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Beams of atoms can exhibit interference and diffraction phenomena just like waves of light. For a coherent beam of
helium atoms in a double-slit experiment, measurements of the quantum-mechanical analogue of the classical
phase-space distribution function show that the motion of atoms behaves in a strongly non-classical manner.

Over the past few years, techniques for manipulating the motion of
atoms using light fields or micro-structured solids have undergone
rapid development', and they now provide the fundamental tools
for the new field of ‘atom optics’ Underlying these techniques is the
insight of de Broglie that a particle of mass m moving with a velocity
v can be viewed as a matter wave with wavelength Ay, = 27h/(mv).
Based on this wave nature, atom interferometers have been
demonstrated™’, which are now finding applications in precision
spectroscopy and atomic physics®.

Most of the atom interferometers realized to date rely on the fact
that the quantum-mechanical state of motion that describes the
atoms is such that, at some point in the experiment, they are in a
superposition state of being at two different locations x in space,
which may be micrometres to centimetres apart. The matter
wavefunction corresponding to such a state cannot, however, be
measured for a single atom, and the measurement has to be
performed on an ensemble of similarly prepared atoms. The full
quantum-mechanical description of an ensemble system needs to
capture both intrinsic quantum-mechanical uncertainties and pos-
sible uncertainties due to a ‘classical’ lack of knowledge about the
initial exact quantum state of each particle in the ensemble. The
most complete descriptions are provided by the Wigner function
W(x, p) (where p is momentum) which was introduced as early as
1932 (ref. 5) or alternatively the density-matrix p(x, x). These two
quantities are related by

Wi(x, p) = L J(x + x| pl x— x)e " dx’
wh

The Wigner function offers a convenient interpretation of the
ensemble in the form of a quasi-probability distribution in the
phase space defined by position x and momentum p. For quasi-
classical states of a system, W(x, p) is identical to the phase-space
density of the corresponding classical system®. There are, however,
states of systems which do not have a classical equivalent at all, such
as that of a particle in an atom interferometer when in a linear
superposition of states at two spatially separated locations. These
states lead to negative values in the quasi-probability distribution
W(x, p); in fact, most non-classical states of systems (except those
whose variables are described by a gaussian probability distribution)
should show negative values in W(x,p). A review of Wigner
functions in quantum mechanics can be found in, for example,
ref. 7.

It was pointed out by Bertrand and Bertrand® and independently
by Vogel and Risken’ that the Wigner function of a system can be
reconstructed by tomographical methods from the measured
distributions of observables that are certain combinations of the
non-commuting variables forming the phase space. Additionally,
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more sophisticated methods have been developed for the recon-
struction of the density matrix as an equivalent complete descrip-
tion of a quantum state'*""2.,

There have been several experimental measurements of Wigner
functions performed for non-classical states of light'>", as well as
measurements of the equivalent function that describes molecular
vibrational states". Compared to quantum-mechanical states of the
electromagnetic field, it is relatively easy to generate a quantum state
for a massive particle, such that the wavefunction is a coherent
superposition of being at one of two places in space. Very recently,
there have been investigations of the state of motion of ions in a
harmonic potential by the group of D. Wineland at NIST in
Boulder'®, where negativities in the Wigner functions correspond-
ing to Fock states were observed'. We investigate here the con-
ceptually simple system of a two-peaked matter wave state prepared
by coherent illumination of a double slit, where the state of the
particle after preparation is governed by free evolution through the
apparatus. When the spatially separated wave packets correspond-
ing to each slit show sufficient mutual coherence, the Wigner
function shows negative parts. A detailed theoretical analysis of
such a system is given by Janicke and Wilkens'.

Theoretical background

Phase-space tomography requires a set of measured projections
of the Wigner function W(x,p) along different directions in
phase space. To avoid the problem of mixing the different physical
properties of the conjugated variables x and p for the projection
along oblique phase-space directions, we introduce a scaling
length x, and momentum p, = h/x,. A rotated basis (x" = %cos @
+ psin@®; p' = — xsin @ + pcos O) for the phase space can then
be expressed by a reduced position %= x/x, and momentum
p = p/p,, and a mixing angle @. The projections or marginal
distributions of a motional state described by the Wigner function
Wo(X, p) are then given by

Po(x') = Jdp’ W (%, p)

After a motional state W;(X%, p) is prepared, a physical mixing
mechanism between x and p has to be introduced to measure the
marginal distributions in a set of observables x'(®). This mixing
mechanism can be provided by a combination of lenses and free-
space propagation for arbitrary complex-valued fields'*~*'; the key
idea is to change a momentum distribution (or a distribution in a
mixed base) into a position distribution P(x), which then can be
observed with an atom detector. The simplest mixing mechanism is
the free evolution of the particle, using the kinetic-energy hamilto-
nian H = p?/2m. Under this hamiltonian, the Wigner function W,
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Figure 1 Evolution of a quantum state W, initially in a superposition of an atom
being behind one of two slits. The two large blue vertical ellipses illustrate the
position-momentum (x-p) distribution of atoms isolated behind one or other of
the slits (the quasi-classical states); the alternating blue and red horizontal
ellipses illustrate the position-momentum distribution of the atoms in the non-
classical superposition of states (red corresponds to negative values in the
Wigner function)-it is these superposition states that give rise to interference.

of the initial state is sheared in phase space (Fig. 1). This can be easily
understood from the classical equation of motion dx/dt = p/m for a
point in phase space. The position distributions from the sheared
Wigner function for a set of evolution times #; may contain enough
information to approximately reconstruct the original Wigner
function®, as is the case for a set of marginal distributions Pg(x').
In fact, a huge class of hamiltonians can be used to modify a given
state W, such that its initially hidden aspects can be revealed by only
measuring its position distribution after a set of evolution times**.
Free evolution seems to be just the simplest choice in the case of a
massive particle.

Experimental realization

The experimental apparatus is shown in Fig. 2. A beam of meta-
stable helium atoms is generated in a gas-discharge source, which is
used in a pulsed operation mode by switching the discharge current.
A fraction of the atoms in the beam are in the metastable 2°S, state,
produced by electron impact during the switch-on time of 15 us.
The longitudinal velocity distribution of the metastable atom beam
emerging from the source consists of a fraction of very fast atoms
with velocity v =~ 33,000 ms ™' and a fraction at velocities between
1,000 and 3,000ms ' corresponding to the thermal energy of the
helium gas expanding in a nozzle. The beam passes a skimmer and is
collimated by a 5-pm-wide slit. Further downstream, the beam is
sent through a micro-fabricated double-slit structure with a slit
separation of 8 wm and an opening of 1 wm. The experiments are
conducted under high vacuum conditions (10~ ® mbar). The com-
bination of entrance slit and double slit acts as a preparation tool for
the transverse motion of the atoms. The atoms then propagate for a
distance d to a time- and space-resolving detector®; this detector is
based on the fact that metastable (that is, electronically excited)
atoms release secondary electrons when striking a metal surface®.
Our detector allows us to measure the transverse atomic distribu-
tion of metastable atoms with a spatial resolution down to 500 nm,
and the arrival time # (after leaving the source) of the atoms with an
accuracy of 100ns. From an atom-optical point of view, this
corresponds to measurements of atomic distributions correspond-
ing to different de Broglie wavelengths \yy = 27h/(mv), where m is
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After an evolution time tg4, the Wigner function becomes sheared in phase space,
and in the corresponding position distribution (main figure) P(x, ty), interference
fringes appear. The plot was obtained by numerical evaluation using Huygens-
Fresnel diffraction, where the double slitis illuminated from an incoherent matter
wave source with a finite spatial extent of 5um, corresponding to our experi-
mental situation (a.u., arbitrary units).
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Figure 2 Diagram of apparatus used to observe atomic interference patterns. The
single slitis 5 um wide; the double slit has a slit separation of 8 um and a slit width
of 1 um. The experimentis conducted under high vacuum conditions. See text for
details.

the mass of a He atom and v = l/t; (I is the source-detector
distance). The mean number of detected atoms per source pulse
varies from 0.01 to 0.2; the source is repeatedly fired, and the
obtained distribution summed up.

For the very fast atoms, the wave packet associated with the
transverse motion has not enough time to spread out in space, so the
transverse distribution of the atom stays as prepared by the double-
slit structure. In the language of atom optics, this may be regarded as
a geometrical shadow of the structure on the detector. Because the
double slit is illuminated from a single slit rather than a source
emitting a plane matter wave, the observed shadow is magnified by a
factor (a + d)/a, where a is the distance between the single slit and
the double slit. In the experiment, we use this information to gauge
the length scaling of the detector.

Time-resolved diffraction patterns
Because the longitudinal motion of the atoms at velocities v of

several thousand metres per second may be treated completely
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classically, the apparatus shown in Fig. 2 can be regarded as a tool to
investigate the spatial distribution of the transverse degree of free-
dom for a set of evolution times t; from the double slit to the
detector, which is geometrically connected with f;via t; = t;d/I. We
therefore describe the interference patterns that we obtained in
terms of a free evolution for a time 4.

For a set of separations d between the detector and the double slit,
we obtained the atomic distribution patterns shown in Fig. 3. In
Fig. 3a (d = 148 mm), one can recognize the diffraction of atoms
from the individual slits with a rectangular transmission function.
For the velocity distribution in the atomic beam, the range of
evolution times t, is sufficiently large that the detector is located in
the far field for diffraction from the single slits; the side lobes
corresponding to the first diffraction order can be recognized. As the
two wave packets overlap, interference fringes should appear, but we
were not able to resolve the fringes with the chosen detector setup.
The total integration time for this experiment was 14.5 h.
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Figure 3 Distribution of atoms in the detection plane as a function of their
velocities. This corresponds to different evolution times for a partial coherent
matter wave packet after the double slit. a, For a separationd = 148 mm between
detector and double slit (see Fig. 2). The diffraction pattern is determined by the
diffraction from the single slits. b, For the transition regime atd = 248 mm. Partial
waves from both slits start to interfere. ¢, For a separationd = 1,950 mm (far field).
The interference orders are clearly separated, and their separation grows linearly
with the evolution time.
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To reconstruct the Wigner function W, a sufficiently large range
of mixing angles § between position and momentum has to be
achieved in the experiment. This is the case when the two wavelets
(one emerging from each slit) start to overlap and form inter-
ference fringes. In the language of atom optics, interference effects
taking place in this regime are referred to as Fresnel diffraction.

Figure 3b shows the time-resolved diffraction pattern for a
separation between detector and double slit of d = 248 mm; the
integration time was 7.2 h, and the detector resolution was increased
to 500 nm. The wave packets emerging from each slit increase in
width and start to overlap and form interference fringes, indicating
the coherence between the two parts of the wavefunction.

The corresponding time-resolved atomic distribution for
d=1,950mm is shown in Fig. 3c. Given the slit separation of
8 wm, the Fraunhofer diffraction limit is reached for the slow atoms.
The wave packets emerging from the individual slits overlap almost
completely, and the interference fringes are most clearly observed.
In this configuration, a is now 1,052 mm, differing from the near-
field experiments; this change is due to the requirements of the
apparatus. To compensate for the small atom flux seen by the
detector because of its large separation from the source, we had to
extend the integration time in this experiment to 49 h.

Reconstruction of the Wigner function

The transformation algorithm used to reconstruct the prepared
Wigner function is similar to that described in ref. 18. Free evolution
of the particle for a time #; leads to a corresponding position
distribution P(X%, t3), which is connected with a rotated marginal

p(hpum-1)

plhpm=l)

A(pm) —

Figure 4 a, Reconstructed Wigner function W(x,p) of the investigated atomic
ensemble, obtained from the experimental distribution shown in Fig. 3b using the
inverse Radon transformation™®, b, Reconstruction of W(x,p) from the numerical
distribution in Fig. 1.
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As there is only access to positive evolution times ty, free
evolution only gives access to rotated marginal distributions Py
for angles © between 0 and /2. Theoretical investigations'*'* have
shown that the use of additional optical elements (lenses) could
allow the complete set of mixing angles @ ( — 7/2 to /2) to be
investigated; this is necessary to reconstruct a completely unknown
state. Alternatively, additional symmetry assumptions can be made
for the Wigner function investigated, such as left/right symmetry or
time-reversal symmetry. Here we use assumption of symmetry in
position space for the reconstructed Wigner function.

Furthermore, only a limited range of evolution times t is
available in an experiment. But by choosing an appropriate range
of evolution times, the interesting information of a system should
be contained in the observed distributions. Here, the information is
the coherence property of two spatially separated wave packets.

Another problem for the reconstruction process is the coupling
between longitudinal and transverse motion, as we illuminate the
double slit from a single slit instead of a pure plane-wave source.
This effect can be taken into account by rescaling the transverse
position in the detection plane by the factor a/(a + d) of geometrical
magnification; the evolution-time-dependent mixing process
between position and momentum is preserved.

The reconstructed Wigner function we obtained from the dif-
fraction data shown in Fig. 3b is shown in Fig. 4a, where we chose a
scaling length x, = 2 wm and a cut-off frequency r. = 10 (see ref. 18
for details). The two positive regions, corresponding to the spatial
distribution of the atoms during preparation, may be seen. The
separation between the regions (~8 wm) corresponds to the posi-
tion distribution in the plane of the double slit; the information
relevant to determining this feature of the Wigner function is
mainly contributed by the very fast atoms. The coherence between
the two spatially separated parts of the Schrodinger field at the
position of the double slit then leads to interference, which is
manifested in oscillations in the Wigner function in the region
between the two main ‘blobs’ In this region, the reconstructed
Wigner function takes negative values, indicating a property which
cannot be obtained by classical phase-space distributions and
revealing the quantum nature of the observed ensemble of atoms.

But, in contrast to what is expected'®, the reconstructed Wigner
function appears sheared, and regions of negative value appear close
to the two large positive blobs. This is consistent with the recon-
struction shown in Fig. 4b which was obtained from the numerically
obtained distributions shown in Fig. 1, where the largest evolution
time was restricted to 175 ps; the shear and the regions of negative
value close to the positive blobs are therefore a consequence of the
reconstruction algorithm. The non-physical shear disappears if
longer evolution times 4 for the observed marginal distributions
P(x, ty) are allowed, as additional numerical tests have shown.
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More sophisticated reconstruction techniques than the inverse
Radon transform'*® could therefore be usefully applied to our data.
Promising tools for reconstructing the Wigner function from such
an incomplete set of measured marginal distributions may be a
technique using bayesian analysis (described in ref. 11 for applica-
tion in optical homodyne tomography) or maximum entropy
algorithms (as suggested by V. Buzek et al.'?).

Here we have reported on the measurement of the Wigner
function of a massive particle wave packet formed by partially
coherent illumination of a double slit; we have been able to identify
negative parts in the oscillatory part of the Wigner function
corresponding to a superposition of macroscopically separated
parts of the matter wave field. In quantum optics, such a state is
sometimes referred to as a ‘Schrédinger cat state’'®.

Our technique provides a convenient approach to detection of
particles for which the key observables, position and momentum,
can be mixed controllably. Such a choice of a detection base would
be necessary for Bell-type experiments®® with entangled atom-
photon pairs, which can be efficiently produced and detected”.
The measurement technique reported here could be used for
measuring the atomic part of these pairs. It may also be useful in
characterizing the motional state of atoms emerging from one of the
new atomic sources currently under discussion in the context of

‘Bose condensates. O
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