
PHYS2502 Mathematical Physics Homework #1 Due 18 Jan 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Show that the product of pressure P and volume V has the dimension of energy. Use
this and the ideal gas law PV = NkT , where N is the number of gas molecules and T is
temperature in Kelvin, to find the SI units of Boltzmann’s constant k.

(2) A simple harmonic oscillator is constructed from a mass m connected to a spring with
stiffness k. The stiffness is determined by measuring the force from the spring when it is
extended or compressed a certain distance, with the force being proportional to that distance.

(a) For classical oscillations with (position) amplitude A, use dimensional analysis to find
the energy scale in terms of m, k, and A.

(b) For quantum mechanical oscillations, the amplitude is not well defined, but we expect
the energy scale to depend also on ~, which has units of angular momentum. Find the energy
scale in terms of m, k, and ~.

(3) The “Planck Length” `P is the distance at which gravity is unified with quantum me-
chanics and relativity. Find an expression for `P in terms of G, ~, and c. Evaluate it
numerically and compare it to the size of the proton.

(4) In class we showed that the derivative with respect to x for f(x) = xn, where n is a
positive integer, is f ′(x) = nxn−1.

(a) Show that this relation also holds for n = 0.
(b) Use the definition of the derivative to show that this relation also holds when n is a

negative integer.
(c) Use (a) and (b) to show that this relation still holds if f(x) = xp/q where p and q are

integers, that is, when the exponent is a rational number. Hint: Consider yq = xp.
(d) Can you use all this to rationalize that the derivative of xα is αxα−1 for any α ∈ R?

(5) A particle moves in a circle in the (x, y) plane, centered on the origin. Find an expression
that relates the velocity vx = dx/dt in the x-direction and the velocity vy = dy/dt in the
y-direction to the position coordinates x and y. Draw a picture of a circle and indicate a few
points on it that convince you that your answer is correct. Of course, you need to explain
your reasoning.



PHY2502 Mathematical Physics Homework #1 Solutions

(1) [PV ] = [Force]L−2L3 = MLT−2]L−2L3 = ML2T−2 = [Energy]. From the ideal gas law,
since N is dimensionless, kT must have the dimensions of energy. The SI unit of energy is
Joule, so the units of k are Joule/K.

(2) First find [k] = [Force]/[Distance] = MLT−2L−1 = MT−2. (a) Write ε = mxkyAz, so

ML2T−2 = MxMyT−2yLz = Mx+yT−2yLz

and y = 1, z = 2, and x = 0. That is, the energy scale is ε = kA2. You’ll recall that
the potential energy of a harmonic oscillator with amplitude A is kA2/2 so the scale is the
correct energy to within a factor of two. (b) Write ε = mxky~z, so

ML2T−2 = MxMyT−2yL2zM zT−z = Mx+y+zT−2y−zL2z

and z = 1, 2y + z = 2y + 1 = 2 so y = 1/2, and x + y + z = x + 3/2 = 1 so x = −1/2.
Therefore ε = ~(k/m)1/2. In quantum mechanics you will learn that the energy spacing in
the harmonic oscillator is indeed ~ω where ω = (k/m)1/2.

(3) Newton’s gravitational law gives [G] = L3M−1T−2, so write `P = Gx~ycz which gives

L = L3xM−xT−2xL2yMyT−yLzT−z = L3x+2y+zM−x+yT−2x−y−z

Therefore x = y, 2x+ y + z = 3x+ z = 0, and 3x+ 2y + z = 5x+ z = 1. Subtract the last
two equations to get x = 1/2 = y, so z = −3x = −3/2 and `P = (G~/c3)1/2. This works out
to be 1.6× 10−35 m, 20 orders of magnitude smaller than the proton.

(4) (a) For n = 0, f(x) = 1 which does not change with x, so f ′(x) = 0. (b) With m = −n,

f ′(x) = lim
∆x→0

1

∆x

[
1

(x+ ∆x)m
− 1

xm

]
= − lim

∆x→0

mxm−1∆x+ · · ·
xm(x+ ∆x)m

= −mx−m−1 = nxn−1

(c) Put y = f(x) so that yq = xp. Then qyq−1dy = pxp−1dx and

f ′(x) =
dy

dx
=
p

q
xp−1y1−q =

p

q
xp−1

(
xp/q

)1−q
=
p

q
xp−1xp/q−p =

p

q
xp/q−1

(d) Any real number is infinitesimally close to a rational number on either side, so, sure, it
makes sense that this rule holds for any real number exponent.

(5) The equation of a circle is x2 + y2 = R2 so 2x dx + 2y dy = 0. Dividing through
by 2dt tells us that xvx = −yvy. At the point (x, y) = (R, 0) the x-component of the
velocity is indeed zero, and at the point (x, y) = (0, R) the y-component of the velocity is
also zero. Most telling, though is when the particle is at 45◦ in the first quadrant, that is
(x, y) = (R/

√
2, R/

√
2). Here, vx and vy are equal in magnitude but opposite in sign, and

the relation still holds. Similarly in the other three quadrants.



PHYS2502 Mathematical Physics Homework #2 Due 25 Jan 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) The energy of a simple harmonic oscillator made of a mass m and a spring with stiffness
constant k imoving in one dimension x is E = mv2/2 + kx2/2, where v = dx/dt.

(a) Take the derivative of the right side, along with Newton’s Second Law and Hooke’s
Law, to show that the energy does not change with time.

(b) Integrate over the quarter of a period where both v and x are positive, and derive an
expression for the period T in terms of k and m. The integral is easy to carry out using a
change of variables involving a circular function.

(2) A dam in the shape of an inverted triangle blocks a river valley, forming a lake of depth
D and width W . Taking the water pressure p(y) = ρgy at depth y from the surface of the
lake, find the total force acting on the dam. Check that your result is dimensionally correct.
Calculate the force on the Hoover Dam (W = 200 m) from Lake Mead (D = 160 m). Express
your result in tons of force.

(3) Find the derivative of tanx ≡ sinx/ cosx with respect to x. Then use the change of
variables ax = tanu to evaluate the integral∫ ∞

0

dx

1 + a2x2

You might want to check your answer using Mathematica.

(4) Show that f(x) =
∫ x

1
(1/t)dt has the property f(ab) = f(a) + f(b) using an appropriate

change of integration variables. Hence show that f(an) = nf(a) for n ∈ Z+.

(5) Consider a right circular cone of height h and base radius r, as
shown on the right. Let ` be the slant height of the cone.

(a) Find the volume V in terms of h and r by adding up the
volume of a bunch of thin circular disks, one of which is shown in red.

(b) Now find the ratio h/r that maximizes the volume of the cone
for a fixed slang length `.



PHY2502 Mathematical Physics Homework #2 Solutions

(1) Newton’s Second Law is F = ma = mdv/dt and Hooke’s Law is F = −kx so

dE

dt
=

1

2
m(2v)

dv

dt
+

1

2
k(2x)

dx

dt
= v m

dv

dt
+ kx v = v F + (−F ) v = 0

The time T/4 is the integral of t from x = 0 to x = (2E/k)1/2, so

T = 4

∫ (2E/k)1/2

x=0

dt = 4

∫ (2E/k)1/2

0

dx

v
= 4

∫ (2E/k)1/2

0

dx√
(2/m)(E − kx2/2)

Make the change of variables x = (2E/k)1/2 sinu in which case u runs from u = 0 to u = π/2.
Also E − kx2/2 = E(1− sin2 u) = E cos2 u, and dx = (2E/k)1/2 cosu du. Therefore

T = 4

√
m

2

√
2E

k

1√
E

∫ π/2

0

cosu du

cosu
= 4

√
m

k

π

2
=

2π√
k/m

(2) The force dF on a horizontal strip of the dam is given by the product of the pressure and
the area of the strip. The area of the strip is w(y)dy where y = 0 at the lake’s surface and
y = D at the bottom of the lake. We need w(0) = W and w(D) = 0 where w(y) = ay + b
since the width varies linearly with depth. Therefore b = W and aD + b = aD + W = 0 so
a = −W/D giving w(y) = W (1− y/D). Then

F =

∫ D

0

dF =

∫ D

0

p(y)w(y)dy = ρgW

∫ D

0

(
y − y2

D

)
dy = ρgW

(
D2

2
− 1

D

D3

3

)
=
ρgWD2

6

It is easy to see that this is dimensionally correct, since ρ has dimensions of mass per
unit volume and WD2 has dimensions of volume, so ρgWD2 has dimensions of mass times
acceleration, which is force.

In SI units, ρ = 103 kg/m3, g = 9.8 m/s2, and WD2 = 200 × 1602 = 5.1 × 106 m3, so the
total force is 103 × 9.8× 5.1× 106/6 = 8.4× 109 N=2× 109 pounds or a million tons.



(3) To find the derivative of tanx, just use the chain rule, that is

d

dx

sinx

cosx
=

[
cosx

cosx
− sinx (− sinx)

cos2 x

]
=

1

cos2 x

Now ax = tanu means that x = 0 corresponds to u = 0 and x =∞ to u = π/2. Also

1

1 + a2x2
=

1

1 + tan2 u
=

cos2 u

cos2 u+ sin2 u
= cos2 u

The integral then becomes simple. We have a dx = du/ cos2 u and∫ ∞
0

1

1 + a2x2
dx =

1

a

∫ π/2

0

cos2 u
du

cos2 u
=

π

2a

(4) Use u = t/b, then split the integral and use f(1/a) = −f(a) to get

f(ab) =

∫ ab

1

1

t
dt =

∫ a

1/b

1

bu
bdu =

∫ a

1

1

u
du+

∫ 1

1/b

1

u
du = f(a)− f(1/b) = f(a) + f(b)

Obviously, then, f(a2) = 2f(a) and so on for f(an) for any positive integer n.

(5) Let y measure the vertical distance from the base to the tip. Then the radius ρ(y) of a
circular disk is ρ(y) = r− (r/h)y = r(1− y/h). The volume of a circular disk is dV = πρ2dy
so the volume of the cone is

V =

∫ h

0

dV =

∫ h

0

πρ2dy = πr2

∫ h

0

(
1− 2

h
y +

1

h2
y2

)
dy = πr2

(
h− h2

h
+

h3

3h2

)
=

1

3
πr2h

To maximize the volume for fixed ` we write V = π(`2−h2)h/3 and then find the derivative
with respect to h. We have

dV

dh
=
π

3

d

dh
(`2 − h2)h =

π

3
(`2 − 3h2) = 0

Therefore the volume is a maximum when h = `/
√

3, or

h

r
=

h√
`2 − h2

=
1√

`2/h2 − 1
=

1√
3− 1

=
1√
2
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PHYS2502 Mathematical Physics Homework #3 Due 1 Feb 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Find the first three nonzero terms of the Taylor expansions about x = 0 for f(x) =
cosh(x) and f(x) = sinh(x). Make sketches of each of these two functions along with the
approximations based on the first, second, and third terms. (You are welcome to work this
problem in Mathematica.)

(2) Two electric charges ±q lie at z = ±a/2 on the z-axis.

(a) Find the magnitude of the electric field on the z-axis at distances far from the origin.
Express your result in terms of the electric dipole moment p = qa. Compare how the field
from an electric dipole falls with distance with that of an isolated electric charge.

(b) Repeat for a position on the x-axis, again, far from the origin. Indicate the direction
of the electric field relative to that in (a).

(3) Consider the function f(x) = xne−x. Find the value of x which maximizes f(x), and
sketch the function for some large value of n. Then write x = elog x and write f(x) in terms
of y ≡ x − n. Expand the logarithm to second order in a Taylor series about y = 0 and
show that f(x) is a constant times a Gaussian function of y. Use this result, along with the
definition of the Gamma function and Gaussian integrals to derive Stirling’s Approximation,
namely

n! ≈
√

2πn
(n
e

)n
for n� 1

(4) Derive expressions for cos(3x) and sin(3x) in terms of cosx and sinx by applying Euler’s
Formula.

(5) Reduce the following complex expressions into a simple complex (or purely real or purely
imaginary) number of the form z = x+ iy:

• ii

•
[
(1 + i

√
3)/(
√

2 + i
√

2)
]50

• sinh(1 + iπ/2)

• e2 tanh−1 i

For the last one, you’ll need to come up with an expression for tanh−1(x) in terms of the
natural logarithm. (It’s not hard.) Don’t be afraid to write log eα = α even if α is complex.
You should be able to check all your answers using Mathematica.
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(1) The derivatives of cosh(x) and sinh(x) are each other, with no minus signs, so their
Taylor expansions are

cosh(x) = 1 +
1

2!
x2 +

1

4!
x4 and sinh(x) = x+

1

3!
x3 +

1

5!
x5

The plots follow. See the accompanying Mathematica notebook for the details.
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Sinh(x)

(2) (a) Consider the positive z-axis, in which case the distance from (±)q is z ∓ a/2. The
magnitude of the electric field is

E = +
q

(z − a/2)2
− q

(z + a/2)2
=

q

z2

[
1

(1− a/2z)2
− 1

(1 + a/2z)2

]
Since z � a, a/2z � 1 and we take (1∓ a/2z)−2 = 1± 2(a/2z) = 1± a/z. So,

E =
q

z2

[(
1 +

a

z

)
−
(

1− a

z

)]
=

2qa

z3
=

2p

z3

The field from the dipole falls like distance cubed, rather than distance squared.

(b) The field along the x-axis points downward, that is, in the −z direction, because the
horizontal components from the two charges cancel. In this case, the magnitude of the
electric field of each charge must therefore be multiplied by cosine of the angle between the
z-axis and the direction from the charge to the field point on the x-axis. The distance from
each charge to the field point is r = (x2 + a2/4)1/2 so the cosine of the angle is (a/2)/r. The
fields from the two charges add, so with a negative sign to indicat the downward direction,

E = −2
q

r2

a

2r
= − p

(x2 + a2/4)3/2
→ − p

x3

for x� a. Once again, the field falls like the distance cubed, but points downward instead
of upward.



(3) First just take the derivative of f(x) to find the maximum:

d

dx
xne−x = nxn−1e−x − xne−x = xn−1e−x(n− x) = 0

so the maximum is reached at x = n. For a large value of n, the factor xn rises rapidly with
a large second derivative until the peak at x = n, at which point the exponential controls
and the function falls rapidly. A sketch should make it look like a narrow Gaussian, more or
less, peaking at y = x− n = 0. The second order expansion of the logarithm is

log(1 + t) = t− 1

2
t2

so we can write f(x) for large n in the form

xne−x = en log xe−x = exp[n log(n+ y)− n− y] = exp[n log n+ n log
(

1 +
y

n

)
− n− y]

= exp[n log n+ n

(
y

n
− y2

2n2

)
− n− y] = en logn−ne−y

2/2n = nne−ne−y
2/2n

Now n! = Γ(n + 1) =
∫∞

0
xne−x. Since the integrand is very narrow for n� 1 and it peaks

for a large x = n, we might as well integrate over the entire real axis. Using∫ ∞
−∞

e−y
2/2ndy =

√
2πn

we arrive at
n! ≈ nne−n

√
2πn =

√
2πn

(n
e

)n
(4) We just need to write e3ix = (eix)3 and get

cos(3x) + i sin(3x) = (cosx+ i sinx)3

= cos3 x+ 3i cos2 x sinx− 3 cosx sin2 x− i sin3 x

= cos3 x− 3 cosx sin2 x+ i(3 cos2 x sinx− sin3 x)

so cos(3x) = cos3 x− 3 cosx sin2 x

and sin(3x) = 3 cos2 x sinx− sin3 x



(5) The key to all of these is to make use of Euler’s formula.

ii =
(
eiπ/2

)i
= e−π/2[

1 + i
√

3√
2 + i

√
2

]50

=

[
2

2

]50 [
exp(iπ/3)

exp(iπ/4

]50

=
[
eiπ/12

]50
= e4iπeiπ/6 = eiπ/6 =

√
3

2
+ i

1

2

sinh(1 + iπ/2) = sinh(1) cosh(iπ/2) + sinh(iπ/2) cosh(1)

= i sinh(1) cos(π/2) + i sin(π/2) cosh(1) = i cosh(1)

To get an expression for y = tanh−1(x), write x = tanh(y) and solve for y.

x = tanh y =
sinh y

cosh y
=
ey − e−y

ey + e−y
=
e2y − 1

e2y + 1

xe2y + x = e2y − 1

e2y(1− x) = 1 + x

so y =
1

2
log

1 + x

1− x
= tanh−1(x)

Now we can calculate

tanh(i) =
1

2
log

1 + i

1− i
=

1

2
log

√
2 exp(iπ/4)√

2 exp(−iπ/4)
=

1

2
log eiπ/2 =

1

2
log i

Therefore e2 tanh−1 i = elog i = i.



PHYS2502 Mathematical Physics Homework #4 Due 8 Feb 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Find the solution of the differential equation dx/dt = x2 where x is position and t is
time, and where x(0) = a where a > 0. For what range of times is your solution valid?
Careful! This is a trick question.

(2) The pressure P (T ) along a liquid-gas phase boundary on a pressure vs temperature (T )
diagram is the solution to the differential equation

dP

P
= k

dT

T 2

where k is a a constant. If the pressure is P0 at a temperature T0, find the function P (T ).

(3) An object of mass m falls from rest some distance above the Earth’s surface. It is subject
to a drag force av2 proportional to its velocity. Find its velocity v(t), and check that your
answer is dimensionally correct. Then check that you get the correct behavior for both short
and long times. I suggest that, as we did in class, that you choose a coordinate system where
“up” is positive. (If you carry out the necessary integrals using Mathematica, then please
also submit a PDF of your executed notebook.)

(4) The diagram at the right shows a capacitor C con-
nected in series with a resistor R. The potential differ-
ence across the capacitor is VC = q/C where q is the
charge stored on the capacitor. The potential difference
across the resistor is VR = IR where I = dq/dt is the
current through the resistor. If the initial charge on the
capacitor is q0, find q(t) as a function of time.

(5) The diagram at the right shows a capacitor C con-
nected in series with an inductor L. The potential dif-
ference across the capacitor is VC = q/C where q is the
charge stored on the capacitor. The potential difference
across the inductor is VL = LdI/dt where I = dq/dt is
the current through the inductor. If the initial charge
on the capacitor is q0, and the initial current is zero,
find q(t) as a function of time.
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(1) This is a separable equation. Integrate dx/x2 = dt to get −1/x = t + C. The initial
condition gives −1/a = C so the function is x(t) = −1/(t − 1/a) = a/(1 − at). As a
simple check, dx/dt = −a/(1 − at)2(−a) = a2/(1 − at)2 = x2. now since x(0) > 0 and the
solution becomes negative for t > 1/a, and blows up at t = 1/a, the solution is only valid
for 0 ≤ t < 1/a. Admittedly, this problem appears to be rather “unphysical.”

(2) Just integrate both sides to get logP = −k/T + C and write logP0 = −k/T0 + C.
Therefore P = eCe−k/T and P0 = eCe−k/T0 so the solution is P (T ) = P0e

k/T0e−k/T This is
more neatly written as P (T ) = P0e

−k(1/T−1/T0) = P0e
k(T−T0)/TT0 .

(3) The net force on the mass is −mg + av2 where we note that the drag force is always
positive when the mass is falling. Newton’s Second Law says mdv/dt = −mg + av2 or∫ t

0

(−g) dt =

∫ v

0

dv

1− av2/mg
=

1

2

∫ v

0

[
dv

1−
√
a/mgv

+
dv

1 +
√
a/mgv

]

−2gt = −
√
mg

a
log

[
1−

√
a

mg
v

]
+

√
mg

a
log

[
1 +

√
a

mg
v

]
e−2
√
ag/mt =

1 +
√
a/mgv

1−
√
a/mgv

so v(t) = −
√
mg

a
tanh

(√
ag

m
t

)
First check dimensions. Start with [a]L2T−2 = MLT−2 so [a] = ML−1. Then[√

mg

a

]
=
(
M · LT−2 · LM−1

)1/2
= LT−1 and

[√
ag

m

]
=
(
ML−1 · LT−2 ·M−1

)1/2
= T−1

both of which are correct. For t�
√
m/ag, tanh(

√
ag/mt)→

√
ag/mt and so v(t)→ −gt,

which is correct. For t�
√
m/ag, tanh(

√
ag/mt)→ 1 and v(t)→ −

√
mg/a, the (constant)

terminal velocity expected since mg = av2
term.

(4) The potential differences must sum to zero over the loop, so

q

C
+ IR =

q

C
+
dq

dt
R = 0 so

dq

dt
= − q

RC
so q(t) = q0e

−t/τ

The capacitor discharges exponentially over time with time constant τ = RC.

(5) The potential differences must sum to zero over the loop, so

q

C
+ L

dI

dt
=

q

C
+ L

d2q

dt2
= 0 so

d2q

dt2
= − q

LC
so q(t) = q0 cosωt

The charge oscillates over time with frequency ω = 1/
√
LC.



PHYS2502 Mathematical Physics Homework #5 Due 15 Feb 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Make some sketches of the motion of x(t) for the damped oscillator, similar to Figure 3.2
and 3.3 in the notes. Plot against time in units of the fundamental period of the undamped
oscillator. You may carry out the calculations and make the plots using Mathematica or
some other application. Plot the following cases:

(a) β = 0.05ω0, x0 = 5, v0 = 2ω0

(b) β = 1.5ω0, x0 = 1, v0 = −2ω0

(c) β = ω0, x0 = 1, v0 = −2ω0

(2) Reproduce the plots in Figure 3.5 of the notes, that is x(t) for a forced damped oscillator
with β = 0.05ω0, γ = 10, and with initial conditions x(0) = ẋ(0) = 0. The three plots are
for ω = 0.5ω0, ω = ω0, and ω = 1.5ω0. Time is plotted in units of the fundamental period of
the undamped oscillator. You only need to make the three plots, not necessarily on the same
set of axes, but don’t be afraid to try making the plot this way. If you want to be ambitious,
consider using the Manipulate function in Mathematica to see how the plot behaves if you
let ω be adjustable on a sliding scale. (This is a nice demonstration of resonance.)

(3) In the terminology we used in class and in the notes, we saw that if β > ω0 (“over damp-
ing”), then the solution to the damped oscillator is the sum of two exponential functions, no
matter how close β is to ω0. However, if β = ω0 (“critical damping”), the solution magically
turns into a single exponential dependence. Write ω2

0 = β2(1− ε2) and show that for ε� 1
the over damped solution turns into the critically damped solution.

(4) Use the series approach to find the solutions for y′′ = y(x) and show that the result is
the same as the series expansion for y(x) = c1 cosh(kx) + c2 sinh(kx). How would you define
constants a1 and a2 in terms of c1 and c2 so that the solution is y(x) = a1e

x + a2e
−x?

(5) Find general solution to y′′(x) = xy(x), which I will call “Keen’s Equation”, using series
approach. Show that there can be no term in the series proportional to x2, and that the
recursion relations relate every third term of the expansion. Separate the two solutions you
find for Keen’s Equation, and explicitly indicate the constants of integration. Write out the
first ten or so nonzero terms of each of the two solutions, and plot them. (Don’t go too far
in ±x so that you over run the range afforded by the number of terms you calculated in the
expansion!) Note the difference in behavior for x < 0 and x > 0.
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(1) See the Mathematica notebook for details. Following are the plots:
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Over damping

Critical damping

(2) See the Mathematica notebook, including using Manipulate. It seems that using c1
and c2 for the arbitrary constants in the homogeneous solution is problematic. Note that I
used the ”cos” and ”sin” version of the homogeneous solution.

(3) The over damped solution for the damped harmonic oscillator becomes

x(t) = e−βt
[
c1e
−
√
β2−ω2

0t + c2e
+
√
β2−ω2

0t
]

= e−βt
[
c1e
−βεt + c2e

βεt
]

≈ e−βt [c1(1− βεt) + c2(1 + βεt)]

= e−βt [(c1 + c2)− (c1 − c2)βεt]

Redefining c1 + c2 → c1 and −(c1 − c2)βε → c2 recovers the critically damped solution. It
does not matter that the “new” c2 multiplies ε because we can just make c1 − c2 as large as
we need to.



(4) Writing y(x) =
∑∞

n=0 anx
n we have

∑∞
n=0 n(n− 1)anx

n−2 =
∑∞

n=0 anx
n. Realizing that∑∞

n=0 n(n − 1)anx
n−2 =

∑∞
n=2 n(n − 1)anx

n−2, we make the substitution m = n − 2, and
then replace m with n in the summation. This gives us

∞∑
n=0

[(n+ 2)(n+ 1)an+2 − an]xn = 0 so an+2 =
1

(n+ 2)(n+ 1)
an

Writing c1 = a0 and c2 = a1, we start with a0 and get

a2 =
1

2 · 1
c1 a4 =

1

4 · 3
a2 =

1

4!
c1 a6 =

1

6 · 5
a4 =

1

6!
c1

and so on. If instead we start with a1, we get

a3 =
1

3 · 2
c2 a5 =

1

5 · 4
a3 =

1

5!
c2 a7 =

1

7 · 6
a5 =

1

7!
c2

In other words an = c1/n! if n is even, and an = c2/n! if n is odd. That is

y(x) = c1

[
1 +

1

2!
x2 +

1

4!
x4 +

1

6!
x6 + · · ·

]
+ c2

[
x+

1

3!
x3 +

1

5
x5 +

1

7!
x7 + · · ·

]
These are the Taylor expansions for cosh(x) and sinh(x) that we found in Problem 1 of
Homework #3. Therefore

y(x) = c1 cosh(x) + c2 sinh(x)

If we write c1 = a1 + a2 and c2 = a1 − a2, then the solution becomes

y(x) = a1

[
1 + x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5
x5 +

1

6!
x6 +

1

7!
x7 + · · ·

]
+a2

[
1− x+

1

2!
x2 − 1

3!
x3 +

1

4!
x4 − 1

5
x5 +

1

6!
x6 − 1

7!
x7 + · · ·

]
= a1e

x + a2e
−x

(5) Actually, this is the Airy Equation. The series solutions are derived in Boyce and
DiPrima 6e Section 5.2. It’s a good exercise for series solutions, though, so let’s move
through it. We start as usual with y(x) =

∑∞
n=0 anx

n and write

y′′(x) =
∞∑
n=0

n(n− 1)anx
n−2 =

∞∑
n=2

n(n− 1)anx
n−2 = 2a2 +

∞∑
n=3

n(n− 1)anx
n−2

where we pull out the first term because Keen’s Equation is going to push up the power of the
series on the right side of the equation. That is, Keen’s Equation becomes, with n = m+ 3,

2a2 +
∞∑
n=3

n(n− 1)anx
n−2 = 2a2 +

∞∑
m=0

(m+ 3)(m+ 2)am+3x
m+1 =

∞∑
n=0

anx
n+1

So, after switching back m→ n, we get

2a2 +
∞∑
n=0

[n+ 3)(n+ 2)an+3 − an]xn+1 = 0



This immediately tells us that a2 = 0 so there is no term in the Keen Function proportional
to x2. The recursion relation is

an+3 =
1

(n+ 3)(n+ 2)
an

and we get one series for a0 = c1 and another series for a1 = c2. These have coefficients

a3 =
c1

3 · 2
a6 =

a3

6 · 5
=

c1

6 · 5 · 3 · 2
a9 =

a6

9 · 8
=

c1

9 · 8 · 6 · 5 · 3 · 2
. . .

and a4 =
c2

4 · 3
a7 =

a4

7 · 6
=

c2

7 · 6 · 4 · 3
a10 =

a7

10 · 9
=

c2

10 · 9 · 7 · 6 · 4 · 3
. . .

A general formula for these coefficients is not obvious to me, but we can at least use the first
four nonzero terms given here to see what the functions look like. See the Mathematica
notebook for details. Some plots follow, keeping terms up to the 28th order polynomial.
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-1

1

2

3

See also Figure 5.2.3 in B&P6e. The point is that the solution oscillates for x < 0, but grows
for x > 0. (I am not sure what is the linear combination of these two solutions that are
called the Airy Functions, but the regular Airy Function falls to zero for x > 0.)



PHYS2502 Mathematical Physics Homework #6 Due 22 Feb 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Consider the Euler Equations, with notation as described in the course notes.

(a) Use the Wronskian to show that the two solutions for (α − 1)2 > 4β2 are linearly
independent for all x > 0. Recall that the Wronskian for two solutions y1(x) and y2(x) is
W [y1(x), y2(x)] = y1(x)y′2(x)− y2(x)y′1(x).

(b) For the case (α−1)2 = 4β2, find a second solution and again show that the two solutions
are linearly independent for all x > 0. Hint: Try the approach that worked for a linear second
order equation with constant coefficients.

(2) Show that, for a Bessel Function Jm(x) for integer order m, J−m(x) = (−1)mJm(x).
You can use the Γ–Function to interpret n! for n < 0. Explain why this means that y(x) =
c1Jm(x) + c2J−m(x) cannot be the general solution to Bessel’s Equation for m ∈ Z.

(3) Show by explicit substitution that the Spherical Bessel Function j0(x) = sin(x)/x of
order zero, where x = kr, solves the ` = 0 radial dependence of the Helmholtz Equation

r2R′′(r) + 2rR′(r) + k2r2R(r) = 0

(4) Use Rodrigues’ Formula to derive the first three Legendre Polynomials P0(x), P1(x), and
P2(x), and compare to the results given in the course notes.

(5) Two masses 3m and 2m are connected to two identical springs as shown:

The masses are free to move horizontally and one spring is attached to a fixed wall.

(a) Write down Newton’s Second Law for each of the two masses.

(b) Find the eigenfrequencies and describe the motion of the two eigenmodes.

(c) Write x1(t) and x2(t) in terms of four arbitrary constants a, b, c, and d.

(d) Make a plot of x1(t) and x2(t) subject to the initial conditions x1(0) = 1, and x2(0) =
ẋ1(0) = ẋ2(0) = 0. (You can let Mathematica solve for a, b, c, and d.)

(e) For the example in class, we found that the two combinations x±(t) = x1(t) ± x2(t)
oscillated with the two eigenfrequencies. What linear combinations xA(t) and xB(t) of x1(t)
and x2(t) oscillate with the eigenfrequencies in this case? The answer should be clear from
(c) above. Plot xA(t) and xB(t) and show they they oscillate with the correct frequencies.
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(1) (a) The two solutions in this case are y1(x) = xr1 and y2(x)xr2 where r1 and r2 are
distinct real numbers. The Wronskian is

W (x) = y1(x)y′2(x)− y2(x)y′1(x) = r2x
r1+r2−1 − r1x

r1+r2−1 = (r2 − r1)xr1+r2−1

which is nonzero for x away from the singular point at x = 0.

(b) For (α − 1)2 = 4β2, there is one root r = (1 − α)/2 = β to the characteristic equation
giving y(x) = xβ. (If we were to choose −β, then α would be different and it would not be
the same differential equation.) To get a second solution, write y(x) = u(x)xβ and so

y′(x) = u′(x)xβ + βu(x)xβ−1

αxy′(x) = (1− 2β)xy′(x) = (1− 2β)u′(x)xβ+1 + β(1− 2β)u(x)xβ

y′′(x) = u′′(x)xβ + 2βu′(x)xβ−1 + β(β − 1)u(x)xβ−2

x2y′′(x) = u′′(x)xβ+2 + 2βu′(x)xβ+1 + β(β − 1)u(x)xβ

x2y′′(x) + αxy′(x) + β2y(x) = u′′(x)xβ+2 + [2β + (1− 2β)]u′(x)xβ+1

+
[
β(β − 1) + β(1− 2β) + β2

]
u(x)xβ

= [xu′′(x) + u′(x)]xβ+1 = 0

Therefore xu′′(x) + u′(x) = 0, or xv′(x) + v(x) = 0 where v(x) = u′(x). This separable first
order equation for v(x) is easily solved by

dv

v
= −dx

x
so log v(x) = − log x+ log c2 = log

c2

x

so that v(x) = u′(x) = c2/x and u(x) = c1 + c2 log x. This means that the two presumably
independent solutions are y1(x) = xβ and y2(x) = xβ log x. The Wronskian is

W (x) = y1(x)y′2(x)− y2(x)y′1(x)

= xβ
[
xβ−1 + βxβ−1 log x

]
− xβ log x

[
βxβ−1

]
= x2β−1

which, again, is nonzero for x away from the singular point at x = 0



(2) First let’s deal with n! for n < 0. From n! = Γ(n+ 1) and putting m = −n > 0,

n! =

∫ ∞
0

xn−1e−xdx =

∫ ∞
0

e−x

xm+1
dx

which diverges for all positive m because the x→ 0 limit of the integrand becomes 1/xm+1.
Therefore we take n! → ∞ for n < 0, that is 1/n! = 0. (I think this would actually show
up naturally if we derived the Bessel Function expansion explicitly for integer order m < 0.)
Now the series expansion for the Bessel Function is

Jm(x) =
∞∑
k=1

(−1)k

k!(m+ k)!

(x
2

)m+2k

For p = −m > 0, (−p+ k)! will be infinite until k = p. Therefore, with n = k − p,

Jm(x) =
∞∑
k=p

(−1)k

k!(−p+ k)!

(x
2

)−p+2k

=
∞∑
n=0

(−1)n+p

(n+ p)!n!

(x
2

)2k+p

= (−1)pJp(x) = (−1)−mJ−m(x)

That is, J−m(x) = (−1)mJm(x). Therefore

y(x) = c1Jm(x) + c2J−m(x) = y(x) = c1Jm(x) + c2(−1)mJm(x) = [c1 + c2(−1)m] Jm(x)

so this represents only one solution, not two linearly independent ones.

(3) We have R(r) = sin(kr)/kr so

R′(r) = k
cos(kr)

kr
− 1

k

sin(kr)

r2

R′′(r) = −k2 sin(kr)

kr
− cos(kr)

r2
− cos(kr)

r2
+

2

k

sin(kr)

r3

= −k2 sin(kr)

kr
− 2

cos(kr)

r2
+

2

k

sin(kr)

r3

r2R′′(r) + 2rR′(r) + k2r2R(r) = −kr sin(kr)− 2 cos(kr) + 2
sin(kr)

kr

+2 cos(kr)− 2
sin(kr)

kr
+ kr sin(kr) = 0



(4) Rodrigues’ Formula is (3.30), and is with the first few Legendre Polynomials on Page 67
of the notes as I write this. We have

P0(x) =
1

200!

d0

dx0
(x2 − 1)0 = 1

P1(x) =
1

211!

d

dx
(x2 − 1)1 =

1

2
2x = x

P2(x) =
1

222!

d2

dx2
(x2 − 1)2 =

1

8

d2

dx2
(x4 − 2x2 + 1) =

1

8
(12x2 − 4x) =

1

2
(3x2 − 1)

(5) The force on the first mass is F1 = −kx1 + k(x2 − x1), exactly the same as the example
in the notes. However, now the force on the second mass is F2 = −k(x2− x1). Therefore we
need to solve the differential equations

3x′′1(t) + 2ω2
0x1(t)− ω2

0x2(t) = 0 and 2x′′2(t) + ω2
0x2(t)− ω2

0x1(t) = 0

Inserting x1(t) = a1e
iωt and x2(t) = a2e

iωt results in

(2ω2
0 − 3ω2)a1 − ω2

0a2 = 0

−ω2
0a1 + (ω2

0 − 2ω2)a2 = 0

so (2ω2
0 − 3ω2)(ω2

0 − 2ω2) − ω4
0 = ω4

0 − 7ω2
0ω

2 + 6ω4 = (ω2
0 − ω2)(ω2

0 − 6ω2) = 0. Therefore

the eigenfrequencies are ω2
1 = ω2

0 and ω2
2 = ω2

0/6. The amplitude ratios are a
(1)
2 /a

(1)
1 = −1

(same magnitude and 180◦ out of phase) and a
(2)
2 /a

(2)
1 = 3/2 (in phase with a 3:2 ratio). So,

x1(t) = aeiω0t + be−iω0t + ceiω0t/
√

6 + de−iω0t/
√

6

x2(t) = −aeiω0t − be−iω0t +
3c

2
eiω0t/

√
6 +

3d

2
e−iω0t/

√
6

I let Mathematica solve for a, b, c, and d for the given initial conditions. Plots of x1(t)
and x2(t) are shown here:

x1

x2

1 2 3 4
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-0.5

0.5

1.0
xA

xB

1 2 3 4

-1.5
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0.5

1.0

1.5

From the expressions for x1(t) and x2(t) it is clear that the linear combinations are

xA(t) = x1(t) + x2(t) for ω = ω0/
√

6

and xB(t) =
3

2
x1(t)− x2(t) for ω = ω0

Plots of xA(t) and xB(t) are above. The vertical lines mark periods of unity and
√

6.



PHYS2502 Mathematical Physics Homework #7 Due 8 Mar 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Derive the unit vectors r̂, θ̂, φ̂ in spherical polar coordinates in terms of the Cartesian
unit vectors î, ĵ, k̂ and the spherical polar coordinates r, θ, and φ. Your starting point
should be the transformation equations that give you the Cartesian coordinates x, y, and z
in terms of the spherical coordinates.

(2) The kinetic energy of a particle of mass m is K = mv2/2 = m~v ·~v/2, where ~v = d~r/dt is
the particle’s velocity vector. Derive an expression for K in terms of the spherical coordinates
r, θ, and φ and their rates of change ṙ, θ̇, and φ̇ with respect to time. Simplify your result as
much as possible. You can carry all this out with the chain rule and the same transformation
equations you used above in (1), but there is also a much simpler way.

(3) Find an expression for the square of the magnitude of the cross product | ~A × ~B|2 in

terms of the magnitudes of ~A and ~B and their dot product ~A · ~B, in two different ways:

(a) Directly from the definitions of the magnitudes of | ~A× ~B| and ~A · ~B.

(b) Using components and the summation convention, along with the relationship between
the totally antisymmetric symbol and the Kronecker delta.

(4) Show that the gradient operator in spherical coordinates is given by

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

You can do this using the transformation equations and the chain rule for partial derivatives,
but you don’t need to do nearly that much work. Think of the gradient as a “directional
derivative” as discussed in the notes and in class, and use the results of Problem (1) above
to write down what is the change d~r for each of the three orthogonal directions in spherical
coordinates.

(5) Derive the Laplacian in plane polar coordinates, i.e. cylindrical coordinates with no
z-component. That is, show that

~∇2f(r, φ) = ~∇ · ~∇f(r, φ) =

(
r̂
∂

∂r
+ φ̂

1

r

∂

∂φ

)
·
(
r̂
∂f

∂r
+ φ̂

1

r

∂f

∂φ

)
=

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂f

∂φ2

Don’t forget that you need to take into account that r̂ and φ̂ depend explicitly on φ. Writing
these unit vectors in terms of î and ĵ is probably the easiest way to do this.
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(1) The spherical coordinate transformation equations are

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

Therefore, infinitesimal changes in the Cartesian coordinates are

dx = dr sin θ cosφ+ rdθ cos θ cosφ− rdφ sin θ sinφ

dy = dr sin θ sinφ+ rdθ cos θ sinφ+ rdφ sin θ cosφ

dz = dr cos θ − rdθ sin θ

We can now write down d~r and group the terms as follows

d~r = î dx+ ĵ dy + k̂ dz

= î [dr sin θ cosφ+ rdθ cos θ cosφ− rdφ sin θ sinφ]

+ ĵ [dr sin θ sinφ+ rdθ cos θ sinφ+ rdφ sin θ cosφ]

+ k̂ [dr cos θ − rdθ sin θ]

= dr [̂i sin θ cosφ+ ĵ r sin θ sinφ+ k̂ cos θ]

+ rdθ [̂i cos θ cosφ+ ĵ cos θ sinφ− k̂ sin θ]

+ r sin θ dφ [−î sinφ+ ĵ cosφ]

where we recognize that dr is the change in magnitude of d~r when θ and φ are held constant;
rdθ when r and φ are held constant; and r sin θ dφ when r and θ are held constant. (You
can also just force the component to give you a unit magnitude for φ̂.) Therefore

r̂ = î sin θ cosφ+ ĵ r sin θ sinφ+ k̂ cos θ

θ̂ = î cos θ cosφ+ ĵ cos θ sinφ− k̂ sin θ

φ̂ = −î sinφ+ ĵ cosφ

and we write
d~r = r̂ dr + θ̂ rdθ + φ̂ r sin θ dφ



(2) We need to find the expression for ~v = d~r/dt =~̇r in spherical coordinates, and then take
the dot product of it with itself. So, we need the derivatives

ẋ = ṙ sin θ cosφ+ rθ̇ cos θ cosφ− rφ̇ sin θ sinφ

ẏ = ṙ sin θ sinφ+ rθ̇ cos θ sinφ+ rφ̇ sin θ cosφ

ż = ṙ cos θ − rθ̇ sin θ

It’s tempting to just peck this into Mathematica to simply the squares, but. . .

ẋ2 = ṙ2 sin2 θ cos2 φ+ r2θ̇2 cos2 θ cos2 φ+ r2φ̇2 sin2 θ sin2 φ

+ 2rṙθ̇ sin θ cos θ cos2 φ− 2rṙφ̇ sin2 θ cosφ sinφ− 2r2θ̇φ̇ cos θ sin θ cosφ sinφ

ẏ2 = ṙ2 sin2 θ sin2 φ+ r2θ̇2 cos2 θ sin2 φ+ r2φ̇2 sin2 θ cos2 φ

+ 2rṙθ̇ sin θ cos θ sin2 φ+ 2rṙφ̇ sin2 θ cosφ sinφ+ 2r2θ̇φ̇ cos θ sin θ cosφ sinφ

ẋ2 + ẏ2 = ṙ2 sin2 θ + r2θ̇2 cos2 θ + r2φ̇2 sin2 θ + 2rṙθ̇ sin θ cos θ

ż2 = ṙ2 cos2 θ + r2θ̇2 sin2 θ − 2rṙθ̇ cos θ sin θ

Therefore, the kinetic energy is

K =
1

2
ṁ~r ·~̇r =

1

2
m(ẋ2 + ẏ2 + ż2) =

1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2)

The simple way to do this problem is to just use the results of (1) above. We saw that

d~r = dr r̂ + rdθ θ̂ + r sin θdφ φ̂ so ~̇r = ṙr̂ + rθ̇ θ̂ + r sin θφ̇ φ̂

which immediately gives~̇r2 = ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2.

(3) (a) For two vectors ~A and ~B with a planar angle ψ between them, | ~A× ~B| = AB sinψ

and ~A · ~B = AB cosψ, where I simply write A = | ~A| and B = | ~B|. Therefore

| ~A× ~B|2 = A2B2 sin2 ψ = A2B2(1− cos2 ψ) = A2B2 − ( ~A · ~B)2

(b) In coordinates and the summation convention ( ~A× ~B)i = εijkAjBk and ~A · ~B = AiBi, so

| ~A× ~B|2 = εijkAjBkεimnAmBn = εijkkεimnAjBkAmBn

= (δjmδkn − δjnδkm)AjBkAmBn = AjBkAjBk − AjBkAkBj

= (AjAj)(BkBk)− (AjBj)(AkBk) = A2B2 − ( ~A · ~B)2



(4) Reiterating from Problem (1), we have

d~r = r̂ dr + θ̂ rdθ + φ̂ r sin θ dφ

That is, the change in the r-direction is dr, the change in the θ-direction is rdθ, and the
change in the φ-direction is r sin θ dφ. Therefore, the gradient operator is

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

If you want to do this problem by taking all of the partial derivative chain rule, that’s
certainly possible, but very tedious. Maybe it’s a good exercise to work it through in Math-
ematica.

(5) The notes derive the unit vectors in plane polar coordinates as

r̂ = î cosφ+ ĵ sinφ and φ̂ = −î sinφ+ ĵ cosφ

Notice that these unit vectors depend on φ but not on r. In fact, ∂r̂/∂φ = φ̂ and ∂φ̂/∂φ = −r̂.
Now put these into the expression we’re given and plow through to get

~∇2f(r, φ) =

(
r̂
∂

∂r
+ φ̂

1

r

∂

∂φ

)
·
(
r̂
∂f

∂r
+ φ̂

1

r

∂f

∂φ

)
= r̂

∂

∂r
·
(
r̂
∂f

∂r
+ φ̂

1

r

∂f

∂φ

)
+ φ̂

1

r

∂

∂φ
·
(
r̂
∂f

∂r
+ φ̂

1

r

∂f

∂φ

)
= r̂ ·

(
r̂
∂2f

∂r2
− φ̂ 1

r2

∂f

∂φ
+ φ̂

1

r

∂2f

∂r∂φ

)
+φ̂

1

r
·

(
∂r̂

∂r

∂f

∂r
+ r̂

∂2f

∂r2
+
∂φ̂

∂φ

1

r

∂f

∂φ
+ φ̂

1

r

∂2f

∂φ2

)

=
∂2f

∂r2
− 0 + 0

+φ̂
1

r
·
(
φ̂
∂f

∂r
+ r̂

∂2f

∂r2
− r̂1

r

∂f

∂φ
+ φ̂

1

r

∂2f

∂φ2

)
=

∂2f

∂r2
+

1

r

∂f

∂r
+ 0− 0 +

1

r2

∂2f

∂φ2

=
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂φ2



PHYS2502 Mathematical Physics Homework #8 Due 15 Mar 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) For a scalar field f(~r) over some volume V in three dimensional space, prove that∫
V

~∇f dV =

∮
S

f d~S

where S is the surface enclosing V . You can use the “cut the volume up into little bricks”
approach we used in class, or you can try inventing a vector field ~A = f ~C where ~C is some
arbitrary constant vector, and then use a different surface theorem.

(2) Calculate the curl of the following vector field in both Cartesian coordinates and cylin-
drical polar coordinates:

~A(~r) = − îy − ĵx
x2 + y2

=
φ̂

r

Now calculate directly the line integral
∮
~A · d~̀ around a closed circle of radius R in the xy

plane, centered at the origin. (I suggest you do this with the polar coordinate expression.)
Can you reconcile these two seemingly inconsistent results?

(3) Calculate the divergence of the following vector field in both Cartesian coordinates and
spherical polar coordinates:

~A(~r) =
îx+ ĵy + k̂z

(x2 + y2 + z2)3/2
=

r̂

r2

Now calculate directly the surface integral
∮
~A · d~S around a sphere of radius R, centered at

the origin. (I suggest you do this with the polar coordinate expression.) Can you reconcile
these two seemingly inconsistent results?

(4) Use the “Separation of Variables” approach to solve the partial differential equation

4
∂2u

∂x2
=
∂u

∂t

for the function u(x, t) with the initial condition u(x, 0) = sin(πx/2) and boundary conditions
u(2, t) = u(0, t) = 0.

(5) Look for a solution to the Helmholtz Equation ~∇2f(r, φ) + k2f(r, φ) = 0 in plane polar
coordinates by writing f(r, φ) = R(r)Φ(φ). Now insist that Φ(φ+ 2π) = Φ(φ), that is Φ(φ)
must be “single valued”, and show that solutions for R(r) must be Bessel Functions Jm(kr)
of integer order m.
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(1) The “little bricks” derivation is simple. Consider first just the x-component of a little
brick. The two contributions are f(x + dx, y, z) dy dz î on one side, and f(x, y, z) dy dz (−î)
on the other side, so the x-component of the surface integral is

f(x+ dx, y, z) dy dz − (x, y, z) dy dz =
f(x+ dx, y, z)− (x, y, z)

dx
dx dy dz → ∂f

∂x
dV

The surface integrals cancel on adjacent bricks, leaving only the outside surface when we
add things up into an integral. Similarly for the y- and z- components, and we’re done.

The other way is slicker. Use the divergence theorem. Since ~∇· ~A = ~C · ~∇f (which is simple
to prove just by looking at the components), we have∫

V

~∇ · ~AdV = ~C ·
∫
V

~∇f dV =

∮
S

~A · d~S = ~C ·
∮
S

f d~S

From here, you can write that

~C ·
[∫

V

~∇f dV −
∮
S

f d~S

]
= 0

and argue that since ~C is arbitrary, then the expression in square brackets must be zero. Or
you could go through this equation component by component, setting ~C = î, ĵ, and k̂.

(2) In Cartesian coordinates, there is only a z-component to the curl since ~A has no z-
component and there is no z-dependence to it. We have

(~∇× ~A)z =
∂Ay
∂x
− ∂Ax

∂y
=

1

x2 + y2
− x

(x2 + y2)2
(2x) +

1

x2 + y2
− y

(x2 + y2)2
(2y)

=
x2 + y2 − 2x2 + x2 + y2 − 2y2

(x2 + y2)2
= 0

In cylindrical coordinates, there is only a φ-component and it only depends on r. It is clear
from the formula for the curl that there is, again, only a z-component, and

(~∇× ~A)z =
1

r

∂

∂r
(rAphi) =

1

r

∂

∂r
(1) = 0

OK, the curl is zero. However, for the circle, d~̀= φ̂ Rdφ so∮
~A · d~̀=

∮
1

R
Rdφ = 2π

which is most certainly not zero. It seems that Stokes’ Theorem implies that 0 = 2π.

Such nonsense is avoided because the curl is zero everywhere except at x = y = 0. It is
clearly undefined there, because the denominator of the field goes to zero. The solution
turns out to be defined in terms of the Dirac δ-function, which we will cover later. Indeed,
this is the problem of a magnetic field from an infinitely long straight wire.



(3) In Cartesian coordinates, the divergence is

~∇ · ~A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

=
1

(x2 + y2 + z2)3/2
− 3

2

x

(x2 + y2 + z2)5/2
2x

+
1

(x2 + y2 + z2)3/2
− 3

2

y

(x2 + y2 + z2)5/2
2y

+
1

(x2 + y2 + z2)3/2
− 3

2

z

(x2 + y2 + z2)5/2
2z

=
3(x2 + y2 + z2)− 3x2 − 3y2 − 3z2

(x2 + y2 + z2)5/2
= 0

In spherical coordinates, there is only the r-component so

~∇ · ~A =
1

r2

∂

∂r
(r2Ar) =

1

r2

∂

∂r
(1) = 0

So the divergence is zero. However, if we consider the volume enclosed by a sphere of radius
R centered at the origin, then the surface element is d~S = r̂ dS and∮

S

~A · d~S =
1

R2

∮
S

dS =
1

R2
4πR2 = 4π

which is not zero. Again, it looks like Gauss’ Theorem is violated. However, we cannot say
the divergence is zero at the origin where the field tends to infinity. Indeed, it’s another
Dirac δ-function. This is the field of a point electric charge, of course.

(4) Start by writing u(x, t) = X(x)T (t) which leads to

4
1

X

d2X

dx2
=

1

T

dT

dt

Using the standard argument, the left side only depends on x and the right only depends on
t, so both sides must equal a constant. If you call the constant −k2 where k is real, then

d2X

dx2
= −k

2

4
X so X(x) = a cos

(
kx

2

)
+ b sin

(
kx

2

)
We also have

dT

dt
= −k2T so T (t) = ce−k

2t

Redefining a and b to absorb c, we have the general solution

u(x, t) =

[
a cos

(
kx

2

)
+ b sin

(
kx

2

)]
e−k

2t

Clearly we need k = π to satisfy the initial condition u(x, 0) = sin(πx/2). In this case

u(x, t) =
[
a cos

(πx
2

)
+ b sin

(πx
2

)]
e−π

2t

Setting u(0, t) = 0 implies that a = 0, so b = 1 for the boundary condition and the final
solution is

u(x, t) = sin
(πx

2

)
e−π

2t



(5) The Helmholtz Equation in plane polar coordinates is

1

r

∂

∂r

[
r
∂f

∂r

]
+

1

r2

∂2f

∂φ2
= −k2f(r, φ)

Substituting f(r, φ) = R(r)Φ(φ), and multiplying through by r2/RΦ, you arrive at

1

R

1

r

d

dr

[
r
dR

dr

]
+

1

Φ

1

r2

d2Φ

dφ2
= −k2RΦ so

1

R
r
d

dr

[
r
dR

dr

]
+ k2r2 = − 1

Φ

d2Φ

dφ2

and we have the familiar situation where both sides of the equation have to equal some
constant in order to be equal to each other. If you set the constant equal to m2, then

d2Φ

dφ2
= −m2Φ(φ) so Φ(φ) = eimφ

where we ignore a possible constant factor since we aren’t concerned with boundary condi-
tions. We also recognize that m can be either positive or negative, and won’t bother with
the two separate solutions. Now to enforce single valuedness, Φ(φ + 2π) = Φ(φ), we need
eim2π = cos(m2π)+i sin(m2π) = 1 so m needs to be an integer. The radial equation becomes

r
d

dr

[
r
dR

dr

]
+ k2r2 = r2d

2R

dr2
+ r

dR

dr
+ k2r2 = m2R(r)

If we write x ≡ kr and define Q(x) = R(r) then r(d/dr) = x(d/dx), r2(d2/dr2) = x2(d/dx2)
and this equation becomes

x2d
2Q

dx2
+ x

dQ

dx
+ (x2 −m2)Q = 0

which in fact is Bessel’s Equation of order m, where m is an integer.



PHYS2502 Mathematical Physics Homework #9 Due 22 Mar 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A function u(x, t) satisfies the wave equation in one dimension x with velocity v. The
initial conditions are u(x, 0) = p(x), for an arbitrary function p(x), and u̇(x, 0) = 0. Show
that the time development of the wave corresponds to the “splitting” of p(x) into two pieces,
one moving to the left and the other moving to the right, each being an exact copy of p(x)
but divided by two.

(2) A wave u(x, t) = g(x+ vt) moves to the left along a string on the positive x-axis.

(a) Assume the string is fixed at x = 0 so that it cannot move, that is u(0, t) = 0. Find the
motion of the string for x ≥ 0 for all times.

(b) Now ssume the string is free to move up and down at x = 0, and does so in a way that
it is always horizontal, that is ∂u(x, t)/∂x|x=0 = 0. Once again find the motion of the string
for x ≥ 0 for all times.

(3) Use a Fourier Sine decomposition to find the motion of a string that is fixed at x = 0 and
x = L, and that starts from rest with an initial shape u(x, 0) = (2/L)4x2(x − L)2. (You’ll
want to use Mathematica for this problem.) Follow the procedure in the notes for the
lopsided triangle wave, and compare to your numerical solution from Lab #8. I encourage
you do do this with an animation.

(4) This problem concerns the Fourier Transform and width of the Gaussian function

f(x) =
1

σ
√

2π
e−x

2/2σ2

(a) Find the Fourier Transform A(k) of f(x). The integral is not hard to do. Just complete
the square in the exponent, and use what you know about Gaussian integrals.

(b) Calculate the “width” ∆x (that is, the square root of the variance) of f(x). (See the
notes for details.) Again make use of what you know about Gaussian integrals.

(c) Next find the width ∆k of A(k).

(d) Determine the product ∆x∆k. How does this compare to the same result for the triangle
pulse that we derived in class?

(5) Show that the following relationships are consistent with the fundamental definition of
the δ-function. You can make use of results derived in the notes, but you’ll likely find it
useful to emply integration by parts.

(a) xδ(x) = 0

(b) xδ′(x) = −δ(x)

(c) x2δ′′(x) = 2δ(x)
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(1) Start with the general solution u(x, t) = f(x− vt) + g(x+ vt) and follow your nose.

u(x, t) = f(x− vt) + g(x+ vt)

u(x, 0) = f(x) + g(x) = p(x)

u̇(x, t) = −vf ′(x− vt) + vg′(x+ vt)

u̇(x, 0) = −vf ′(x) + vg′(x) = 0

For the last equation, divide by v and integrate to get −f(x) + g(x) = c. Add this to the
second equation above f(x) + g(x) = p(x) to find 2g(x) = p(x) + c or g(x) = p(x)/2 + c/2.
This leads to f(x) = p(x)− g(x) = p(x)/2− c/2, so the final solution is

u(x, t) =
1

2
[p(x− vt)− c] +

1

2
[p(x+ vt) + c] =

1

2
p(x− vt) +

1

2
p(x+ vt)

which is, mathematically, precisely what we were asked to show.

(2) (a) The solution is u(x, t) = g(x+vt)−g(−x+vt) which is clearly a solution to the wave
equation and which satisfies u(0, t) = 0. Physically, we combine a rightward moving wave in
the “virtual” space x ≤ 0 with the leftward moving wave in the physical space. The wave
reflects at x = 0 and reverses the sign of the shape function g(z). (b) This time the solution
is u(x, t) = g(x + vt) + g(−x + vt) since ∂u/∂x = g′(x + vt)− g′(−x + vt) which is zero at
x = 0. The wave again reflects at x = 0, but the sign of the shape function is unchanged.

(3) See the Mathematica notebook. The result looks just like the numerical solution from
the lab exercise.



(4) Recall two results from Section 1.5.6 of the notes, namely∫ ∞
−∞

e−ax
2

dx =

√
π

a
and

∫ ∞
−∞

x2e−ax
2

dx =
1

2

√
π

a3

You can find the Fourier Transform exactly as suggested in the assignment, namely

A(k) =

∫ ∞
−∞

e−ikxf(x)dx =
1

σ
√

2π

∫ ∞
−∞

e−x
2/2σ2−ikxdx =

1

σ
√

2π

∫ ∞
−∞

e−(x−ikσ2)2/2σ2

e−k
2σ2/2dx

The integral can be done trivially with the substitution y = x− ikσ which turns it into the
standard Gaussian integral, so

A(k) =
1

σ
√

2π
σ
√

2πek
2σ2/2 = e−σ

2k2/2

which is just another Gaussian. The width of f(x) is also easy to calculate. Since∫ ∞
−∞

f(x) dx =
1

σ
√

2π

∫ ∞
−∞

e−x
2/2σ2

dx =
1

σ
√

2π

√
π2σ2 = 1

we just go ahead with the integral of x2 and write

(∆x)2 =

∫ ∞
−∞

x2f(x) dx =
1

σ
√

2π

∫ ∞
−∞

x2e−x
2/2σ2

=
1

σ
√

2π

1

2

√
π8σ6 = σ2

In other words ∆x = σ. Proceeding similarly to get ∆k, first we calculate∫ ∞
−∞

A(k) dk =

∫ ∞
−∞

e−σ
2k2/2 dk =

√
2π

σ2
=

√
2π

σ

Now we can calculate the width of the Fourier Transform as

(∆k)2 =
σ√
2π

∫ ∞
−∞

k2A(k) dk =
σ√
2π

∫ ∞
−∞

k2e−σ
2k2/2 dk =

σ√
2π

1

2

√
8π

σ6
=

1

σ2

which is a result we might have guessed. Therefore ∆k = 1/σ and ∆x∆k = 1. This is
smaller than for the triangle wave. In fact, the Gaussian pulse gives the smallest possible
product. Essentially, this is the uncertainty principle from quantum mechanics.



(5) Firstly, for (a), we just use∫ ε

−ε
f(x)δ(x) dx = f(0) so

∫ ε

−ε
xδ(x) dx = x|x=0 = 0

By definition, the function δ(x) is zero for all x 6= 0, but is “large enough” at x = 0 so that
its definite integral over a range including x = 0 gives unity. Therefore, for (b),∫ ε

−ε
xδ′(x) dx = [xδ(x)]ε−ε −

∫ ε

−ε
(1)δ(x) dx = −

∫ ε

−ε
δ(x) dx

so xδ′(x) = −δ(x). For (c), make use of (b) and get∫ ε

−ε
x2δ′′(x) dx =

[
x2δ′(x)

]ε
−ε −

∫ ε

−ε
(2x)δ′(x) dx = [−xδ(x)]ε−ε +

∫ ε

−ε
2δ(x) dx =

∫ ε

−ε
2δ(x) dx

so x2δ′′(x) = 2δ(x)



PHYS2502 Mathematical Physics Homework #10 Due 29 Mar 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Find the inverse A−1 for the matrix

A =

 1 1 1
1 0 1
1 0 −1


by solving the system of equations Ax = c for the vector x in terms of an arbitrary vector c

and expressing your result as x = A−1c. Try using MatrixForm[Inverse[A]] in Mathematica
to check your answer.

(2) Use the orthogonality of the Legendre Polynomials to derive an infinite series that gives
f(x) = ex over the domain −1 ≤ x ≤ 1 in the form of a “Shin expansion”

f(x) =
∞∑
`=0

A`P`(x)

Plot your result for some number of terms of the series and compare to f(x). Note that it
is natural to carry out this calculation using Mathematica, but you might be surprised at
how few terms you need to get a good approximation.

(3) The trace tr(A) of a matrix A is defined as the sum over the diagonal elements of A,
that is tr(A) = Aii. Prove that tr(AB) = tr(BA) for any two matrices A and B, regardless
of whether or not they commute.

(4) Consider rotations in 3D space, recalling how we describe rotations in a plane.

(a) Find the 3× 3 matrix A that rotates a vector by 90◦ around the z-axis.

(b) Find the 3× 3 matrix B that rotates a vector by 90◦ around the x-axis.

(c) Show that AB 6= BA by explicit matrix multiplication.

(d) For the vector v = ĵ, the unit vector in the y-direction, calculate AB v and BAv. Sketch
diagrams that demonstrate these unequal results. (Don’t be too concerned about the sign
of the rotation angle.)

(5) Find the norms of the vectors v and u below, and also show that they are orthogonal to
each other. Then find some vector w with unit norm that is orthogonal to both v and u.

v =

 i
1
−1

 u =

 2i
−2

0


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(1) The system of linear equations we need to solve is

x+ y + z = a

x+ z = b

x− z = c

The last two give x = (b+ c)/2 and z = (b− c)/2, so

y = a− x− z = a− b+ c

2
− b− c

2
= a− b

so the solution is

x =
1

2
b+

1

2
c

y = a− b

z =
1

2
b− 1

2
c

which says that

A−1 =

 0 1
2

1
2

1 −1 0
0 1

2
−1

2


which agrees with the answer from Mathematica.

(2) The orthogonality relationship for the Legendre polynomials is∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm

This shows right away that the coefficients in the Shin expansion are

A` =
2`+ 1

2

∫ 1

−1

f(x)P`(x) dx

See the Mathematica notebook for the code used to make the plots below. On the left
is the comparison between f(x) = ex and the result for `max = 2. For `max = 10, the right
shows the difference between ex and the approximation.
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(3) tr(AB) = (AB)ii = AijBji = BjiAij = (BA)jj = tr(BA)

(4) A rotation about the z-axis is a rotation in the xy plane, and we know how to do that:

A =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


φ=90◦

=

 0 −1 0
1 0 0
0 0 1


This does what you expect to the x, y, z unit vectors: 0 −1 0

1 0 0
0 0 1

 1
0
0

 =

 0
1
0

  0 −1 0
1 0 0
0 0 1

 0
1
0

 =

 −1
0
0

  0 −1 0
1 0 0
0 0 1

 0
0
1

 =

 0
0
1


That is, it turns a unit vector in the x-direction into the y-direction, y into −x, but leaves
z unchanged. Similarly, a 90◦ rotation about the x-axis turns z into y and y into −z, so

B =

 1 0 0
0 0 1
0 −1 0


So now multiply these two matrices in different order and see what happens.

AB =

 0 −1 0
1 0 0
0 0 1

 1 0 0
0 0 1
0 −1 0

 =

 0 0 −1
1 0 0
0 −1 0


BA =

 1 0 0
0 0 1
0 −1 0

 0 −1 0
1 0 0
0 0 1

 =

 0 −1 0
0 0 1
−1 0 0


Indeed, these two matrices are not equal. Look at what these do to a y unit vector:

BAey =

 0 −1 0
0 0 1
−1 0 0

 0
1
0

 =

 −1
0
0

 AB ey =

 0 0 −1
1 0 0
0 −1 0

 0
1
0

 =

 0
0
−1


That is BA turns ey into −ex, and AB turns ey into −ez.

The following diagrams show what this looks like physically. There is a little bit of trickiness
to the sign of the angle, but that’s not important.



(5) In terms of components, 〈u|v〉 = u∗i vi, in general, so

〈v|v〉1/2 =
√

(−i)i+ 1(1) + (−1)(−1) =
√

3

〈u|u〉1/2 =
√

(−2i)2i+ (−2)(−2) + (0)(0) = 2
√

2

〈u|v〉 = (−2i)i− 2(1) + 0(−1) = 2− 2 = 0

To find w, we have the three equations

i w1 + w2 − w3 = 0

2i w1 − 2w2 = 0

|w1|2 + |w2|2 + |w3|2 = 1

so w2 = iw1 and w3 = iw1 + w2 = 2iw1. Therefore

|w1|2 + |w2|2 + |w3|2 = |w1|2 + |w1|2 + |2w1|2 = 6|w1|2 = 1

so any w1 with modulus 1/
√

6 will do. We might as well make it real, so

w =

 1/
√

6

i/
√

6

2i/
√

6





PHYS2502 Mathematical Physics Homework #11 Due 5 Apr 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Use the properties of determinants to prove that AB = 0 implies that either |A| = 0 or
|B| = 0, or both, where 0 is the matrix of all zeros. Demonstrate this with the matrices

A =

[
1 1
2 2

]
and B =

[
a b
−a −b

]
where a and b can be any complex numbers. Which matrix has zero determinant?

(2) Follow the procedure we went through in class to find the symmetry axes of the conic
section 6x2 + 12xy + y2 = 16, and find the angle they make with the x, y axes. What kind
of curve is this? A plot would be helpful. You can do this with Mathematica if you want,
but the necessary algebra is rather simple.

(3) Find the eigenvalues and eigenvectors for the matrix

σ
y

=

[
0 −i
i 0

]
one of the three Pauli matrices. Do this by hand, not with Mathematica. Normalize the
eigenvectors and show that they are orthogonal.

(4) Find the eigenvalues, two of which equal each other, of the real symmetric matrix

A =

 13 4 −2
4 13 −2
−2 −2 10


Construct the three eigenvectors by hand, not with Mathematica. You will find you have
more freedom than you would have thought. Do you see how to use this freedom to make
all three eigenvectors mutually orthogonal?

(5) Find the eigenfrequencies and eigenmodes for the mechanical system

Make a plot that shows the motions of each of the three masses, for the three sets of initial
conditions where the masses start at rest with position given by each of the three eigenvectors.
Briefly describe the motions of the three masses, for each of the eigenmodes.
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(1) Since |AB| = |0| = 0 and |AB| = |A||B|, we must have |A||B| = 0, so either |A| = 0 or
|B| = 0, or both. For the two given matrices

AB =

[
1 1
2 2

] [
a b
−a −b

]
=

[
a− a b− b

2a− 2a 2b− 2b

]
=

[
0 0
0 0

]
The second row of A is a constant (2) times the first row, and the second row of B is a
constant (−1) times the first row, so the determinants of both matrices are zero.

(2) It is a simple matter to modify the “Tilted Ellipse” example from class (which is posted on
the website) to run this problem, so that’s what I did. See the accompanying Mathematica
notebook. The eigenvalues are 10 and −3, and opposite signs mean the curve is a hyperbola.
The rotation matrix is [

3/
√

13 −2/
√

13

2/
√

13 3/
√

13

]
so the equations of the axes are y = −3x/2 and y = 2x/3, and the angle of rotation is
cos−1(3/

√
13) = 33.7◦. Following is the plot analogous to what we did in the example:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(3) The point of this problem is simply to warm up for quantum mechanics. We do∣∣∣∣ −λ −i
i −λ

∣∣∣∣ = λ2 − (i)(−i) = λ2 − 1 = 0

so the two eigenvalues are λ = ±1. For λ = 1 the eigenvector equation for the bottom
component says iv

(1)
x − v(1)

y = 0 so v
(1)
y = iv

(1)
x , and for λ = −1 the eigenvector equation for

the bottom component says iv
(−1)
x + v

(−1)
y = 0 so v

(−1)
y = −iv(−1)

x , giving the eigenvectors

v(1) =
1√
2

[
1
i

]
and v(−1) =

1√
2

[
1
−i

]
with ṽ(1) v(−1) =

1

2
[1(1) + (−i)(−i)] = 0



(4) Follow the standard procedure to get the characteristic equation and the eigenvalues.

A =

∣∣∣∣∣∣
13− λ 4 −2

4 13− λ −2
−2 −2 10− λ

∣∣∣∣∣∣ = −
[
(λ− 18)(λ− 9)2

]
= 0

where I used Simplify[Det[A -λ IdentityMatrix[3]]] to do the calculation. Therefore, the three
eigenvalues are λ(1) = 18 and λ(2) = 9 = λ(3), that is, a repeating eigenvalue. For λ = λ(1),

A =

 −5 4 −2
4 −5 −2
−2 −2 −8


 v

(1)
1

v
(1)
2

v
(1)
3

 =

 0
0
0


Thinking of this as three equations, it is easy to see the adding the first two and then
multiplying by two gives the third equation. That is, the third equation is not independent
of the other two, and we can write

−5v
(1)
1 + 4v

(1)
2 − 2v

(1)
3 = 0

4v
(1)
1 − 5v

(1)
2 − 2v

(1)
3 = 0

Subtract these two to get −9v
(1)
1 + 9v

(1)
2 = 0 or v

(1)
2 = v

(1)
1 , so −v(1)

1 − 2v
(1)
3 = 0 and

v
(1)
3 = −v(1)

1 /2. The normalized eigenvector is therefore

v(1) =
1

3

 2
2
−1


which is confirmed by Mathematica. Now for λ = λ(2) = λ(3) = 9,

A =

 4 4 −2
4 4 −2
−2 −2 1


 v

(λ)
1

v
(λ)
2

v
(λ)
3

 =

 0
0
0


and all three equations are the same, namely v

(λ)
3 = 2v

(λ)
1 + 2v

(λ)
2 . One approach is to set

v
(λ)
2 = 0 in which case v

(λ)
3 = 2v

(λ)
1 and then v

(λ)
3 = 0 in which case v

(λ)
2 = −v(λ)

1 and then
normalize them. In fact this is what Mathematica gives you, but this does not result in
orthogonal eigenvectors. However, orthogonality can be added as another constraint, and
this works because any vector av(2) + bv(3) would still have eigenvalue λ = 9. That is,
orthogonality can get you to find a and b. This is enough for now, but it was worth the
effort it took to get to this point. You’ll see more of this when you study quantum mechanics.

(5) It is straightforward to write down the three equations of motion, namely

mẍ1 = −kx1 + k(x2 − x1) = −2kx1 + kx2

mẍ2 = −k(x2 − x1) + k(x3 − x2) = kx1 − 2kx2 + kx3

mẍ3 = −k(x3 − x2)− k − x3 = kx2 − 2kx3

Defining ω2
0 = k/m and setting xi = aie

iωt gives ω2a = ω2
0Ω a where

Ω =

 2 −1 0
−1 2 −1

0 −1 2

 and a =

 a1

a2

a3





which is an eigenvalue problem for the symmetric real matrix Ω where the eigenvalues are
λ = ω2/ω2

0. For the rest, see the accompanying Mathematica notebook. The eigenvalues
are λ(1) = 2 +

√
2, λ(2) = 2, and λ(3) = 2−

√
2. Plots of the motions are below. In the high

frequency mode (1), masses 1 and 3 are in phase with each other with the same amplitude,
and the middle mass oscillates against them with a bit larger amplitude. In the middle
frequency mode (2), mass 2 is stationary and masses 1 and 3 oscillation against each other,
with the same amplitude. In low frequency mode (3), all three masses oscillate in phase,
with the amplitude of mass 2 a bit larger than the amplitudes of masses 1 and 3.
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PHYS2502 Mathematical Physics Homework #12 Due 12 Apr 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A particle of mass m moves in one dimension x over some time interval t1 ≤ t ≤ t2,
under the influence of a force F (x) = −dV/dx, some function V (x). Show that finding the
function x(t) which minimizes

S =

∫ t2

t1

L(x, ẋ) dt where L(x, ẋ) =
1

2
mẋ2 − V (x)

is the same as showing that x(t) is determined by Newton’s Second Law of Motion. Then
show that since L does not explicitly depend on t, total mechanical energy is conserved.

(2) We discussed in class two special cases which allowed the Euler-Lagrange equations to
be integrated once. In fact, when we first started talking about the Calculus of Variations,
we found that a straight line gave the shortest distance between two points, using the first
of these special cases. Show that the functional for the shortest path between two points
is also an example of the second special case, and use that form to show that solution is a
straight line. (As I write this, the second case is shown in Equation 7.7, Section 7.2.1 in the
course notes.)

(3) Use Mathematica to find and plot the brachistochrone solution for a bead starting at
the origin and ending at (a, b) = (1, 2).

(4) A “surface of revolution” is formed when
a shape given by y = f(x) for a ≤ x ≤ b is
rotated about the x-axis, as shown in the fig-
ure. Find the form of thefunction f(x) which
minimizes the surface area. You don’t need to
solve for the constants of integration in terms
of the fixed points of f(x) at x = a and x = b.

4/4/22, 1:31 PMArea of a Surface of Revolution

Page 3 of 19https://math24.net/area-surface-revolution.html

Figure 1.

2 If the curve is described by the function   and

rotated about the axis, then the area of the surface of revolution is given by

x = g (y), c ≤ y ≤ d,

x−

A = 2π

d

∫
c

y√1 + [g′ (y)]2dy.

(5) A chain of length L > 2a hangs freely between two points x = ±a on the x-axis in the xy
plane. Find the equation f(x) that describes the resting shape of the chain, assuming that
this is the shape that minimizes the center of gravity. Of course, the length L must remain
fixed, and f(±a) = 0. Eliminate whichever constants of integration are easiest, but come
up with a simple physical interpretation of the Lagrange multiplier used to set the length
constraint.
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(1) Just apply the Euler Lagrange equation where the independent variable is t and the
dependent variable is x(t). Then

∂L

∂x
− d

dt

∂L

∂ẋ
= −dV

dx
− d

dt
mẋ = F −mẍ = 0 so F = mẍ = ma

The “second special case” applies since ∂L/∂t = 0, so

L− ẋ∂L
∂ẋ

=
1

2
mẋ2 − V (x)− ẋ(mẋ) = −1

2
mẋ2 − V (x) = constant ≡ −E

(2) For the straight line, we apply the Euler Lagrange equation to

F [f ′(x)] =
[
1 + (f ′(x))

2
]1/2

which indeed does not depend explicitly on x. The special case therefore gives

F − f ′ ∂F
∂f ′

=
[
1 + (f ′(x))

2
]1/2

− f ′(x)
f ′(x)[

1 + (f ′(x))2]1/2
=

1[
1 + (f ′(x))2]1/2 [1 + (f ′(x))

2 − (f ′(x))
2
]

=
1[

1 + (f ′(x))2]1/2 = constant

which implies that f ′(x) =constant, so, once again, the solution is a straight line.

(3) The equation of the cycloid is

x =
c

2
(2θ − sin 2θ)

y = −c sin2 θ

where it is easier to plot by letting y be negative going downward. Setting θ = 0 gives the
starting point at the origin. Setting x = a and y = (−)b gives two equations to solve for c
and the ending value of θ = θend. Use b = c sin2 θ to eliminate c in the first equation, and
numerically find that value of θend that solves the second equation. See the accompanying
Mathematica notebook. For (a, b) = (1, 2) I find θend = 0.70069. Here is the plot:
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(4) The radius of a thin “hoop” at horizontal position x is y = f(x) and the width of the
hoop is just ds, so adding up the hoop gives us the surface area

S =

∫ b

a

2πy ds = 2π

∫ b

a

y
√

1 + y′2 dx

so we apply the Euler-Lagrange equation to F (y, y′) = y
√

1 + y′2 . This is another example
of the “second special case” since ∂F/∂x = 0. Therefore

F − y′∂F
∂y′

= y
√

1 + y′2 − yy′ y′√
1 + y′2

=
y√

1 + y′2

[
1 + y′

2 − y′2
]

=
y√

1 + y′2
= constant

Squaring both sides and rearranging a little gives

y2 = c2(1 + y′
2

) or
dy

dx
=

√
y2

c2
− 1 or

√
c2

y2 − c2
dy = dx

where c is some constant. The left side is integrated easily if y = c cosh t. In this case we
have y2 − c2 = c2 sinh2 t and dy = c sinh t dt so that√

c2

c2 sinh2 t
c sinh t dt = c dt = dx so x = ct+ b

where b is the second constant of integration. This gives a neat form for y = f(x), namely

y = f(x) = c cosh

(
x− b
c

)



(5) Let the chain have a linear mass density µ. If the chain hangs in the xy plane with +y
vertical, with shape y = f(x), then the center of gravity is given by

S =
1

µL

∫ a

−a
y µds =

1

L

∫ a

−a
y

√
1 +

(
dy

dx

)2

dx

In order to keep the length constant, we use a Lagrange multiplier λ with the integral of ds.
We won’t bother keeping the constant 1/L and write

δ

∫ a

−a

y
√

1 +

(
dy

dx

)2

+ λ

√
1 +

(
dy

dx

)2

 dx = δ

∫ a

−a
(y + λ)

√
1 +

(
dy

dx

)2

dx = 0

Note that, just as in the case of the maximum area under a flexible ‘ ‘rope”, the multiplier
handles the difference in units of the two quantities. If we wanted to keep the L in the above
expression, then the multiplier would be as a fraction of L.

This is, again, an example of special case #2, since there is no explicit x dependence, so

(y + λ)
√

1 + y′2 − y′2(y + λ)
1√

1 + y′2
=

y + λ√
1 + y′2

= constant

At this point, things look very similar to Problem (4). We write

(y + λ)2 = c2(1 + y′
2

) so
dy

dx
=

√
(y + λ)2

c2
− 1

so make the substitution y + λ = c cosh t and so dy = c sinh t dt and then√
1

sinh2 t
c sinh t dt = ct = dx so x = ct+ b

and the equation describing the hanging chain is

y = c cosh

(
x− b
c

)
− λ

Since y = 0 and x = ±a we have c cosh[(a ± b)/c] = λ which can only be satisfied if b = 0.
That is, the catenary is symmetric about the y-axis, as you would expect. This also tells
us that λ = c cosh(a/c) so we could find c and λ after applying the length constraint and
integrating the curve, but that’s not important. What is clear, though, is that

y = c cosh
(x
c

)
− λ

so, physically, λ is the lowest hanging distance of the chain.



PHYS2502 Mathematical Physics Homework #13 Due 19 Apr 2022

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) This problem involves functions that are not analytic everywhere.

(a) A complex function f(z) = 2y+ ix where z = x+ iy. Use the definition of the derivative
directly to show that f ′(z) does not exist anywhere in the complex plane. Then show that
this is consistent with the Cauchy-Riemann relations.This problem involves functions that
are analytic.

(b) A complex function f(z) = |x| − i|y| where z = x + iy. Where, if anywhere, in the
complex plane is this function analytic?

(2) This problem involves functions that are analytic.

(a) Prove that f(z) = ez is analytic everywhere in the complex plane.

(b) Show that if f(z) is an analytic function of z, then g(z) = zf(z) is also an analytic
function of z. Use this to explain why

f(z) =
∞∑
n=0

cnz
n

is an analytic function of z.

(3) Find an analytic function f(z) = u(x, y) + iv(x, y) whose imaginary part is

v(x, y) = (y cos y + x sin y)ex

(4) Referring to the diagram on the right, calculate the integral∫ 1+i

0

(z2 − z) dz

along the paths (a) and (b), where (b) is a horizontal step fol-
lowed by a vertical step. Explain why the two results compare
to each other the way that they do.

(5) Calculate the integral ∫ ∞
0

1

x2 + 1
dx

in two different ways. First, use the substitution x = tan θ, and second as a contour integral
in the complex plane. You can use Mathematica to check your answer.
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(1) (a) Write ∆z = ∆x+ i∆y with ∆y = a∆x for some real constant a, Then

f ′(z) = lim
∆x→0

[2(y + ∆y) + i(x+ ∆x)]− [2y + ix]

∆x+ i∆y
= lim

∆x→0

(2a+ i)∆x

(a+ i)∆x
=

2a+ i

a+ i

The result depends on the direction we approach z, that is the value of a, so the derivative
doesn’t exist at any z. With u(x, y) = 2y and v(x, y) = x, the first Cauchy Riemann relation
is satisfied as 0 = 0, but the second is violated (for all z) wince 2 6= −1.

(b) The second Cauchy Riemann relation is satisfied for all z. However

∂u

∂x
=

∂

∂x
|x| = +1 x > 0 and = −1 x < 0

and
∂v

∂y
=

∂

∂y
(−|y|) = −1 y > 0 and = +1 y < 0

so the function is analytic in the two quadrants (x > 0, y < 0) and (x < 0, y > 0). Of course,
these two regions correspond to f(z) = z and f(z) = −z.

(2) (a) If we write f(z) = exeiy then u(x, y) = ex cos y and v(x, y) = ex sin y, so

∂u

∂x
= ex cos y and

∂v

∂y
= ex cos y

and the first Cauchy Riemann relation is satisfied. Also,

∂v

∂x
= ex sin y and

∂u

∂y
= −ex sin y

and the second is met as well. Therefore, the function is analytic for all z.
(b) Notationally, this is a little tricky. For f = u+iv, write g = ug+ivg where ug = (xu−yv)
and vg = (yu+ xv). Our job is therefore to test the Cauchy Riemann relations on ug and vg
when we know that they hold on u and v. We have

∂ug
∂x
− ∂vg

∂y
= u+ x

∂u

∂x
− y ∂v

∂x
−
[
u+ y

∂u

∂y
+ x

∂v

∂y

]
= u+ x

∂u

∂x
− y ∂v

∂x
−
[
u− y ∂v

∂x
+ x

∂u

∂x

]
= 0

∂vg
∂x

+
∂ug
∂y

= y
∂u

∂x
+ v + x

∂v

∂x
+

[
x
∂u

∂y
− v − y∂v

∂y

]
= y

∂u

∂x
+ v + x

∂v

∂x
+

[
−x∂v

∂x
− v − y∂u

∂x

]
= 0

so g(z) is also analytic. Since f(z) = 1 is clearly analytic, just keep adding powers of z to
show that f(z) = zn is analytic. Since the sum of two analytic functions is also analytic,
just keep repeating the sum to show that the expansion in powers of z is analytic.



(3) We have to find a general solution to the partial differential equations

∂u

∂x
=
∂v

∂y
= (1− y sin y + x cos y)ex

and
∂u

∂y
= −∂v

∂x
= −(y cos y + x sin y)ex

Integrate the first equation to get

u(x, y) = (1− y sin y + x cos y)ex + C

and it is clear that the second equation is satisfied for any value of C. So, we’re done.

(4) The path (a) corresponds to x(t) = t and y(t) = t with 0 ≤ t ≤ 1. Therefore∫ 1+i

0

(z2 − z) dz =

∫ 1

0

[(x+ iy)2 − (x+ iy)] (dx+ i dy)

=

∫ 1

0

[t2(1 + i)2 − t(1 + i)] (1 + i)dt = (1 + i)2

∫ 1

0

[(1 + i)t2 − t] dt

= 2i

[
(1 + i)

1

3
− 1

2

]
= 2i

[
−1

6
+ i

1

3

]
= −2

3
− i1

3

The path (b) is first along y = 0 for 0 ≤ x ≤ 1, and then along x = 1 for 0 ≤ y ≤ 1, so∫ 1+i

0

(z2 − z) dz =

∫ 1

0

(x2 − x) dx+

∫ 1

0

[(1 + iy)2 − (1 + iy)] i dy

=

(
1

3
− 1

2

)
+ i

∫ 1

0

[1 + 2iy − y2 − 1− iy] dy

= −1

6
+ i

∫ 1

0

[iy − y2] dy = −1

6
+ i

[
i
1

2
− 1

3

]
= −2

3
− i1

3

The two results are equal. But they had to be. The integrand is an analytic function, and
the contour integral of an analytic function has to be independent of the path. This is a
consequence of the Cauchy Goursat theorem, where the integral around a closed path for
an analytic function is zero. Just reverse, for example, path (a), and add it to (b), and you
have a closed path. Reversing (a) reverses the sign of the integral, so this implies that the
two integrals above have to be the same.



(5) Mathematica tells us that the integral equals π/2. Putting x = tan θ = sin θ/ cos θ
gives dx = [cos θ/ cos θ − sin θ/(cos2 θ)(− sin θ)]dθ = 1 + sin2 θ/ cos2 θ = dθ/ cos2 θ, and so∫ ∞

0

1

x2 + 1
dx =

∫ π/2

0

1

tan2 θ + 1

dθ

cos2 θ
=

∫ π/2

0

cos2 θ
dθ

cos2 θ
=

∫ π/2

0

dθ =
π

2

On the other hand, we can write this as a closed contour integral, namely∫ ∞
0

1

x2 + 1
dx =

1

2

∫ ∞
−∞

1

x2 + 1
dx =

1

2

∮
C

1

z2 + 1
dz =

1

2

∮
C

1

(z + i)(z − i)
dz

where the contour C runs along the x-axis and closes either counter-clockwise in the upper
half of the complex plane, or clockwise in the lower half. In the former case, we pick up the
pole at z = +i and a factor of 2iπ, whereas in the latter case, we pick up the pole at z = −i
and a factor of −2iπ. Therefore we find∫ ∞

0

1

x2 + 1
dx =

1

2
(±2iπ)

1

±i± i
=
π

2


