary “F = ma” approach, where a is the
centripetal acceleration, to show that this is correct for two stars of the same mass following
circular orbits about their common center of mass.

(3) Calculate the radius of a stable circular orbit by finding the minimum in the effective
potential energy for a mass m orbiting a much larger mass M . Use Use an elementary
“F = ma” approach, where a is the centripetal acceleration, to show that you got the correct
answer. Then, calculate the period of small oscillations about this point by expanding the
effective potential in a Taylor series, and compare to the period of the circular orbit.

(4) In General Relativity, Newtonian gravity is modified so that the force is

F (r) = −GmM
r2

(
1− Rs

r

)
where Rs = 2GM/c2 is the “Schwarzschild radius” of the large mass M , and is very much
smaller than the orbital distance r for planets in our Solar System. Show that the orbit is
very nearly an ellipse (for negative total energy), and calculate by how much the axis of the
ellipse precesses (in angle) over one orbit, if the orbit is nearly circular with radius R.

(5) Calculate the amount of time (in years) it would take to launch a spacecraft from Earth
to Uranus, using the most direct path possible, using no fuel other than to shoot it out of
Earth’s orbit. Assume that Earth and Uranus are in circular orbits with radii 1 AU and
19.2 AU. You can also assume that the launch happens at the right time so that Uranus is
in the right place when the spacecraft arrives at its orbit.



PHYS3101 Analytical Mechanics Homework #4 Solutions

(1) For (a), just take the gradient of the given function and find

−∇U = F∇(xnx + yny + znz) = F (x̂nx + ŷny + ẑnz) = F n̂

The kinetic energy decouples the same as before, namely as given in Taylor (8.10) through
(8.12), and the internal potential energy is unchanged. The new term in the Lagrangian is

m1ar1 · n̂+m2ar2 · n̂ =MaR · n̂

which depends only on R and not r. That is, there is a force Ma acting on the center of
mass, but the motion in the relative coordinate is unchanged. This applies to the Earth-
Moon system because their separation is very much smaller than the distance to the Sun,
so the gravitational attraction of the Sun is effectively in the same direction for both, and
proportional to the mass of each. In other words, the CM revolved around the Sun, while
the Earth and Moon revolve about their mutual center of mass.

(2) From Taylor (8.54) and the text that follows, Kepler’s Third Law is

τ 2 = 4π2a
3µ

γ
= 4π2a3

mM

m+M

1

GmM
=

4π2

G(M +m)
a3 =

2π2

GM
a3

if m =M . For a circular orbit, “a” is the radius in the relative coordinate frame, namely the
separation between the two masses. That is, a = 2R where R is the radius of the circular
orbit of each of the two masses about their common center of mass, which is exactly halfway
between them. That is

τ 2 =
16π2

GM
R3

For circular orbits of radius R, the force between the two bodies is GM2/(2R)2. The orbital
velocity v = 2πR/τ and the centripetal acceleration of each body is v2/R. Newton’s Second
Law on either body gives

GM2

4R2
=M

v2

R
=M

1

R

4π2R2

τ 2
so τ 2 =

16π2

GM
R3

which is the same answer we arrived at above.

(3) The effective potential is given by Taylor (8.32) as

Ueff(r) = −GmM
r

+
ℓ2

2µr2
where ℓ = µr2ϕ̇ and µ =

mM

m+M
≈ m

We differentiate with respect to r to find the minimum:

d

dr

[
−GmM

r
+

ℓ2

2mr2

]
= G

mM

r2
− ℓ2

mr3
= 0 so r =

ℓ2

Gm2M
≡ R

is the radius of the circular orbit. Writing ω = ϕ̇, a constant for this orbit,

R =
m2R4ω2

Gm2M
so R =

(
GM

ω2

)1/3



In a Physics I course, you would have written that the centripetal acceleration is ω2R and
the attractive force to be GmM/R2 so

G
mM

R2
= mω2R and R3 =

GM

ω2

which is the same as the answer we got the fancy way.

To find the period of small oscillations about this minimum, and to confirm that the orbit
is stable, we expand the effective potential in Taylor series about r = R to get

Ueff(r) = Ueff(R) +
d

dr
Ueff(r)

∣∣∣∣
r=R

(r −R) +
1

2

d2

dr2
Ueff(r)

∣∣∣∣
r=R

(r −R)2 + · · ·

The first term is just a constant, and the second term is zero because that’s how we de-
termined R. The third term is a simple harmonic oscillator potential with effective spring
constant

k =
d2

dr2
Ueff(r)

∣∣∣∣
r=R

= −2G
mM

R3
+ 3

ℓ2

mR4
= −2GmM

ω2

GM
+ 3

m2R4ω2

mR4
= mω2

Therefore, the frequency of these small oscillations is just ω = v/R where v = ϕ̇ is the
(constant) velocity of the mass m in a circular orbit. That is, the period of small oscillations
is in fact just “one year”, as expected.

(4) Following the problem statement in Taylor 8.23, write

F (r) = − k

r2
+
λ

r3
= −GmM

r2
+G

mM

r2
Rs

r
so k = GmM and λ = GmMRs

The differential equation for the orbit u(r) = 1/r in (8.41) becomes

u′′(ϕ) = −u(ϕ) + µ

ℓ2
k − µ

ℓ2
λu(ϕ) = −

(
1 +

µλ

ℓ2

)
u(ϕ) +

µk

ℓ2
= −β2u(ϕ) +

µk

ℓ2

where we have made the definition

β ≡
(
1 +

µλ

ℓ2

)1/2

≈ 1 +
µλ

2ℓ2

where we anticipate that µλ/ℓ2 ≪ 1. Following Taylor, we write the solution as

u(ϕ) = A cos(βϕ− δ) +
µk

β2ℓ2
=

1

c
(1 + ϵ cos βϕ) c =

β2ℓ2

µk
ϵ =

Aβ2ℓ2

µk

where we choose the arbitrary phase δ = 0. That is, the orbit is described in plane polar
coordinates as

r =
c

1 + ϵ cos(βϕ)

which is very close to an ellipse since β ≈ 1. If α is the precession over one orbit, then the
argument of the cosine reaches 2π when ϕ reaches 2π + α, so β(2π + α) = 2π. For a nearly
circular orbit with radius R, ℓ = µωR2 and taking m≪M so that µ ≈ m,

α = 2π

(
1− 1

β

)
=
πµλ

ℓ2
=
πµGmMRs

µ2ω2R4
=
πGMRs

ω2R4
=

πc2

2ω2R2

(
Rs

R

)2



which is clearly dimensionless, and a very small number for the Sun-Mercury system.

I’d like to have asked them to put in numbers and show that it is in fact the 43 seconds of
arc, but not enough time for me to work it out for myself.

(5) We launch the spacecraft out of Earth’s orbit at a speed that gives it an elliptical
trajectory whose perihelion is at the orbit of Uranus. The radius of Earth’s orbit is R1 and
the radius of Uranus’ orbit is R2. Therefore, the semi major axis of the elliptical transfer
orbit is

aT =
1

2
(R1 +R2) = 10.1 AU

We can scale from the length of time that it takes for an Earth orbit (that is, one year) to
that for the transfer orbit, just by scaling using Kepler’s Third Law. That is(

τT
τE

)2

=

(
aT
aE

)3

Measuring time in years and distances in AU, we get

τT = a
3/2
T = 32 years

The spacecraft only uses half an orbit to get to Uranus, so the travel time is 16 years.



PHYS3101 Analytical Mechanics Homework #5 Due 3 Oct 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A mass m follows an elliptical orbit for a potential energy U(r) = −γ/r. Show that

ϵ ≡ 1

γ
ṙ× ℓ− r̂

where ℓ = r × mṙ, is a (vector) constant of the motion, and that its magnitude is the
eccentricity of the ellipse. What physical characteristic of the ellipse is described by the
direction of ϵ? Hints and comments: Make use of vector identities with cross products,
including a× (b× c) = b(a · c)− c(a ·b), (a×b) · (c×d) = (a · c)(b ·d)− (a ·d)(b · c), and
a · (b× c) = c · (a×b). To find ϵ = |ϵ| do ϵ2 = ϵ · ϵ, assemble terms, and recognize the total
energy. For the direction, use a simple dot product to show that ϵ lies in the plane of the
orbit. Then, evaluate ϵ · r assuming that the angle between ϵ and r is α. Solve for r, and
compare to the formula for an ellipse to discover the relationship between α and ϕ. (Your
instincts could tell you the direction of ϵ; the “obvious” choice turns out to be correct.)

(2) A 120 lb person sits in a Chevy Corvette, which accelerates from zero to 60 miles per
hour in six seconds. (That’s faster than most cars.) Assuming the acceleration is constant,
how much force (in pounds) does she feel pushing her against the back of the seat? A weight
hangs from a string suspended from the ceiling. What angle does it make with the vertical?

(3) An observer sits on a turntable which rotates counter clockwise at a constant angular
speed Ω. A mass m rides on the frictionless surface of the turntable. The observer sees the
mass move in a circle of radius R at fixed angular velocity ω about the same axis as the
turntable. Find the value of ω such that the combined centrifugal and Coriolis forces give
just the right centripetal force mω2R, directed towards the center of rotation, to maintain
the circular motion. What’s going on? (The answer should be obvious.)

(4) On a certain planet, which is perfectly spherically symmetric, the free fall acceleration
has magnitude g = g0 at the North Pole and g = λg0 at the equator (with 0 ≤ λ ≤ 1). Find
g(θ), the free fall acceleration at a colatitude θ as a function of θ.

(5) Use the method of successive approximations to find the path r(t), to first order in the
Earth’s rotation speed Ω, of an object thrown from an origin located at colatitude θ with
initial velocity v0 = vx0x̂+vy0ŷ+vz0 ẑ. Assume that the acceleration vector g due to gravity
is constant throughout the flight, and ignore air resistance.



PHYS3101 Analytical Mechanics Homework #5 Solutions

(1) With ϵ ≡ ṙ× ℓ/γ − r̂ and ℓ = r×mṙ, use r̂ = r/r and mr̈ = −(γ/r3)r to write

dϵ

dt
=

1

γ
r̈× ℓ− ṙ

r
+

r

r2
ṙ = − 1

r3
r× (r× ṙ)− ṙ

r
+

r

r2
ṙ = − r

r3
r · ṙ+ ṙ

r3
r2 − ṙ

r
+

r

r2
ṙ = 0

For magnitude, consider ϵ2 = (ṙ× ℓ)2/γ2 − 2r̂ · (ṙ× ℓ)/γ +1. To evaluate the first term, use
(a×b)·(c×d) = (a·c)(b·d)−(a·d)(b·c). So, (ṙ×ℓ)2 = ṙ2ℓ2−(ṙ·ℓ)2 = ṙ2ℓ2. For the second
term, use “BAC-CAB” to write ṙ × ℓ = mṙ × (r × ṙ) = mrṙ2 −mṙ(ṙ · r) = mrṙ2 −mrṙṙ.
So, r̂ · (ṙ× ℓ) = mrṙ2 −mrṙ2 = mr3ϕ̇2 = ℓ2/mr, and

ϵ2 =
1

γ2
ṙ2ℓ2 − 2

γ

ℓ2

mr
+ 1 =

2ℓ2

mγ2

[
1

2
mṙ2 − γ

r

]
+ 1 =

2ℓ2E

mγ2
+ 1

This agrees with Taylor (8.58). For the direction, use a little trickery. Since ℓ ∝ ẑ, ϵ · ℓ = 0.
Now, let α be the angle between ϵ and r, so ϵ · r = ϵr cosα = r · (ṙ× ℓ)/γ− r. Then use the
identity a · (b× c) = c · (a×b) to write r · (ṙ× ℓ) = ℓ · (r× ṙ) = ℓ · ℓ/m = ℓ2/m. Therefore

ϵr cosα =
ℓ2

mγ
− r and, so, r =

ℓ2/mγ

1 + ϵ cosα

which is r = r(ϕ) for an ellipse, with ϕ = α, i.e., ϵ lies along the major axis of the ellipse.

(2) Convert to SI and back, using “pounds” as force or mass depending on the context.
Then m = 120/2.205 = 54.4 kG. Have 60 mph= 60 × 0.447 = 26.8 m/s, so the horizontal
acceleration A = 26.8/5 = 5.4 m/s2 = 0.55g. The “force” is mA = 5.4 × 54.4 = 294 N
which is equivalent to 294× 0.2248 = 66(= 0.55 · 120) pounds. Gravity is down and the car
accelerates horizontally, so θ = tan−1(A/g) tan−1(0.55) = 0.50 rad= 29◦.

(3) Have Ω = Ωẑ for counterclockwise rotation. With cylindrical polar coordinates (r, ϕ, z),
r = Rr̂ and ṙ = Rωϕ̂ for the mass, so Fcf = m(Ω× r)×Ω = mΩRϕ̂×Ω = mΩ2r and then
FCor = 2mṙ×Ω = 2mωΩr. With Fcf+FCor = −mω2Rr̂ have ω2+2mωΩ+Ω2 = (ω+Ω)2 = 0.
Therefore ω = −Ω. The mass rotates in the opposite direction to the turntable but with the
same angular speed. To an observer off the turntable, the mass is simply standing still.

(4) From Taylor (9.44), and referring to Figure 9.10, g = g0+Ω2R sin θρ̂. At the pole, θ = 0
and g = g0. At the equator, θ = 90◦ and g(90◦) = g0 − Ω2R = λg0, giving Ω2R = g0(1− λ).
Now g2 = g20+2Ω2R sin θg0·ρ̂+Ω4R2 sin2 θ = g20[1+2(1−λ) sin θ cos(π/2+θ)+(1−λ)2 sin2 θ] =
g20[1− sin2 θ + λ2 sin2 θ] = g20[cos

2 θ + λ2 sin2 θ] and so g = g0[cos
2 θ + λ2 sin2 θ]1/2.



(5) The zeroth order solutions are ẋ = v0x, ẏ = v0y, and ż = v0z − gt. Inserting this back
into (9.53) gives us the first order equations we need to solve, namely

ẍ = 2Ω(v0y cos θ − v0z sin θ) + 2Ωgt sin θ

ÿ = −2Ωv0x cos θ

z̈ = −g + 2Ωv0x sin θ

These are now simple uncoupled second order equations with known initial conditions. In-
tegrating them all the way is simple, and gives

x(t) = vx0t+ Ω(vy0 cos θ − vz0 sin θ)t
2 +

1

3
Ωgt3 sin θ

y(t) = vy0t− Ω(vx0 cos θ)t
2

z(t) = vz0t−
1

2
gt2 + Ω(vx0 sin θ)t

2

The answer is in fact given in the problem statement of Taylor 9.26.
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PHYS3101 Analytical Mechanics Homework #6 Due 10 Oct 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) The figure shows two equal masses m at the
ends of a massless rod of length 2ℓ, rotating with
angular velocity ω about an axis which passes
through the center of mass. The normal vector
to the rod makes an angle α with respect to the
axis of rotation. At the instant shown, the rod lies
in the xz plane. Use the coordinate system shown
for the following calculations:

(a) Find all nine components of the inertia tensor for this coordinate system. (b) Find the
(vector) angular momentum for the configuration as shown. (c) Find the kinetic energy for
the configuration as shown. (d) Calculate the principal moments of inertia, and (e) find the
principal axes for this configuration.

(2) Find the moment of inertia about the z-axis for a uniform ellipsoid whose surface is given
by (x/a)2 + (y/b)2 + (z/c)2 = 1.(You can use Mathematica if you want, but it’s probably
easier to just do the necessary integrals with a simple change of variables and exploiting
symmetry.) Check your answer against the result for a sphere with a = b = c = R.

(3) Consider a top consisting of a uniform cone spinning freely about its tip at 1800 rpm.
If its height is 10 cm and its base radius 2.5 cm, at what angular velocity will it precess?

(4) A rigid body is rotating freely, subject to zero torque. Use Euler’s equations to prove
that the magnitude of the angular momentum L is constant. Similarly, show that the kinetic
energy of rotation

Trot =
1

2
λ1ω

2
1 +

1

2
λ2ω

2
2 +

1

2
λ3ω

2
3

where the λi are the principle moments of inertia, is a constant of the motion.

(5) You are probably aware that the Earth’s axis of rotation precesses slowly, so that, far in
the future, the North pole will no longer be pointing at Polaris. To gain an understanding
of this phenomenon, imagine that the Earth is perfectly rigid, uniform, and spherical and is
spinning about its usual axis at its usual rate. A huge mountain of mass 10−8 Earth masses
is now added at colatitude 60◦, causing the earth to begin free precession as discussed in
class. How long will it take the North Pole (defined as the northern end of the diameter
along ω) to move 100 miles from its current position?



PHYS3101 Analytical Mechanics Homework #6 Solutions

(1) The inertia tensor components are Iij =
∑
mα(r

2
αδij−riαrjα) where, for the two particles

with massmα = m, rα = ℓ, xα = ∓ℓ cosα, yα = 0, and zα = ±ℓ sinα. Therefore, the diagonal
elements are Ixx = 2mℓ2(1− cos2 α) = 2mℓ2 sin2 α, Iyy = 2mℓ2, and Izz = 2mℓ2 cos2 α. (The
value of Iyy is obvious, and Ixx and Izz are correct in the limits α = 0 and α = π/2.) Also
Ixy = Iyx = 0 = Iyz = Izy and Ixz = 2mℓ2 sinα cosα = mℓ2 sin(2α) = Izx. In matrix form,

I =

 2mℓ2 sin2 α 0 mℓ2 sin(2α)
0 2mℓ2 0

mℓ2 sin(2α) 0 2mℓ2 cos2 α

 = 2mℓ2

 sin2 α 0 sinα cosα
0 1 0

sinα cosα 0 cos2 α


The principal moments of inertia are given by the eigenvalues, and the principle axes are
given by the eigenvectors. The characteristic equation for the matrix above is

(sin2 α− λ)(1− λ)(cos2 α− λ)− sin2 α cos2 α = −λ(λ2 − 2λ+ 1) = 0

so the principle moments of inertia are 0, and (twice) 2mℓ2, which we could have guessed.
For λ = 0 we have  sin2 α 0 sinα cosα

0 1 0
sinα cosα 0 cos2 α

 a
b
c

 = 0

so that a sinα + c cosα = 0 or n̂ = x̂ cosα − ẑ sinα is the direction of the principle axis.
This points along the axis of the rod, as we expect. For λ = 1, we have sin2 α− 1 0 sinα cosα

0 0 0
sinα cosα 0 cos2 α− 1

 a
b
c

 =

 − cos2 α 0 sinα cosα
0 0 0

sinα cosα 0 − sin2 α

 a
b
c

 = 0

which is satisfied by b = 1 or a cosα − c sinα = 0. In the first case, the principle axis is
n̂ = ŷ, and in the second case n̂ = x̂ sinα− ẑ cosα which is perpendicular to the rod. Both
are obviously correct. The angular momentum L = I · ω, again using matrices, is

2mℓ2

 sin2 α 0 sinα cosα
0 1 0

sinα cosα 0 cos2 α

 0
0
ω

 = 2mℓ2

 ω sinα cosα
0

ω cos2 α


so that L = 2mℓ2ω cosα(x̂ sinα + ẑ cosα), notably not parallel to ω unless α = 0. The
kinetic energy T = ω · L = mℓ2ω2 cos2 α = 1

2
(2mℓ2)ω2 × cos2 α which, again and finally, is

obviously correct for α = 0 and α = π/2.

(2) Use coordinates ξ ≡ x/a, η ≡ y/b, and ζ ≡ z/c, so the limits of integration are all −1
to 1, and the equation of the ellipsoid is ξ2 + η2 + ζ2 = 1, that is, a unit sphere. Therefore

I =

∫
(x2 + y2)dm =

M

(4/3)πabc
abc

∫
sphere

(a2ξ2 + b2η2)dV =
3M

4π
(a2 + b2)

4π

15
=
M

5
(a2 + b2)

where
∫
sphere

ξ2dV =
∫
sphere

η2dV =
∫
sphere

z2dV =
∫
r2 cos2 θdV = 2π(1/5)(2/3) = 4π/15.

This obviously gives the correct answer when a = b(= c) = R.



(3) This problem is a simple application of (10.83) in Taylor, along with the moment of
inertia calculated in Example 10.3. However, we also need to calculate the position of the
center of mass of the cone. Referring to Figure 10.6, we have

zCM =
1

M

∫ h

0

z dm =
1

M

∫ h

0

z
3M

πR2h
πr2 dz =

1

M

∫ h

0

z
3M

πR2h
π

(
Rz

h

)2

dz

=
3

h3

∫ h

0

z3 dz =
3

4
h

Therefore, the precession frequency becomes

Ω =
MgzCM

Izzω
=
Mg

ω

3

4
h

10

3MR2
=

5

2

gh

ωR2

Using g = 9.8 m/s2, h = 0.1 m, R = 0.025 m, and ω = 2π × (1800/60)/s, find

Ω = 20.8/s = 199 rpm

(4) Euler’s equations, for zero torque, are

Γ1 = 0 = λ1ω̇1 − (λ2 − λ3)ω2ω3

Γ2 = 0 = λ2ω̇2 − (λ3 − λ1)ω3ω1

Γ3 = 0 = λ3ω̇3 − (λ1 − λ2)ω1ω2

We want to show that |L| = [L2]
1/2

= [L2
1 + L2

2 + L2
3]

1/2
is constant. Its time derivative is

d

dt
|L| = 1

|L|

(
L1L̇1 + L2L̇2 + L3L̇3

)
However Li = λiωi (i = 1, 2, 3) so L̇i = λiω̇i and, making use of Euler’s equations, we have

L1L̇1 + L2L̇2 + L3L̇3 = λ21ω1ω̇1 + λ22ω2ω̇2 + λ23ω3ω̇3

= λ1(λ2 − λ3)ω1ω2ω3 + λ2(λ3 − λ1)ω1ω2ω3 + λ3(λ1 − λ2)ω1ω2ω3

= (λ1λ2 − λ1λ3 + λ2λ3 − λ2λ1 + λ3λ1 − λ3λ2)ω1ω2ω3

= 0

and so d|L|/dt = 0 and the magnitude of L does not change. Similarly

dT

dt
= λ1ω1ω̇1 + λ2ω2ω̇2 + λ3ω3ω̇3

= (λ2 − λ3)ω1ω2ω3 + (λ3 − λ1)ω1ω2ω3 + (λ1 − λ2)ω1ω2ω3

= (λ2 − λ3 + λ3 − λ1 + λ1 − λ2)ω1ω2ω3

= 0



(5) This is a problem concerning “free precession” for a body with two equal principal
moments. For a sphere of radius R and mass M , these two equal moments are λ0 =
2MR2/5 + mR2, where the mass of the mountain is m. The moment of inertia for the
principle axis through the mountain is just λ = 2MR2/5, ignoring the displacement of the
center of mass from the center of the sphere. The angle between the Earth’s rotation axis
(along ω) and the ê3 axis is the colatitude θ of the mountain. Therefore, from (10.93), the
precession frequency is

Ωb =
λ0 − λ

λ0
ω3 ≈

5

2

m

M
ω cos θ =

5

2
10−8 2π

1 day

1

2
=

2π

(4/5)× 108 days

where we ignore the difference between λ0 and λ in the denominator. Thus, there is one
full precession of ω about ê3 in 2π/Ωb = 8× 107 days. The precession follows a circle with
circumference 2πR sin θ = 2.1766 × 104 miles. So, to move 100 miles takes (100/2.1766 ×
104)× 8× 107 = 367, 546 days=1006 years.



PHYS3101 Analytical Mechanics Homework #7 Due 17 Oct 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Prove that the principle moments of inertial λ1, λ2, and λ3 of any rigid body must satisfy
λ3 ≤ λ1 + λ2. If λ3 = λ1 + λ2, what does that imply about the shape of the body? Pick a
specific example to check your answer.

(2) A thin, flat, uniform rectangular plate with mass M lies in the xy plane with two of its
corners at (a, b, 0) and the origin. Find the plate’s inertia tensor and then diagonalize it to
find the principle moments of inertia and the principle axes. Comment on the comparison
between λ1 + λ2 and λ3, based on Problem (1) above. Choose values for a and b and draw
diagrams that show the principle axes for the plate if a = b (a square) and a ̸= b.

(3) For a symmetric rigid body rotating in free space with no external torques, we showed
in class that Euler’s Equations implied that, in the body frame (for example, the Earth in
Problem 5 of Homework #6) both the angular velocity vector ω and the angular momentum
vector L precessed around the symmetry axis ê3 with a frequency Ωb = ω3(λ1−λ3)/λ1. Now
find the the space frame frequency Ωs at which ω and ê3 precess about L is Ωs = L/λ1. See
Figure 10.9 in Taylor. You can do this by first explaining why Ωs = Ωb +ω. Then consider
the angles between ê3 and ω, and between ê3 and L.

(4)A symmetric top of mass M spins about its symmetry axis at an angular speed ω3, with
a fixed point at the origin. The distance from the origin to the center of mass is R. If the
top precesses at a fixed angle θ, show that

λ1Ω
2 cos θ − λ3ω3Ω +MgR = 0

where λ1 and λ3 are principle moments of inertia, and Ω is the rate of precession. Assuming
that ω3 is “very large”, solve this quadratic equation for the two possible values of Ω. What
kind of motions do these two solutions represent? What does “very large” mean for ω3?
That is, very large compared to what?

(5) The effective potential energy for a spinning symmetric top is

Ueff(θ) =
(Lz − L3 cos θ)

2

2λ1 sin
2 θ

+
L2
3

2λ3
+MgR cos θ

where θ is the polar angle from the vertical, Lz and L3 are the angular momenta vertical
and symmetry body axis, respectively, and λ1 and λ3 are principle moments of inertia, and
M is the mass. The fixed point is at the origin, and R is the distance from the origin to
the center of mass. Why is the second term unimportant for understanding the motion of
the top? Plot Ueff(θ) for λ1 = 1 = MgR, Lz = 8, and L3 = 10, and find to three significant
figures the value θ0 at which the top precesses with constant θ. Find the rate Ω ≡ ϕ̇ of steady
precession from the equation for Lz, and compare to the approximate result you obtain in
the case where the top is spinning “very rapidly”; see Problem (4) above.
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(1) In the body frame, the principle moments of inertia are

λ1 =

∫
(r22 + r23) dm λ2 =

∫
(r21 + r23) dm λ3 =

∫
(r21 + r22) dm

Therefore

λ1 + λ2 =

∫
(r22 + r23 + r21 + r23) dm =

∫
(r21 + r22) dm+

∫
2r23 dm ≥

∫
(r21 + r22) dm = λ3

since the integral over a body of a positive definite quantity most be positive. To satisfy the
equality, we obviously need ∫

r23 dm = 0

This can only happen if the body is flat, and lies in the (1, 2) plane, in which case r3 = 0
for all points in the body. We can check this for a flat rectangular plate with mass M and
dimensions a× b and center at the origin. It’s easy enough to look up that, in this case,

λ1 =
1

12
Ma2 λ2 =

1

12
Mb2 and λ3 =

1

12
M(a2 + b2) = λ1 + λ2

(2) The calculation of the inertia tensor is straightforward. Just follow the formula, with
z = 0 everywhere inside the body:

Ixx =

∫
y2 dm =

M

ab

∫ a

0

dx

∫ b

0

dy y2 =
M

ab
a
b3

3
=

1

3
Mb2

Iyy =

∫
x2 dm =

M

ab

∫ a

0

x2 dx

∫ b

0

dy =
M

ab

a3

3
b =

1

3
Ma2

Izz =

∫
(x2 + y2) dm = Ixx + Iyy =

1

3
M(a2 + b2)

Ixz = −
∫
xz dm = 0 = Izx = Iyz = Izy

Ixy = −
∫
xy dm = −M

ab

∫ a

0

dx x

∫ b

0

dy y = −M
ab

a2

2

b2

2
= −1

4
Mab = Iyx

so I =
M

12

 4b2 −3ab 0
−3ab 4a2 0
0 0 4(a2 + b2)


See the associated Mathematica notebook for the rest. The eigenvalues are

λ3 = 4
(
a2 + b2

)
λ1 = 2a2−

√
4a4 + a2b2 + 4b4+2b2 λ2 = 2a2+

√
4a4 + a2b2 + 4b4+2b2

and λ3 = λ1 + λ2, as it should be for this flat plate. The eigenvectors are the rows of 0 0 1

−−2a2−
√
4a4+a2b2+4b4+2b2

3ab
1 0

−−2a2+
√
4a4+a2b2+4b4+2b2

3ab
1 0





For the square I picked a = b = 1 and for the rectangle a = 4 and b = 1. The drawings are

In both cases, of course, the third principle axis points out of the page.

(3) As shown in Figure 10.9 (a), the angular velocity vector ω rotates about the ê3 axis
with angular velocity Ωb in the body frame. Since angular velocity vectors add as usual,
the angular velocity Ωs must equal the sum of ω and Ωb, that is Ωs = Ωb + ω. (I’m not so
pleased with this explanation, but I think I see how the same result can be obtained in the
body from, with appropriate sign changes of the vectors.)

We know from class that the three vectors ê3, ω, and Ωs (which is in the same direction as L)
all lie in a plane. If we evaluate Ωs = Ωb+ω by components in the plane but perpendicular
to ê3, then we write (Ωs)⊥ = (ω)⊥. Referring to the angles in Figure 10.9,

(Ωs)⊥ = Ωs sin θ so Ωs =
1

sin θ
(ω)⊥

Now (ω)⊥ is either the ê1 or ê2 component of ω, which are the same since the body is
symmetric, and similarly for (L)⊥. Therefore (L)⊥ = L1 = λ1ω1 = λ1(ω)⊥. It is also clear
from Figure 10.9 that (L)⊥ = L sin θ. Putting this all together gives

Ωs =
1

sin θ

(L)⊥
λ1

=
L

λ1

(4) From the θ-equation Taylor (10.107) and θ̈ = 0 and ϕ̇ ≡ Ω. Then, from Taylor (10.99),
we have ω3 = ψ̇ + ϕ̇ cos θ. Substituting for this expression and dividing out sin θ gives

λ1Ω
2 cos θ − λ3ω3Ω +MgR = 0

Solving for Ω requires λ3ω3±(λ23ω
2
3−4MgRλ1 cos θ)

1/2 ≈ λ3ω3±λ3ω3(1−2MgRλ1 cos θ/λ
2
3ω

2
3),

assuming that λ23ω
2
3 = L2

3 ≫MgRλ1 cos θ. Thus, the two precession frequencies are

Ω =
λ3ω3

λ1 cos θ
≡ Ωfast and Ω =

MgR

λ3ω3

≡ Ωslow

So, “weak torque” means torque=MgR sin θ ≪ L2
3 tan θ/λ1. The second (slower) frequency

is just what we derived for a symmetric spinning top under a “weak” gravitational torque.



See Taylor (10.83). As for the first (faster) frequency, note that L3 = L cos θ where L is
the vertical, and constant, angular momentum component. Thus Ωslow = L/λ1 which is just
the “space frame” precession rate of a freely rotating body. See Taylor (10.96) and Fig.10.9.
Indeed, the gravitation torque does not enter here, so the “fixed point” plays no role.

(5) Since L3 and λ3 are constants, the second term is a constant, so it is unimportant when
using energy to discuss the motion. Use mathematica to do the rest.

The plot at the right is for Lz = 8, L3 = 10,
and λ1 = 1 = MgR. The effective poten-
tial is a minimum for θ = θ0 = 0.6496 ≈
cos−1(8/10) = 0.6435. From Taylor (10.104)
ϕ̇ = (Lz − L3 cos θ0)/λ1 sin

2 θ0 = 0.1008.
The approximate formula, for a top precess-
ing under a “weak torque”, Taylor (10.83)
or (10.111), gives Ω = MgR/L3 = 1/10.
That’s very good agreement!
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PHYS3101 Analytical Mechanics Homework #8 Due 24 Oct 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) If ICM is the moment of inertia tensor for some rigid body of mass M about its center of
mass, and I is the inertia tensor about a point displaced an amount ∆ = x̂∆x + ŷ∆y + ẑ∆z

from the center of mass, show that

I
ij
= ICM

ij
+M

(
∆2δij −∆i∆j

)
(2) A hoop of mass m and radius R hanging from a fixed point
O swings freely in the vertical plane. A bead, also of mass m,
slides without friction on the hoop. Using the angles ϕ1 and ϕ2

as shown in the figure on the right as generalized coordinates,
write the Lagrangian. (You will need to find the moment of
inertia of the hoop about a point on the hoop. This is a very
simple calculation if you use the results of Problem (1).) Then
for ϕ1 ≪ 1 and ϕ2 ≪ 1, determine the equations of motion and
find the eigenfrequencies and describe the normal modes.

(3) Two equal massesm are connected by three springs and slide freely on a horizontal track.
The outer springs are attached to fixed walls and have stiffness k, and the middle spring has
stiffness εk. (Note that this ε is dimensionless, and is not the same as ϵ used in Taylor Section
11.3.) Derive expressions for the positions x1(t) and x2(t) of the two masses assuming they
both start from rest and x1(0) = a and x2(0) = 0. (You can carry out this calculation any
way you like, including just solving the differential equations using Mathematica.) Make
plots of x1(t)/a and x2(t)/a for ϵ = 1/10 as a function of τ = Ωt where Ω2 = k/m. Your
result should look like Figure 11.8 in Taylor. Also plot the normal modes and show that
they oscillate with two distinct, single frequencies.

(4) Consider a potential energy function U(q1, q2, . . . , qn) where the qi are n generalized
coordinates that describe a system of N masses. Assume that when all of the qi = 0, then
the function U is at a local minimum. Find the Euler-Lagrange equations of motion for the
case when the qi do not move far from equilibrium, and show that the equations of motion
can be written as

M q̈ +K q = 0

where M and K are real, symmetric matrices. (This is most easily done by deriving expres-
sions for M and K in terms of what you are given. See Taylor Section 7.8.)

(5) Consider a frictionless rigid horizontal hoop of radius R. Onto this hoop are threaded
three beads with masses 2m, m, and m, and, between the beads, three identical springs,
each with force constant k. Solve for the three normal frequencies and find and describe the
three normal modes.
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(1) This follows directly from the definition of the inertia tensor. If r measures the position
with respect to the center of mass, and r′ with respect to an arbitrary point, then

Iij =

∫
dm
[
r′

2

δij − r′ir
′
j

]
=

∫
dm
[
(r+∆)2δij − (ri +∆i)(rj +∆j)

]
=

∫
dm
[
(r2 + 2r ·∆+∆2)δij − (rirj + ri∆j + rj∆i +∆i∆j)

]
=

∫
dm(r2δij − rirj) + 2

[∫
dm r

]
·∆δij −

[∫
dmri

]
∆j −

[∫
dmrj

]
∆i

+

[∫
dm

]
∆2δij −

[∫
dm

]
∆i∆j = ICM

ij + 0 + 0 + 0 +M∆2δij −M∆i∆j

= ICM
ij +M

(
∆2δij −∆i∆j

)
where the integrals indicated equal zero because they are measuring the position of the center
of mass in the center of mass frame. This is the generalization of the “parallel axis theorem”
that you likely learned about in your first physics course.

(2) The kinetic energy for the bead is just what we derived in class for the double pendulum,
but with m2 = m and L1 = L2 = R, so

Tbead =
1

2
mR2ϕ̇2

1 +
1

2
mR2ϕ̇2

2 +mR2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2)

The kinetic energy of the hoop is Iϕ̇2
1/2 where I is the moment of inertia about an axis

perpendicular to the hoop’s plane and passing through a point on the hoop. However the
moment of inertia for a parallel axis passing through the center of the hoop is ICM = mR2.
If we let z measure the position perpendicular to the plane of the hoop, then we displace the
axis by a vector ∆ = Rx̂, for example, so

I = Izz = ICM
zz +mR2 = 2mR2

Therefore, the kinetic energy of the hoop is

Thoop =
1

2
Iϕ̇2

1 = mR2ϕ̇1

The potential energy of the hoop and bead is also the same as for the double pendulum,
since we concentrate the mass of the hoop at its center, so

Uhoop = mgR(1− cosϕ1) and Ubead = mgR(1− cosϕ1) +mgR(1− cosϕ2)

Gathering some terms, the Lagrangian becomes

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) =
3

2
mR2ϕ̇2

1 +
1

2
mR2ϕ̇2

2 +mR2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2)

−2mgR(1− cosϕ1)−mgR(1− cosϕ2)



Linearizing the Lagrangian for small angles, we get

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) =
3

2
mR2ϕ̇2

1 +
1

2
mR2ϕ̇2

2 +mR2ϕ̇1ϕ̇2 −mgRϕ2
1 −

1

2
mgRϕ2

2

The two Euler-Lagrange equations become

3mR2ϕ̈1 +mR2ϕ̈2 = −2mgRϕ1 and mR2ϕ̈2 +mR2ϕ̈1 = −mgRϕ2

Dividing through by mR2 and defining ω2
0 = g/L, we write these equations as[

3 1
1 1

] [
ϕ̈1

ϕ̈2

]
= −ω2

0

[
2ϕ1

ϕ2

]
= −

[
2ω2

0 0
0 ω2

0

] [
ϕ1

ϕ2

]
Using our nomenclature from class, this means that

M =

[
3 1
1 1

]
and K =

[
2ω2

0 0
0 ω2

0

]
We get the eigenfrequencies ω from∣∣K − ω2M

∣∣ =

∣∣∣∣ 2ω2
0 − 3ω2 −ω2

−ω2 ω2
0 − ω2

∣∣∣∣
= (2ω2

0 − 3ω2)(ω2
0 − ω2)− ω4

= 2ω4
0 − 5ω2

0ω
2 + 2ω4 = (2ω2

0 − ω2)(ω2
0 − 2ω2) = 0

Therefore, the eigenfrequencies and eigenmodes are

ω = ω0

√
2 so

[
−4ω2

0 −2ω2
0

−2ω2
0 −ω2

0

] [
a1
a2

]
=

[
0
0

]
and a2 = −2a1

and the bead oscillates out of phase and with twice the amplitude of the hoop; and

ω = ω0
1√
2

so

[
ω2
0/2 −ω2

0/2
−ω2

0/2 ω2
0/2

] [
a1
a2

]
=

[
0
0

]
and a2 = a1

and the bead oscillates in phase and with the same amplitude as the hoop.

(3) There are different ways to approach this. I tried to follow Taylor Sec 11.3, but I had
trouble using Mathematica to do the complex arithmetic. So, I used instead the form
with the ±ω solutions with their own (real) coefficients. That is

x1(t) = a1e
itω1 + a2e

itω2 + b1e
−itω1 + b2e

−itω2

x2(t) = a1e
itω1 − a2e

itω2 + b1e
−itω1 − b2e

−itω2

Changing to parameters given in the problem, we write

k2 = εk ω1 =

√
k

m
= Ω ω2 =

√
k + 2εk

m
= Ω

√
1 + 2ε τ = Ωt

(Note that our ε is not the same as the parameter ϵ in Taylor.) Inserting the initial conditions
x1(0) = a and x2(0) = ẋ1(0) = ẋ2(0) = 0 we solve for the coefficients and find

a1 = b1 = a2 = b2 =
a

4



The expressions we want to plot become

1

a
x1(t) =

cos(τ)

2
+

1

2
cos

(√
6

5
τ

)
and

1

a
x2(t) =

cos(τ)

2
− 1

2
cos

(√
6

5
τ

)

and the normal modes are

ξ1(t) = x1(t) + x2(t) = cos(τ) and ξ2(t) = x1(t)− x2(t) = cos

(√
6

5
τ

)

which are indeed single frequency. Their plots are
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Indeed, the plots of x1(t) and x2(t) look like Figure 11.8 in Taylor.

(4) The kinetic energy of N particles was derived in Section 7.8 in Taylor, namely

T =
∑
α

1

2
mαr

2
α =

1

2

∑
j,k

Mjkq̇j q̇k

where Mjk = Mij(q1, q2, . . . , qn) =
∑
α

mα

(
∂rα
∂qj

)
·
(
∂rα
∂qk

)
for n generalized coordinates. This is exactly as written in Taylor, except that I’m using the
notation Mij instead of Aij. We can write the potential energy function as a multi-variable
Taylor expansion as

U(q1, q2, . . . , qn) = U0 +
∑
i

∂U

∂qi
qi +

1

2

∑
j,k

∂2U

∂qj∂qk
qjqk + · · ·

where U0 is the constant energy at the equilibrium point, and which can be ignored when
we write the Lagrangian. Also, since we are evaluating at a local minimum, all of the first
derivatives will be zero. Furthermore, we could in principle expand the Mjk, but in this
case the lowest order is all that matters, so we consider Mjk a constant. The Lagrangian is
therefore

L(q, q̇) = 1

2

∑
j,k

[Mjkq̇j q̇k −Kjkqjqk] where Kjk ≡
∂2U

∂qj∂qk

and the Mjk and Kjk are understood to be constants, evaluated at the equilibrium point.

It is plain to see thatMjk =Mkj andKjk = Kkj. That is, these are both symmetric matrices.



The Euler-Lagrange equation for coordinate qi is

d

dt

∂L
∂q̇i

− ∂L
∂qi

=
1

2

∑
j,k

Mjk(δij q̈k + δikq̈j) +
1

2

∑
j,k

Kjk(δijqk + δikqj)

=
1

2

∑
k

Mikq̈k +
1

2

∑
j

Mjiq̈j +
1

2

∑
k

Kikqk +
1

2

∑
j

Kjiqj

=
1

2

∑
j

Mij q̈j +
1

2

∑
j

Mij q̈j +
1

2

∑
j

Kijqj +
1

2

∑
j

Kijqj

=
∑
j

Mij q̈j +
∑
j

Kijqj = 0

where the third line makes use of the symmetry of the matrices, and also uses the dummy
index switch k → j. Written in terms of matrices, this final equation becomes

M q̈ +K q = 0

(5) Let the beads be labeled m1 = 2m, m2 = m, and m3 = m, with ϕ1, ϕ2, and ϕ3 as the
angles that locate the masses round the hoop. The Lagrangian is therefore

L = mR2ϕ̇2
1 +

1

2
mR2ϕ̇2

2 +
1

2
R2ϕ̇2

3 −
1

2
kR2(ϕ2 − ϕ1)

2 − 1

2
kR2(ϕ3 − ϕ2)

2 − 1

2
kR2(ϕ1 − ϕ3)

2

The equations of motion are

2mR2ϕ̈1 = −kR2(ϕ2 − ϕ1)(−1)− kR2(ϕ1 − ϕ3) = −2kR2ϕ1 + kR2ϕ2 + kR2ϕ3

mR2ϕ̈2 = −kR2(ϕ2 − ϕ1)− kR2(ϕ3 − ϕ2)(−1) = kR2ϕ1 − 2kR2ϕ2 + kR2ϕ3

mR2ϕ̈3 = −kR2(ϕ3 − ϕ2)− kR2(ϕ1 − ϕ3)(−1) = kR2ϕ1 + kR2ϕ2 − 2kR2ϕ3

Dividing through by mR2 and defining ω2
0 = k/m, this is written as M ϕ̈ = −K ϕ where

M =

 2 0 0
0 1 0
0 0 1

 and K =

 2ω2
0 −ω2

0 −ω2
0

−ω2
0 2ω2

0 −ω2
0

−ω2
0 −ω2

0 2ω2
0


Use Mathematica to find the determinant as∣∣K − ω2M

∣∣ = 2ω2
(
ω2 − 3ω2

0

) (
ω2 − 2ω2

0

)
= 0

so the eigenfrequencies are ω2
1 = 0, ω2

2 = 3ω2
0, and ω

2
3 = 2ω2

0.

For ω2 = 0, we find (using the Mathematica notebook)

1

ω2
0

(K − ω2M)a =

 2 −1 −1
−1 2 −1
−1 −1 2

 a1
a2
a3

 =

 0
0
0


Each of the three equations says that one of the a is equal to the sum of the other two, that
is a1 = a2 = a3. In other words, the mode with zero frequency just means that the beads
move around the hoop in unison. This makes perfect sense.



For ω2 = 3ω2
0, we find (using the Mathematica notebook)

1

ω2
0

(K − ω2M)a =

 −4 −1 −1
−1 −1 −1
−1 −1 −1

 a1
a2
a3

 =

 0
0
0


Subtracting the first equation from the second gives 4a1 = 0, that is a1 = 0 and the first
(2m) mass does not move. The second or third equations give a2 = −a3. In other words,
the heavy mass stays put and the two lighter masses on either side opposite with the same
amplitudes and 180◦ out of phase with each other.

For ω2 = 2ω2
0, we find (using the Mathematica notebook)

1

ω2
0

(K − ω2M)a =

 −2 −1 −1
−1 0 −1
−1 −1 0

 a1
a2
a3

 =

 0
0
0


The third equation says a2 = −a1 and the second equation says a3 = −a1. In other words,
all three masses oscillate with the same amplitude, but the heavy mass oscillates 180◦ out
of phase with the light ones.



PHYS3101 Analytical Mechanics Homework #9 Due 31 Oct 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) We solved in class the problem of the double pendulum. (See also Taylor Section 11.4.)
Specialize to the case of equal masses and equal lengths. Use this solution to write the
(two-dimensional) vector ϕ(t) as a sum over the normal mode vectors with coefficients ξi(t).
Turn this around to determine the ξi(t) in terms of ϕ1(t) and ϕ2(t), and then show that the
ξi(t) oscillate with the eigenfrequencies ωi by deriving the differential equations for the ξi(t)
from those for ϕ1(t) and ϕ2(t).

(2) A mass m moves in one horizontal direction x on a frictionless track. The mass is
connected to a spring with stiffness k, which is itself attached to a fixed wall. (So far, this is
a very familiar, simple problem.) Now assume that the spring is not massless, but has a total
mass µ, uniformly distributed along its length, even as it stretches. Find the Hamiltonian
H(x, p) and solve Hamilton’s equations to find the oscillation frequency ω in terms of m, µ,
and k. (Remember that the spring is continuous and a small piece of it that is close to the
wall is moving more slowly than a small piece that is closer to the mass.)

(3) A bead of mass m moves without friction along a curved wire that lies entirely in the
vertical plane. The shape of the wire is given by the function y = h(x). Find the Hamiltonian
H(x, p) and show that Hamilton’s equations give the result is the same as Newton’s Second
Law in terms of a position variable s that measures distance along the wire. (My apologies
for the somewhat messy algebra and calculus.)

(4) In class, we used the Lagrangian approach to solve the problem of a bead of mass m
constrained to a circular wire hoop of radius R which itself rotated about a vertical axis
with angular velocity ω. (See also Taylor Example. 7.6, with Figure 7.9.) Construct the
Hamiltonian H(θ, pθ) and comment on what is peculiar about it. Then show that Hamilton’s
equations lead to the same differential equation for θ̈, namely Taylor (7.69).

(5) In class, we showed that the “potential energy” term in a Lagrangian for a particle with
charge q moving in a region of magnetic field B = ∇×A is given by qṙ ·A. (See also Taylor
Section 7.9. I will stick with SI units here for the electromagnetic quantities.) Use this to
find the Hamiltonian H(r,p) for a particle with charge q and mass m in a magnetic field B
and an electric field E = −∇V , and show that Hamilton’s equations reduce to the Lorentz
force law, namely F = qE+ qv ×B, where v is the velocity vector of the mass.
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(1) The normal modes for the double pendulum are given by

ω2
1 = (2−

√
2)ω2

0 with a1 =

[
1√
2

]
and ω2

2 = (2 +
√
2)ω2

0 with a2 =

[
1

−
√
2

]
Therefore, the expansion in terms of normal modes is

ϕ(t) =

[
ϕ1(t)
ϕ2(t)

]
=

2∑
i=1

ξi(t)ai =

[
ξ1(t) + ξ2(t)√
2ξ1(t)−

√
2ξ2(t)

]
This is easily solved for ξ1(t) and ξ2(t), namely

ξ1(t) =
1

2
√
2

[√
2ϕ1(t) + ϕ2(t)

]
ξ2(t) =

1

2
√
2

[√
2ϕ1(t)− ϕ2(t)

]
The equations of motion for ϕ1(t) and ϕ2(t) are given by Taylor (11.41) and (11.42). For
equal masses m and equal lengths L, and defining ω2

0 = g/L, these become

2ϕ̈1 + ϕ̈2 = −2ω2
0ϕ1

ϕ̈1 + ϕ̈2 = −ω2
0ϕ2

which is equivalent to (11.43) with (11.45). Solving for ϕ̈1 and ϕ̈2 we get

ϕ̈1 = −2ω2
0ϕ1 + ω2

0ϕ2

ϕ̈2 = +2ω2
0ϕ1 − 2ω2

0ϕ2

This makes it straightforward to determine the differential equations for ξ1(t) and ξ2(t).

ξ̈1(t) =
1

2
√
2

[√
2ϕ̈1(t) + ϕ̈2(t)

]
=

1

2
√
2

[√
2(−2ω2

0ϕ1 + ω2
0ϕ2) + (2ω2

0ϕ1 − 2ω2
0ϕ2)

]
=

ω2
0

2
√
2

[
(−2

√
2 + 2)ϕ1 + (

√
2− 2)ϕ2

]
=

ω2
0

2
√
2

[
(−2 +

√
2)
√
2ϕ1 + (

√
2− 2)ϕ2

]
= −(2−

√
2)ω2

0

1

2
√
2

[√
2ϕ1 + ϕ2

]
= −ω2

1ξ1(t)

ξ̈2(t) =
1

2
√
2

[√
2ϕ̈1(t)− ϕ̈2(t)

]
=

1

2
√
2

[√
2(−2ω2

0ϕ1 + ω2
0ϕ2)− (2ω2

0ϕ1 − 2ω2
0ϕ2)

]
=

ω2
0

2
√
2

[
(−2

√
2− 2)ϕ1 + (

√
2 + 2)ϕ2

]
=

ω2
0

2
√
2

[
(−2−

√
2)
√
2ϕ1 + (

√
2 + 2)ϕ2

]
= −(2 +

√
2)ω2

0

1

2
√
2

[√
2ϕ1 − ϕ2

]
= −ω2

2ξ2(t)

The differential equations for ξ1(t) and ξ2(t) demonstrate that these coordinates in fact
oscillate solely with their eigenfrequencies.



(2) Calculating the kinetic energy of the spring takes some thought and a little calculus. If
the spring has length ℓ, and we let z measure position along the spring, then the speed of
small piece of length dz would be ż = (z/ℓ)ẋ where x(t) is the position of the end of the
spring attached to the mass. Therefore, the kinetic energy of the spring is

Tspring =

∫ ℓ

0

1

2

µ

ℓ
dz ż2 =

1

2

µ

ℓ3

[∫ ℓ

0

z2 dz

]
ẋ2 =

1

6
µẋ2

The Lagrangian is therefore

L(x, ẋ) = 1

2
mẋ2 +

1

6
µ

(
ẋ

2

)2

− 1

2
kx2 =

1

2

(
m+

1

3
µ

)
ẋ2 − 1

2
kx2

The conjugate momentum is

p =
∂L
∂ẋ

=

(
m+

1

3
µ

)
ẋ so ẋ =

p

m+ µ/3

The Hamiltonian is therefore

H(x, p) = pẋ− L =
p2

m+ µ/3
− 1

2

p2

m+ µ/3
+

1

2
kx2 =

1

2

3p2

3m+ µ
+

1

2
kx2

Hamilton’s equations give

ẋ =
∂H
∂p

=
3p

3m+ µ
and ṗ = −∂H

∂x
= −kx

Therefore

3m+ µ

3
ẍ = −kx so ẍ = −ω2x where ω2 =

3k

3m+ µ

This agrees with the statement of problem 13.6 in Taylor.

(3) The potential energy is simply U = mgh(x). The kinetic energy is

T =
1

2
mẋ2 +

1

2
mẏ2 =

1

2
mẋ2 +

1

2
m [h′(x)]

2
ẋ2 =

1

2
m
[
1 + h′

2

(x)
]
ẋ2

We might as well just realize that the Hamiltonian is the energy for this problem, so

p =
∂L
∂ẋ

= m
[
1 + h′

2

(x)
]
ẋ so H(x, p) =

p2

2m

1

1 + h′2(x)
+mgh(x)

Hamilton’s equations therefore give

ẋ =
∂H
∂p

=
p

m

1

1 + h′2(x)
and ṗ = −∂H

∂x
=
p2

m

h′h′′

[1 + h′2 ]
2 −mgh′(x)

We are going to want to compare this to “F = ms̈” at some point, so let’s eliminate
momentum from the equations. The first equation gives us

ṗ = mẍ(1 + h′
2

) + 2mẋ2h′h′′



Inserting the first of Hamilton’s equations into the second, we get

ṗ = mẋ2h′h′′ −mgh′

so Hamilton’s equations are reduced to the second order differential equation

ẍ(1 + h′
2

) + ẋ2h′h′′ = −gh′

Now to write all this in terms of Newton’s second law, we need to know the force Fs in the
s direction, so

Fs = −dU
ds

= −dU
dy

dy

ds
= −mg dy√

dx2 + dy2
= −mg dy/dx√

1 + (dy/dx)2
= −mg h′√

1 + h′2

Therefore

ms̈ = m
d

dt

ds

dt
= Fs = −mg h′√

1 + h′2

d

dt

√
ẋ2 + ẏ2 =

d

dt

√
ẋ2(1 + h′2) = −g h′√

1 + h′2

1

2

2ẋẍ(1 + h′
2
) + 2ẋ3h′h′′√

ẋ2(1 + h′2)
= −g h′√

1 + h′2

or, finally, ẍ(1 + h′
2

) + ẋ2h′h′′ = −gh′

which is the same result that we had with Hamilton’s equations.

(4) We can start with the Lagrangian given in Taylor (7.68), namely

L(θ, θ̇) = 1

2
mR2θ̇2 +

1

2
mR2ω2 sin2 θ −mgR(1− cos θ)

The momentum conjugate to θ is

pθ =
∂L
∂θ̇

= mR2θ̇

so the Hamiltonian is

H(θ, pθ) = pθθ̇ − L =
p2θ
mR2

− 1

2

p2θ
mR2

− 1

2
mR2ω2 sin2 θ +mgR(1− cos θ)

=
1

2

p2θ
mR2

− 1

2
mR2ω2 sin2 θ +mgR(1− cos θ)

Notice that this is a case where the Hamiltonian is not equal to the total energy. (There is
energy put in and taken out over time in order to keep the hoop spinning at a constant ω.)
Now

θ̇ =
∂H

∂pθ
=

pθ
mR2

so ṗθ = θ̈mR2

However, we also have

ṗθ = −∂H
∂θ

= mR2ω2 sin θ cos θ −mgR sin θ



Equating these two expressions for ṗθ and dividing through by mR2, we get

θ̈ = sin θ
(
ω2 cos θ − g

R

)
which is the same as Taylor (7.69).

(5) The Lagrangian is given by Taylor (7.103), namely

L(r, ṙ) =
1

2
mṙ2 − qV (r) + qṙ ·A(r)

=
1

2
mṙiṙi − qV (r) + qṙiAi(r)

where the sum over i is, of course, implied. The conjugate momenta are therefore

pi =
∂L
∂ṙi

= mṙi + qAi so ṙ =
1

m
(p− qA)

The Hamiltonian is

H(r,p) = p · ṙ− L

=
1

m
p · (p− qA)− 1

2m
(p− qA)2 + qV (r)− q

m
(p− qA) ·A

=
1

m
(p− qA) · (p− qA)− 1

2m
(p− qA)2 + qV

=
1

2m
(p− qA)2 + qV =

1

2m
(pj − qAj) (pj − qAj) + qV

Hamilton’s equation for the time derivative of the ith coordinate is

ṙi =
∂H
∂pi

=
1

m
(pi − qAi) so ṗi = mr̈i + q

∂Ai

∂rj
ṙj

where the sum over j is, of course, implied. The other of Hamilton’s equations is

ṗi = −∂H
∂ri

= − 1

m
(pj − qAj)

(
−q∂Aj

∂ri

)
− q

∂V

∂ri
= ṙj q

∂Aj

∂ri
− q

∂V

∂ri

Equating the two expressions for ṗi gives

mr̈i = −q∂V
∂ri

+ q

(
ṙj
∂Aj

∂ri
− ∂Ai

∂rj
ṙj

)
The left side is just the ith component ofmr̈. The first term on the right is the ith component
of −q∇V = qE. For the term in parenthesis, write out the sums to get

ṙj
∂Aj

∂ri
− ∂Ai

∂rj
ṙj = ẋ

∂Ax

∂ri
+ ẏ

∂Ay

∂ri
+ ż

∂Az

∂ri
− ẋ

∂Ai

∂x
− ẏ

∂Ai

∂y
− ż

∂Ai

∂z

= ẋ

(
∂Ax

∂ri
− ∂Ai

∂x

)
+ ẏ

(
∂Ay

∂ri
− ∂Ai

∂y

)
+ ż

(
∂Az

∂ri
− ∂Ai

∂z

)



I’d like to find a slicker way to continue from here, but it’s not coming to me. So, just
consider i = x. In this case, we have

mẍ = qEx + q

[
ẋ

(
∂Ax

∂x
− ∂Ax

∂x

)
+ ẏ

(
∂Ay

∂x
− ∂Ax

∂y

)
+ ż

(
∂Az

∂x
− ∂Ax

∂z

)]
= qEx + q

[
ẏ

(
∂Ay

∂x
− ∂Ax

∂y

)
+ ż

(
∂Az

∂x
− ∂Ax

∂z

)]
= qEx + q

[
ẏ (∇×A)z − ż (∇×A)y

]
= qEx + q [ẏBz − żBy]

= qEx + q(ṙ×B)x

The other components will work out the same way, so this proves that Hamilton’s equations
are the same as the Lorentz force law.



PHYS3101 Analytical Mechanics Homework #10 Due 7 Nov 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Consider any two functions of generalized coordinates and momenta f(q, p) and g(q, p).
Show each of the following for the Poisson Bracket, which is defined as

[f, g] ≡
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(a) [g, f ] = −[f, g]

(b) [qi, qj] = 0 = [pi, pj] but [qi, pj] = δij
(c) q̇i = [qi,H] and ṗi = [pi,H]

If you’ve studied some Quantum Mechanics, does any of this look familiar to you?

(2) Write down the Hamiltonian for a simple plane pendulum of length ℓ with a bob of mass
m. Use ϕ for the angle of the bob measured with respect to the vertical, as usual with ϕ = 0
for the mass at its lowest point, and define ω2 = g/ℓ.

(a) Find Hamilton’s equations for ϕ and its conjugate momentum p. These equations
become particularly simple of you write them in terms of dimensionless p̃ = p/mℓ2ω.

(b) Plot ϕ(t), p(t), and also the orbit (p versus ϕ) for the three sets of initial conditions
(i) ϕ(0) = 0.1 and p(0) = 0; (ii) ϕ(0) = 0.99π and p(0) = 0; and (iii) ϕ(0) = 0.99π and
p(0) = −0.05. Briefly explain the motion these each describe.

(3) A beam of particles is moving along an accelerator pipe in the z-direction. The particles
are uniformly distributed in a cylindrical volume of length L0 (in the z-direction) and radius
R0. The particles have momenta uniformly distributed with pz in an interval p0 ± ∆p and
the transverse momentum p⊥ inside a circle of radius ∆p⊥. To increase the particles’ spatial
density, the beam is focused by electric and magnetic fields, so that the radius shrinks to a
smaller value R. What does Liouville’s theorem tell you about the spread in the transverse
momentum p⊥ and the subsequent behavior of the radius R? (Assume that the focusing does
not affect either L0 or ∆pz.) Google “stochastic cooling” to learn why this is important.

(4) Suppose that you believe that antiprotons p̄ exist, and you want to build an accelerator
that would be able to produce them using the reaction p + p → p + p + p + p̄ where an
incident beam proton of kinetic energy T is incident on a stationary target proton. What is
the minimum amount of energy you need to produce antiprotons in this reaction? Can you
find the name and location of the accelerator that was built to carry out this experiment?

(5) A particle of mass m has initial kinetic energy T ≫ mc2 and scatters from a stationary,
identical particle. If the scattering is at 90◦ in the center of mass frame, find the outgoing
opening angle between the two particles in the laboratory frame. You can work this out
easily enough just by using conservation of energy and momentum, but a slick solution is to
equate two inner products in the lab and CM frames. Be careful of how you use T ≫ mc2.



PHYS3101 Analytical Mechanics Homework #10 Solutions

(1) The first part is trivial, that is

[g, f ] =
∑
i

(
∂g

∂qi

∂f

∂pi
− ∂g

∂pi

∂f

∂qi

)
= −

∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
= −[f, g]

The second part is also simple. Just insert the appropriate quantities, and remember that
the qi and pi are the independent variables. Also be careful to change the summation index.

[qi, qj] =
∑
k

(
∂qi
∂qk

∂qj
∂pk

− ∂qi
∂pk

∂qj
∂qk

)
=
∑
k

(δik 0− 0 δjk) = 0

[pi, pj] =
∑
k

(
∂pi
∂qk

∂pj
∂pk

− ∂pi
∂pk

∂pj
∂qk

)
=
∑
k

(0 δjk − δik 0) = 0

[qi, pj] =
∑
k

(
∂qi
∂qk

∂pj
∂pk

− ∂qi
∂pk

∂pj
∂qk

)
=
∑
k

(δikδjk − 0 0) = δij

The third part is similar, but you now invoke Hamilton’s equations.

[qi,H] =
∑
j

(
∂qi
∂qj

∂H
∂pj

− ∂qi
∂pj

∂H
∂qj

)
=
∑
j

(
δij
∂H
∂pj

− 0
∂H
∂qj

)
=
∂H
∂pi

= q̇i

[pi,H] =
∑
j

(
∂pi
∂qj

∂H
∂pj

− ∂pi
∂pj

∂H
∂qj

)
=
∑
j

(
0
∂H
∂pj

− δij
∂H
∂qj

)
= −∂H

∂qi
= ṗi

In quantum mechanics, you have very similar relationships for operators A and B that
correspond to observables with the “commutator” [A,B]. In fact, you can show that the
limit as ℏ → 0 of [A,B]/(iℏ) is the Poisson bracket. This is a nice way to show how classical
physics follows from quantum mechanics in this limit.

(2) Going through the steps from the Lagrangian, we have

L(ϕ, ϕ̇) =
1

2
mℓ2ϕ̇2 −mgℓ(1− cosϕ)

p =
∂L
∂ϕ̇

= mℓ2ϕ̇ so ϕ̇ =
p

mℓ2

H(ϕ, p) = pϕ̇− L =
p2

mℓ2
− 1

2
mℓ2

( p

mℓ2

)2
+mgℓ(1− cosϕ)

=
p2

2mℓ2
+mgℓ(1− cosϕ)

Therefore, Hamilton’s equations are

ϕ̇ =
∂H
∂p

=
p

mℓ2
and ṗ = −∂H

∂ϕ
= −mgℓ sinϕ

Written in terms of dimensionless p̃ = p/mℓ2ω, these become

ϕ̇ = ωp̃ and ˙̃p = −ω sinϕ



so solving the equations numerically as a function of τ = ωt is straightforward. See the
accompanying Mathematica notebook. The plots are

5 10 15 20 25 30

-0.10

-0.05

0.05

0.10

-0.10 -0.05 0.05 0.10

-0.10

-0.05

0.05

0.10

5 10 15 20 25 30

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-2

-1

1

2

5 10 15 20 25 30

-15

-10

-5

-15 -10 -5

-2.0
-1.5
-1.0

The first set looks like a simple harmonic oscillator, since the angle never gets very large.
The second is distorted because the angle does get large, so the equation is very nonlinear,
but it is still closed. The third starts out a big angle with a negative kick, so the pendulum
just keeps swinging around.

(3) With the lengths in z for the positions and for the momenta both fixed, the phase space
volume must be proportional to R2∆p2⊥. This volume must remain fixed, so as R decreases,
∆p⊥ must increase, and this will lead to a “beam blowup” after R reaches some minimum
value. This effect needed to be overcome in order to discover the W± and Z0 bosons in
p]barp collisions at CERN, leading to the Nobel Prize-winning invention of stochastic cooling
to dramatically reduce ∆p⊥ in the antiproton beam.



(4) You need to create enough energy so that you can make a pp̄ pair and give them the
necessary kinetic energy so that momentum is also conserved. This is an easy calculation
in the center of mass frame where you only need the energy 2mc2 (where m is the mass
of the proton or antiproton) plus the mass of the two initial protons, because the total
momentum is zero. Therefore, we use four-momentum conservation and the invariance of
the four-momentum squared to write

(p1 + p2)
2
CM = (E1 + E2)

2
CM − (p1 + p2)

2
CM c

2 = (E1 + E2)
2
CM = (4mc2)2

(p1 + p2)
2
Lab = (E +mc2)2 − p2c2 = (E +mc2)2 − (E2 −m2c4) = 2E(mc2) + 2(mc2)2

(p1 + p2)
2
Lab = (p1 + p2)

2
CM so

2E + 2mc2 = 2T + 4mc2 = 16mc2 and

T = 6mc2 = 6× (0.9383 GeV) = 5.63 GeV

The accelerator was the Bevatron at Lawrence Berkeley Laboratory:
https://en.wikipedia.org/wiki/Bevatron

(5) For the slick solution, write (p · p′)Lab = (p · p′)CM and (p · p0)Lab = (p · p0)CM where p,
p′, and p0 are the incident, scattered, and target particle four momenta, respectively. Then

(p · p′)Lab = E
E

2
− E

E

2
cos θ = (p · p′)CM =

(
ECM

2

)2

where for θCM = 90◦ we know that each of the outgoing particles has the same energy and
momentum. Now (p · p0)CM = 2(ECM/2)

2 and (p · p0)Lab = Emc2, so we have

1

2
Emc2 =

E2

2
(1− cos θ) ≈ E2

2

θ2

2
giving θ =

(
2mc2

E

)1/2

The straightforward approach is to just use conservation of energy and momentum. Let E ′,
p′, and pL refer to the total energy, momentum, and longitudinal momentum of each of the
two outgoing particles. Then, being careful with T ≫ mc2,

E ′ =
1

2
(E +mc2) so E ′2 =

1

4

(
E2 + 2mc2E +m2c4

)
p′ =

(
E ′2

c2
−m2c2

)1/2

=

(
E2

4c2
+
mE

2
+
m2c2

4
−m2c2

)1/2

=
E

2c

(
1 +

2mc2

E
− 3m2c4

E2

)1/2

≈ E

2c

(
1 +

mc2

E
− 3m2c4

2E2

)
≈ E

2c

(
1 +

mc2

E

)
pL =

1

2
p =

1

2

(
E2

c2
−m2c2

)1/2

=
E

2c

(
1− m2c4

E2

)1/2

≈ E

2c

cos θ =
pL
p′

=

(
1 +

mc2

E

)−1

≈ 1− mc2

E
≈ 1− 1

2
θ2

Therefore, neglecting terms of order m2/E2, the (small) scattering angle is

θ =

(
2mc2

E

)1/2



PHYS3101 Analytical Mechanics Homework #11 Due 14 Nov 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) The MOLLER experiment at Jefferson Lab will measure elastic electron-electron, i.e.
Møller, scattering with an electron beam impinging on a 125 cm long liquid hydrogen target.
What is the target density of electrons in units of cm−2 ? If the Møller scattering cross
section is 60 µbarn, find the scattering rate if the beam current is 65 µA? (You will need to
look up the density of liquid hydrogen.)

(2) The differential cross section for scattering 6.5-MeV α particles at 120◦ off a silver nucleus
is about 0.5 barns/sr. If a total of 1010 α particles impinge on a silver foil of thickness 1 µm
and if we detect the scattered particles using a counter of area 0.1 mm2 at 120◦ and 1 cm
from the target, about how many scattered α particles should we expect to count? Silver
has a density of 10.5 g/cm3, and atomic mass of 108.

(3) Our definition of the scattering cross section, Nsc = Nincntarσ applies to an experiment
using a narrow beam of projectiles all of which pass through a wide target assembly. Ex-
perimenters sometimes use a wide incident beam, which completely engulfs a small target
assembly. Show that in this case Nsc = nincNtarσ where ninc is the density (number/area)
of the incident beam, viewed head-on, and Ntar is the total number of targets in the target
assembly.

(4) A particle of mass m1 and total energy E = T +m1c
2 scatters by an angle θLab from a

stationary particle of mass m2. Use relativistic kinematics to derive an expression between
the scattering angle θCM in the center-of-momentum, and θlab. In the case where the incident
particle is non-relativistic (T ≪ m1c

2) show that

tan θLab =
sin θCM

λ+ cos θCM

where λ ≡ m1

m2

This problem is more difficult than I thought. I can see my way through to a solution, but it is
an arduous path and I don’t think it is particularly enlightening. It’s not so difficult, though, if
you start with the assumption that the motion is non-relativistic, but this is essentially done in
Taylor Section 14.8, which I didn’t cover in class. So, let’s skip this problem and this week you
get a break, only four homework problems instead of five.

(5) Consider the non-relativistic scattering of two particles of equal mass. First, using the
result of the previous problem, show that θLab = θCM/2. Then prove that(

dσ

dΩ

)
Lab

= 4 cos θLab

(
dσ

dΩ

)
CM

Now, given that in the CM frame, the differential cross section is R2/4 where R = R1 + R2

where R1 and R2 are the radii of the two masses, integrate over all directions to verify that
the total cross section in the lab frame is πR2, as it has to be.



PHYS3101 Analytical Mechanics Homework #11 Solutions

(1) The density of liquid hydrogen is 70.85 g/L = 7.1 × 10−2 g/cm3. There is one electron
per hydrogen atom, so the target density is

ntar =
ρt

m
=

7.1× 10−2 g/cm3 × 125 cm

1u× 1.66× 10−24 g/u
= 5.3× 1024/cm2

We want the rate, so using the notation we used in class, we write

Rsc =
Nsc

T
=
Ninc

T
ntarσ =

I

e
ntarσ

=
65× 10−6 C/s

1.6× 10−19 C
× 5.3× 1024/cm2 × 60× 10−6 × 10−24 cm2

= 1.30× 1011/s = 130 GHz

The MOLLER TDR gives 134 GHz, so this is good.

(2) This just uses are formula for scattered particles, namely

dNsc = Nincntarσ = Ninc
ρt

m
dσ = Ninc

ρt

m

dσ

dΩ
dΩ = Ninc

ρt

m

dσ

dΩ

dA

r2

= 1010 × 10.5 g/cm3 × 10−4 cm

108u× 1.66× 10−24 g/u
× 0.5× 10−24 cm2 × 10−3 cm2

(1 cm)2

= 29

This agrees with the solution manual.

(3) This is pretty simple. To derive Nsc = Nincntarσ, we used a beam of area Abeam imbedded
in a target having Ntar scattering centers spread over an area Atar > Abeam. Therefore the
number of scattering centers in the beam is (Ntar/Atar)Abeam and the total “scattering area”
in the beam envelope is this times σ. The probability of scattering is the fraction of this
scattering area over the beam envelope, so

Nsc = Ninc
1

Abeam

[
Ntar

Atar

Abeamσ

]
= Nincntarσ

where ntar = Ntar/Atar is the target density. Now if the situation is reversed and Atar < Abeam,
then the number of scattering centers is the total Ntar in the target. However, the fraction
of the beam particles that can hit targets, in principle, is the fraction Ninc(Atar/Abeam). The
total scattering area is just Ntarσ and the probability of scattering is this area divided by
Atar, so the number of scattered particles is

Nsc = Ninc
Atar

Abeam

Ntarσ

Atar

= nincNtarσ

where ninc = Nbeam/Abeam is the beam density.



(4) I think you can do this problem by writing out the three different invariant dot products
for the beam particle, the target particle, and the scattered beam particle. It looks like you
get enough equations to solve for the relationship between the two angles, but it involves
lots of messy square roots.



(5) For equal mass particles, the previous problem says

tan θLab =
sin θCM

1 + cos θCM

=
2 sin θCM/2 cos θCM/2

1 + cos2 θCM/2− sin2 θCM/2
=

2 sin θCM/2 cos θCM/2

2 cos2 θCM/2
= tan

θCM

2

Therefore θLab = θCM/2. Now the number of scattered events will be proportional to dσ,
regardless of whether or not we are in the CM or lab frame, so(

dσ

dΩ

)
Lab

dΩLab =

(
dσ

dΩ

)
CM

dΩCM

Since dΩ = sin θ dθ dϕ, and ϕ is the same in the CM and lab, we get(
dσ

dΩ

)
Lab

=

(
dσ

dΩ

)
CM

∣∣∣∣ sin θCM dθCM

sin θLab dθLab

∣∣∣∣ = ( dσdΩ
)

CM

∣∣∣∣d (cos θCM)

d (cos θLab)

∣∣∣∣
This is equation (14.45) in Taylor. Now it’s easy to evaluate

d (cos θCM)

d (cos θLab)
=

sin θCM

sin θLab

dθCM

dθLab
=

sin 2θLab
sin θLab

d(2θLab)

dθLab
=

2 sin θLab cos θLab
sin θLab

2 = 4 cos θLab

Therefore we arrive at (
dσ

dΩ

)
Lab

= 4 cos θLab

(
dσ

dΩ

)
CM

= R2 cos θLab

Now for 0 ≤ θCM ≤ π, we have 0 ≤ θLab ≤ π/2. The total cross section in the lab is therefore

σLab =

∫
dΩ

(
dσ

dΩ

)
Lab

= 2π

∫ π/2

0

sin θLabdθLabR
2 cos θLab

= πR2

∫ π/2

0

sin 2θLab dθLab =

[
−1

2
πR2 cos 2θLab

]π/2
0

= πR2



PHYS3101 Analytical Mechanics Homework #12 Due 28 Nov 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A taut string has a fixed end at x = −a and extends infinitely to positive x. The string
is initially at rest and has the shape of an isosceles triangular pulse centered on x = 0 and
extending over −a/5 ≤ x ≤ a/5. Find the equation for the shape of the string at all times,
and plot it for t = 0, t = 0.5a/c, t = a/c, and t = 1.5a/c where c is the speed of the wave on
a string. If you prefer, you can create an animation. (Note that in Mathematica, you can
easily define this kind of function using HeavisideLambda.)

(2) In class we derived expressions for the kinetic and potential energies of a taut string as
integrals over the length of the string. Using what you have previously learned for normal
modes of the shape u(x, t) of a stretched string of length L fixed to u = 0 at x = 0 and
x = L, see Concepts (5.12), write the total energy of the string as a single sum over the
normal modes and show that it is a constant in time.

(3) The wave equation in three spatial dimensions is

∇2f − 1

c2
∂2f

∂t2
= 0

If f(r, t) = f(r, t) where r is the usual spherical polar coordinate, show that

f(r, t) =
A

r
ei(kr−ωt)

solves the wave equation, where A is a constant and ω = ck.

(4) The equation of motion for an inviscid fluid of density ρ(r, t) in a gravitational field g is

ρ
dv

dt
= ρg −∇p

where v(r, t) is the velocity field and p(r, t) is the pressure field. Use this to show the familiar
result from your first physics course that the difference in pressure between two points in a
static and incompressible fluid separated by a vertical distance h is ∆p = ρgh.

(5) Find the speed of sound in air, using the following steps, and compare with the accepted
value of 331 m/s at 0◦C. First show that the bulk modulus of air is γp, where p is pressure
and γ ≡ Cp/CV = 1.4 is the ratio of specific heats for an ideal gas. You can assume that the
adiabatic expansion and compression in air, as a sound wave passes, follows pV γ = constant,
where V is the volume. Then use the ideal gas law pV = NkT to express density of N air
molecules with mass m in terms of p, m, and T . Finally, combine these two results using the
formalism we developed in class. Repeat the calculation for helium gas instead of nitrogen,
and explain why your voice sounds high pitched if you first breath in some helium before
speaking.



PHYS3101 Analytical Mechanics Homework #12 Solutions

(1) See the accompanying Mathematica notebook. If h(x) be the initial shape, then

f(x, t) =
1

2
h(x− ct) +

1

2
h(x+ ct)

satisfies the initial conditions f(x, 0) = h(x) and ḟ(x, 0) = 0. As for the boundary condition
at x = −a, the first term in f(x, t) is a rightward moving so never encounters the left side
of the string. We use a rightward moving virtual pulse to cancel the second term, so the full
solution is

u(x, t) = f(x, t)− 1

2
h(x+ 2a− ct) =

1

2
h(x− ct) +

1

2
h(x+ ct)− 1

2
h(x+ 2a− ct)

It is easy to see that the second and third terms cancel at x = −a. Define y ≡ x+ a so that
y = 0 at the left end. Then

1

2
h(x+ ct)− 1

2
h(x+2a− ct) =

1

2
h(y− a+ ct)− 1

2
h(y+ a− ct) =

1

2
h(−a+ ct)− 1

2
h(+a− ct)

at y = 0. But the function h(x) is even, that is h(−x) = h(x), so the final sum above is zero.

The plots below show the shape of the string at the four given times, plotted versus ξ = x/a:
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The pulse splits in half, one part moving left and the other moving right. The leftward
moving pulse reflects and reverses sign at the endpoint, and then both pieces move to the
right forever. See the Mathematica notebook for the animation.

(2) The expressions we derived in class for the kinetic and potential energies are

K =
1

2
µ

∫ L

0

(
∂u

∂t

)2

dx and U =
1

2
T

∫ L

0

(
∂u

∂x

)2

dx

where µ is the linear mass density of the string, T is the tension in the string, and c =
√
T/µ

is the speed of waves on the string. We know that the normal mode solutions are a Fourier
sine series, namely

u(x, t) =
∞∑
n=1

Bn sin
(nπx
L

)
cos

(
nπct

L

)
We need to insert this into our expressions for K and U . Since the sums are squared, we need
to write each of them using different indices, but we expect the integral over x to collapse



the two sums to one because the sine and cosine functions are orthogonal. We have

K =
1

2
µ

∫ L

0

[
−

∞∑
n=1

Bn

(nπc
L

)
sin
(nπx
L

)
sin

(
nπct

L

)]

×

[
−

∞∑
m=1

Bm

(mπc
L

)
sin
(mπx

L

)
sin

(
mπct

L

)]
dx

=
1

2
µ

∞∑
n=1

∞∑
m=1

BnBm

(nπc
L

)(mπc
L

)
sin

(
nπct

L

)
sin

(
mπct

L

)
×
∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx

=
1

2
µ

∞∑
n=1

∞∑
m=1

BnBm

(nπc
L

)(mπc
L

)
sin

(
nπct

L

)
sin

(
mπct

L

)
L

2
δnm

=
1

4
µL

∞∑
n=1

B2
n

(nπc
L

)2
sin2

(
nπct

L

)

and U =
1

2
T

∫ L

0

[
∞∑
n=1

Bn

(nπ
L

)
cos
(nπx
L

)
cos

(
nπct

L

)]

×

[
∞∑

m=1

Bm

(mπ
L

)
cos
(mπx

L

)
cos

(
mπct

L

)]
dx

=
1

2
T

∞∑
n=1

∞∑
m=1

BnBm

(nπ
L

)(mπ
L

)
cos

(
nπct

L

)
cos

(
mπct

L

)
×
∫ L

0

cos
(nπx
L

)
cos
(mπx

L

)
dx

=
1

2
T

∞∑
n=1

∞∑
m=1

BnBm

(nπ
L

)(mπ
L

)
cos

(
nπct

L

)
cos

(
mπct

L

)
L

2
δnm

=
1

4
TL

∞∑
n=1

B2
n

(nπ
L

)2
cos2

(
nπct

L

)
Therefore, writing T = c2µ, the total energy is

E = T + U =
1

4
µc2L

∞∑
n=1

B2
n

(nπ
L

)2 [
sin2

(
nπct

L

)
+ cos2

(
nπct

L

)]
=

1

4
µc2L

∞∑
n=1

B2
n

(nπ
L

)2
which is indeed constant in time. It is worth checking that this result is dimensionally
correct. The Bn have units of length, so the quantity in the sum is dimensionless, but µL
has dimensions of mass, so the factor out front has dimensions of mass times velocity2 which
is energy.



(3) It is easiest to work this out using the Laplacian in spherical coordinates. That is, using
(4.26c) in Concepts, but start with a rearrangement of the radial derivatives, namely

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
=

1

r

(
2
∂f

∂r
+ r

∂2f

∂r2

)
=

1

r

∂2

∂r2
(rf) =

A

r
(−k2)ei(kr−ωt)

We also need to calculate

1

c2
∂2f

∂t2
=

1

c2
(−ω2)

A

r
ei(kr−ωt)Pℓ(cos θ) = −k2A

r
ei(kr−ωt)Pℓ(cos θ)

These two expressions are equal, so subtracting them (to give the wave equation) gives zero.

(4) This is simple. The fluid is static, so dv/dt = 0 and ρ is a constant for an incompressible
fluid. Writing g = −gẑ, we see explicitly that p only changes in the z-direction, so we have

∇p = ẑ
dp

dz
= −ρgẑ therefore ∆p = −ρg∆z

where the− sign only means that the pressure increases as the depth increases. The (absolute
value) of the difference in pressure between two points separated by a height ∆z = h is
therefore ρgh.

(5) The bulk modulus E is defined by dp = −E(dV/V ), but d(pV γ) = V γdp+γpV γ−1dV = 0
since pV γ is constant. So dp = −γpdV/V and E = γp. Now ρ = Nm/V = mp/kT so the
speed of sound c is given by c2 = E/ρ = γkT/m. (I use “physics” quantities instead of
“chemistry.”) Now γ = 1.4, k = 1.38 × 10−23J/K, and T = 273K. Air is mostly diatomic
nitrogen molecules, with ≈ 20% oxygen, so takem = (0.8·28+0.2·32)mp = 28.8mp wheremp

is the proton mass. With mp = 1.67× 10−27 kg, have m = 4.81× 10−26 kg and c = 331 m/s.
In helium gas the speed is faster by a factor (28.8/4)1/2 ≈ 2.7. This vibrates your vocal
chords at a higher rate, so your voice sounds high pitched.



PHYS3101 Analytical Mechanics Homework #13 Due 5 Dec 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

This assignment is on nonlinear dynamics and chaos as demonstrated by the Damped Driven
Pendulum (DDP). You should execute, and play around, with the notebook provided on the
course web page that goes with Chapter 12 in Taylor. You are welcome to borrow code from
that notebook for this assignment.

(1) Reproduce Figure 12.7 in Taylor, namely two solutions for the DDP with the same drive
strength and damping parameter, and the initial condition ϕ̇(0) = 0, but one solution for
ϕ(0) = 0 and the other for ϕ(0) = −π/2. This example demonstrates that for a nonlinear
system, the behavior can be wildly different for different initial conditions. Animate the two
solutions, and compare them. (It would be more fun to do this with another person, and
start the two animations at the same time to watch and compare in real time.)

(2) Using the code that reproduces Figure 12.4 in Taylor, a DDP with our standard frequen-
cies and damping parameter and with drive strength γ = 1.06, find solutions for the two
initial conditions ϕ(0) = π/2 and ϕ(0) = −π/2, both with ϕ̇(0) = 0. Plot all three solutions
for 0 ≤ t ≤ 10, or longer. Do all three approach the same solution after some period of time?
You may need to remember that ϕ(t) is the same as ϕ(t) + 2πn for some integer n.

(3) The notebook for class demonstrates chaotic behavior when the drive strength γ =
1.105 with our other standard parameters. Increasing the drive strength to γ = 1.503
(Taylor Figures 12.15(a), 12.15(b), and 12.16) continues chaotic motion, but the motion is
qualitatively very different. Reproduce these three figures. (Note that Figure 12.15 uses
ϕ(0) = −π/2.) You might see deviation from Taylor’s figure after long times because of
numerical precision, but you can consider using the option PrecisionGoal in NDSolve. Make
an animation of these conditions, and watch the pendulum flip directions near t ≈ 17.

(4) It happens that periodicity can be restored with driving strengths well past the onset
of chaos. Set up and solve the DPP using a driving strength γ = 1.3 and our standard
frequencies and damping parameter, with initial conditions ϕ(0) = ϕ̇(0) = 0. Plot the
solution and comment. (The animation might be fun to watch.) Show that the solution is in
fact periodic at long times. You may need to subtract a linear function that looks something
like 2π(t− t0) to make the periodicity clear.

(5) This problem is an example of a logistics map, a mathematical example of nonlinearity
which shows many of the same features as the DDP. See Taylor 12.9. Consider a set of num-
bers {x0, x1, x2, . . . , x∞} is defined by the “sine map” xi+1 = f(xi) where f(x) = r sin(πx),
an obviously nonlinear function. Find and plot the values of xi for i up to some number,
say imax = 20 to start, for x0 = 0.8 and r = 0.60, 0.79, 0.85, and 0.865, and show that these
values of r form a period-doubling cascade, similar to what happens in Figure 12.8 in Taylor.
(You will likely find it useful to use the RecurrenceTable function in Mathematica.)



PHYS3101 Analytical Mechanics Homework #13 Solutions

All of the solutions for this assignment are in the associated Mathematica notebook.


