Physics with Mathematica Fall 2019 Exercise #3 11 Sep 2019

Electric Potential and Field in a Plane with Two Charges

Two charges q_1 and q_2 lie along the y-axis in the x, y plane as shown here:

Find an expression for the electrostatic potential $\phi(x, y)$ by adding the potentials from the two point charges, that is $\phi = k/r$. Then find the components $E_x(x, y)$ and $E_y(x, y)$ of the electric field $\mathbf{E}(x, y)$ using $\mathbf{E} = -\nabla \phi$.

Set $k = a = q_1 = q_2 = 1$ and plot E_x versus x for y = 0. The result should look like the force on the test charge that you plotted in Exercise #1. For fun, you might also plot E_y versus y for x = 0, and try other combinations including different relative charges and other lines through the x, y plane.

For $k = a = q_1 = q_2 = 1$, expand E_x for y = 0 near x = 0 and include the first two nonzero orders. Does this look like your plot above?

Send the grader an email with your notebook as an attachment.