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Preface

These are notes to accompany the Temple Physics course PHYS 2502 Mathematical Physics.
in Spring 2022 and beyond. Prerequisites for the course are the Mathematics courses Calculus
I, II, and III, and PHYS 2063 Wave Physics. Calculus III is the highest level course that we
require in our Physics majors curriculum from the Mathematics Department. In particular,
our students are not required to take courses in Differential Equations, Linear Algebra, or
Complex Analysis.

I’ve tried hard to present things in a logical order, not relying on anything yet to come in
order to introduce, or prove, something earlier on. For example, when talking about the
elementary special functions, I first do the circular functions and use geometric arguments
to get the derivative of sin(x), introduce the natural logarithm before introducing ex, and
then combining the circular function reasoning with ex to come up with the hyperbolic
functions. I introduce Euler’s relation after doing the Taylor series for ex, sin(x), and cos(x).
Unfortunately, I haven’t succeeded at this everywhere.

Nearly everything we cover in this course has either been covered in the prerequisite courses,
or will be covered in required Physics courses later in the major curriculum. For the most
part, the latter (which is the bulk of the material in this course) builds on the former.
Therefore, my job is to reinforce the mathematics students have already seen, hopefully in a
way that builds new insights, and to prepare them for their more advanced Physics courses.

I welcome feedback on these notes and the syllabus. There are far too many topics to choose
from for a one-semester course. I’ve tried to emphasize the things that I think are most
important, but opinions may differ.

A good example of this is Chapter 5 on Fourier Analysis, for which I’ve reserved one week
(two classes). Standing waves on a stretched string, decomposed using Fourier series, were
covered in Wave Physics. I will review that material, and then take the limit of an infinitely
long string to derive the Fourier transform. This will also let me present the Dirac δ-function
in physical context. In principle, I could take more time with this, but then something else
would have to be cut down or removed entirely.

Covering Chapter 8 on Complex Analysis might be superfluous, so one might consider remov-
ing it to make room for other material. I don’t think that the formalism of complex functions
is needed in any of our advanced undergraduate Physics courses. However, it is indispens-
able when it comes to scattering theory in Quantum Mechanics, and for many problems in

ix



Continuum Mechanics, both of which students are likely to encounter in a graduate Physics
program. Unfortunately, there is nowhere else in our majors curriculum where students are
likely to see this material, and it is also a particularly lovely subject, in my opinion.

As much as possible, I want to use physical examples to motivate the mathematics, but that
won’t be for the majority of the new material.

This course should not be the last Mathematics course you take as an undergrad-
uate, especially if you think you are interested in pursing graduate study in Physics. You
should review the offerings by the Mathematics Department and discuss options with your
advisors in Physics, Mathematics, or CST. I especially recommend the course MATH 2045
Differential Equations with Linear Algebra. You will be very prepared for that course after
taking this course. Other courses that would be particularly useful for students who want
to study advanced Physics include MATH 4041 Partial Differential Equations and MATH
4051 Complex Analysis.

This course includes a laboratory, once each week, on Mathematica. Those labs will only
loosely parallel the material we cover in class. Mostly, I want students to come out of the lab
competent to perform computer calculations that will be useful for their future coursework
and research.

There are lots of good textbooks out there on “Mathematical Physics.” So, why am I writing
these notes? I very much wanted to try to tell a coherent story through the semester, and
there is just so much material, using any outside textbook would have required me to pick
and choose sections and the depth I could go to in them, and I didn’t think that would be
fair to the students.

However, I’ve found myself relying on one textbook in particular, namely “Mathematical
Methods for Physics and Engineering” by Riley, Hobson, and Bence, Third Edition (2006)
from Cambridge University Press, ISBN 9780521679718. It’s a tome at over 1300 densely
packed pages, but available in paperback for around $75. It starts out with “preliminary”
material on algebra and calculus before diving into the details, and a Student’s Solution
Manual is available for the problems.
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Chapter 1

Basic Concepts

Mathematics is the language of Physics. According to lore, Newton invented calculus in order
to explain his philosophies to weaker minds. Oliver Heaviside invented vector calculus to
cast Maxwell’s Equations into a form that made calculations so much easier. Eugene Wigner
introduced group theory into Quantum Mechanics so that physicists had a framework for
exploiting symmetry in nature.

Consequently, it is of the highest importance for students of Physics to be well versed in
many different branches of Mathematics. This course should not be considered to cover “all”
the Mathematics you will need, but hopefully it will introduce you to the most important
concepts that you’ll see later.

This first chapter is meant to cover the very basic ideas, which will lay the groundwork for
the rest of the course. Most everything in this chapter is a review. But not everything.

1.1 Fundamentals

I think that one very important and simple thing to hit home, is the idea of variable names as
“dummies.” That is, I will use things like x, y, z, u, v, w,. . . a lot, but they have no physical
meaning until I tell you they do. And their physical meaning will mostly be different for
different problems. Also, there is often no standard terminology, so one Physics class might
use a variable to mean some thing, and another class might use a different variable to mean
the same thing.

1.1.1 Numbers

Used to “measure” quantities in physics. Mathematicians talk about “number fields” in-
cluding integers Z, rational numbers Q, real numbers R, and complex numbers C. I will
use these symbols from time to time. If I write something like x ∈ R then I mean that the
variable x represents some real number.

1



We have some special sets of numbers. (I’ll get to a more formal definition of a “set” shortly.)
For example R2 is the set of pairs of real numbers. Physically, you can think of R2 as the
set of points in a plane. Similarly, R3 is the set of real numbers in three dimensional space.

Addition, subtraction, multiplication, and division of integers, rational and real numbers are
all exactly what you think they are. It is likely that you’ve already learned some things
about the complex number system, but I’ll give you some details next.

Complex numbers

The “imaginary” number i is defined as the square root of −1. That is

i =
√
−1

This makes it possible to define a “complex number” z ∈ C as

z = x+ iy where x ∈ R, y ∈ R

(Note that C sounds a little like R2, in that there is a one-to-one correspondence through
the real numbers.) We refer to x as the “real part” of z, and write x = <(z). Similarly, y
is the “imaginary part” of z, and write y = =(z). On the blackboard, I will typically write
x = Re z and y = Im z, but I will always mean the same thing.

The “complex conjugate” z∗ of a complex number z = x+ iy is

z∗ = x− iy

The “modulus” of a complex number z = x+ iy is

|z| =
√

(x2 + y2) = (x2 + y2)1/2

Addition and subtraction of complex numbers just means the addition and subtraction sep-
arately of their real and imaginary parts. Multiplication of complex numbers requires a little
more care. For z1 = x1 + iy1 and z2 = x2 + iy2, then

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

It is a nontrivial observation z1z2 = z2z1, namely that complex multiplication commutes.
Note also that

z∗z = zz∗ = |z|2

Division of complex numbers is best understood using the modulus. For z1 = x1 + iy1 and
z2 = x2 + iy2, we write

z1

z2

=
z1

z2

z∗2
z∗2

=
1

|z2|2
z1z
∗
2

and division of complex numbers reduces to multiplication.

For more advanced manipulations of complex numbers, for example
√
z, it is best to wait

until Section 2.4.2 when we see how to write complex numbers in terms of the modulus and
a “phase” using Euler’s relation.
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1.1.2 Functions

A “function” maps from one number system onto itself or another number system. Mostly
we will deal with functions that map real numbers onto real numbers. For example

f : R 7→ R or u = f(x)

g : R2 7→ R or u = g(x, y)

There will be many other examples, particularly when we get into vector functions. One
very familiar example is the electric field from a charge distribution, which maps R3, that
is, position in three dimensional space, onto R3, that is, the electric field itself.

Physicists use a wide variety of different notations, so don’t get hung up on that. For
example, if I write something like f = f(x), all I mean is to emphasize that f is a function
of the single variable x. Your intuition should be good enough to get you through anything
confusing, but always ask questions if you’re unsure.

1.1.3 Sets

Some collection of objects. Can be numbers, pictures, functions, i.e. anything. Denote as
{a, b, c, . . .}. Examples are R and Z. Subsets, eg Z ⊂ R. Cartesian products R× R = R2.

Functions can in fact map from any set onto any other set, but we’re not going to get that
fancy in this course.

1.1.4 Groups

We can’t get into it much in this course, but I want to at least introduce you to the concept
of a “group.” Groups are fundamental in formulating physical theory. In the same way
that “numbers” measure “quantities,” groups are used to measure “symmetry” in nature.
One of the most common examples is the group of 3× 3 real orthogonal matrices with unit
determinant, which physicists write as SO(3), that measures the rotational symmetry of the
three dimensional world.

In order to define a group G, you need first to have two things, namely a set {x, y, z, . . . }
and a binary operation ◦ between elements of the set. These form a group if the following
three “group axioms” are satisfied:

• There exists an identity element 1 ∈ G such that for any x ∈ G, x ◦ 1 = x = 1 ◦ x.

• For any x ∈ G there exists an inverse element x−1 ∈ G such that x ◦x−1 = 1 = x−1 ◦x

• For any x, y, z ∈ G, x◦ (y ◦z) = (x◦y)◦z. That is, the binary operation is associative.
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Note that there is no requirement that the binary operation be commutative, that is x ◦ y =
y◦x. (Think about matrix multiplication, for example.) If this commutative property holds,
then we say the group is “Abelian.”

One simple example of a group is the real numbers R under addition. The identity element
is zero, the inverse of any x is −x, and addition is clearly associative. This is also an Abelian
group. The integers Z also form a group under addition, and in fact are a “subgroup” of R.

A slightly more advanced group is the real numbers, excluding zero, under multiplication.
Let’s call that group R∗. We have to exclude zero because if I divide any other element in
the group by zero, I don’t get a real number. For x ∈ R∗, we see easily that 1 = 1 and
x−1 = 1/x. Multiplication of real numbers is obviously associative. This is also an Abelian
group.

Things get more interesting when we discuss matrix operations. See Section 6.3.8.

1.2 Dimensional Analysis

Any equation has to respect the dimensions of the quantities it relates. It makes no sense to
say that some number of apples is equal to some number of oranges.

By dimensions we mean the fundamental quantities that are described by the so-called base
units of some system. These dimensions are length L, mass M , and time T in the most
commonly used systems of units, namely SI and CGS.1 The SI units of length, mass, and
time are the meter (m), kilogram (kg), and second (s), respectively. In CGS, they are
centimeter (cm), gram (g), and second (s).

Quantities that measure length, mass, or time have the dimensions L, M , and T , respectively.
Derived quantities have the dimensions of the combination of fundamental quantities from
which they are derived. So, for example, velocity has dimensions LT−1 and acceleration
LT−2. Force comes from mass times acceleration, so the dimensions of force are MLT−2.

I will use square brackets to denote the dimensions of some quantity. So, for example,
momentum p = mv, so [p] = MLT−1. Angular momentum ` is the product of a length times
momentum, so [`] = ML2T−1. Energy E is force times distance so [E] = ML2T−2. Notice
that dimensional correctness has to carry over, so if I think of energy instead as E = mc2,
then its dimensions are that of mass times the square of velocity, and I get the same result.

If you do a calculation and the dimensionality of your result doesn’t make sense, then you
had to have made a mistake somewhere! It is always a good idea to check the dimensionality
of a calculation.

Let’s get the “scale” that determines the radius of a black hole, also known as the “event
horizon.” If you do a fancy calculation in General Relativity, which is in fact quite difficult,

1When it comes to electricity and magnetism, SI adds a new base unit called the Ampere, while CGS
describes charges and current in units derived from mass, length and time. When we are dealing with
electromagnetism in this course, I will use CGS units.
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you know that in the end the event horizon R can only depend on the mass m of the black
hole, the speed of light c, and Newton’s gravitational constant G. So, to within factors of
two and π and the like, we write

R = Gxmycz (1.1)

where the powers x, y, and z can be determined by dimensional analysis. The dimensions of
R, m, and c are pretty obvious, namely L, M , and LT−1, respectively. To get the dimensions
of G, we can go back to Newton’s law of gravity, namely

F = G
m1m2

r2
so MLT−2 = [G]M2L−2

so [G] = M−1L3T−2. This is a handy relation to keep in mind for many problems in
dimensional analysis involving gravity.

Now return to (1.1) and write

L = M−xL3xT−2xMyLzT−z = M−x+yL3x+zT−2x−z

This gives us the following three equations:

−x+ y = 0

3x+ z = 1

−2x− z = 0

Adding the second and third equations gives x = 1. The third equation gives z = −2, and
the first equation gives y = 1. Therefore, (1.1) becomes

R = Gm/c2

A careful study of General Relativity for a static, spherical gravitating mass m yields the
so-called “ Schwarzschild radius” RS = 2Gm/c2 as the distance at which clocks stop. Our
simple analysis, though, gets us the scale at which this happens, and in fact the right answer
to within a factor of two.

1.2.1 Dimensional analysis as vector addition

Taking the logs and treating logs of units as “directions” in some space. Maybe a good first
glimpse at how vector spaces can be abstracted.

1.3 Derivative of a Function of Real Variables

You probably first heard about the derivative of a function graphically, namely the slope of a
line tangent to some curve at some point. Physically, the derivative tells you how something
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changes. It’s the same thing as the slope of a tangent line, which tells you how fast the curve
is changing. In mechanics, you first see the derivative as how fast position changes with
time, called the velocity, and how fast velocity changes with time, called the acceleration.

I will use generic variables to talk about the concept of a derivative, and also integration.
Remember, though, these are just dummy variables. So if I write something like y = f(x)
and take the derivative with respect to x, I can just change the names later and talk about
x = f(t) to describe the position as a function of time.

1.3.1 Functions of a single variable

The derivative a function y = f(x) is defined to be

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
(1.2)

Note that the right side of the equation looks like the division of zero by zero. Indeed, the
derivative is the ratio of “infinitesimal” quantities. Indeed, we often use the notation

f ′(x) =
dy

dx

Let’s use this definition to find the derivative of f(x) = xn where n is a positive integer, i.e.
n = 1, 2, 3, . . .. Think first about the quantity

(x+ ∆x)n = xn + nxn−1∆x+ · · ·

where the terms I didn’t write all have powers of (∆x)2 or greater. Therefore

f ′(x) = lim
∆x→0

xn + nxn−1∆x+ · · · − xn

∆x
= lim

∆x→0

(
nxn−1 + · · ·

)
= nxn−1

because the terms I didn’t write down all have factors of ∆x in them, so they go to zero in
the limit.

So, we have proven that f ′(x) = nxn−1 for f(x) = xn where n is a positive integer. In fact,
you have a homework problem to go through some steps and argue that f ′(x) = αxα−1 where
α is any real number. It’s also true if α is any complex number, but we’ll leave that proof
for a later time.

We will stop here for now. We will learn the derivatives of so-called “special function” when
we encounter them in Section 1.5, but we have already gotten very far. For example, it is
trivial to prove from (1.2) that, for constants a and b,

h′(x) = af ′(x) + bg′(x) where h(x) = af(x) + bg(x)

which means that we already know how to take the derivative of a polynomial function

f(x) = a0 + a1x+ a2x
2 + · · · =

n∑
i=0

aix
i (1.3)

and we’ll see in Section 2.2 that most functions can be expressed this way if we let n→∞.
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1.3.2 Differentials

When we write f ′(x) = dy/dx for y = f(x), (1.2) tells us that dy and dx are infinitesimal
quantities, called “differentials,” which can be as small as they need to be. That is, we can
ignore them if they are added to anything other than zero, and only the lowest order matters
otherwise. For example, something like dx + dx dy + (dx)2 is just the same as dx. We say
that “only the lowest nonzero order is important.”

Differentials are very useful for analyzing physical systems, and we will see this a lot in this
course and future physics courses.

Differentials are also a very useful concept for deriving a host of mathematical relations.
Consider, for example

d(uv) = (u+ du)(v + dv)− uv = u dv + v du

for two functions u = f(x) and v = g(x). If we divide through by dx we get

d

dx
(uv) = u

dv

dx
+ v

du

dx
or h′(x) = f(x)g′(x) + g(x)f ′(x)

for h(x) = f(x)g(x). This is called the “product rule” for differentiation.

Now suppose instead that h(x) = f(g(x)), again with u = f(x) and v = g(x). We can derive
the so-called “chain rule” for h′(x) by multiplying by “1“, that is

du

dx
=

du

dx

dv

dv
=
du

dv

dv

dx
or h′(x) = f ′(g)g′(x)

In other words, take the derivative of the function f with the function g as the argument,
and then take the derivative of g with respect to x.

We can illustrate the product rule and chain rule with a simple example, namely

f(x) = xn and g(x) = xm

To check the product rule, let h(x) = f(x)g(x) = xn+m. In this case we know that h′(x) =
(n+m)xn+m−1. The product rule gives

h′(x) = nxn−1xm +mxnxm−1 = (n+m)xn+m−1

which is correct. To check the chain rule, use h(x) = xnm in which case h′(x) = nmxnm−1,
but using the chain rule

h′(x) =
[
n (xm)n−1]mxm−1 = nmxnm−m+m−1 = nmxnm−1

We will see plenty of more interesting examples of the produce rule and chain rule as we go
through more Mathematics and Physics.
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1.3.3 Higher order derivatives

We write the “second derivative” of a function y = f(x) as

f ′′(x) = f (2)(x) =
d

dx

dy

dx
=
d2y

dx2

Higher orders follow naturally, including notation.

It is worth noting that, for some reason, the Laws of Physics, including Newton’s Laws,
Maxwell’s Equations, the Wave Equation, and many others, only involve first and second
derivatives. We’ll see more about this in Chapter 3 and beyond.

1.3.4 Functions of two or more variables

For a function u = f(x, y) we define the “partial derivatives”

∂u

∂x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
and

∂u

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y

That is, we treat y(x) as a constant when we take the partial derivative withe respect to
x(y). For more than two variables, for example u = f(x, y, z), the analogy is straightforward.

The product rule and chain rule for partial derivatives follow logically.

We will almost always only be dealing with functions where the partial derivatives commute,
that is

∂2u

∂x∂y
=

∂

∂x

∂u

∂y
=

∂

∂y

∂u

∂x
=

∂2u

∂y∂x

1.3.5 Finding minima and maxima

A very common application of differentiation is to find maximum or minimum values of some
function, and the values of the independent variable(s) that give you those extrema. More
formally, for a ≤ x ≤ b, what value of x minimizes or maximizes the function f(x)? The
generalization to functions of more than one variable is obvious.

It is of course possible that f(a) and/or f(b) are maximum or minimum values. If that’s not
the case, however, then for some value x = x0 in between, f ′(x0) will be positive (negative)
for x slightly smaller than x0, and negative (positive) if slightly larger, in which case x = x0

is a minimum (maximum). It will often be the case that a function is defined with some
“free parameters” and we need to find the derivatives with respect to these parameters and
set them to zero. Solving the resulting equations gives us the values of the parameters that
we’re looking for.

We will see many examples of this kind of thinking.
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Figure 1.1: The area under a curve, approximated as
the sum of a bunch of tall, rectangular boxes. The
definite integral is obtained by letting the number N
of boxes go to infinity, with the width ∆x of each box
approaching zero. This gives you a precise result for the
area under the curve.
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1.4 Integration

It is tempting to think of integration as the opposite of differentiation, but you should avoid
the temptation.

Integration is the sum of a bunch of very small things, technically the infinite sum of in-
finitesimal things. It is not an accident that the integration sign

∫
looks like a stretched out

S, for “sum.”

The reason you might think of integration and differentiation as opposites is because they
are connected through the concept of an “antiderivative” and the Fundamental Theorem of
Integral Calculus. Our goal in this sections is to connect these ideas.

1.4.1 The definite integral

The “definite” integral is an infinite sum of infinitesimal quantities. (That’s the reason the
integral sign looks like a tall stretched-out “S”, for “Sum”.) We start with an ordered set of
N real numbers

xi ∈ {x0, x1, x2, . . . , xN} (1.4)

where a ≤ xi ≤ b. We then write∫ b

a

f(x) dx = lim
N→∞
∆xi→0

N∑
i=0

f(xi) ∆xi

where x1 → a, xN → b, and the ∆xi = xi+1 − xi. The classic picture of the definite integral
is “area under a curve.” See Figure 1.1. A simple approximation to the area is the sum of
large number of narrow vertical rectangular boxes, and the approximation becomes exact in
the limits N →∞ with ∆x→ 0. This is fine, and is a nice physical description, but doesn’t
become useful until we have the fundamental theorem of integral calculus, which we will get
to shortly.

When working on some problem in physics, you always want to think of the definite integral
as the sum of infinitesimals, defining the infinitesimal quantities in whatever way is handiest
for you. Suppose, for example, you want to know the volume of an eggplant, a vegetable with
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Figure 1.2: When you slice up an eggplant into thin pieces,
each piece has the shape of a circular disk. To find the
volume of the eggplant, all you need to do is add the volume
of the disks, each of which is πr2, where r is the radius of
the particular disk, times the thickness of the disk. The
radius r is some function of the “longwise” coordinate of
the eggplant, and you’ll need to know what that is to carry
out the integral, but the concept should be clear from this
example.

a weird shape. See Figure 1.2. If z is some coordinate that measures the position along the
length of the eggplant, then when you slice the eggplant into thin disks, each with thickness
dz, then the volume of the eggplant is

Veggplant =

∫ top

bottom

πr2 dz with r = r(z)

Of course, you’ll need to know what r(z) is in order to carry out the calculation, but that’s
something you work out for the particular eggplant you’re working on.

As for how you actually carry out the integral mathematically, we need to first discuss the
concept of “antiderivative”, and then the Fundamental Theorem of Integral Calculus.

1.4.2 The antiderivative concept

I think one reason students often get confused is because we borrow the integration symbol
to define the antiderivative as an “indefinite integral.” We write∫

f(x)dx = F (x)

which just means that f(x) = F ′(x) = dF/dx, but the reason we use the “integral” symbol
for this doesn’t really make sense until we connect with the definite integral. We call the
function F (x) the “antiderivative” of the function f(x). Sometimes we write∫

f(x)dx = F (x) + C

which indicates that an arbitrary constant C can always be added to the indefinite integral.
We won’t usually use this way of writing the antiderivative, but it will come in handy when
we are integrating to find the solutions to differential equations.
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A more or less obvious example of the antiderivative is∫
xα dx =

1

α + 1
xα+1

This formula breaks down when α = −1, however. So, what is the antiderivative of the
function f(x) = 1/x? We will investigate this in Section 1.5.2.

It is important to note, however, that not all functions have an (analytic) antiderivative.
We will encounter these from time to time in Physics. Sometimes we will find “tricks” for
carrying out the definite integrals nevertheless, but oftentimes the integrals need to be done
numerically.

1.4.3 The fundamental theorem of integral calculus

The connection between an integral and an antiderivative. As N → ∞ and the ∆xi → 0,
the ∆xi become differentials dx, and the sum (1.4) becomes∫ b

a

f(x) dx =
∞∑
i=0

f(xi) dx =
∞∑
i=0

dF (xi)

dx
dx =

∞∑
i=0

∆F (xi) = F (b)− F (a) ≡ F (x)|ba

where each term ∆F (xi) has a cancellation with the term following it, leaving only the
difference between the function evaluated at the endpoints.

If the function you’re trying to integrate has no analytic antiderivative, then you have to
resort to numerical integration techniques. You’ll get an introduction to this technique in
this course in the Mathematica lab.

Want to mention that integration can be used as a technique for approximating difficult
sums of finite quantities. Typical when studying statistical mechanics.

1.4.4 Changing variables in integration

Oftentimes it is convenient to express your integral in terms of a different variable from what
you start with, or necessary in the case of numerical integration. You can also gain physical
insight in many cases by making this so-called “change of variables” in integration. Let’s see
how this works.

This is, basically, an application of the chain rule in reverse, and we can approach it using
differentials. Suppose you are integrating a function f(x) over a ≤ x ≤ b, but you would
prefer to integrate over a variable y = g(x). It will be important that the inverse of the
function g(x) be well defined over a ≤ x ≤ b, that is x = g−1(y) is known. If we write
c = g−1(a) and d = g−1(b) then∫ b

a

f(x) dx =

∫ b

a

f(x)
dy

dy
dx =

∫ b

a

f(x)
dx

dy
dy =

∫ d

c

f [g−1(y)]
1

g′[g−1(y)]
dy
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and you are now doing an integral over c ≤ y ≤ d. This will be a lot clearer when we do
some examples, but let’s wait until we have defined some of the elementary special functions.

1.4.5 Integration by parts

If we apply the product rule to integration, then we come up with a technique known as
“integration by parts” which can be very useful for solving physical problems and gaining
insight to a physical situation. Suppose the integrand f(x) can be split into the product of
two functions u(x) and V (x), that is f(x) = u(x)V (x) and you want to carry out the integral∫ b

a

f(x) dx =

∫ b

a

u(x)V (x) dx

Now let the antiderivative of u(x) be U(x), that is dU/dx = u(x), and let v(x) = dV/dx be
the derivative of V (x). Then from the product rule

d

dx
(UV ) =

dU

dx
V + U

dV

dx
= u(x)V (x) + U(x)v(x)

Integrating this equation over a ≤ x ≤ b and rearranging terms, we get∫ b

a

f(x) dx = U(x)V (x)|ba −
∫ b

a

U(x)v(x) dx

and we have “traded” an integral of u(x)V (x) for one of U(x)v(x), which is presumably
easier to carry out. In many physical situations U(x)V (x)|ba = U(a)V (a) − U(b)V (b) will
vanish. It won’t be uncommon to have things like a→∞ and b→ −∞.

1.4.6 Integrals in higher dimensions

You probably learned about “double integrals” and “triple integrals” in your calculus classes.
These are straightforward generalizations of the one-variable integral, very similar to the
generalization to partial derivatives from ordinary derivatives. So, to carry out something
of the form ∫ b

a

dx

∫ d

c

dy f(x, y)

you just do the x- (or y-) integral first, and then do the other one. (Notice that I moved
around the dx and dy so that I could easily indicate which limits go with which variable.)
This form implies that you are doing the integral over the rectangular area delimited by
a ≤ x ≤ b and c ≤ y ≤ d, but of course, that doesn’t need to be the case.

More typically, in your Physics classes, at least, you will see the form∫
R

f(x, y) dA
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where R is some specification of a region in the (x, y) plane over which you are to carry out
the integral. We write dA = dxdy for the infinitesimal tile in the (x, y) plane. There are
other ways to write this infinitesimal area element, and we’ll get to that shortly.

Integrals over volume are also common in Physics, so expect to see things like∫
R

f(x, y, z) dV

where now R is a region in three dimensional space, and dV = dxdydz. In fact, of course,
the integration variables don’t need to be real space, and it is not uncommon to encounter
things like ∫

R

f(x1, x2, . . . , xN) dx1dx2 · · · dxN

and take it as it comes. We’ll see specific examples of this sort of thing in this course, but
for sure in your more advanced Physics courses.

Always remember that an integral is a sum of a bunch of tiny things. You can write that
sum in whatever way makes the integral easiest, or do it numerically if you have to.

Polar and spherical coordinates

I want to take a little detour here, because this is a good place to introduce the common
way that Physicists use to work in 2D or 3D space when there is cylindrical or spherical
symmetry. I won’t formally introduce you to sine and cosine until the next section, but you
know enough from high school to follow along what I’m doing here.

We will be discussing different ways of describing vectors in space in Section 4.1, but let’s
take a moment to use simple geometry to understand how to write the integrand over a
planar surface in terms of so-called “polar coordinates” (r, φ). That is, we locate a point
in space by its distance r from the origin and the angle φ it makes with the x-axis. See
Figure 1.3. In this case, the infinitesimal area element is

dA = (rdφ)× dr = rdrdφ

so we would write the integral over some region R of the plane as∫
R

f(r, φ) rdrdφ

This is particularly powerful if the function f depends only on r, and the region R is cylin-
drically symmetric and goes between two limits r1 and r2. In this case∫

R

f(r, φ) rdrdφ = 2π

∫ r2

r1

f(r) rdr

This will often be the case in physical problems of interest.

13



12/30/21, 12:53 PM

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/7/78/Polar_to_cartesian.svg

r

x

y 12/30/21, 12:50 PM

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/4/4f/3D_Spherical.svg

x

y

z
(r, θ, φ)

φ

θ
r

Figure 1.3: Polar and Spherical Coordinate systems with the notation commonly used in
Physics. Figures taken from Wikipedia. There is no attribution given for the Polar Coor-
dinates figure. The Spherical Coordinates figure is attributed as By Andeggs - Own work,
Public Domain, https://commons.wikimedia.org/w/index.php?curid=7478049.

If we are talking about a region of three dimensional space which still has the symmetry of a
cylinder, then we use the coordinates (r, φ, z) and treat the z-coordinate the same as usual.

Perhaps the most common three-dimensional situation in Physics is when there is spherical
symmetry. In this case, we use the coordinates (r, θ, φ), where θ is the polar angle measured
down from the z-axis. These coordinates are also illustrated in Figure 1.3. The volume
element is

dV = (r sin θ dφ)× (r dθ)× (dr) = r2 sin θ drdθdφ

An often useful change of variables here is µ = cos θ, in which case the integral over a
spherical volume of radius R (including R→∞) becomes∫ R

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ f(r, θ, φ) =

∫ R

0

r2dr

∫ 1

−1

dµ

∫ 2π

0

dφ f(r, µ, φ)

where, as we’ll see shortly, dµ = − sin θ dθ.

Let’s illustrate this by finding the volume of a sphere. All we want to do here is add up the
volume elements, so we calculate∫ R

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ =

∫ R

0

r2dr

∫ 1

−1

dµ

∫ 2π

0

dφ =
R3

3
× 2× 2π =

4

3
πR3

which is something you probably remember from high school.
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1.4.7 Integrals over arbitrary lines and surfaces

Always remember that an integral is a sum of a bunch of tiny things. I can’t say that enough.

So, we might write something like ∫
C

f(x, y, z)d`

to denote the sum of a bunch of small things f(x, y, z)d` along some arbitrary curve C.
We’ll need more information about how (x, y, z) varies along C, but that will come with the
physics. If the curve C is a closed loop, then we write∮

C

f(x, y, z)d`

Similarly, we can talk about integrals over some arbitrary surface S. We write∫
S

f(x, y, z) dA→
∮
S

f(x, y, z) dA

if the surface is closed. Again, we need to know a lot more about the function and the surface
in order to carry out this integral.

Let’s illustrate this by finding the surface area of a sphere. The area element dA in spherical
coordinates is just the “inside” surface of the volume element at r = R, that is dA =
R2 sin θdθdφ or dA = Rdµdφ for µ = cos θ. We just sum up the surface area elements to get

R2

∫ 1

−1

dµ

∫ 2π

0

dφ = 4πR2

which again should be something you remember from high school.

In Section 4.3 we will learn about some very important theorems that relate the integral
around a closed curve to the area that the curve encloses, and the integral around a closed
surface to the volume that the surface encloses. Physically, these theorems will tell us about
how to learn what’s “inside” from what is happening on the “boundaries.”

1.5 Elementary Special Functions

Except for the little detour we took in Sections 1.4.6 and 1.4.7, the only functions we have
discussed so far are power laws like xα or their linear combination. Now it’s time to more or
less precisely define some common “special functions” and to study their properties.

1.5.1 Circular functions

I want to clearly define what we mean by the functions sine and cosine, and then make
connections onto what you learned in your high school trigonometry class. See Figure 1.4.
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Figure 1.4: Geometry of the unit circle in the (u, v) plane. The variable x measures distance
in the direction shown along the circle u2 + v2 = 1. The coordinates of the point P are
defined to be (cosx, sinx). The figure is drawn for x = 1. See the text for more discussion.

The cosine and sine functions are defined2 as functions of the arc length x along a unit circle
u2 + v2 = 1, counter clockwise from the point (1, 0) on the (u, v) axes. That is, we define
the coordinates of the point P to be (cosx, sinx). Obviously, cos2 x+ sin2 x = 1.

The transcendental number π is defined as the ratio of the circumference of a circle to its
diameter. Therefore, the circumference of the unit circle is 2π, and if I add 2π to the
argument of any circular function, I have to get the same value back. That is

cos(x+ 2π) = cos(x) and sin(x+ 2π) = sin(x)

and similarly for the circular functions derived from sine and cosine.

In high school, you probably learned about cos θ and sin θ for the right triangle OPA in
Figure 1.4. If we want to talk about the angle θ ≡ x/R = x for our unit circle with radius
R = 1, then you see that the definitions in terms of “opposite”, “adjacent”, and “hypotenuse”
are exactly the same. Therefore, everything you learned about trigonometry in high school
follows from our definition above. For example,

cos θ = sin(π − θ) =
OP

OB
=

1

OB
so OB =

1

cos θ
=

1

cosx

2The names “cosine” and “sine” seem reversed to me, also “cotangent” and “tangent.” In expressions
that involve both cos(x) and sin(x), I always write cos(x) first, as do most people, I think. Maybe there’s
an interesting story in there somewhere. However, as paraphrased from Shakespeare, “A rose by any other
name would smell as sweet.”
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There are a bunch of useful trigonometric identities that I’m not going to bother to derive.
You can look these up easily enough online, but the following are some of the most useful:

cos(−x) = cos(x) (1.5a)

sin(−x) = − sin(x) (1.5b)

cos(x+ y) = cosx cos y − sinx sin y (1.5c)

sin(x+ y) = sinx cos y + cosx sin y (1.5d)

cos
x

2
= (±)

√
1− cosx

2
(1.5e)

sin
x

2
= (±)

√
1 + cos x

2
(1.5f)

You can also get many identities easily with Euler’s Formula (Section 2.4), but getting there
requires finding the derivatives, which we do next using the identities!

To calculate the derivative of cos(x), we go back to the fundamental definition of the deriva-
tive and make use of the identities and some geometry. We have

d

dx
cosx = lim

∆x→0

cos(x+ ∆x)− cos(x)

∆x

= lim
∆x→0

cos(x) cos(∆x)− sin(x) sin(∆x)− cos(x)

∆x

= − sin(x) lim
∆x→0

sin(∆x)

∆x
− cos(x) lim

∆x→0

1− cos ∆x

∆x

The first limit can be evaluated geometrically. Refer to Figure 1.4. The area of the “slice of
pie” is (x/2π)× π(1)2 = x/2, and is clearly in between the areas of right triangles OPA and
OPB. It is easy to see that the area of OPA is cos(x) sin(x)/2. If we call OP = 1 the base
of triangle OPB, then the height is

PB =
√
OB2 −OP 2 =

√
1

cos2 x
− 1 =

sinx

cosx

and the area of triangle OPB is sin x/2 cosx. Therefore

1

2
cosx sinx <

x

2
<

1

2

sinx

cosx
or cosx ≤ x

sinx
<

1

cosx

This obviously implies that sinx/x→ 1 as x→ 0. Now we also know that

1− cosx

x
=

1− cosx

x

1 + cos x

1 + cos x
=

sinx

x

sinx

1 + cos x
→ (1)(0) = 0

as x→ 0. We have therefore proven that

d

dx
cosx = − sinx
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Given this result, it is easy to get the derivative of sin(x) from cos2 x+ sin2 x = 1 by taking
the derivative with respect to x of both sides. You find

d

dx
sinx = − cosx

The derivatives of the other circular functions, like tanx = cosx/ sinx, you can get from the
product rule.

I haven’t discussed the inverse circular functions, that is cos−1(x) and sin−1(x), also known
as arccos(x) and arcsin(x), but their definition and usage are pretty obvious. There is an
important caveat, though, because any one value of sin(x) or cos(x) can correspond to many
different values of x. For example, sin(π/4) = 1/

√
2 = sin(3π/4), so what is sin−1(1/

√
2)?

The answer is that we have a convention that the range of y = sin−1(x) is −π/2 ≤ y ≤ +π/2,
so sin−1(1/

√
2) = π/4. Similarly, the range of y = cos−1(x) is 0 ≤ y ≤ π.

1.5.2 Natural logarithms

I think the best way to present this is the way I learned it fifty years ago, so let’s do that.

The derivative of xn is nxn−1 which implies that the antiderivative exists for every function
xn except n = −1. So what is the function for which the derivative is 1/x? Start by defining

f(x) =

∫ x

1

1

t
dt

and show that f(x) has all these properties of a logarithm.3 For example, it is obvious that,
f(1) = 0. Next consider, with the change of variables u = 1/t,

f

(
1

a

)
=

∫ 1/a

1

1

t
dt =

∫ a

1

u

(
−du
u2

)
= −

∫ a

1

1

u
du = −f(a)

Similarly prove (a good HW problem) that f(ab) = f(a) + f(b), which implies that f(an) =
nf(a) for n ∈ Z+ (the positive integers).

So hypothesize that f(x) = logb(x) and set about to find the base b by going back to the
definition to give it the right derivative. That is

d

dx
logb(x) = lim

∆x→0

logb(x+ ∆x)− logb(x)

∆x
= lim

∆x→0

1

∆x
logb

(
1 +

∆x

x

)
=

1

x
lim

∆x→0

x

∆x
logb

(
1 +

∆x

x

)
=

1

x
lim

∆x→0
logb

(
1 +

∆x

x

)x/∆x
=

1

x
logb

[
lim
n→∞

(
1 +

1

n

)n]
=

1

x

3Maybe we need to review the definition of a logarithm, namely that logb(x) is the function for which
blogb(x) = x. It should be clear from this definition that logb(1) = 0, logb(b) = 1, logb(xy) = logb(x)+logb(y),
logb(1/x) = − logb(x), and logb(x

α) = α logb(x).
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This determines the value of the logarithm base b, namely

b = lim
n→∞

(
1 +

1

n

)n
≡ e

It is worth taking a few minutes to use a calculator or some app to find the value of (1+1/n)n

for larger and larger values of n. One finds

e = 2.7182818 . . .

for this new transcendental number.

The function loge(x) ≡ log(x) is called the “natural logarithm.” A lot of people write ln(x)
instead of log(x), but I won’t. If I ever need the logarithm to base 10, I will write log10(x).

To sum things up,
d

dx
log(x) =

1

x
and

∫ a

1

dx

x
= log(a)

1.5.3 Exponential functions

The inverse of the natural logarithm function is called the exponential function. That is

elog(x) = x

which is really just the definition of the logarithm, and

log(ex) = x log(e) = x

since log(e) = 1, also by definition of the logarithm. An alternative notation for the expo-
nential function is exp(x) = ex.

So what is the derivative of ex? We answer this by using the chain rule. Writing x = log y
with y = ex, and taking the derivative of both sides with respect to x, we find

1 =
1

y

dy

dx

or dy/dx = y. That is
d

dx
ex = ex

It is also possible to find the derivative by going back to the definition of e, but that requires
an expansion using the binomial theorem, which we really won’t get to until Sec. 9.3.1.

Of course, using the chain rule, putting y = ax,

d

dx
eax =

dey

dy

dy

dx
= aeax
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Figure 1.5: Geometry of the unit hyperbola in the (u, v) plane. The variable x measures
distance in the direction shown along the hyperbola u2 − v2 = 1. The coordinates of the
point at the arrow tip are defined to be (coshx, sinhx). The figure is drawn for x = 1.

1.5.4 Hyperbolic functions

There is a mistake in here that I have to fix! The analogy with circular functions and x is not in
the arc length! It is with the “pie slice area” x/2. I will show that explicitly in here as soon as I
get around to fixing this.

The circular functions cosx and sinx are defined by the coordinate values along a unit circular
arc of length x. Another pair of functions, called coshx and sinhx are defined analogously
along a unit hyperbolic arc of length x. See Figure 1.5 and compare to Figure 1.4.

In the (u, v) plane, the unit hyperbola is u2 − v2 = 1. Therefore

cosh2 x− sinh2 x = 1

similar, but not identical to, the analogous relation for the circular functions. It’s easy
enough to show that u = cosh(x) and v = sinh(x) satisfy this relation with

cosh(x) =
ex + e−x

2
(1.6a)

and sinh(x) =
ex − e−x

2
(1.6b)

This also makes it simple to calculate the derivatives of the hyperbolic functions. You find

d

dx
coshx = sinhx and

d

dx
sinhx = coshx
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After we learn Euler’s Relation in Section 2.4, we can make an analytic connection to the
connection with cos(x) and sin(x).

There is actually an interesting physical connection between the circular and hyperbolic
functions. The circular functions are used to generate rotations in a plane. That is, the
“change coordinates” in two dimensional space from some (x, y) to a different (x′, y′). In
Section 6.5 we will see that the hyperbolic functions perform the same “coordinate change”
in relativistic “space time”, converting some (t, x) to a different (t′, x′).

1.5.5 The Gamma function

An important special function that we can now define and work with.

Γ(z) ≡
∫ ∞

0

xz−1e−x dx z ∈ C where <(z) > 0 (1.7)

It is a function of a complex number, but in this course we will only refer to the real numbers,
in fact only use z ∈ Z+, that is the integers z = n = 1, 2, 3 . . ..

The reason physicists find a lot of use for the gamma function is because it is an analytic
form for the factorial, which shows up a lot in statistical mechanics and other fields. This is
easy to see if we consider integrating by parts. That is

Γ(n+ 1) =

∫ ∞
0

xne−x dx =
[
xn(−e−x)

]∞
0
−
∫ ∞

0

nxn−1(−e−x) dx = nΓ(n)

It is also pretty clear that Γ(1) = 1 is just from the definition, so repeated application of
this result leads us to

Γ(n+ 1) = n · (n− 1) · (n− 2) · · · (1) = n!

for n ∈ Z+. Notice that Γ(1) = 1 tells us that we can consistently define 0! = 1.

1.5.6 Gaussian integrals

Physicists make a lot of use of the so-called “error function” in statistical analysis and
elsewhere. Refer to Section 9.3.3 for why we see this so often, and where the name comes
from. To discuss this, we first need to discuss the concept of the “Gaussian integral.”

The infinite Gaussian integral

Note that the antiderivative of e−x
2

cannot be determined analytically. However, there is a
nifty trick we can use to determine the definite integral over −∞ ≤ x ≤ ∞. We write

I =

∫ ∞
−∞

e−x
2

dx = 2

∫ ∞
0

e−x
2

dx
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where the second relation will come in handy from time to time, and is only the observation
that the integrand is an even function of x. Now we obviously can also write

I2 =

[∫ ∞
−∞

e−x
2

dx

] [∫ ∞
−∞

e−y
2

dy

]
=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dxdy

If we interepret4 x and y as variables in the plane, and switch instead to variables r and φ,
as described in Section 1.4.6, we get

I2 =

∫ 2π

0

dφ

∫ ∞
0

rdr e−r
2

= 2π

[
−1

2
e−r

2

]∞
0

= π

where now we realize that the integrand re−r
2

does have an analytic antiderivative! Therefore
I =
√
π. The exponent function in fact usually has a slightly more complicated argument,

so we write, using a change of variables y = x
√
a so dx = dy/

√
a,

I(a) =

∫ ∞
−∞

e−ax
2

dx =

∫ ∞
−∞

e−y
2 1√

a
dy =

√
π

a
(1.8)

Derivatives of the infinite Gaussian integral

We can use (1.8) to find other important integrals. For example∫ ∞
−∞

x2e−ax
2

dx = − d

da

∫ ∞
−∞

e−ax
2

dx = − d

da
I(a) =

1

2

√
π

a3
(1.9)

Asymptotic expansion of the Gaussian Integral

This is a good place to make students aware of the idea of an asymptotic expansion. I would
use the example from Schroeder’s appendix:∫ ∞

x

e−t
2

dt = e−x
2

(
1

2x
− 1

4x3
+

3

8x5
− · · ·

)
for x� 1

and show what happens when you go too far in the series.

Possibly better to do it before Taylor series to avoid confusion? Maybe not enough time to
get this deep into this anyway.

The error function

We now have enough to define the error function, namely

erf(z) =
2√
π

∫ z

0

e−x
2

dx

which rises monotonically from erf(0) = 0 to erf(z →∞) = 1.

4We are actually doing a change of variables from (x, y) to (r, φ), but I don’t want to be too technical
here since we haven’t gotten yet to the machinery of changing variables in more than one dimension.
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1.6 Using Mathematica

This course includes a laboratory section aimed at getting you to use Mathematica for
symbolic manipulations, plotting, and some data analysis. Exercises will include material
from calculus and differential equations, and matrix operations. Although the topics will
more or less parallel what we do in the lecture, the laboratory exercises are not meant to
specifically reinforce the material in the homework and quizzes. That is, the Mathematica
lab is essentially a separate portion of the course.

It may happen that I use Mathematica code in these notes to illustrate something, perhaps
techniques for numerically solving differential equations, for example.

Many of the figures that I’ve produced for these notes come from Mathematica code that
I have written. Figure 2.1 is a rather simple example. Figure 1.4, on the other hand, is a bit
more complicated. If you would like to see the code I used for these, or any other, figures,
just let me know.
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Chapter 2

Infinite Series

Infinite series appear all of the time in mathematics that is used in physics. They provide ex-
cellent ways to connect mathematical concepts and to solve differential equations. Truncated
infinite series are also very important in approximations.

Most of this chapter should be review.

2.1 A Simple Power Series

Let’s start with a simple example of a finite series, maybe the simplest thing we can think
of. We write

Sn = 1 + x+ x2 + · · ·+ xn

where n is a positive integer. We call this a “power series” in x. There is a nifty trick for
finding ana analytical expression for Sn. First, multiply this by x, that is

xSn = x+ x2 + x3 + · · ·+ xn+1

Subtracting the second expression from the first lets us solve for Sn, namely

Sn =
1− xn+1

1− x
(2.1)

So what happens if we let n → ∞, that is, let the series become infinite? Well, we will get
some kind of nonsense if x ≥ 1. If x = 1, then (2.1) gives 0/0, and if x > 1 then it gives ∞.
Similar problems come in if we have x ≤ −1. It seems that to make sense of the case for
n→∞, then, we must require that −1 < x < 1, or |x| < 1. In this case, we have, for x ∈ R,

1

1− x
= 1 + x+ x2 + x3 + · · · where |x| < 1 (2.2)
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This is our first example of an infinite series, and we will see it very often in physics. (In
fact, it is a specific case of another example we’ll see shortly.) If we put x→ −x, then

1

1 + x
= 1− x+ x2 − x3 + · · · where |x| < 1

In the case that |x| � 1, we come up with a very important approximation, namely

1

1± x
= 1∓ x+O(x2)

which we’ll use over and over again in physics. The term O(x2) means “of order x2”, and
is an important notation when we want to estimate how close the approximation is to the
truth.

We’ll go through these same notions in the rest of this chapter, but in the more general
“Taylor Series” which we can apply to functions as a rule.

2.1.1 Convergence of the power series

Somehow I think it would be a good idea to discuss the idea of convergence, more than the
little bit I discussed above. I have to think about what I would say, though. Maybe let
x→ z, a complex number, and talk about convergence in the complex plane?

2.2 Taylor Series

Instead of deriving the idea of Taylor Series step by step, I think it is better to give you the
answer first, discuss it using some graphics, and then go on to show you how you get there.

Taylor’s theorem, which we will (more or less) prove shortly, says that for any function f(x)
for which derivatives at a point x = x0 are well defined, we can write

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2!
f ′′(x− x0)2 + · · · =

∞∑
n=0

1

n!
f (n)(x0)(x− x0)n (2.3)

where f (n)(x0) is a shorthand for the nth derivative evaluated at x = x0, that is

f (n)(x0) =
dn

dxn
f(x)

∣∣∣∣
x=x0

In other words, pretty much any function can be written as a (possibly) infinite polynomial
in the variable x−x0, and this polynomial can be written analytically to any order given an
analytic expression for f(x). We will encounter later some “special functions” (like Bessel’s
function, spherical Bessel functions, . . . ) which only can be written as Taylor series, but
let’s not dwell on that for now.
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Figure 2.1: Graphic demonstration of a Taylor series expansion. This example expands the
function, plotted as a black solid line, about the point at x0 = 2, up to third order.

It is not necessary for x ∈ R, but in this course, this is the only case we will study seriously.
Expansions of complex functions in terms of complex variables are especially important in
many advanced physics courses.

Equation (2.3) may look like a mouthful, but it is actually quite easy to interpret. Look at
the first two terms. Ignoring the others gives

f ′(x0) =
f(x)− f(x0)

x− x0

which says that f ′(x0) is the slope of the straight line that passes through x = x0. In
other words, the first two terms are a “straight line” approximation to f(x). Adding higher
terms just makes higher order approximations. Figure 2.1 shows pretty clearly, I think, how
the Taylor expansion terms represent a systematic better and better approximation to the
function, especially as |x− x0| � 1. This is also the idea behind using Taylor expansions as
approximations.

Now let’s move on to see where (2.3) comes from.

2.2.1 Expanding about x = 0

.

The easiest path to deriving (2.3) is to start with x0 = 0. Assume that we can write

f(x) = a0 + a1x+ a2x
2 + · · ·
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and see how we might find the coefficients an. This is actually pretty simple, since

f(0) = a0

f ′(0) = 1 · a1

f ′′(0) = 2 · 1 · a2

f ′′′(0) = 3 · 2 · 1 · a3

and so forth. In other words, f (n)(0) = n! · an, and so

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 + · · · =

∞∑
n=0

1

n!
f (n)(0)xn (2.4)

Remember that 0!=1. If you don’t believe me, review Section 1.5.5 and find Γ(1).

Let’s use this approach to derive the Taylor expansion for f(x) = 1/(1 − x), that is (2.2).
All we need to do is calculate f(x) and its derivatives at x = 0.

f(0) = 1 f ′(0) = −(−)
1

(1− x)2

∣∣∣∣
x=0

= 1 f ′′(0) = −2(−)
1

(1− x)3

∣∣∣∣
x=0

= 2

and so forth. In other words, f (n)(0) = n! and we get (2.2).

2.2.2 Simple examples

Let’s derive the Taylor expansions (about x = 0)1 for some of the functions from Section 1.5.
The simplest is for f(x) = ex, since the derivative of ex is just ex so that f (n)(0) = 1 for all
n, and

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · (2.5)

This result is used so often in physics that you should memorize it.

The expansions for cos(x) and sin(x) are also pretty easy. The derivative of cos(x) is − sin(x)
and the derivative of sin(x) is cos(x). Also, of course, cos(0) = 1 and sin(0) = 0. The series
expansions therefore are only the terms that have cos(x) as the derivative, with alternating
signs. You find

cosx = 1− 1

2!
x2 +

1

4!
x4 + · · · (2.6a)

sinx = x− 1

3!
x3 +

1

5!
x5 + · · · (2.6b)

The expansion for f(x) = log(1 + x) is more interesting. In the first place, we consider this
instead of f(x) = log(x) because f(0) would not be defined in this case. The derivatives are
straightforward, namely

f ′(x) =
1

1 + x
f ′′(x) = − 1

(1 + x)2
f ′′′(x) = −2

1

(1 + x)3

1I think that Taylor expansions about x = 0 are called “Maclaurin expansions.”
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which brings us to f (n)(0) = −(−1)n(n− 1)! for n ≥ 1, and f(0) = log 1 = 0. Therefore

log(1 + x) = x− 1

2
x2 +

1

3
x3 + · · · (2.7)

This is also a formula that you will see often in physics problems.

Another very common expansion in physics is for functions of the form f(x) = (1+x)α, where
α ∈ R. You should take the time to work out the first few terms of the expansion yourself.
(You might also try using the Series function in Mathematica to find the expansion.) The
result is

(1 + x)α = 1 + αx+
1

2
(α− 1)αx2 +

1

6
(α− 2)(α− 1)αx3 + · · · (2.8)

It should also become second nature to you to think that (1 + x)α = 1 + αx when |x| � 1.

2.2.3 Expanding about x = x0

Now let’s return to deriving (2.3). Start with (2.4) and change variables to y = x + x0.
Clearly, the derivative with respect to y is the same as the derivative with respect to x, since
dy/dx = 1. Setting x = 0 is the same as setting y = y0. Therefore, (2.4) becomes

f(y) =
∞∑
n=0

1

n!
f (n)(x0)(y − x0)n

Then just write y → x and you recover (2.3) and we’re done.

As an example, let’s expand f(y) = log(y) about y = 1 and compare to (2.7). Since

f ′(y) =
1

y
f ′′(y) = − 1

y2
f ′′′(y) = 2

1

y3

and so on, we have f(1) = 0, f ′(1) = −1, f ′′(1) = 2, etc. . . . Therefore we end up with

log(y) = (y − 1)− 1

2
(y − 1)2 +

1

3
(y − 1)3 + · · ·

Switching to x = y − 1 recovers (2.7).

2.3 Expansions as Approximations

Physicists make a lot of use of (2.3) and (2.4) in approximations. So long as |x| � 1 in (2.4),
or |x − x0| � 1 in (2.3), the successive terms in the expansion will be smaller and smaller
as the order increases. It is therefore likely that the first term or two or three will be plenty
good enough for your application.

We refer to approximation schemes like this as “expanding in some small parameter.” Of-
tentimes, though, the quantity x, or x− x0, will have dimensions, so we need to know that
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it is small compared to something else? The best approach here is always to express your
formula in terms of a dimensionless parameter before expanding.

We can illustrate this with a cute physics problem. We refer to the acceleration of gravity
near the Earth’s surface as g, a number likely ingrained in your memory as g = 9.8 m/s2.
We treat g as a constant for the motion of falling bodies, projectiles, and the like. However,
since the force of gravity decreases as we move out from the center of the Earth, we expect
g to actually be a function of the height y above the Earth’s surface. The dependence on
y should be very weak, since any change in height would be much smaller than the Earth’s
radius R, but it could be important if we are making a precise measurement of the motion.

So how can we get a useful approximation for g(y) that is good for y � R? The force of
gravity on an object of mass m that is a distance r = R + y from the center of the Earth is

Fgrav = G
mM

r2
= G

mM

(R + y)2
= mg

where M is the mass of the Earth. Therefore

g(y) =
GM

(R + y)2
=
GM

R2

(
1 +

y

R

)−2

This formula is “exact” (for a spherical Earth of uniform density), but its form makes it
difficult to solve differential equations for the motion of objects. On the other hand, I have
written this formula in terms of a small parameter y/R ≡ x, and can make use of the
expansion (2.8) to simplify it. We have

g(y) ≈ GM

R2

(
1− 2

y

R

)
= g0(1− βy)

where g0 = gM/R2 = 9.8 m/s2 and β = 2/R = 3.1 × 10−7/m. In other words, near the
Earth’s surface, the acceleration due to gravity decreases linearly with height, by a fractional
amount of 3.1× 10−5 per 100 m.

2.4 Euler’s Formula

We are now in a position to derive one of the most important and useful formulas in physics.
You will use this result, called “Euler’s Formula”, in almost every physics course you take.

Consider the expansion about x = 0 for ex given by (2.5). Now instead of expanding the
function ex, expand the function f(x) = eix. Since i2 = −1, we know that i3 = −i, i4 = 1,
i5 = i,and so on. That is, in = ±i for n odd, and in = ±1 for n even. This gives

eix = 1 + ix− 1

2!
x2 − i 1

3!
x3 + x4 1

4!
x4 + i

1

5!
x5 + · · ·

= 1 +− 1

2!
x2 +

1

4!
x4 + · · ·

+i

(
x− 1

3!
x3 +

1

5!
x5 + · · ·

)
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We recognize the two expansions above from (2.6) and arrive at Euler’s Formula:

eix = cosx+ i sinx (2.9)

One of the first places we use Euler’s Formula is in oscillations, where instead of writing
cosωt and sinωt we’ll find it much handier to write e±iωt.

Turning Euler’s Formula around gives us

cosx =
eix + e−ix

2
(2.10a)

and sinx =
eix − e−ix

2i
(2.10b)

which bear a striking resemblance to (1.6). In fact, we see that

cosh(ix) = cos(x) and sinh(ix) = i sin(x)

2.4.1 Trigonometric identities

Euler’s Formula makes it easy to find various trigonometric identities. For example, writing
ei(x+y = eixeiy becomes

cos(x+ y) + i sin(x+ y) = (cosx+ i sinx)(cos y + i sin y)

= cosx cos y − sinx sin y + i(sinx cos y + cosx sin y)

Just equate real and imaginary parts to get (1.5c) and (1.5d).

I don’t think it is fair to call these “derivations” because in order to get Euler’s Formula, I
needed to know how to find the derivatives of cos x and sinx, and I got these by using the
trigonometric identity for the cosine of the sum. Nevertheless, this is a useful technique for
finding more identities, or at least figuring them out if you need them and can’t look them
up easily.

2.4.2 Polar representation of complex numbers

Euler’s Formula gives us a very useful way to express complex numbers in a polar form.

See Figure 2.2. The point in the complex plane can be identified either by its Cartesian
coordinates (x, y), or by its polar coordinates (r, φ). That is, we can write z = x + iy as
z = reiφ = r cosφ+ ir sinφ since x = r cosφ and y = r sinφ.

We call r = (x2 + y2)1/2 the ampltiude and φ = tan−1(y/x) the phase of the complex number
z. This terminology gains physical importance when we apply it to the amplitude and phase
of an oscillating system. See Section 3.4.
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Figure 2.2: Polar representation of a complex number.

2.4.3 Application: Simple Harmonic Motion

This is a good time to make use of Euler’s formula to solve a basic and crucially important
problem in elementary mechanics, namely Simple Harmonic Motion. It is also an opportunity
to introduce the material on Ordinary Differential Equations that is the focus of Chapter 3.

Figure 2.3 shows the physical situation. A mass m is attached to a spring with stiffness k,
and can slide without friction on a horizontal surface. There is a restoring force F = −kx
acting on the mass. The (horizontal) acceleration of the mass is ẍ(t) = d2x/dt2. Newton’s
Second Law “F = ma” tell us that the force must equal the mass times the acceleration, so

−kx = m
d2x

dt2
or

d2x

dt2
= −ω2

0x(t) where ω2
0 ≡

k

m
(2.11)

Equation (2.11) is a differential equation that would be solved for the motion x(t), that is,
the function x(t) that maps time onto position.

Euler’s formula gives us an elegant way to find the solution x(t) to (2.11). In words, we need
to find a function that, when you take its derivative twice, returns the same function but
multiplied by −ω2

0. You know that the derivative with respect to x of a function f(x) = eax

is just f ′(x) = aeax. Therefore, the derivative with respect to t of eiω0t is iω0e
iω0t, and taking

the derivative a second time just brings down another factor of iω0. That is

d2

dt2
eiω0t = (iω0)2eiω0t = −ω2

0e
iω0t

which is just what we wanted!
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Figure 2.3: The physical situation leading to simple harmonic oscillation. The variable
x = x(t) measures the position of the mass m relative to the equilibrium point at x = 0.
The “restoring force” F = −kx wants to pull the mass back to the equilibrium position.

However, there is also a second choice, namely

d2

dt2
e−iω0t = (−iω0)2e−iω0t = −ω2

0e
−iω0t

So, how do we deal with the fact that there are two different solutions x(t) to the differential
equation?

In fact, we’ll find in Chapter 3 that any differential equation with a second derivative will end
up having two possible solutions. We’ll also learn that, in fact, there are an infinite number
of solutions for this kind of differential equation, called a linear differential equation because
the function x(t) and its derivatives only appear in linear form. There are an infinite number
of solutions because any linear combination of the two different “independent” solutions is
also a solution. That is, the general solution to (2.11) is

x(t) = Aeiω0t +Be−iω0t (2.12)

where A and B are arbitrary constants. We can see this explicitly just by taking the second
derivative. That is,

d2

dt2
(Aiω0t +Be−iω0t) = −ω2

0A
iω0t − ω2

0Be
−iω0t = −ω2

0(Aiω0t +Be−iω0t)

Now our question is how do we find the constants A and B. For this, we put in the physics
of the so-called “initial conditions.” Where is the mass m at t = 0, and how fast, and in
what direction, is it going at this point? Let’s say the initial position is x0. Then

x(0) = A+B = x0

We get a second equation for A and B by considering the velocity, that is

v(t) = ẋ(t) =
dx

dt
= iω0A

iω0t − iω0Be
−iω0t

If the initial velocity is v0, then

v(0) = iω0A− iω0B = v0 or A−B =
v0

iω0
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We now have two equations to solve for A and B in terms of the physical initial values of
position and velocity, x0 and v0. The equations are simple to solve. You find

A =
1

2

(
x0 − i

v0

ω0

)
and B =

1

2

(
x0 + i

v0

ω0

)
(Notice that B = A∗. This will become handy shortly.) We can now write down the solution
x(t) that satisfies the differential equation and also the initial conditions:

x(t) = Aeiω0t +Be−iω0t

=
1

2

(
x0 − i

v0

ω0

)
(cosω0t+ sinω0t) +

1

2

(
x0 + i

v0

ω0

)
(cosω0t− sinω0t)

= x0 cosω0t+
v0

ω0

sinω0t (2.13)

(Notice how the i magically disappears, but it had to; x(t) is a real function with real initial
conditions.) You should convince yourself that this solves the differential equation (2.11),
and satisfies the initial conditions.

We can also use Euler’s formula to write the solution in an alternate form, which gives some
physical insight into what’s going on. Since B = A∗, we can write

A =
1

2
Reiφ and B =

1

2
Re−iφ

where R and φ are related to the initial conditions through

R =

(
x2

0 +
v2

0

ω2
0

)1/2

and φ = − tan−1

(
v0

ω0x0

)
(2.14)

In this case, we write our solution as

x(t) = Aeiω0t +Be−iω0t

=
1

2
Riφeiω0t +

1

2
Re−iφe−iω0t

=
1

2
R
[
ei(ω0t+φ) + e−i(ω0t+φ)

]
= R cos(ω0t+ φ) (2.15)

We call R the “amplitude” of the oscillation; it is the maximum value that x(t) can reach,
so the mass m moves between +R and −R. The (angular) frequency of the oscillation is
ω0, so the period is T = 2π/ω0. The phase φ measures the “time lag” of the oscillation. If
v0 = 0, then φ = 0 and the mass starts at the maximum value; it’s as if you pull the mass
and let it go (from rest) at t = 0. If the initial position x0 = 0, however, then φ = −π/2,
and the motion starts a quarter period “behind.”

Figure 2.4 shows three curves of x(t) for three different choices of initial conditions. Each
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Figure 2.4: Simple harmonic motion with different combinations of initial position and ve-
locity, corresponding to different amplitudes and phases. The red curve is for zero initial
velocity, the blue curve is for zero initial position, and the red curve is for neither of the two
are zero. See the text for details.

curve is drawn for ω0 = 2π, that is oscillation period T = 1. The black curve uses x0 = 10
and v0 = 0, while the blue curve is plotted for x0 = 0 and v0 = 5ω0. Notice that the blue
curve lags the black curve by a quarter of a period, as expected given that their relative
phases are π/2. The red curve corresponds to x0 = 5 and v0 = 5ω0, and appropriately lags
by a phase of π/4.

2.5 Expansions in More than One Variable

From time to time, it will be useful to perform Taylor expansions in functions of more than
one variable. The generalization is straightforward. Up to second order, for a function of
two variables, you find

f(x, y) = f(x0, y0) +
∂f

∂x

∣∣∣∣
x=x0,y=y0

(x− x0) +
∂f

∂y

∣∣∣∣
x=x0,y=y0

(y − y0)

+
1

2!

∂2f

∂x2

∣∣∣∣
x=x0,y=y0

(x− x0)2

+
∂f

∂x

∂f

∂y

∣∣∣∣
x=x0,y=y0

(x− x0)2

+
1

2!

∂2f

∂x2

∣∣∣∣
x=x0,y=y0

(x− x0)2 (2.16)

There are neater ways to write this once we have matrix formalism under our belt.
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Chapter 3

Ordinary Differential Equations

This chapter is about “ordinary” differential equations, that is, equations whose solutions
are functions of a single independent variable. We will cover “partial” differential equations
in Section 4.5.

Remember that this course is about mathematics as applied to problems in physics. There are
many subtleties in the mathematics of differential equations that will gloss over or outright
ignore. For this reason, I encourage all physics students to take a mathematics course in
differential equations. Temple’s Mathematics Department offers the course MATH 2045
Differential Equations with Linear Algebra, which I believe to be a good option.

An excellent textbook is Elementary Differential Equations and Boundary Value Problems,
by Boyce, DiPrima, and Meade, now in its 11th edition, published by Wiley. The ISBN is
978-1-119-32063-0. It’s the book I learned the subject from (in its 2nd edition) and updates
over the years have kept up with education research and the greater available of computing
capability for numerical solutions.

3.1 Differential Equations and their Solutions

Differential equations are equations that involve derivatives of some function. A solution to
a differential equation is the function itself. For each order of derivative in the differential
equation, you have to specify some “boundary condition” to go along with all of the lower
order derivatives and for the function. (In physics, when the differential equation involves
functions of, and derivatives with respect to, time, we call the boundary conditions “initial
conditions.”) Sometimes you will have a set of differential equations involving different
functions, that can appear in some or all of the equations. This is called a system of
“coupled” differential equations.

It’s worth pointing out at the start that Physics is generally formulated in terms of differ-
ential equations. Newton’s Second Law ~F = m~a, Maxwell’s Equations, and the Schrödinger
Equation are all differential equations. Einstein’s gravitational field equations, too.
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There are very many techniques for solving the very many different types of differential
equations. We’ll see a small number of these techniques in this course, but it is often the
case that you can just use your wits to figure out a solution. As with most things, practice
makes perfect.

In broad terms, there are two general classes of differential equations, called Ordinary Differ-
ential Equations (ODE’s) and Partial Differential Equations (PDE’s). An ODE has only one
independent variable, which we will usually (but not always!) call x or t, and the derivatives
of the solution function will only be ordinary derivatives with respect to this variable. The
solution to a PDE will be a function of two or more variables, with various partial derivatives
with respect to them.

The techniques for dealing with ODE’s are very different than those for working with PDE’s,
so we discuss them separately. We take up a discussion of PDE’s n Section 4.5.

3.1.1 Ordinary Differential Equations

An ordinary differential equation for a function y = y(x) is an equation of the form

d(n)y

dx
= f

(
x, y,

dy

dx
,
d2y

dx2
, · · · , d

(n−1)y

dxn−1

)
(3.1a)

where f is some function, and d(n)y/dxn is the nth derivative of y(x). We will often use the
notation y(n)(x) = d(n)y/dxn. Any solution to (3.1a) must also solve some given boundary
conditions at a point x = x0, namely

y(x0) = y0, y′(x0) = y′0, y′′(x0) = y′′0 , . . . , y(n−1)(x0) = y
(n−1)
0 (3.1b)

If instead of x we use t (time) for the independent variable, then we refer to “initial condi-
tions” instead of boundary conditions.

We call n the “order” of the differential equation, that is, the highest derivative that appears.
An ODE of order n needs to have n boundary conditions. You can think of each of these
conditions leading to determine the constant of integration that we’ll get from integrating
the derivatives.

If (3.1a) can be cast into the form

a0(x)y + a1(x)y′ + a2(x)y′′ + · · ·+ an(x)y(n) = g(x) (3.2)

then we call the differential equation “linear.” If the function g(x) = 0 we call the equation
“homogeneous.” There are some general approaches we can take for linear, homogeneous
equations, and these can be directly applied to linear inhomogeneous equations. Let’s see
how this works in general now. We will return to this in many examples later.

All linear, homogeneous differential equations have an extremely important property that is
inherent in so many physical situations. This is the principle of superposition which says that
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any linear combination of two solutions is also a solution. Writing y(x) = c1y1(x) + c2y2(x),
where y1(x) and y2(x) are both solutions to (3.2) and c1 and c2 are constants, then it is a
simple matter to show that y(x) is also a solution. For an nth order equation, we can expect
to find n different linearly independent solutions so that

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) (3.3)

is the general solution. In principle, we can determine the constants c1, c2,. . . , cn by applying
the boundary conditions.

How do we know that the solutions yi(x) are linearly independent? There is a straightforward
way to answer this using matrix manipulations.1 We apply this solution to the boundary
conditions and get a set of equations that can be written as

y1(x0) y2(x0) · · · yn(x0)
y′1(x0) y′2(x0) · · · y′n(x0)

...
... · · · ...

y
(n)
1 (x0) y

(n)
2 (x0) · · · y

(n)
n (x0)



c1

c2
...
cn

 =


y0

y′0
...

y
(n)
0

 (3.4)

This set of equations only has a solution if the determinant of the matrix is nonzero, and
this is the condition we need for the set of equations yi(x) to be linearly independent. This
determinant is called the Wronskian and we write

W (x) =

∣∣∣∣∣∣∣∣∣
y1(x) y2(x) · · · yn(x)
y′1(x) y′2(x) · · · y′n(x)

...
... · · · ...

y
(n)
1 (x) y

(n)
2 (x) · · · y

(n)
n (x)

∣∣∣∣∣∣∣∣∣ (3.5)

So, linear independence at a point x = x0 requires that we have W (x0) 6= 0. In most of
the cases you’ll see in physics, W (x) will be nonzero for the entire relevant range of the
independent variable x.

This is all fine for homogeneous linear equations, but what if the equation is inhomoge-
neous? In this case, your first job is to fine a “particular” solution yP (x) which solves (3.2)
for nonzero g(x). This solution does not need to have any constants that fit the boundary
conditions, because once you have yP (x), you can add to it any solution (3.3) to the homo-
geneous equation and the result still solves (3.2). You then apply the boundary conditions
to determine the constants ci.

Again, we will see examples of all this in this chapter.

Finally, we point out that a nonlinear differential equation can also be homogeneous, but in
this case you would have to cast it into a form using a change of variables so that it has no

1We won’t be discussing matrices until Chapter 6, so if you’re unfamiliar with this, just skip over this
discussion. I’ll be illustrating with examples later in this chapter.
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remaining explicit function of x with no factor that depends on y or its derivatives. For a
first order equation, for example, a homogenous differential equation is one of the form

dy

dx
= G

(y
x

)
I don’t think you’ll ever have occasion in your upper level physics courses to deal with
inhomogeneous nonlinear differential equations.

3.1.2 Existence and Uniqueness

It might bother you that I have just gone ahead willy nilly writing down some properties of
differential equations and implying that I can find solutions with these ideas. But maybe
there are other solutions to the equation and boundary conditions that can’t be found by
following these properties? Or maybe there is no solution to the equation after all?

In fact, the answer is “No” to both questions. For all of the cases we’ll study in this course,
any given ODE or PDE, along with a set of boundary conditions, has exactly one solution.
That is, the solution exists and is unique. I’m not going to prove this, but you’ll do so in a
real course in differential equations, and see the conditions that need to be satisfied for the
proof.

Nevertheless, this is a very powerful statement. We can go ahead and find a solution
to a differential equation, and the boundary conditions, any way that we want, and be
assured that it is the right answer. My favorite example of this is the “image charge”
approach to solving boundary value problems in electrostatics, something you’ll encounter
in your Electricity & Magnetism course.

3.1.3 Using scaled variables

We have already learned about dimensional analysis. This will allow you to identify fixed
quantities in your differential equation that have dimensions of, say, distance, time, en-
ergy,. . . , and then define new variables that are dimensionless.

If your problem is one that requires you to make approximations as to whether something is
“big” or “small”, then scaling the variables lets you decide this based on whether something
is much larger or much smaller than unity. Also, if your problem is suited to solving numer-
ically with Mathematica or some other application, then it will be very handy to express
your independent and dependent variables in dimensionless form by dividing them by some
appropriate scale.

We’ll see lots of examples of this, but here’s a simple one. The differential equation for the
simple harmonic oscillator in one dimension x(t), from F = ma written as ma− F = 0, is

m
d2x

dt2
+ kx = 0
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The frequency scale is ω = (k/m)1/2. (You should confirm for yourself that this has dimen-
sions of inverse time!) Defining a dimensionless time τ = ωt turns the equation into

d2x

dτ 2
+ x = 0

and now you have a natural way to discuss the oscillator in terms of short times, i.e. τ � 1,
or long times, i.e. τ � 1. (This is actually more useful when the oscillator is also subjected
to a damping force and and oscillating forcing function, each of which introduce their own
time scales.)

3.2 First Order Equations

First we’ll make some general comments and observations about first order equations, and
then do a couple of examples. Remember, though, that sometimes the best way to solve
the equation is to look at it and see your way through without having to go to a menu of
techniques!

If a differential equation has the form

dy

dx
=
p(x)

q(y)
i.e. q(y)dy = p(x)dx

then it is called separable. If the antiderivatives Q(y) and P (x) are known, then just integrate
both sides to get

Q(y) = P (x) + C

where the constant of integration C is determined from the boundary condition.

Next consider an equation of the form

P (x, y)dx+Q(x, y)dy = 0

If it happens to be that
∂P

∂y
=
∂Q

∂x

then we call the differential equation exact because there would be a function ψ(x, y) such
that

∂ψ

∂x
= P (x, y) and

∂ψ

∂y
= Q(x, y)

and the equation can be written as an exact differential and integrated trivially. If the
equation is not exact, then sometimes you can multiply through by a factor µ(x) that renders
the equation exact. The function µ(x) is called an “integrating factor.”

The use of integrating factors can be demonstrated explicitly for the inhomogeneous linear
first order equation

dy

dx
+ p(x)y = g(x) (3.6)
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If you define the integrating factor as the exponential of the antiderivative of p(x),

µ(x) = exp

[∫
p(x)dx

]
and multiply through by µ(x), then it is fairly obvious that

d

dx
[µ(x)y(x)] = µ(x)g(x)

and so the general solution is

y(x) =
1

µ(x)

[∫
µ(x)g(x) dx+ C

]
where, once again, we determine C from whatever is the boundary condition.

3.2.1 Example: Radioactive Decay

Quantum mechanics predicts that the probability of radioactive decay for an unstable nucleus
to decay in any given short time period dt is λdt, where λ is a constant that can be calculated,
in principle, from the properties of the nucleus. Suppose that you start with a given number
N0 of nuclei. Then you expect the number N(t) to decrease over time because they decay.
Given the probability λdt, the change in the number of nuclei during this time period is
dN = −λN dt.

This all leads to the differential equation and initial condition

dN

dt
= −λN(t) N(0) = N0

The form of this equation makes it simple to guess the answer. With the derivative propor-
tional to the function, you know that the solution has to be some exponential. Let’s use a
technique from Section 3.2 to get the solution, though.

This is a perfect example of a separable equation. We write

dN

N
= −λ dt so

∫
dN

N
= −λ

∫
dt or logN = −λt+ C

Exponentiating both sides give us N = e−λteC . Applying the boundary condition gives
N0 = eC . Therefore, the solution is

N(t) = N0e
−λt

Typically, we tabulate the half-life t1/2 of radioactive nuclei, namely the time it takes for the
sample to decay to one half its value. That is

1

2
= e−λt1/2 so t1/2 =

1

λ
log 2

This law also governs the decay of elementary particles and excited atomic states. For some
bizarre historical reason, however, we do not quote the half-life for these decays. Instead, we
use the mean life τ ≡ 1/λ.
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3.2.2 Example: Falling under drag

This is a simple problem that is intuitively easy to visualize, and is a problem that can be
solved using either separability or with an integrating factor.

A mass m falls vertically, starting from rest at height h. In addition to gravity (near the
Earth’s surface) there is a drag force proportional to the velocity. Find the velocity as a
function of time. Then find the vertical position as a function of time. (This involves writing
down and solving a first order equation, and then another first order equation.)

Let v(t) be the velocity and y(t) be the vertical position as a function of time. Write the
drag force as −bv where b > 0. (The sign ensures that the drag force is opposite to the
direction of velocity.) Assume that positive v is “up.” Then

m
dv

dt
= −mg − bv so

dv

dt
+

b

m
v = −g

which is exactly the form given by (3.6). So, let’s approach the solution using an integrating
factor. We have

µ(t) = exp

[∫
b

m
dt

]
= ebt/m

The solution is then

v(t) =
1

ebt/m

[∫
ebt/m(−g) dt+ C

]
= e−bt/m

[
−mg

b
ebt/m + C

]
= −mg

b

[
1− b

mg
Ce−bt/m

]
The initial condition is v(0) = 0 so C = mg/b and we finally have

v(t) = −mg
b

[
1− e−bt/m

]
It is always important to check that the result makes sense. Firstly, v(0) = 0, as we required.
Secondly, v(t) < 0 for t > 0, which is also correct, since the mass falls from rest. Thirdly,
as you might have expected, a “terminal velocity” vterm = mg/b is reached for long times.
You expect this because if the mass is moving fast enough, then the force of gravity mg is
exactly balanced by the drag force bv.

We can also do some simple dimensional analysis to check the result. For example, for the
exponential argument to make sense, the quantity b/m must have the dimensions of inverse
time. Since bv is a force, we must have

[b][v] = [b]LT−1 = MLT−2 so [b] = MT−1

and, indeed, b/m has dimensions of inverse time.

Now, in this case, the result for v(t) = dy/dt can easily be integrated to find y(t) subject
to the initial condition y(0) = h. This gives the position as a function of time. This is a
cheaters way of solving the second order equation for y(t), and that’s fine, but not always
an option.
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Finally, note that we could also have approached this as a separable equation. We have

dv

1 + bv/mg
= −g dt so

∫ v

0

dv

1 + bv/mg
= −g

∫ t

0

dt

where we integrate both sides, the left from 0 to v and the right from 0 to t. (We can change
the integration variables to “primes” if that makes people feel better, but you want to get
used to not having to do that.) Then

mg

b
log

(
1 +

b

mg
v

)
= −gt so v(t) = −mg

b

(
1− e−bt/m

)
3.2.3 Example: The rocket equation

Mention the conservation of momentum, namely dp/dt = 0 if no external forces act on an
object with mass m and velocity v, with p = mv. Now imagine a rocket, burning fuel and
therefore decreasing its mass while increasing its velocity. If vex is the exhaust velocity,
relative to the rocket, the momentum of the rocket plus the ejected fuel at a time t+ dt is

p(t+ dt) = (m+ dm)(v + dv)− dm(v − vex) = mv +mdv + vexdm

Note that I neglected the second order term (dm)(dv). Now the change in momentum is

dp = p(t+ dt)−mv = mdv + vexdm = 0

which is a separable first order differential equation. We can write

vex
dm

m
= −dv so vex log

m

m0

= −v + v0

where v = v0 is the initial velocity and n = m0 is the initial mass. It is probably handier to
write this as v = v0 + vex log(m0/m). See Taylor Classical Mechanics for more discussion.

3.3 Second Order Linear Equations

Given Newton’s Second Law, written as mẍ(t) = F (x, t), it is clear that second order
ordinary differential equations are ubiquitous in Physics. In this section we will focus on
linear differential equations. Of course, the form of the force F (x, t) can lead to nonlinear
equations and various associated (and fascinating) physical phenomena. More often than not,
however, these equations need to be solved numerically, so we leave them to the laboratory
portion of this course.2

2Chapter 12 of Classical Mechanics by Taylor has a terrific presentation of nonlinear systems and chaos
using the forced, damped pendulum. Numerical calculations are carried out using Mathematica.
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You should realize that in case where the function is explicitly “missing” in (3.1a), that is

d2y

dx2
= f

(
x,
dy

dx

)
we can reduce the problem to a first order equation by writing v(x) ≡ y′(x) and then solving
for v(x). This is one of the approaches we used in Section 3.2.2. It is not always an easy
matter, though, to integrate the equation for v(x) in order to get y(x).

Now we focus on linear second order equations. Following (3.1a), we are now working with
the functional form

f

(
t, y,

dy

dx

)
= g(x)− p(x)

dy

dx
− q(x)y

we are working with differential equations of the form

y′′ + p(x)y′ + q(x)y = g(x)

to be solved for the function y(x) with the boundary conditions y(x0) = y0 and y′(x0) = y′0.
We will use the machinery outlined in Section 3.1.1 and go through some examples. Remem-
ber in particular that, for a linear inhomogeneous equation, we can solve the homogeneous
equation after finding a particular solution to the inhomogeneous equation, and use this
combination to find the coefficients ci that satisfy the boundary conditions.

3.3.1 Constant Coefficients

Before moving on to physical examples, let’s work on what is likely the simplest example of
a second order linear differential equation, namely one that is homogeneous with constant
coefficients. That is, an equation of the form

ay′′ + by′ + cy = 0

where a, b, and c are real constants. Relying on existence and uniqueness, let’s try a solution
that looks like an exponential, but with some freedom that we can exploit. We can make
the “ansatz” (i.e. “guess”) that the solution is of the form y(x) = eαx where α is yet to be
determined. Substituting into our differential equation gives

α2aeαt + αbeαt + ceαt = 0

Canceling out the factor eαt leaves us with the quadratic equation for α

aα2 + bα + c = 0

known as the “characteristic equation.” It has the solution

α = − b

2a
±
√
b2 − 4ac

2a
≡ α1,2
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Consequently, we expect that we have two linearly independent solutions

y1(x) = eα1x and y2(x) = eα2x

If it turns out that b2 − 4ac < 0, then α1 and α2 will be complex, and Euler’s Formula will
give us sines and cosines. Recall Section 2.4.3.

A complication arises if b2 − 4ac = 0. In this case, there is only one linearly independent
solution given the eαt ansatz. We have to figure out some other way to get a second solution.
Then, of course, if we want to solve an inhomogeneous equation, we need to find a particular
solution.

Let’s illustrate all this with some specific examples. First, consider the homogeneous equation

y′′ − y = 0 with y(0) = 2 and y′(0) = −1

That is, a = 1, b = 0, and c = −1, giving α = ±1. That is, α = ±1, in which case y1(x) = ex

and y2(x) = e−x so that

y(x) = c1y1(x) + c2y2(x) = c1e
x + c2e

−x

The boundary conditions tell us that 2 = c1 + c2 and −1 = c1 − c2 so that c1 = 1/2 and
c2 = 3/2. Thus, the complete solution is

y(x) =
1

2
ex +

3

2
e−x

It is worthwhile to check the Wronskian to see that the two solutions are indeed linearly
independent. Following (3.5) we write

W (x) =

∣∣∣∣ y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣ =

∣∣∣∣ ex e−x

ex −e−x
∣∣∣∣ = −2

which of course is nonzero for all x. The two solutions y1(x) and y2(x) are linearly indepen-
dent for all x ∈ R.

Next consider the similar but inhomogeneous equation

y′′ − y = 1 with y(0) = 2 and y′(0) = −1

with the same boundary conditions. It is simple to guess the particular solution yP (x) = 1.
Therefore, the general solution is

y(x) = yP (x) + c1y1(x) + c2y2(x) = 1 + c1e
x + c2e

−x

and the boundary conditions tell us that 2 = 1 + c1 + c2 and −1 = c1− c2 so that c1 = 0 and
c2 = 1, giving us the complete solution

y(x) = 1 + e−x
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You should check that this satisfies the differential equation as well as the boundary condi-
tions.

Now let’s try a third and final example. Consider the equation

y′′ + 4y′ + 4y = 0

for which the characteristic equation becomes α2 + 4α+ 4 = (α+ 2)2 = 0. There is only one
solution, namely α = −2. How can we find the second linearly independent solution so that
we can satisfy arbitrary boundary conditions?

Once again, we are rescued thanks to existence and uniqueness. Let’s guess that if we
modify our one solution by a function v(x), that is y2(x) = v(x)e−2x, and substitute it into
our differential equation, then we should be able to find a differential equation for v(x) that
we can solve. Doing the work,

y2(x) = v(x)e−2x

y′2(x) = v′(x)e−2x − 2v(x)e−2x

y′′2(x) = v′′(x)e−2x − 2v′(x)e−2x − 2v′(x)e−2x + 4v(x)e−2x

= v′′(x)e−2x − 4v′(x)e−2x + 4v(x)e−2x

y′′2 + 4y′2 + 4y2 = v′′(x)e−2x − 4v′(x)e−2x + 4v(x)e−2x

+4v′(x)e−2x − 8v(x)e−2x + v(x)e−2x

= v′′(x)e−2x = 0

Aha! We want a function v(x) that satisfies v′′(x) = 0. Obviously, that is v(x) = c1 + c2x,
and the general solution to this homogenous second order homogeneous equation is

y(x) = (c1 + c2x)e−2x

We don’t have to bother with considering y1(x) from above, because this approach alone
gave us a general solution with two constants. Existence and uniqueness tell us that we are
done.

3.4 Harmonic Motion in One Dimension

Let’s now use this machinery to study harmonic motion, a subject we started in Section 2.4.3.
You likely saw this in some detail in detail in Wave Physics, so I’ll treat this as a review. It
is a very useful example because, in addition to being very important physically, it embodies
so much of the mathematics we have discussed to this point, as well as mathematics we have
yet to get to.

3.4.1 Simple harmonic motion

The motion of a mass m subject to a linear restoring force −kx, with no other forces in
the direction of motion, is called Simple Harmonic Motion. This problem was worked out
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Figure 3.1: The physical situation leading to damped harmonic oscillation. In addition to
the restoring force F = −kx, there is also a linear damping force FD = −bv which acts in
the direction opposite of the velocity.

thoroughly in Section 2.4.3, but let’s take a moment to couch that discussion in the language
of second order linear differential equations.

We solved the differential equation (2.11), which we rewrite as

x′′(t) + ω2
0x(t) = 0 x(0) = x0 x′(0) = v0

where I have included the initial conditions. This is an example of a second order linear ODE
with constant coefficients, which we discussed in detail in Section 3.3.1. We approached the
solution in a couple of ways, one of which was to use the ansatz x(t) = eαt. In this case, the
characteristic equation is

α2 + ω2
0 so α = ±iω0

in which case the general solution is

x(t) = c1e
iω0t + c2e

−iω0t

Applying the initial conditions led us to the complete solution (2.15), that is

x(t) = R cos(ω0 + φ)

where (2.14) gives R and φ in terms of x0 and v0.

Recall also that we used Simple Harmonic Motion as an example of writing a differential
equation in terms of scaled variables. See Section 3.1.3.

3.4.2 Damped harmonic motion

Now let’s take the next step and add a (linear) damping force to the mass. See Figure 3.1.
Newton’s Second Law now says that

m
d2x

dt2
= −kx− bv = −kx− bdx

dt

If we define β ≡ b/2m, and keep our definition ω2
0 = k/m, then the differential equation we

need to solve is
x′′(t) + 2βx′(t) + ω2

0x(t) = 0 (3.7)
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Figure 3.2: Example of under damped harmonic oscillations. The curves are drawn for
ω0 = 2π and β = 0.05ω0. The curve labeled v0 = 0 uses x0 = 10, and the curve labeled
x0 = 0 uses v0 = 5ω0. The dashed line shows the envelope of the decreasing exponential
amplitude, that is Re−βt with the notation from the text.

Once again, this is a linear second order homogeneous differential equation with constant
coefficients. Applying our ansatz x(t) = eαt gives the characteristic equation

α2 + 2βα + ω2
0 = 0 so α = −β ±

√
β2 − ω2

0

In the familiar case known as under damping, β < ω0 and the argument of the square root
is negative. Therefore α is complex and we write α = −β ± iω1 where ω1 =

√
ω2

0 − β2 and
the general solution takes the form

x(t) = e−βt
(
c1e

iω1t + c2e
−iω1t

)
= Re−βt cos(ω1t+ φ) (3.8)

where the constants c1 and c2, or R and φ, are determined from the initial conditions.
Figure 3.2 plots two examples of damped oscillatory motion.

A useful quantity when discussing damped oscillations, especially for very weakly damped
oscillations for which β � ω0, is the Q (for “Quality”) factor, defined as

Q =
ω0

2β
(3.9)

This quantity is best interpreted in terms of the energy of the oscillator. When the mass is
at its maximum position, that is the amplitude, all of the oscillator’s energy is in potential
energy which is proportional to the square of the amplitude. The amplitude in (3.8) decreases
like e−βt, so the energy of the oscillator depends on time as E(t) = E(0)e−2βt. Therefore,
for the weakly damped case, the change in the energy over one period of oscillation is

∆E = E(t)− E
(
t+

2π

ω0

)
= E(t)

[
1− e−2β(2π/ω0)

]
≈ E(t) 2π

2β

ω0

for β � ω0

In other words, for a weakly damped oscillator, the fractional change in energy over one
cycle is ∆E/E = 2π/Q. A large value of Q means that the oscillator is not very “lossy”,
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Figure 3.3: Examples of under damped (left) and critically damped (right) motion. The
same initial conditions were used as those in Figure 3.2, and once again ω0 = 2π. The under
damped case uses the value β = 1.25ω0. Notice that the critically damped case approaches
zero more rapidly.

and therefore of a higher “quality.” We will return to the usefulness of Q when we study
forced, damped oscillations in Section 3.4.3.

As discussed in Section 3.3.1, the solution for the over damped case when β > ω0 is

x(t) = c1e
α1t + c2e

α2t α1,2 = −β ±
√
β2 − ω2

0

and the critically damped case for β = ω0 has the solution

x(t) = (c1 + c2t)e
−βt

Figure 3.3 plots these solutions for the same initial conditions as in Figure 3.2. Of course,
the solutions do not oscillate in either of these cases, and the critically damped solution
approaches zero most rapidly.

3.4.3 Forced damped harmonic motion

Now imagine what happens if we “force” the oscillator by driving the equilibrium point back
and forth in an oscillatory manner whose frequency we can control. See Figure 3.4. The other
side of the spring from the mass is no longer fixed, but driven along a point x0 = B cosωt.
This means that the force from the spring on the mass is F = −k(x−x0) and the differential
equation that describes the system is given by

mx′′(t) + bx′(t) + kx(t) = kx0 = kB cosωt

Defining β = b/2m and ω2
0 = k/m as before, and also defining γ = kB/m, we have

x′′(t) + 2βx′(t) + ω2
0x(t) = γ cosωt (3.10)

This is a linear, second order, inhomogeneous differential equation with constant coefficients,
a case that we also treated in Section 3.3.1.
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Figure 3.4: The physical situation leading to forced damped harmonic oscillation. The left
side attachment point of the spring is no longer fixed, but instead is forced to oscillate
sinusoidally by forcing it to move with angular frequency ω. This modifies the restoring
force of the spring on the mass ot be F = −k(x− x0) where x0 = B cosωt.

The only tricky part to solving this problem is to find a particular solution. Having that,
we just need to add it to the general solution for the homogeneous equation, and then find
the two constants by applying the initial conditions. Looking at (3.10), however, it is by no
means obvious what is the particular solution. On the other hand, it is probably some linear
combination of cosωt and sinωt so we write

xP (t) = a cosωt+ b sinωt

and insist that this form solve (3.10) in order to determine a and b.3 We find

−aω2 cosωt− bω2 sinωt− 2βaω sinωt+ 2βbω cosωt+ ω2
0a cosωt+ ω2

0b sinωt = γ cosωt

Gathering up terms proportional to cosωt and sinωt give us the equations

(ω2
0 − ω2)a+ 2βωb = γ

−2βωa+ (ω2
0 − ω2)b = 0

Solving this pair of equations for a and b is straightforward, albeit tedious. (Or you can do
what I did and ask Mathematica to solve them for you.) You find

a =
γ (ω2

0 − ω2)

4β2ω2 + (ω2
0 − ω2)

2 and b =
2βγω

4β2ω2 + (ω2
0 − ω2)

2

It makes sense to write

A(ω) =
√
a2 + b2 =

γ√
4β2ω2 + (ω2

0 − ω2)
2

(3.11a)

and tan Φ(ω) =
b

a
=

2βω

ω2
0 − ω2

(3.11b)

3A much slicker way to do this is to let x(t) be complex, and write the right side of the equation as γeiωt.
I’m going to take the more straightforward approach here.
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Figure 3.5: Plot of the motion x(t) of an underdamped oscillator driven at three different
frequencies ω relative to the natural frequency ω0. The plot assumes ω0 = 2π, β = 0.05ω0

and uses initial conditions x(0) = 0 and x′(0) = 0. The driving amplitude is γ = 10. The
plot on the right is an expanded view of the ω = 1.5ω0 curve on the left.

in which case we have

xP (t) = A cos Φ cosωt+ A sin Φ sinωt = A cos(ωt− Φ)

Now we can use the results of Section 3.4.2 to write the complete solution to (3.10) as

x(t) = c1e
α1t + c2e

α2t + A cos(ωt− Φ)

where α1 = −β+
√
β2 − ω2

0 and α2 = −β−
√
β2 − ω2

0 are complex for the oscillating (under
damped) case (β < ω0) or real for the over damped case (β > ω0), and

x(t) = (c1 + c2t)e
−βt + A cos(ωt− Φ)

for the critically damped case (β = ω0). For all cases, we find c1 and c2 by applying initial
conditions x(0) = x0 and x′(0) = v0.

Figure 3.5 shows the motion of an oscillator that starts from rest at x = 0, but is set in
motion by the driving force. The motion is plotted for three different driving frequencies. The
amplitude is much larger for ω = ω0 than for the other two choices. This is not unexpected,
given the denominator in our expression for A(ω).

The figure also includes an expanded view of the motion for ω = 1.5ω0. Notice how the
motion appears somewhat irregular for the first several periods before settling into a steady
motion at the driving frequency. This is the effect of the transients that are the elements of
the homogeneous solution. The transients die away with a time constant 1/β.

The large amplitude in Figure 3.5 when ω ≈ ω0 is the familiar phenomenon known as
resonance. When you drive any underdamped oscillator at a frequency close to its natural
frequency, it responds with a large amplitude. Figure 3.6 shows explicitly how the amplitude
depends on the driving frequency, showing a “resonance peak.” Note also that the relative
phase between the response and the driving signal varies with frequency as well. For low
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Figure 3.6: The amplitude A(ω) and phase Φ(ω) for the particular solution xP (t), using the
same parameters as in Figure 3.5. The peak in the amplitude is for ω near ω0, which is
where the phase Φ rises through 90◦.

frequencies, the mass responds directly in phase with the driver, while for frequencies rather
larger than the natural frequency, the response is 180◦ out of phase.

Resonance phenomena are ubiquitous in nature. The mathematics of an electrical oscillator
made from a resistor, capacitor, and inductor obeys exactly the same differential equations
that we have studied here. Quantum mechanical scattering is another well known system
that displays resonance under the right conditions. There are also many examples in the
response of living systems to oscillatory driving functions. In all cases, there is a peak in
the amplitude, and a relative phase between the drive and response which rises from zero
through 90◦ at resonance, and levels out to 180◦ out of phase at high frequencies.

Finally, consider the amplitude function A(ω) from (3.11a) for the weak damping situation
β � ω0. The peak in the amplitude is near ω = ω0 as see in Figure 3.6. We can also determine
the “width” of the peak by calculating the values of ω for A(ω) = Amax/

√
2 ≈ γ/2

√
2βω0.

(We choose a fall by
√

2 because it is when the energy falls to one half its maximum value.)
This occurs when √

4β2ω2 + (ω2
0 − ω2)2 = 2

√
2βω0

Substituting ω ≈ ω0 in the first term under the square root, we find (ω2
0 − ω2)2 = 4β2ω2

0.
Solving for ω gives

ω =
[
ω2

0 ± 2βω0

]1/2
= ω0

[
1± 2β

ω0

]1/2

≈ ω0

[
1± β

ω0

]

Therefore the fractional“width” of the resonance ∆ω/ω0 = 2β/ω0 = 1/Q, the “quality
factor” from (3.9). This is a useful quantity for describing the performance of many resonant
systems.

53



3.5 Series Solutions for Second Order Equations

So far, even though we’ve been talking about differential equations in general terms, the
only solution we’ve come up with for linear second order ODE’s is for the case where the
homogeneous equation has constant coefficients. Indeed, there are many other examples of
important second order linear ODE’s in the physical sciences. Are there general approaches
we can use to address them?

We learned in Chapter 2 that we can represent functions by infinite power series. We can
take an approach, then, where the differential equation defines the function, and then we
can use a power series to try and craft the solution. In fact, this approach works very well.

The basic idea is the following. Start with the homogeneous equation

r(x)y′′(x) + p(x)y′(x) + q(x)y(x) = 0

and write the solution as a power series with unknown coefficients, that is

y(x) = a0 + a1x+ a2x
2 + · · · =

∞∑
n=0

anx
n

Substitute this form into the differential equation and manipulate the terms to find a “recur-
sion relation” that relates a coefficient an+2 to coefficients an+1 and/or an. The coefficients
a0 and a1 remain as the constants of integration, which get determined using the boundary
conditions y(0) = y0 and y′(0) = y′0.

This approach works for a lot of problems, and we’ll be discussing them soon. It doesn’t
always work, though. Remember that you have existence and uniqueness on your side, so
variations of this approach can be used if necessary.

One variation is that the boundary values might be specified for x → ±∞, a common
situation in Quantum Mechanics. This variation tends to lead to the series being truncated,
so the solution is actually a polynomial.

Another variation, known as the Method of Frobenius, is to write

y(x) = xs
∞∑
n=0

anx
n =

∞∑
n=0

anx
s+n

and use the differential equation to constrain, or determine, the value of s.

3.5.1 Simple examples

Let’s do some examples where we know what the answer has to be, and use these to illustrate
how the series solution approach works. Nothing about the approach is restricted to second
order equations, so let’s start with

y′(x) = y(x)
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Of course, the solution is y(x) = cex where c is a constant. Inserting the series we have

∞∑
n=0

nanx
n−1 =

∞∑
n=0

anx
n (3.12)

Now look at the sum on the left. The first term (n = 0) is manifestly zero, so we can start
the sum from n = 1 and then switch to a dummy index m = n− 1. This gives

∞∑
n=0

nanx
n−1 =

∞∑
n=1

nanx
n−1 =

∞∑
m=0

(m+ 1)am+1x
m

Switching the dummy index back to n and rearranging the terms in (3.12) we get

∞∑
n=0

[(n+ 1)an+1 − an]xn = 0

In order for this equation to be valid for all values of x, we therefore require

an+1 =
1

n+ 1
an

This is the “recursion relation” mentioned above. It tells us how to get any coefficient in
terms of the one before. If we set a0 = c then it is clear that

a1 =
1

1
c a2 =

1

2
a1 =

1

2 · 1
c a3 =

1

3
a2 =

1

3 · 2 · 1
c

and so forth. In other words, an = c/n! for all n. The resulting solution is

y(x) =
∞∑
n=0

1

n!
cxn = c

∞∑
n=0

1

n!
xn = cex

and indeed we get the solution we expected.

We’ll do one more simple example to see how this works for a second order equation. Let’s
use the series approach to find the solution to

y′′(x) = −y(x)

which we know to be y(x) = c1 cosx + c2 sinx. Substituting the series form and doing the
same manipulations as before ends up with

∞∑
n=0

[(n+ 2)(n+ 1)an+2 + an]xn = 0 so an+2 = − 1

(n+ 2)(n+ 1)
an
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This time, the recursion relation skips over the prior term, which means that we are free to
specify both a0 and a1. Writing a0 = c1 and a1 = c2 we get

a2 = − 1

2 · 1
c1 a4 = − 1

4 · 3
a2 = +

1

4!
c1 · · · so a2n = (−1)n

1

n!
for n = 0, 1, 2, 3, . . .

a3 = − 1

3 · 2
c2 a5 = − 1

4 · 4
a3 = +

1

5!
c2 · · · so a2n+1 = (−1)n

1

n!
for n = 0, 1, 2, 3, . . .

The solution naturally separates into two series, namely

y(x) = c1

[
1− 1

2!
x2 +

1

4!
x4 + · · ·

]
+ c2

[
x− 1

3!
x3 +

1

5!
x5 + · · ·

]
= c1 cosx+ c2 sinx

and once again we get the correct solution.

Many physical problems result in second order linear ODE’s whose solutions can only be
written in terms of series. Many of these solutions are given special names. A few of the
most important examples are discussed in Section 3.6.

3.5.2 The quantum mechanical simple harmonic oscillator

Quantum Mechanics can be formulated in terms of differential equations. In particular, the
Schrödinger Equation is an approach to Quantum Mechanics where one solves for the wave
function ψ(x) for a particle of mass m acted on by a potential energy function V (x) by
solving the differential equation

− ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x)

subject to some boundary conditions. For solutions that are localized in some region of x,
so-called “bound state solutions”, it turns out that solutions are only possible for discrete
values of the total energy E. That is, the energies are “quantized”, hence the name of this
field. The boundary conditions do not typically make it possible to find all of the integration
parameters, but an additional normalization constraint is included, namely that the integral
of |ψ(x)|2 over all x must equal unity. This allows |ψ(x)|2 to be interpreted as a “probability
density.”

Let’s take on the solution for the simple harmonic oscillator, where V (x) = kx2/2 = mω2
0x

2/2
is the potential energy function. (We know from our past work that ω2

0 = k/m is a useful
parameter, so let’s put it in at the start.) The differential equation is

− ~2

2m

d2ψ

dx2
+

1

2
mω2

0x
2ψ(x) = Eψ(x)

The function ψ(x) is subject to the boundary condition that ψ(x→ ±∞) = 0.
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First, it is a good idea to change variables from x to y equal to x divided by some length
scale. Since finding the energy will be part of the problem, let’s not use E to find a length
scale, and instead form it out of ~, m, and ω0. Writing the length scale as ~xmyωz0, we need

L = [~]x · [m]y · [ω0]z = L2xMxT−x ·My · T−z = L2xMx+yT−x−z

so x = 1/2 and y = −1/2 = z. Therefore we write y = x/
√
~/mω0 and

− ~2

2m

mω0

~
d2ψ

dy2
+

1

2
mω2

0

~
mω0

y2ψ(y) = Eψ(y)

Multiplying through by 2/~ω0 and defining ε ≡ 2E/~ω0, and doing a little rearranging, we
arrive at the second order linear homogeneous differential equation

ψ′′(y) + (ε− y2)ψ(y) = 0 (3.13)

This equation looks innocuous enough, but in fact its solution will take some gymnastics,
even before we get to applying the series solution. Solving this will be a good illustration of
how physicists make use of “flying by the seat of the pants” to come up with solutions to
differential equations.

The fact that we need ψ(y) to go to zero for large ±y suggests a good first step. Since ε is
a constant, we might first consider the differential equation

ψ′′(y)− y2ψ(y) = 0

to understand the dependence on y for y → ±∞. (We typically call this the “asymptotic
dependence.”) This solution to this equation is also not available in an analytic form, but if
we consider the function

ψ(y) = e−y
2/2 then ψ′′(y)− y2ψ(y) = −e−y2/2 → 0 as y → ±∞

This suggests the “asymptotic behavior” of ψ(y) might behave something like e−y
2/2. We

can remove this behavior by writing

ψ(y) = e−y
2/2h(y) (3.14)

and then inserting this into (3.13) to find the differential equation satisfied by h(y).

I admit this all sounds cockamamie. However, don’t forget that existence and uniqueness
are there for us, so any way that works is fine.

So let’s use (3.14) in (3.13) and see what happens. The derivatives are

ψ′(y) = e−y
2/2h′(y)− ye−y2/2h(y)

ψ′′(y) = e−y
2/2h′′(y)− 2ye−y

2/2h′(y) + y2e−y
2/2h(y)− e−y2/2h(y)

Inserting this into (3.13) gives

e−y
2/2h′′(y)− 2ye−y

2/2h′(y)− e−y2/2h(y) + εe−y
2/2h(y) = 0
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Dividing out the exponential factor leaves us with

h′′(y)− 2yh′(y) + λh(y) = 0 where λ ≡ ε− 1 (3.15)

Mathematicians have given this second order linear ODE a name, the Hermite Equation.
We can use the series approach to solve this equation. Proceeding as usual we have

h(y) =
∞∑
n=0

any
n

h′(y) =
∞∑
n=0

nany
n−1 so yh′(y) =

∞∑
n=0

nany
n

h′′(y) =
∞∑
n=0

n(n− 1)any
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2y
n

and the Hermite Equation (3.15) becomes

∞∑
n=0

[(n+ 2)(n+ 1)an+2 − (2n− λ)an] yn = 0

which gives the recursion relation

an+2 =
2n− λ

(n+ 2)(n+ 1)
an (3.16)

and we get two independent series, one with even powers of y, and one with odd powers.
(There is actually some interesting Quantum Mechanics that has to do with this observation,
concerning parity symmetry, but I will leave that to your Quantum Mechanics course.)

Now this solution would actually present a difficulty. Remember that we need ψ(x) → 0
for x → ±∞. It would seem that (3.14) covers this, provided that h(y) does not grow too
quickly. However, consider (3.16) for large values of y, where the series is dominated by
n� 1. In this case an+2 → (2n/n2)an = (2/n)an. For the series with even values of n = 2m,
the series becomes something proportional to∑

m�1

1

m!
y2m = ey

2

From (3.14), this implies that ψ(y) → ey
2/2 as y → ±∞, and there is no way that we can

meet the boundary condition. (We can make the same argument for the series with odd n,
just by factoring out y.)

Nevertheless, there is s solution to this problem. If the recursion relation says that the series
terminates at some value of n, then h(y) is not an infinite series, but rather a polynomial of
degree n. This happens if, for some n, the numerator of (3.16) vanishes. That is

2n− λ = 2n− (ε− 1) = 0
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Figure 3.7: The wave functions ψn(y) for the
quantum mechanical simple harmonic oscil-
lator, superimposed on the potential energy
and energy levels. Wave functions are shown
for n = 0, 1, 2, 3, 4 and are plotted vertically
shifted so that ψ = 0 corresponds to the
energy level En = (n + 1/2)~ω0. Notice
that ψn(−y) = ψn(y) for n even, and that
ψn(−y) = −ψn(y) for n odd. -4 -3 -2 -1 1 2 3 4

y

Since ε ≡ 2E/~ω0, this tells us that the allowed energies of the Quantum Mechanical Simple
Harmonic Oscillator are

E =
~ω0

2
(2n+ 1) =

(
n+

1

2

)
~ω0 ≡ En

The energies of the oscillator are “quantized” into evenly spaced values of ~ω0. This is a
profound and familiar result in Quantum Mechanics, which you will see again in Physics.

For any value of n, the finite series hn(x) is called the Hermite Polynomial of order n. The
wave functions ψ(y) can then be written as

ψ(y) = Nnhn(y)e−y
2/2 ≡ ψn(y)

where Nn is a “normalization constant” that is set by a different assumption of Quantum
Mechanics, namely that the integral of ψ(y) over all y is unity. There are ways to determine
a formula for Nn, but I won’t cover that here. The first five Hermite polynomials are

n hn(y)
0 1
1 2y
2 4y2 − 2
3 8y3 − 12y
4 16y4 − 48y2 + 12

Figure 3.7 shows the first five wave functions plotted on top of the energy levels. The “parity”
(−1)n of the wave functions is apparent, as is the fact that ψn(y) → 0 for y → ±∞. In
fact, the inflection point where the wave function turns to decreasing from oscillatory always
occurs at the “classical turning point” where the total energy equals the potential energy.

We have only scratched the surface of this very important problem in Quantum Mechanics.
You will learn more in other courses, but note the lesson here that sometimes the infinite
series solution will be truncated to a polynomial. We will encounter an example of this in
the next section when we discuss the Legendre Equation.
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3.6 Some Important Special Functions

There are many physical situations that give rise to specific linear second order ordinary dif-
ferential equations. The important ones all have names, usually based on the mathematician
who popularized them and their solutions. Oftentimes, the solutions to these equations can
only be expressed as infinite series, or series truncated to become polynomials. The solutions
generally go by the same name as the differential equations they solve. We saw one example
of this in Section 3.5.2 with the Hermite Equation and Hermite Polynomials.

Section 4.2.4 will discuss Laplacian operator ~∇2, which leads to partial differential equations
in different areas of Physics. For example, ~∇2V = 0, called Laplace’s Equation, is used
to derive the electric potential in the presence of static charges, along with some boundary
conditions. In Quantum Mechanics, ~∇2ψ = −k2ψ is solved to find the wave function for a
free particle with momentum ~k. These are important examples because, as we will learn
later, a technique called “Separation of Variables” leads to second order ordinary differential
equations in the spatial coordinates.

We call the solutions to these specific linear second order ODE’s “Special Functions” and
these are the subject of this section. In many cases, these functions cannot be written in
closed form but instead are written as infinite series.

Of course, there is nothing “special” about these Special Functions. They are just defined
in terms of the differential equations they solve. We could just as well have defined ex as the
solution to y′(x) = y, and cosx and sin x as the linearly independent solutions of y′′(x) = −y,
but we didn’t. In this section, we will focus on the Bessel Functions of integer order m ≥ 0
Jm(x), the Spherical Bessel Functions j`(x) and n`(x), and the Legendre Polynomials P`(x).
It turns out that j`(x) and n`(x) can be written in closed form using cosx and sinx, and
the Legendre Polynomials are just that, polynomials, but the Jm(x) can only be written as
an infinite series.

Before we get into specific special functions, however, we need to do a little more work on
the general theory of second order linear ODE’s.

3.6.1 Ordinary and Singular Points

We return to writing our general second order homogeneous linear ODE as

r(x)y′′(x) + p(x)y′(x) + q(x)y(x) = 0

In principle, we can just write this equation as

y′′(x) +
p(x)

r(x)
y′(x) +

q(x)

r(x)
y(x) = 0

but we have to be careful. For some value of x = x0 at which r(x0) = 0, we cannot just
assume that the second equation has a solution that is the same as for the first. Such points
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x = x0 are called singular points, whereas other values of x are called ordinary points. If

lim
x→x0

(x− x0)
p(x)

r(x)
and lim

x→x0
(x− x0)2 q(x)

r(x)

are finite, then x = x0 is called a regular singular point. For regular singular points, the
functions (x−x0)p(x)/r(x) and (x−x0)2a(x)/r(x) will have well behaved Taylor expansions
about x = x0, so a series solution approach can be pursued.

We will only be discussing solutions of this class for regular singular points. Solutions for
differential equations about irregular singular points is an advanced topic that I will leave
for a Mathematics course.

Let’s examine two of the equations we will study in this section with respect to their singular
points. First consider Bessel’s Equation, namely

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0 (3.17)

Clearly, x = 0 is a singular point. However, since

lim
x→0

x
x

x2
= lim

x→0
1 = 1 and lim

x→0
x2x

2 − ν2

x2
= −ν2

are both finite, x = 0 is a regular singular point and we can go ahead and try to build a
series solution for Bessel’s Equation. We will do this in Section 3.6.2.

Now also consider the Legendre Equation, that is

(1− x2)y′′(x)− 2xy′(x) + α(α + 1)y(x) = 0 (3.18)

In this case there are two singular points, at x = ±1. However, since

lim
x→1

(x−1)
−2x

1− x2
= lim

x→1
(x−1)

−2x

(1− x)(1 + x)
= 2 and lim

x→1
(x−1)2 α(α + 1)x

(1− x)(1 + x)
= 0

are both finite, x = +1 is a regular singular point. Similarly for x = −1.

Of course, if x = x0 is a singular point, we can always build a series solution around a
different value of x, in which case we don’t need to be concerned whether the point is regular
or irregular. The behavior of the solution at x = x0, though, is likely to be peculiar.

Euler Equations

There is an instructive class of second order ODE’s with regular singular points called Euler
Equations (not to be confused with Euler’s Formula from Section 2.4). Euler Equations take
the form

x2y′′(x) + αxy′(x) + β2y(x) = 0
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It should be clear that there is a regular singular point at x = 0. (We could write a slightly
different equation with (x− x0) instead of x in front of the first and second terms, and get
a regular singular point at x = x0.)

It should also be clear that a series solution to this equation would not work. No recursion
relation comes from inserting the series into the equation, because the powers of x in front
of y′′(x) and y′(x) bring all powers of x back up to xn.

Nevertheless, this equation has a straightforward solution that brings to mind the ansatz we
used for the second order ODE with linear coefficients. Inserting y(x) = xr, where r is a
constant to be determined, we get the quadratic equation

r(r − 1) + αr + β = r2 + (α− 1)r + β2 = 0

which is to be solved for r. Evidently, the two solutions for r are

r =
−(α− 1)±

√
(α− 1)2 − 4β2

2

There are three obvious cases. For (α − 1)2 > 4β2, there are two real values r = r1 and
r = r2 for which xr is a solution. That is, the general solution is

y(x) = c1x
r1 + c2x

r2

If (α − 1)2 < 4β2, then the roots are complex, and we make use of xµ+iη = e(µ+iη) log x to
write the solutions. If the two values of r are equal, we need to figure out some way to get
a second equation, but I’ll leave this for a homework problem.

The lesson here is that for a regular singular point, including a factor of xr in the solution,
where r is to be determined, may be a useful approach to be included in the series expansion.
This approach is sometimes called the Method of Frobenius.

3.6.2 Bessel functions

A differential equation ubiquitous to physics problems is Bessel’s Equation (3.17), which we
reproduce here:

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0 (3.19)

where ν is a constant, known as the order. As discussed above, x = 0 is a regular singular
point, so we should pursue a series solution of the form

y(x) = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
r+n (3.20)

where we expect (3.19) to constrain r as well as determine the coefficients an. Inserting this
form into Bessel’s Equation gives us

∞∑
n=0

{[
(r + n)(r + n− 1) + (r + n)− ν2

]
anx

r+n + anx
r+n+2

}
= 0 (3.21)
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Notice that we would be in trouble if we didn’t include the factor xr. Setting r = 0 gives

∞∑
n=0

{
(n2 − ν2)anx

n + anx
n+2
}

= 0

which implies that a0 = 0 and a1 = 0, based on the x0 and x1 terms. Deriving a recursion
relation gives an+2 in terms of an, so all the an end up as zero. This would all be nonsense!

We can simplify (3.21) to get

∞∑
n=0

{[
(r + n)2 − ν2

]
anx

r+n + anx
r+n+2

}
= 0 (3.22)

In this case, for the x0 term, we have r2 − ν2 = 0 which gives us two possibilities for r,
namely r = ±ν. Setting the coefficient of the x1 term to zero gives

[(r + 1)2 − ν2]a1 = [(±2ν + 1]a1 = 0

which implies that a1 = 0, unless ν = ±1/2, a case we will deal with in Section 3.6.3.

It should be clear that we indeed get two solutions for y(x), one each for r = ±ν. Following
the recursion relation we will derive from (3.22) results in the two functions we call J±ν(x),
known as Bessel Functions of the first kind. The theory associated with Bessel Functions is
extensive, but we will not go very far into it. Nearly all cases in Physics that involve Bessel
Functions result in functions where ν is either a positive integer, or a positive half-integer.

At this point, we will specialize to the case where ν = m ∈ Z, an integer. I will tell you at
the outset, but not prove, that for this case, the solutions Jm(x) and J−m(x) are not linearly
independent. A different solution cam be identified, though, usually written as Ym(x) and
called the Bessel Function of the Second Kind, which is independent. I am leaving this very
interesting Mathematics for some later course you will hopefully take.

With the first two terms of the sum being zero, we can rewrite the first term in curly brackets
in (3.22) as

xm

{
∞∑
n=2

[
(m+ n)2 −m2

]
anx

n

}
= xm

{
∞∑
p=0

[
(m+ p+ 2)2 −m2

]
ap+2x

p+2

}

where we switch to the dummy index p = n− 2. Switching p back n, we replace the above
expression in (3.22) and divide out xm to get

∞∑
n=0

{[
(m+ n+ 2)2 −m2

]
an+2 + an

}
xn+2 = 0

giving us the recursion relation

an+2 = − 1

(m+ n+ 2)2 −m2
an = − 1

(n+ 2)(2m+ n+ 2)
an
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Figure 3.8: Plots of Bessel Functions Jm(x) for integer orders m. The left is for m = 0,
where the black curve uses (3.24) summing up to k = 10. The right curve is the “exact”
J0(x) using the BesselJ function in Mathematica. On the right are J0(x), J1(x), and J2(x).

Since a1 = 0, the sum is only over even n. Therefore we define n = 2k and sum over all
integers k ≥ 0. The recursion relation becomes

ak+1 = − 1

(2k + 2)(2m+ 2k + 2)
ak = − 1

(k + 1)(m+ k + 1)
ak

1

22
(3.23)

These coefficients are to be inserted into (3.20) which we now write as

Jm(x) =
∞∑
k=0

akx
m+2k

By convention, we write a0 = 1/m!2m and therefore

a1 =
(−1)

(1)(m+ 1)
a0

1

22
=

(−1)

(1)(m+ 1)!

1

2m+2

a2 =
(−1)

(2)(m+ 2)
a1

1

22
=

(−1)2

(2 · 1)(m+ 2)!

1

2m+4

that is ak =
(−1)k

(k!)(m+ k)!

1

2m+2k

Finally, then, we arrive at the series expansion for the Bessel Function of integer order as

Jm(x) =
∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)m+2k

m = 0, 1, 2, 3, . . . (3.24)

Figure 3.8 shows on the left J0(x) using (3.8) summing over k = 0, 1, . . . , 10. The function
oscillates with decreasing amplitude, but diverges near x = 9. This is not surprising, given
that the polynomial grows rapidly when the last term is proportional to x10.
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Of course, nobody ever uses (3.8) explicitly to calculate Bessel Functions. The theory of
Bessel Functions provides a number of useful algorithms for calculating Jm(x) to high pre-
cision for any x. The left plot of Figure 3.8 also shows J0(x) as calculated by the internal
function in Mathematica. The right plots the first three integer order Bessel Functions
J0(x), J1(x), and J2(x). Note how the behavior near x = 0 closely tracks xm.

3.6.3 Spherical Bessel functions

A very common (partial) differential equation in Physics is the Helmholtz Equation, namely

~∇2u(r) + k2u(r) = 0 (3.25)

where u(r) is a function in three dimensional space of the coordinate r. We will study this
equation in Section 4.2.4. For now, however, what is important to realize is the when we
solve this equation in spherical coordinates, the ordinary differential equation

r2R′′(r) + 2rR′(r) +
[
k2r2 − `(`+ 1)

]
R(r) = 0 (3.26)

where ` is a non-negative integer. This equation needs to be solved for R(r), where r = |r|.
If we switch to a (dimensionless) variable x = kr, and write R(r) = x−1/2y(x), then

R′(r) =
dR

dr
= k

d

dx

[
x−1/2y(x)

]
= k

[
y′(x)

x1/2
− 1

2

y(x)

x3/2

]
2rR′(r) = 2x1/2y′(x)− y(x)

x1/2

R′′(r) =
d

dr
R′(r) = k

d

dx

{
k

[
y′(x)

x1/2
− 1

2

y(x)

x3/2

]}
= k2

[
y′′(x)

x1/2
− y′(x)

x3/2
+

3

4

y(x)

x5/2

]
r2R′′(r) = x3/2y′′(x)− x1/2y′(x) +

3

4

y(x)

x1/2

Inserting this into (3.26) and multiplying through by x1/2 gives

x2y′′(x) + xy′(x)− 1

4
y(x) +

[
x2 − `(`+ 1)

]
y(x) = 0

Now `(`+ 1) + 1/4 = `2 + `+ 1/4 = (`+ 1/2)2 so we finally have

x2y′′(x) + xy′(x) +

[
x2 −

(
`+

1

2

)2
]
y(x) = 0 (3.27)

which is Bessel’s Equation for ν = `+ 1/2. Therefore, solutions to (3.27) are of the form

y(x) = c1J`+1/2(x) + c2Y`+1/2(x)
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Figure 3.9: The Spherical Bessel Functions j`(x) (left) and n`(x) (right) for ` = 0, 1, 2.

Of course, physically, we are interested in R(r) = (kr)−1/2y(kr), so it is customary to define

j`(x) ≡
√

π

2x
J`+1/2(x) (3.28a)

and n`(x) ≡
√

π

2x
Y`+1/2(x) (3.28b)

These are known as the Spherical Bessel Functions. It is not very difficult to show that

j0(x) =
sinx

x
and n0(x) = −cosx

x

and that there is a recurrence relation for the higher orders, namely

f`(x) = (−1)`x`
(

1

x

d

dx

)`
f0(x)

where f`(x) can be either j`(x) or n`(x). It is interesting note that j`(x) and n`(x), unlike
the Jν(x), can be written in terms of sine and cosine functions.

Figure 3.9 plots j`(x)and n`(x) for the three lowest values of `. The n`(x) are singular for
x → 0, but you are much more likely to encounter the j`(x) in future Physics course. The
most important Physics application I’m aware of, for the n`(x), have to do with scattering
problems in Quantum Mechanics.

3.6.4 Legendre polynomials

In physical problems involving the Helmholtz Equation (3.25) where the system has spherical
symmetry, that is u(r) = u(r), you encounter the Legendre Equation

(1− x2)y′′(x)− 2xy′(x) + `(`+ 1)y(x) = 0 (3.29)
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Figure 3.10: The first four Legendre Polynomials P0(x), P1(x), P2(x), and P3(x),

where x = cos θ is defined in terms of the polar angle 0 ≤ θ ≤ π. For most physical problems
of interest, ` is a non-negative integer, that is, ` = 0, 1, 2, . . ..

Legendre’s Equation has regular singular points at x = ±1, but not at x = 0, so the simple
series approach, setting

y =
∞∑
n=0

anx
n

should work fine. Substituting this into (3.29) gives

∞∑
n=0

{
n(n− 1)anx

n−2 + [−n(n− 1)− 2n+ `(`+ 1)] anx
n
}

= 0

which results in the recursion relation

an+2 =
n(n− 1) + 2n− `(`+ 1)

(n+ 2)(n+ 1)
an =

n(n+ 1)− `(`+ 1)

(n+ 2)(n+ 1)
an

The free parameters are therefore a0 and a1, and these determine the two series, one with
only even powers of x, and one with only odd powers.

Clearly, a`+2 = 0 for any given `, so the solutions to (3.29) are polynomials of degree `, called
Legendre Polynomials P`(x). By convention, we set P`(1) = 1, and this fixes a0 and a1.

The first few Legendre Polynomials are

P0(x) = 1 P1(x) = x
P2(x) = 1

2
(3x2 − 1) P3(x) = 1

2
(5x3 − 3x)

P4(x) =
8
(35x4 − 30x2 + 3) P5(x) = 1

8
(63x5 − 70x3 + 15x)

Figure 3.10 plots the Legendre Polynomials for ` = 0, ` = 1, ` = 2, and ` = 3. These
solutions to (3.29) can also be written as

P`(x) =
1

2``!

d`

dx`
(x2 − 1)` (3.30)

known as Rodrigues’ Formula.
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Associated Legendre functions

Maybe just show what they are. Can it be an exercise to show that they solve the appropriate
differential equation?

3.6.5 Laguerre polynomials

These show up in the solution to the hydrogen atom in quantum mechanics. Probably not
enough time to go into this, though.

3.6.6 The confluent hypergeometric function

Very cool, but probably can’t cover it. Maybe a homework problem.

3.7 Coupled Differential Equations

It is possible, and physically likely, that a system will be governed by more than one differ-
ential equation, for more than one dependent variable, and that these dependent variables
appear in more than one of the equations. In this case, we say that the differential equations
are coupled. In general, for these cases, we will have to be clever in order to find a solution,
even if the equations are linear and homogeneous. Remember, for the purposes of this course,
at least, we are guided by existence and uniqueness.

Rather than try to treat coupled differential equations in general, we will take the opportunity
to solve a specific problem, namely the motion of coupled simple harmonic oscillators. We
will see that generalizing the ansatz we used for the oscillator will set us in the right direction.
It will also provide hints to the concept of eigenvalues, which we will cover more thoroughly
in Section 6.4.

3.7.1 Coupled Simple Harmonic Oscillators

Figure 3.11 shows a prototype of coupled linear second order differential equations. Two
masses m1 and m2 are each attached by springs to a fixed wall. They are also connected
by a “coupling” spring, and the force on each mass due to the coupling spring depends on
the positions of each of the masses. Note that the force the coupling spring exerts on m1 is
equal and opposite to the force it exerts on m2. Newton’s Second Law, applied separately
to the two masses, becomes

m1ẍ = F1 = −k1x1 + k2(x2 − x1)

m2ẍ = F2 = −k3x2 − k2(x2 − x1)
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Figure 3.11: A coupled harmonic oscillator with two masses and three springs.

If you have trouble seeing the sign on the coupling force, just think about what happens if
m2 is extended more than m1 in which case the spring wants to compress, moving m1 to the
right and m2 to the left.

At this point we will make the problem even more specific, and set m1 = m2 = m and
k1 = k2 = k3. Defining ω2

0 = k/m, we get the differential equations

x′′1(t) + 2ω2
0x1(t)− ω2

0x2(t) = 0 (3.31a)

x′′2(t) + 2ω2
0x2(t)− ω2

0x1(t) = 0 (3.31b)

These differential equations are clearly “coupled.” The equation for x1(t) depends on the
function x2(t), and the equation for x2(t) depends on the function x1(t).

We will approach the solution using the ansatz

x1(t) = a1e
iωt and x2(t) = a2e

iωt

and look to see what we can learn about ω, a1, and a2. This ansatz would seem to imply
that both masses oscillate at the same frequency ω. However, let’s plow forward and see
what happens. Inserting this ansatz into (3.31) we have

−ω2a1 + 2ω2
0a1 − ω2

0a2 = 0

−ω2a2 + 2ω2
0a2 − ω2

0a1 = 0

Let me rewrite these equations in a suggestive form, and that will become more clear to you
when we cover systems of linear equations in Section 6.3.9. We have

(2ω2
0 − ω2)a1 − ω2

0a2 = 0 (3.32a)

−ω2
0a1 + (2ω2

0 − ω2)a2 = 0 (3.32b)

One obvious solution to these equations is a1 = a2 = 0, but that just means that neither
mass ever moves. There would also be no way to accommodate arbitrary initial conditions
for position and velocity one each of the masses. Our notions of existence and uniqueness
tell us that there has to be another way to solve these equations.
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Remember that we have ω2 to play with. If ω2 was set to some value that made both
equations the same equation, then all we could get out of this would be constraints on the
ratio of a1/a2, in which case we can use initial conditions to solve the rest of the problem.
The two equations (3.32) become one equation if the coefficients of a1 and a2 are in the same
ratio, that is

2ω2
0 − ω2

−ω2
0

=
−ω2

0

2ω2
0 − ω2

This equation is simple to solve for ω2. We get

(2ω2
0 − ω2)2 = ω4

0 so ω2 = 2ω2
0 ± ω2

0 = ω2
0, 3ω2

0

Indeed, there are two frequencies ω for which the two masses can oscillate together. Of
course, the real solution can be any linear combination of these solutions, each of which is
proportional to e±iωt. There is an important constraint on these solutions, though, namely
the ratio of a1 and a2 that comes from (3.32). In the case where ω2 = ω2

0, we find

ω2
0a1 − ω2

0a2 = 0 so a2 = a1 where ω2 = ω2
0

while for ω2 = 3ω2
0,

−ω2
0a1 − ω2

0a2 = 0 so a2 = −a1 where ω2 = 3ω2
0

In other words, if the two masses are going to oscillate at the same frequency, then they
either follow each other with the same amplitude and phase (at frequency ω = ω0) or they
follow each other with the same amplitude but 180◦ out of phase (at frequency ω =

√
3ω0).

The general solution can now be written in terms of the four constants a, b, c, and d as

x1(t) = aeiω0t + be−iω0t + cei
√

3ω0t + de−i
√

3ω0t (3.33a)

x2(t) = aeiω0t + be−iω0t − cei
√

3ω0t − de−i
√

3ω0t (3.33b)

The constants are determined from the initial conditions on x1(0), ẋ1(0), x2(0), and ẋ2(0).
I urge you to take the time to insert (3.32) into (3.32) and confirm that these are in fact
solutions for any a, b, c, and d.

Notice that, regardless of the initial conditions, the linear combination x+(t) ≡ x1(t) + x2(t)
oscillates at the frequency ω0, while the linear combination x−(t) ≡ x1(t) − x2(t) oscillates
at the frequency

√
3ω0. In Chapter 6 we will learn to call ω2

0 and 3ω2
0 eigenvalues, and the

solutions x±(t) will be components of eigenvectors. Somewhat more colloquially, we’ll call
the two kinds of motion associated with x±(t) “eigenmodes.”

It is straightforward to take the four equations

x1(0) = x10 ẋ1(0) = v10 x2(0) = x20 ẋ2(0) = v20

and solve for a, b, c, and d, so I won’t bother to write it out. (Of course, you can just
feed this into Mathematica and let it solve the equations for you.) Figure 3.12 shows the
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Figure 3.12: Left: The motions x1(t) and x2(t) for initial conditions x1(0) = 1 and x2(0) =
ẋ1(0) = ẋ2(0) = 0, plotted as a function of time in units of 2π/ω0. Right: Plots of x+(t) ≡
x1(t) + x2(t) and x−(t) ≡ x1(t)− x2(t).
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Figure 3.13: The motions x1(t) and x2(t) for initial condition variables x10 = 1 and x20 = 1
(left) and x10 = 1 and x20 = −1 (right). (The initial velocities are still v10 = v20 = 0.)

motions x1(t) and x2(t) for initial condition variables x10 = 1 and x20 = v10 = v20 = 0. Time
is measured here in units of 2π/ω0. The motion is periodic, although not purely harmonic.
Indeed, these motions are the mixture of two frequencies, namely ω0 and

√
3ω0.

Figure 3.12 also plots x+(t) and x−(t), which now show clearly the two fundamental frequen-
cies of this two-body coupled system.

It is not hard to set the two masses in motion so that they oscillate each at the same
frequency. All we need to do is set the initial conditions to respect the relationships between
the two amplitudes for the frequency eigenvalue in question. This is shown in Figure 3.13
where we set x2(0) = x1(0) on the left, resulting in both oscillating together at frequency ω0

- note that the period of oscillation is clearly equal to unity (in units of 2π/ω0). The figure
also shows that when x2(0) = −x1(0), the two masses again oscillate together, but now at
frequency

√
3ω0.
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3.8 Green’s Functions

There is a nice treatment in Section 4.6 in Nearing’s book. There will not likely be enough
time to cover this, though.
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Chapter 4

Vector Calculus and Partial
Differential Equations

This chapter focuses on vectors as entities which describe quantities in ordinary three di-
mensional space. We’ll talk a little bit about generalizing what we mean by a “vector” in
Section 4.1.4, but will take this generalization much further in Chapter 6.

4.1 Vectors as Spatial Variables

Your first introduction to a “vector” was probably something written like ~r which stood
for three (real number) values, likely called x, y, and z, and which located a point in three
dimensional space. A very simple form might have been ~r = (x, y, z), and this tells the
position of the point by marking off the distance on the x-, y-, and z-axes. However, we will
be more sophisticated than this, and write

~r = xî+ yĵ + zk̂ (4.1)

where î, ĵ, and k̂ are unit vectors in the x-, y-, and z-directions. I’ll be more precise about
what I mean by “unit vector” when we talk about the inner product in Section 4.1.2. For
now, though, just think of î, ĵ, and k̂ as dimensionless quantities of magnitude unity, but
with a direction that is their respective axis.

Oftentimes, we are concerned only with vectors in a plane. In this case, the “z-component”
of the vector is irrelevant for the problem at hand. Typically, we simply ignore it, although
we may at some point need to refer to “the direction perpendicular to the plane” of whatever
are the more relevant variables.

More generally, a vector ~A will be regarded as an element of R2 or R3 which represents some
physical quantity in two-dimensional or three-dimensional space. Equation (4.1) is just one
example. In fact, if it represents the physical location of some object that can move with
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time, then another obvious vector is the velocity, namely

~v(t) =
d~r

dt
=
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂

Notice that I slipped it by you here that the unit vectors themselves do not change with time,
which is true for this coordinate system, but not for some others. Of course, the next step
would be to define the acceleration vector ~a = d~v/dt. In general, we denote the components

of a vector ~A as Ax, Ay, and Az, and write

~A = Axî+ Ay ĵ + Azk̂ (4.2)

The magnitude, or “length” of a vector ~A = Axî+ Ay ĵ + Azk̂ is

| ~A| =
√
A2
x + A2

y + A2
z (4.3)

which of course is a positive real number. It makes sense, therefore, to borrow the notation
| ~A| from the “magnitude” or a real or complex number. Very often, we will just write A = | ~A|
if the context is clear. We will see a more formal way to define the magnitude of a vector
when we study inner products in Section 4.1.2.

It happens often in Physics that a vector ~A represents some physical quantity that could
have different values at different points ~r in space, or even at different times. In other words,
we have ~A = ~A(~r) = ~A(x, y, z) or ~A = ~A(~r, t) = ~A(x, y, z, t). In this case, we refer to ~A as

a vector field. Probably the first examples that come to mind are the electric field ~E and
magnetic field ~B, but there are many other examples, including many that do not come from
electromagnetism. For example, a compressible fluid will have a “velocity field” ~v = ~v(~r, t)
that would be governed by the theory of fluid mechanics.

We could also have a so-called “scalar field” which depends on position ~r (and possibly time
t), although the use of the term “scalar” needs some consideration that we’ll deal with later.
We will soon be discussing “vector differential operators” which can turn a scalar field into
a vector field, in exactly the same way that the static electric field ~E(~r) can be derived from
a static electric potential Φ(~r).

We have been locating position in this section by representing ~r by the real numbers x,
y, and z. These are referred to as “Cartesian coordinates.” (I think this is because they
were invented by the philosopher and mathematician René Descartes.) Likewise, î, ĵ, and
k̂ are “Cartesian unit vectors.” However, there are other ways to locate a point in two- or
three-dimensional space, namely be identifying the distance from the origin and then using
one or two angles to tell the direction of the point with respect to the x-, y-, and z-axes. We
will discuss these in Section 4.1.3.

First, however, we will say a few words about rotations, just to put the notion of vectors
into the context that we’ll eventually use to more precisely define them. Then we’ll discuss
two important geometrical concepts of vectors.
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4.1.1 Axis rotations

It doesn’t matter, of course, what direction we pick when we define our Cartesian coordinate
system. If the problem has some specific direction in it, for example the direction of an
electric or magnetic field, then we often choose that direction to define one of the axes,
typically the z-axis. In that case, the x-axis is chosen in some direction perpendicular to z,
and this defines y in a way that makes the coordinate system “right handed.” (This will be
more precisely defined in Section 4.1.2.)

Regardless of our choice, however, we can always do physics in some set of axes x′y′z′ that are
rotated with respect to xyz. This rotation can be specified in any number of ways, but will
typically involve three angles. (In rigid body classical mechanics, and in the theory of angular
momentum in quantum mechanics, these three angles are called Euler Angles.) When we
study matrix operations in Section 6.3 we will see that matrices with certain properties are
a handy way to describe rotations, and these matrices form a group.

For now, though, it’s just important to realize that if we write some vector as

~A = Axî+ Ay ĵ + Azk̂

or = Ax′ î
′ + Ay′ ĵ

′ + Az′ k̂
′

then it is still the same vector, even though the magnitudes of the components Ax, Ay, and
Az do not need to be the same in the “primed” coordinate system, that is Ax′ , Ay′ , and Az′ .

4.1.2 Inner product and cross product

The inner product, also known as the scalar product or the dot product, of two vectors ~A and
~B is a geometric quantity. I will define it as the product of the magnitude of ~A times the
magnitude of ~B times the cosine of the angle ψ between them. That is

~A · ~B = | ~A|| ~B| cosψ (4.4)

A simple interpretation of this formula is that the dot product is the projection of ~A in the
direction of ~B. See Figure 4.1. (Equivalently, we could say the dot product is the projection

of ~B in the direction of ~A.) This makes it very clear that the value of ~A · ~B has nothing
to do with the coordinate system being used, including the possibility of a rotated set of
Cartesian axes.

An obvious byproduct of this definition is that the inner product of a vector with itself is
the square of its magnitude, that is

~A · ~A = | ~A|2

If we apply this to unit vectors, then it is clear that the inner product of any unit vector
with itself is unity. For example

î · î = 1 = ĵ · ĵ = k̂ · k̂ = r̂ · r̂ = φ̂ · φ̂ = θ̂ · θ̂
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Figure 4.1: Geometric interpretations of the dot product ~A · ~B (left) and the cross product
~A× ~B (right) for two vectors ~A and ~B. The angle between the two vectors is ψ.

Another obvious by product is that if two vectors ~A and ~B are perpendicular to each other,
that is ψ = 90◦, then ~A · ~B = 0. In this case, we say that ~A and ~B are orthogonal to each
other.

Now the unit vectors are all at 90◦ with respect to each other, in a given coordinate system.
That is, they are orthogonal to each other. Mathematically,

0 = î · ĵ = ĵ · k̂ = k̂ · î Cartesian

0 = r̂ · φ̂ = φ̂ · k̂ = k̂ · r̂ Cylindrical

0 = r̂ · θ̂ = θ̂ · φ̂ = φ̂ · r̂ Spherical

This allows us to write the dot product using coordinates. If we write

~A = Axî+ Ay ĵ + Azk̂

~B = Bxî+By ĵ +Bzk̂

and multiply out ~A · ~B, then we get

~A · ~B = AxBxî · î+ AxBy î · ĵ + AxBz î · k̂
+AyBxĵ · î+ AyBy ĵ · ĵ + AyBz ĵ · k̂
+AzBxk̂ · î+ AzByk̂ · ĵ + AzBzk̂ · k̂

= AxBx + AyBy + AzBz (4.5)

It is rather remarkable that a rotation of the axes, as described in Section 4.1.1, has to give
the same value in terms of the “primed” components. In fact, we formulate rotations math-
ematically by insisting that the dot product be invariant under a rotation transformation.

Another geometric vector product is the cross product ~A × ~B, also depicted in Figure 4.1.
Unlike the dot product, which is a (real) number, the cross product is itself another vector.

The magnitude of ~C = ~A× ~B is the area of the parallelogram formed by ~A and ~B. Obviously,
this means that the cross product of a vector with itself is zero, that is ~A× ~A = 0.
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The direction of the cross product usually makes use of something called the “right hand
rule” which has had Physics students playing with their fingers for decades. I will be more
precise about this shortly when we discuss cross product of unit vectors, but there is an easy
way to visualize the direction of the cross product from Figure 4.1. Imagine that you are
“turning” the direction of ~A into the direction ~B, about an axis that is perpendicular to
both of them.

Now imagine that you turning a typical screw in that direction. The direction that the screw
advances is the direction of ~C = ~A × ~B. (The “typical” screw is right handed.) Of course,

this means that ~B × ~A = −~C.

Now consider the Cartesian unit vectors î, ĵ, and k̂. They are orthogonal, so the magnitude
of their cross products is just unity. How we define the direction of their cross products,
though, will set the “handedness” of the coordinate system. The convention that everyone
sticks with, defining a “right handed” coordinate system, is the following:

î× ĵ = k̂ (4.6a)

k̂ × î = ĵ (4.6b)

ĵ × k̂ = î (4.6c)

Notice how the vectors “cyclically rotate” through the three equations. If we reverse any
one (or all three) of these definitions, the coordinate system would be “left handed.”

The cross products of the unit vectors let us write out the cross product in terms of compo-
nents, similar to the way we did it for the dot product. We have

~A× ~B = AxBxî× î+ AxBy î× ĵ + AxBz î× k̂
+AyBxĵ × î+ AyBy ĵ × ĵ + AyBz ĵ × k̂
+AzBxk̂ × î+ AzByk̂ × ĵ + AzBzk̂ × k̂

= (AyBz − AzBy )̂i+ (AzBx − AxBz)ĵ + (AxBy − AyBx)k̂ (4.7)

Calculations with components using δij and εijk

Physics problems will often make use of dot products and cross products of both vector fields
and vector derivatives (Section 4.2). We want to be efficient about these kinds of calculations,
and there are some good tools for this. The first thing we want to do is associate and index
i = 1, 2, 3 with components x, y, z. That is, we can rewrite the dot product from (4.5) as

~A · ~B =
3∑
i=1

AiBi

You can see that this is going to write a lot of summation signs, so we will implement the
summation convention which says that if an index is repeated in an expression, it is implied
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that we need to sum over that index, setting it equal to 1, 2, and 3, and adding up the terms.
Therefore, we write

~A · ~B = AiBi

where the sum over i is implied. We will never allow ourselves to be in a situation where we
need to sum over an index that appears more than twice. In fact, no expression should ever
be written down where any index appears three times or more.

For the unit vectors we can write ê1 ≡ î, ê2 ≡ ĵ, ê3 ≡ k̂,so

~A = Aiêi

is a handy way to write a vector. A second vector might be ~B = Bj êj, where a different
summation index j is used instead of i. In this case the dot product would be written

~A · ~B = Aiêi ·Bj êj = AiBj êi · êj

where now this represents nine terms, summing over both i and j. Of course êi · êj equals
unity if i = j and is zero otherwise, so the nine terms collapse to the three terms represented
by AiBi. There is a very convenient way to write this using the Kronecker delta δij, defined
simply as

δij = 1 for i = j

= 0 for i 6= j

That is êi · êj = δij and we write

~A · ~B = AiBj δij = AiBi

The Kronecker delta effectively lets you “get rid of an index” in the implied sum.

There is a similar symbol that helps us work with cross products. I think it is more or less
officially called the Levi-Civita symbol for three dimensions, most people I know refer to it
as the totally antisymmetric symbol. We write it as ε with three indices that I’ll call i, j,
and k (not to be confused with the names of the unit vectors!) The definition is

ε123 = +1

and εijk = −εjik = −εikj − εkji

In other words, εijk = 1 if the i, j, k are in standard right-handed order, and flipping any two
indices reverses the sign. Clearly, then, if any two indices are the same, then εijk = 0. We

can then write the cross product ~A× ~B as

~A× ~B = εijkêiAjBk

a sum which, technically, has 9 terms, three of which are zero. We can also write

( ~A× ~B)i = εijkAjBk
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which gives the ith component of ~A× ~B.

A very useful theorem which connects the totally antisymmetric symbol with the Kronecker
delta, written using our summation convention, is

εijkεimn = δjmδkn − δjnδkm (4.8)

Note that the left side sums over i. I’m not going to bother trying to prove this, but if you
want to write out some or all of the 81 equations represented here, that’s up to you. Let’s
use this to prove something we generally call the “back-cab” rule, namely

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B)

If we write this out for the ith component of the triple cross product, we get[
~A× ( ~B × ~C)

]
i

= εijkAj( ~B × ~C)k = εijkAjεkmnBmCn = εkijεkmnAjBmCn

= (δimδjn − δinδjm)AjBmCn = AjBiCj − AjBjCi

= Bi( ~A · ~C)− Ci( ~A · ~B)

which is the “back-cab” rule for the ith component of ~A × ( ~B × ~C). Notice that I used a
cyclic permutation (or, if you prefer, two index flips) to turn εijk into εkij so that I could use
(4.8), albeit with different index notation.

4.1.3 Plane polar, cylindrical, and spherical coordinates

Figure 1.3 shows how to locate a point in a plane using either Cartesian coordinates (x, y)
or plane polar coordinates (r, φ). and how to locate a point in three dimensional space either
Cartesian coordinates (x, y, z) or spherical polar coordinates (r, θ, φ). There is a second way
to locate a point in three dimensional space, where plane polar coordinates are used in the
xy plane, but the z-coordinate is intact. These are called cylindrical polar coordinates.

We can of course represent vectors in polar coordinates just as well as in Cartesian coordi-
nates. It’s the same vector! We are just using a different coordinate system to specify it.
We would write1

~A = Arr̂ + Aφφ̂+ Azk̂

in cylindrical coordinates, and

~A = Arr̂ + Aθθ̂ + Aφφ̂

in spherical coordinates. The unit vectors have the same meaning as in the Cartesian case,
but these unit vectors have a direction that depends on the position of the point in space

1Many texts will use ρ instead of r for the radial coordinate in cylindrical coordinates. I prefer to use r
for either case, which makes sense for plane polar coordinates, and not switch when adding the z-coordinate
in three dimensions.
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to which they refer. This makes a huge difference if we ever need to calculate something
like ∂ ~A/∂x, since we need to consider the derivatives of the components as well as the unit
vectors. Let’s see how this works.

Let’s start with plane polar coordinates. Figure 1.3 makes it clear that

x = r cosφ (4.9a)

y = r sinφ (4.9b)

Now imagine that we change the position ~r a tiny bit d~r = dx î + dy ĵ. This means that x
and y change by the infinitesimal amounts

dx = cosφ dr − r sinφ dφ

dy = sinφ dr + r cosφ dφ

To find the unit vectors r̂ ad φ̂, we consider the change d~r happening in those two specific
directions. To see what happens in the r-direction, set dφ = 0. This gives

d~r = î cosφ dr + ĵ sinφ dr = (̂i cosφ+ ĵ sinφ)dr = r̂ dr

where r̂ = (̂i cosφ+ ĵ sinφ because it is clear that dr is the magnitude of d~r when the change
only happens in the r-direction. If instead we move in the φ-direction and set dr = 0, we get

d~r = −î r sinφ dφ+ ĵ r cosφ dφ = (−î sinφ+ ĵ cosφ)rdφ = φ̂ rdφ

where φ̂ = −î sinφ+ ĵ cosφ because the distance along an arc at radius r through an angle
dφ is rdφ, and that is the change in the vector ~r when we move only in the φ-direction.

To summarize, then, the unit vectors for plane polar coordinates r and φ are

r̂ = î cosφ+ ĵ sinφ (4.10a)

φ̂ = −î sinφ+ ĵ cosφ (4.10b)

The position vector is
~r = î x+ ĵy = r(̂i cosφ+ ĵ sinφ) = rr̂ (4.11)

and an infinitesimal change in the position vector is

d~r = î dx+ ĵ dy = dr r̂ + rdφ φ̂ (4.12)

Figure 4.2 shows the unit vector orientations for both Cartesian and plane polar coordinates.
Unlike the Cartesian unit vectors î and ĵ, the unit vectors r̂ and φ̂ change their direction as
you move around the plane. This will become a very important fact when it comes time to
talk about derivatives in plane polar coordinates!

For cylindrical coordinates in three dimensions, we simply include the unit vector k̂ in the
z-direction. This is the same unit vector and coordinate as in the Cartesian system.
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Figure 4.2: Unit vectors in the plane for Cartesian (x, y) coordinates and plane po-
lar (r, φ) coordinates, and in three-dimensional space for spherical polar coordinates. It
is important to note that while Cartesian unit vectors do not change their direction
anywhere in the plane, the polar unit vectors indeed depend on r, θ, and φ. The
spherical coordinates figure is taken from “By Ag2gaeh - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=43953509”, and uses er, eθ, and eφ to

denote the unit vectors, instead of r̂, θ̂, and φ̂.

The situation is very similar for spherical polar coordinates. Figure 1.3 shows that the
projection of the radial coordinate onto the xy plane is r sin θ. The transformation equations
are therefore

x = r sin θ cosφ (4.13a)

y = r sin θ sinφ (4.13b)

z = r cos θ (4.13c)

which leads to the spherical unit vectors in terms of the Cartesian unit vectors as

r̂ = î sin θ cosφ+ ĵ sin θ sinφ+ k̂ cos θ (4.14a)

θ̂ = î cos θ cosφ+ ĵ cos θ sinφ− k̂ sin θ (4.14b)

φ̂ = −î sinφ+ ĵ cosφ (4.14c)

Plane polar coordinates and unit vectors can now be written directly from the spherical case
for θ = π/2. Figure 4.2 also depicts the spherical unit vectors.
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4.1.4 Vector generalizations

When we get to Chapter 6 and Section 6.2, we will talk about the generalization of vectors
to include vector spaces. Manipulating these generalized vectors will involve matrices and
matrix operations, and will have very many applications to problems in the physical sciences.

Nevertheless, I want to mention here some generalizations that still maintain the ideas of
vectors in physical space. Probably the first one that comes to mind is a concept you may
encounter when studying Special Relatively, namely that “time is the fourth dimension.”
Indeed, the “three-vectors” we have been discussing here become “four-vectors” when in-
cluding time as a dimension. We call this four-dimensional space spacetime. In this case, the
vectors have four elements, with the time-like element having the index zero. A convention
is that we use latin indices like i, j, and k when we run over the three spacial dimensions,
and Greek indices like µ, ν, and σ when we run over 0, 1, 2, and 3.

We can denote the four-vectors of spacetime as A = (A0, A1, A2, A3) = (A0, ~A). The most
important difference when moving from vectors in space to spacetime is in the dot product.
In this case, the dot product must be invariant under Lorentz Transformation, which implies
that the dot product between two four-vectors A and B becomes

A · B = A0B0 − A1B1 − A2B2 − A3B3 = A0B0 − ~A · ~B

where the relative minus sign between the spacelike and timelike components has many
physical implications.

A more general application of spacetime, which is necessary for understanding General Rel-
ativity and the theory of gravitation, comes from the need to recognize that there are in
fact two different geometric classes of spatial vectors. These are called contravariant vec-
tors and covariant vectors, aka “vectors” and “covectors.” We are not going to discuss
these further in this course, but if you want to read a little bit about them, see “Answer
to Question #55. Are there pictorial examples that distinguish covariant and contravariant
vectors?”, American Journal of Physics 65, 1037 (1997) by J. Napolitano and R. Lichtenstein,
https://doi.org/10.1119/1.18743.

4.2 Vector operators

Now we turn our attention to spatial differential vector operators. These are constructs that
take (partial) derivatives of functions of spatial position, i.e. fields. We will construct these
operators first in Cartesian coordinates, but then also give them, with some derivations, in
cylindrical and spherical coordinates.

Most of the material in this section should be review, from either your Calculus classes or
your Wave Physics class.
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Figure 4.3: Visualizating the gradient of
f(~r) = f(x, y) = 101− x2 − 2y2, a scalar
field in two spatial dimensions. The func-
tion f(x, y) is drawn as a contour plot,
with the contours labeled. The (negative

of its) gradient −~∇f = 2xî+4yĵ is drawn
with arrows at different points (x, y) that
point in the direction of the gradient, and
whose color indicates the magnitude |~∇f |
at that point. Notice that the magnitude
of the gradient is larger in the regions
where the contours are more steep. (I plot

−~∇f instead of ~∇f because it feels better
to go down the hill instead of up it.)
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4.2.1 Gradient

Suppose you have a scalar field f(~r) = f(x, y, z) (or f(x, y) in two dimensions) over some
region in space. You will typically need to know how fast that function changes, that is, you
will need to know its derivative. However, the rate of change will depend on which direction
in space you are moving. Somehow we need to come up with a “derivative” that respects
the direction in space. In other words, we need a vector version of the derivative.

That vector version of the derivative is called the gradient of f(r), written in Cartesian
coordinates as

~∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

This vector quantity, in principle different at any different point in space, will tell the direc-
tion in which the change of f(r) is a maximum. Figure 4.3 is a visualization of the gradient
for a particular two-dimensional scalar field. (Actually, it is the negative of the gradient that
is plotted, only because it feels more natural to go down the hill instead of up it.) Notice
how the magnitude of the gradient (given by the color of the arrow) is larger where the hill
is steeper.

It is not hard to see that the gradient tells us the direction in which the change is f(~r) is
greatest. Consider moving in some direction ~s. The infinitesimal change in the distance
along ~s is ds, so the derivative of f(~r) in this direction is

df

ds
=

1

ds
df =

1

ds

[
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

]
= ~∇f ·

[
î
dx

ds
+ ĵ

dy

ds
+ k̂

dz

ds

]
= ~∇f · ŝ

where ŝ is the unit vector in the s-direction, since ds2 = dx2 + dy2 + dz2. Of course,
~∇f · ŝ = |~∇f | cosψ where ψ is the angle between the gradient and ~s. Therefore, the direction
of greatest change is when ψ = 0, that is, in the direction of the gradient.
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We will find it handier to think of ~∇ as a vector operator which we write as

~∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
Cartesian coordinates (4.15)

In other words, ~∇f is the gradient operator “acting on” the field f(~r). Similarly, we can

think of î · ~∇f = ∂/∂x as a differential operator, and so forth.

It is straightforward to write down the gradient operator in different coordinate systems.
For example, if f(~r) is expressed in cylindrical coordinates r, φ, z, then

~∇f = î
∂f(r, φ, z)

∂x
+ ĵ

∂f(r, φ, z)

∂y
+ k̂

∂f(r, φ, z)

∂z

and we use the chain rule to express the derivatives in terms of r, φ, z. We have

∂f

∂x
=

∂f

∂r

∂r

∂x
+
∂f

∂φ

∂φ

∂x
+
∂f

∂z

∂z

∂x

Inverting (4.9) gives

r =
(
x2 + y2

)1/2
so

∂r

∂x
=

x

(x2 + y2)1/2
=
x

r
= cosφ

and

tanφ =
y

x
so

1

cos2 φ

∂φ

∂x
= − y

x2
=
−r sinφ

r2 cos2 φ
and

∂φ

∂x
= −1

r
sinφ

Of course, ∂z/∂x = 0 so the first term of ~∇f in cylindrical coordinates is

î
∂f(r, φ, z)

∂x
= î

[
∂f

∂r
cosφ+

1

r

∂f

∂φ
(− sinφ) + 0

]
= î

[
cosφ

∂f

∂r
− sinφ

1

r

∂f

∂φ

]
(Note the 1/r factor in front of the φ derivatives, which makes the expression dimensionally
correct.) Similarly, the second term is

ĵ
∂f(r, φ, z)

∂y
= ĵ

[
sinφ

∂f

∂r
+ cosφ

1

r

∂f

∂φ

]
The third term is just k̂∂f/∂z, or simply missing if we are working in plane polar coordinates.
Putting this all together, the gradient becomes

~∇f = î

[
cosφ

∂f

∂r
− sinφ

1

r

∂f

∂φ

]
+ ĵ

[
sinφ

∂f

∂r
+ cosφ

1

r

∂f

∂φ

]
+ k̂

∂f

∂z

= (̂i cosφ+ ĵ sinφ)
∂f

∂r
+ (−î sinφ+ ĵ cosφ)

1

r

∂f

∂φ
+ k̂

∂f

∂z

= r̂
∂f

∂r
+ φ̂

1

r

∂f

∂φ
+ k̂

∂f

∂z
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where we made use of the expressions (4.10) for the unit vectors in plane polar coordinates.
This means that the gradient operator in cylindrical coordinates is

~∇ = r̂
∂

∂r
+ φ̂

1

r

∂

∂φ
+ k̂

∂

∂z
Cylindrical coordiantes (4.16)

It’s nice to see this carried out from the fundamentals, but there is in fact an easier way to
get this result. In plane polar coordinates, the infinitesimal change in the position vector is
given by (4.12). If you think of the gradient as the directional derivative, simple inspection
shows that if you move in the radial direction only, the derivative is ∂/∂r. On the other
hand, if you move in the axial direction only, the derivative is (1/r)∂/∂φ. Including the
z-coordinate, then, the gradient operator is clearly (4.16).

For spherical coordinates, you carry through exactly the same way, but using (4.13) instead
of (4.10). You find

~∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
Spherical coordiantes (4.17)

I’ll leave deriving this as a homework problem.

4.2.2 Divergence

We can define other operators based on the gradient operator. Given a vector field

~V (~r) = ~V (x, y, z) = îVx(x, y, z) + ĵVy(x, y, z) + k̂Vz(x, y, z) (4.18)

we can use the gradient operator to measure how much the field “diverges” in a region of
space. I’ll make clearer what I mean by that in Section 4.3.2, but for now just think of it
measuring how much of ~V (~r) has a “flow” that emerges from a region of space.

We define the divergence of a vector field ~V (~r) = ~V (x, y, z) as

~∇ · ~V =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

(4.19)

where we are literally taking the dot product of the vector operator ~∇ with the vector field
~V . It is very important to note that when we did this, we treated the unit vectors î, ĵ, and
k̂ as constants. Indeed, they do not depend on position. However, this will not be the case
when we consider cylindrical and spherical coordinates.

I’m not going to bother deriving the form of the gradient in cylindrical or spherical coordi-
nates, nor will I assign them as homework. They are tedious calculations, and not, in my
opinion, particularly instructive, although it is good practice in partial derivatives and the
chain rule to carry through the calculation. Instead, I will just state the results, which you
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can find many places online or in textbooks. We find

~∇ · ~V =
1

r

∂

∂r
(rVr) +

1

r

∂Vφ
∂φ

+
∂Vz
∂z

Cylindrical (4.20)

~∇ · ~V =
1

r2

∂

∂r
(r2Vr) +

1

r sin θ

∂

∂θ
(sin θ Vθ) +

1

r sin θ

∂Vφ
∂φ

Spherical (4.21)

4.2.3 Curl

Applying the cross product of the gradient operator to a vector field is called the curl, for
reasons that will become apparent in Section 4.3.1. We have

~∇× ~V = î

(
∂Vz
∂y
− ∂Vy

∂z

)
+ ĵ

(
∂Vx
∂z
− ∂Vz

∂x

)
+ k̂

(
∂Vy
∂x
− ∂Vx

∂y

)
(4.22)

~∇× ~V = r̂

(
1

r

∂Vz
∂φ
− ∂Vφ

∂z

)
+ φ̂

(
∂Vr
∂z
− ∂Vz

∂r

)
+ k̂

1

r

(
∂

∂r
rVφ −

∂Vr
∂φ

)
(4.23)

~∇× ~V = r̂
1

r sin θ

(
∂

∂θ
Vφ sin θ − ∂Vθ

∂φ

)
+ θ̂

1

r

(
1

sin θ

∂Vr
∂φ
− ∂

∂r
rVφ

)
+φ̂

1

r

(
∂

∂r
rVθ −

∂Vr
∂θ

)
(4.24)

in Cartesian, cylindrical polar, and spherical polar coordinates, respectively.

Although it may be more or less obvious from general ideas about vector cross products and
dot products, it is worth stating outright that (1) the curl of any gradient is zero, and (2)
the divergence of any curl is zero. That is

~∇× ~∇f(~r) = 0

for any scalar field f(~r), and

~∇ ·
[
~∇× ~V (~r)

]
= 0

for any vector field ~V (~r). You will see in your electromagnetism classes that this is the basis
for defining the scalar and vector potentials.

4.2.4 The Laplacian

You will encounter many calculations in Physics where you want to take the divergence of
some vector field, which itself is the gradient of some scalar field.2 This leads to the (scalar)

2Probably the first example of this is taking the divergence of the electric field, written as the (negative)
gradient of the electric potential.
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operator ~∇2 = ~∇ · ~∇ known as the Laplacian. Its form in Cartesian coordinates is obvious,
namely

~∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(4.25)

The form of the Laplacian in cylindrical or spherical coordinates is less obvious, but straight-
forward to derive. As always, you need to remember that that unit vectors in this case need
to be differentiated because they depend on position. One finds

~∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂φ2
+

∂2

∂z2
Cylindrical (4.26)

~∇2 =
1

r2

∂

∂r2

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
Spherical (4.27)

You will find in Section 4.5.1 that the radial part of (4.26) gives rise to Bessel’s Equation
(3.19), the radial part of (4.27) leads to spherical Bessel functions, and the θ equation from
(4.27) becomes Legendre’s Equation (3.29).

It should be clear that you can apply the Laplacian operator to either a scalar field or a
vector field. In case of the latter, you just need to apply it to each component, which can
be tricky if you are applying the operator in cylindrical or spherical coordinates to a vector
field in cylindrical or spherical coordinates. In general, we try to avoid having to deal with
such situations!

4.3 Surface Theorems

Probably the most important physical applications of vector calculus have to do with a class
of properties that I’ll call surface theorems. We will discuss two of these in particular, namely
Stokes’ Theorem and Gauss’ Theorem. (I think mathematicians probably refer to Gauss’
Theorem as the Divergence Theorem.)

The idea behind the surface theorems is that whatever is going on inside some closed region
can be inferred from what is happening on the surface of that region. Stokes’ Theorem
applies to regions enclosed by a loop in space, and Gauss’ Theorem applies to volumes and
the surfaces that enclose them.

This section will first state and then prove Stokes’ Theorem first, then Gauss’ Theorem.
These two theorems are intimately connected to the curl and divergence, respectively, of a
vector field. In fact, a better way to present the curl and divergence would be to see how they
arise naturally from these theorems. This is the approach taken in a popular text from many
years ago, called “Div, Grad, Curl, and All That: An Informal Text on Vector Calculus”,
bu H.M. Schey. It’s a nice book, and it shouldn’t be too hard for you to locate a copy if you
would like to look it over.
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4.3.1 Stokes’ theorem

Stokes’ Theorem relates the integral of some vector quantity projected onto a closed loop,
to the curl of that vector field integrated over the surface enclosed by the loop. We state
this theorem mathematically as ∮

C

~A · d~̀=

∫
S

(~∇× ~A) · d~S (4.28)

where C is the closed loop and S is the surface that it encloses. The shape of the surface
doesn’t matter, just so long as its edges lie along C. The integrand ~A · d~̀ means the dot
product of the vector field with a tiny line segment pointing along the line, and the little
circle on the integral sign just means the line forms a closed loop. On the right hand integral,
the vector d~S is an infinitesimal whose magnitude dS is the size of the area element of S, and
the direction is normal to the surface. The sign of the normal is determined by an agreement
of using the right hand rule based on an assigned direction for following the loop.

We can prove Stokes’ Theorem by first taking the surface S and carving it up into a bunch
of tiny rectangles. We’ll assume that S lies in the xy plane, and argue later that we can
generalize to any curve. Each tiny rectangle has width dx and height dy. We’ll then show
that Stokes’ Theorem holds for each tiny rectangle by itself.

Now if I put two tiny rectangles next to each other, then the line integral on the left side
of (4.28) cancels along the adjacent edge, and the curve is over the pair of rectangles. Keep
going, and eventually you’ll cover the entire surface S, and the only curve that’s left is C.
At this point, we can say that we’ve proved Stokes’ Theorem.

Figure 4.4 shows how this works. The sum of ~A · d~̀ over the tiny square’s sides is∑
~A · d~̀ = Ax(x, y)dx+ Ay(x+ dx, y)dy − Ax(x+ dx, y + dy)dx− Ay(x, y + dy)dy

= [Ax(x, y)− Ax(x+ dx, y + dy)]dx+ [Ay(x+ dx, y)− Ay(x, y + dy)]dy

where we note that, for example, ~A · d~̀= Ax dx when d~̀ is in the x-direction, and so forth.
Care is taken to evaluate the components of the vector function consistently at the corner
of the rectangle where piece of the integral starts. Now factoring out dx dy and doing some
rearranging, we get∑

~A · d~̀=

[
Ay(x+ dx, y)− Ay(x, y + dy)

dx
− Ax(x+ dx, y + dy)− Ax(x, y)

dy

]
dx dy

As the infinitesimals approach zero, the two expressions in the brackets become partial
derivatives. The result is∑

~A · d~̀=

[
∂Ay
∂x
− ∂Ax

∂y

]
dx dy = (~∇× ~A)z dx dy

where, finally, we recognize that combination of partial derivatives as the z-component of
the curl. Since dx dy = dS and, in this case, the normal to the surface is ẑ, we have, for the

88



Figure 4.4: Figure used in the proof of Stokes’ Theorem. An arbitrary curve C bounds some
surface S, which in this example lies in the xy plane. The plane is divided up into a bunch
of infinitesimal rectangles with dimension dx× dy. The dot product ~A · d~̀ is evaluated first
along the sides of a tiny rectangle with lower left corner at the point (x, y). This is then
generalized to include the entire curve C.

tiny rectangle, ∑
~A · d~̀= (~∇× ~A) · d~S

Adding up all the little rectangles, and recognizing that their edges cancel in the line integral
leaving only the curve C, we get (4.28).

I’ll argue that the shape of the surface doesn’t matter until after we’ve done Gauss’ Theorem.

Let’s illustrate this with a simple example. Take a vector field ~A = −yî+ xĵ, which clearly
has a “curl” to it if you plot3 it with Mathematica. In fact

~∇× A =

(
∂Ay
∂x
− ∂Ax

∂y

)
k̂ = (1 + 1)k̂ = 2k̂

Take the curve C to be the square in the xy plane with side length ` and the lower left corner
at the origin. The surface S has area `2 so the right hand side of (4.28) is∫

(~∇× ~A) · d~S = 2

∫
dS = 2`2

Now let’s evaluate the line integral. Going counter clockwise from the lower left corner,∮
~A · d~̀ =

∫ `

x=0

(−y)|y=0 dx+

∫ `

y=0

(x)|x=` dy +

∫ 0

x=`

(−y)|y=` dx+

∫ 0

y=`

(x)|x=0 dy

= 0 + ` · `− ` · (−`) = 2`2

as predicted by the theorem.

3This is simple to do. Just define v = {-y, x} and then enter VectorPlot[v, {x, -3, 3}, {y, -3, 3}].
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Note that for this field, with a constant curl, it shouldn’t matter where we put the square!
We’ll evaluate it for the example given, but you should try putting it somewhere else, perhaps
centered on the origin, to confirm that you get the same answer.

4.3.2 Gauss’ theorem

Gauss’ Theorem (also known as the Divergence Theorem) relates the divergence of a vector
field in some volume V to the surface integral of the normal component of the vector field
over the surface S that encloses the volume. That is,∮

S

~A · d~S =

∫
V

~∇ · ~AdV (4.29)

When ~A is physically describing the “flow” of some quantity, in which case ~A · d~S is the
“flux” through the surface d~S, we will find this to be an extremely useful theorem.

The proof of Gauss’ Theorem is very similar to how we proved Stokes’ Theorem. In this
case, you chop up the volume V into a bunch of tiny bricks, with dimensions dx, dy, and dz.
For one of these tiny bricks, the surface integral is the sum∑

~A · d~S = Ax(x+ dx, y, z)(+dy dz) + Ax(x, y, z)(−dy dz)
+ Ay(x, y + dy, z)(+dx dz) + Ay(x, y, z)(−dx dz)
+ Az(x, y, z + dz)(+dx dy) + Az(x, y, z)(−dx dy)

where I’ve paired the terms by the “front” and “back” of each of the three directions.
Factoring out dx dy dz = dV , this expression becomes∑

~A · d~S =

[
Ax(x+ dx, y, z)− Ax(x, y, z)

dx

+
Ay(x, y + dy, z)− Ay(x, y, z)

dy

+
Az(x, y, z + dz)− Az(x, y, z)

dy

]
dx dy dz

=

[
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

]
dx dy dz = ~∇ · ~AdV

When we add up all of the little bricks, the right side just becomes the volume integral.
On the left side, adjacent sides of bricks cancel ~A · d~S because the vector d~S has the same
magnitude but opposite direction, and all that is left from the sum is the surface S that
encloses the volume V . This proves (4.29).

Let’s do a simple example with the field ~A = xî + yĵ + zk̂. This field clearly “diverges”, as
VectorPlot in Mathematica will tell you. The divergence of this field is ~∇ · ~A = 3, that is,
uniform everywhere, so the volume integral on the right side of (4.29) is just 3V . A simple
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shape is a cube of side length ` that sits in the first octant with a corner at the origin. The
flux ~A · d~S is zero on the three faces that are in the three planes x = 0, y = 0, and z = 0
because the component perpendicular to the plane is zero there. The flux on the other three
faces is just ` · `2 = `3, so the surface integral is 3`3 = 3V . It works.

Why the surface shape doesn’t matter in Stokes’ Theorem

We gave a proof of (4.28) that assumed the surface was flat. Imagine there is now another
surface that has the same curve C on the edge. These two surfaces form a closed volume,
and the second surface has the opposite clockwise sense of the first. That is∮

S1+S2

~B · d~S =

∫
S1

~B · d~S −
∫
S2

~B · d~S

for some vector field ~B. In the case of Stokes’ Theorem, though, ~B = ~∇× ~A for a different
vector field ~V . Now by Gauss’ Theorem,∮

S1+S2

~B · d~S =

∫
V

~∇ · ~B =

∫
V

~∇ · (~∇× ~A) = 0

since the divergence of any curl is zero. Therefore∫
S1

~B · d~S =

∫
S2

~B · d~S

so it doesn’t matter which surface I use to be enclosed by C in Stokes’ Theorem.

4.3.3 The continuity equation

The notion of a conservation law is fundamental in Physics. We say that quantities like
charge, energy, and momentum, for example, are “conserved”. That is, they do not change
with time. How can we write this down, mathematically, for quantities that can exist spread
out over space?

We will explore the answer to this question by considering three dimensional space. You can
work the problem out for two dimensional space, in which case the answer will involve the
curl. That might make a nice homework problem.

Imagine that we have some quantity Q that is spread over some volume V of space. We
would write Q in terms of some scalar field ρ(~r, t), namely the density of the material that
makes up Q. The density has dimensions of [Q]L−3, and it is possible that the density at
any point can change with time t.

If Q is a conserved quantity, though, the only way it can change is if some of it flows into,
our out of, the volume V . It is not possible to create or destroy the material that makes up
Q if it is conserved. That is, there are no “sources” or “sinks” for this material inside V .
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Define a vector field ~j(~r, t) that represents the “flow” of this material. We’ll write that the

“flux” of this material through some area element d~S is just ~j(~r, t) · d~S. This makes sense

because you recall that the direction of d~S is perpendicular to the surface, so if the flow
~j(~r, t) is perpendicular to the surface, then it is maximized, whereas it is zero if ~j(~r, t) is
parallel to the surface.

The dimensions of ~j(~r, t) are [Q]L−2T−1 so the dimensions of the flux are [Q]T−1. Sometimes
we refer to ~j(~r, t) as the “flux density,” or “current density” particularly if Q represents
electric charge.

Now consider the surface S that encloses the volume V . We know that the only way to
change Q is for there to be some flux through S. Let’s agree that a positive value for the
flux is when the flow goes from the inside to the outside. This means that ~j(~r, t) · d~S is

positive when d~S is defined according to our normal convention that it points away from the
inside of S. Integrating over the surface tells us how to write down the change of Q with
time, namely

dQ

dt
= −

∮
S

~j(~r, t) · d~S

The minus sign tells us that if the net flux through the closed surface S is positive, then Q
decreases, which is correct.

If we write Q in terms of the density ρ(~r, t) by integrating over the volume V , and we apply
Gauss’ Theorem to the surface integral, this equation becomes

d

dt

∫
V

ρ(~r, t) dV = −
∫
V

~∇ ·~j(~r, t) dV

The time derivative is a total derivative because all that is left after doing the integral over
position is time. I can bring the time derivative inside the integral, but then it becomes a
partial derivative. this all leads us to∫

V

[
∂ρ(~r, t)

∂t
+ ~∇ ·~j(~r, t)

]
dV = 0

Finally, we let the volume V → ∆V be so small that we can neglect the change in the
integrand over position and pull it out of the integral, leaving just the volume ∆V times the
expression in square brackets, which itself now must be zero. Therefore

∂ρ(~r, t)

∂t
+ ~∇ ·~j(~r, t) = 0 (4.30)

This differential equation is called the Continuity Equation and is the mathematical way to
state that a quantity is conserved. It is used extensively in many fields of Physics, including
fluid dynamics, electrodynamics, biological systems, statistical mechanics, and even finance.
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4.3.4 Application to Maxwell’s Equations

An important first application of the surface theorems is to turn Maxwell’s Equations into
their differential form. You likely learned the integral form of Maxwell’s Equations in your
introductory Physics class, namely4∮

~E · d~S = 4πQenclosed = 4π

∫
V

ρ dV Gauss′ Law (4.31a)∮
~B · d~S = 0 Gauss′ Law for Magnetism (4.31b)∮

C

~E · d~̀ = −1

c

dΦB

dt
= −1

c

d

dt

∫
S

~B · d~S Faraday′s Law (4.31c)∮
C

~B · d~̀ =
4π

c
Ienclosed +

1

c

dΦE

dt

=
4π

c

∫
S

~j · d~S +
1

c

d

dt

∫
~E · d~S Ampere′s Law (4.31d)

where I trust you remember terms like “Gaussian surface” and “Amperian loop.”

Surface theorems can be used to turn each of the integrals on the left side into integrals
over the Gaussian surface enclosing the volume, or Amperian loop enclosing the surface. For
Gauss’ Law, the charge enclosed by the Gaussian surface is just an integral over the volume
of the charge density ρ(~r, t). The current enclosed by the Amperian loop is just the current
density ~j(~r, t) integrated over the surface it encloses. Therefore, these equations become

~∇ · ~E = 4πρ Gauss′ Law (4.32a)

~∇ · ~B = 0 Gauss′ Law for Magnetism (4.32b)

~∇× ~E = −1

c

∂ ~B

∂t
Faraday′s Law (4.32c)

~∇× ~B =
4π

c
~j +

1

c

∂ ~E

∂t
Ampere′s Law (4.32d)

This form of Maxwell’s equations is much more amenable to studying the properties of
charges and currents than is the integral form. It will also allow us to see immediately how
they predict the existence of electromagnetic waves, which we will discuss in Section 4.3.4,
and that electric charge is conserved, which we’ll investigate now.

Conservation of electric charge

It is easy to show that (4.32) imply that electric charge is conserved. That is, it is easy
to show that they lead to the continuity equation for the electric charge density ρ(~r, t) and

4I am writing these in Gaussian units, which are favored among physicists. Engineers typically use SI
units, which is likely how you saw them in your first class.

93



current density ~j(~r, t). First take the divergence of both sides of Ampere’s Law. You know
that the divergence of any curl is zero, so the left hand side must be zero. This gives us

0 =
4π

c
~∇ ·~j +

1

c

∂

∂t
~∇ · ~E

Now use Gauss’ Law to write ~∇ · ~E = 4πρ. The overall factor of 4π/c cancels and you get

0 = ~∇ ·~j +
∂ρ

∂t

which is just the continuity equation (4.30).

Maxwell’s Equations imply that electric charge is conserved. This very important aspect of
electrodynamics is often overlooked in classes on the subject.

Existence of electromagnetic waves

Maxwell’s Equations predict the existence of electromagnetic waves. Mathematically, this
means that Maxwell’s Equations predict that there are forms of ~E(~r, t) and ~B(~r, t) that
satisfy a partial differential equation known as the Wave Equation. We will look at how we
go about solving this and similar equations in Sections 4.5 and 5.1, but for now, let’s just
go ahead and manipulate Maxwell’s Equations to get the Wave Equation.

First, though, we will take a moment to prove a vector differential operator identity, namely

~∇× (~∇× ~A) = ~∇(~∇ · ~A)− ~∇2 ~A (4.33)

This is easy to do using the “δ,ε” technique of Section 4.1.2. Using the summation notation
with our generic notation for Cartesian unit vectors, the gradient operator becomes

~∇ = êi
∂

∂xi

where x1 = x, x2 = y, and x3 = z. Since none of the êi depend on position, we can just work
with the components directly, and write

[~∇× (~∇× ~A)]i = εijk
∂

∂xj

(
εkmn

∂

∂xm
An

)
= εkijεkmn

∂2An
∂xjxm

= (δimδjn − δinδjm)
∂2An
∂xjxm

=
∂2Aj
∂xjxi

− ∂2Ai
∂xjxj

=
∂

∂xi

∂Aj
∂xj
− ∂2

∂xjxj
Ai = [~∇(~∇ · ~A)− ~∇2 ~A]i

where I have freely exchanged the order of differentiation when it suited me.
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Equation (4.33) let’s us show that Maxwell’s Equations predict the existence of electromag-
netic waves. Let’s see how this works. If we just talk about some region in space where there
are no charges or currents, call it the “vacuum”, then Maxwell’s Equations become

~∇ · ~E = 0 ~∇ · ~B = 0 ~∇× ~E = −1

c

∂ ~B

∂t
~∇× ~B =

1

c

∂ ~E

∂t

Take the curl of the third equation, invoke (4.33), and use the first equation to get

~∇× (~∇× ~E) = ~∇(~∇ · ~E)− ~∇2 ~E = −~∇2 ~E = −1

c

∂

∂t
~∇× ~B

Finally, use the fourth equation to replace ~∇ × ~B with the time derivative of ~E. After a
little rearranging, you find

1

c2

∂2 ~E

∂t2
− ~∇2 ~E = 0 (4.34)

This partial differential equation is called the Wave Equation. We will discuss solutions to
the wave equation in Section 5.1, but it describes a field ~E(~r, t) with a shape that moves in
time, unchanged, at speed c.

Equation (4.34) looks a little weird because it is a partial differential equation that is to be

solved for a vector function ~E(~r, t). Let’s try writing ~E(~r, t) = îf(z, t), which describes an
electric field that is “linearly polarized in the x-direction.” Inserting this (4.34) gives us

1

c2

∂2f

∂t2
− ∂2f

∂z2
= 0

which is a bit more tractable. We will see in Section 5.1 that this equation describes a wave
moving in the z-direction.

You will do much more with electromagnetic waves in your E&M courses. It all boils down,
though, to using Maxwell’s Equations to derive the relevant PDE’s and then solving them,
given initial and boundary conditions.

4.4 Two important vector fields

Let’s pause briefly to talk about two particular vector field forms that I’ll call ~B(~r) and ~E(~r).

Describing ~B(~r) in Cartesian and cylindrical polar coordinates,

~B(~r) = a
−îy + îx

x2 + y2
= a

φ̂

r
(4.35)

I will define the field ~E(~r) in Cartesian and spherical polar coordinates as

~E(~r) = a
îx+ ĵy + k̂z

(x2 + y2 + z2)3/2
= a

r̂

r2
(4.36)
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In both of these equations, a just represents some constant.

I will leave it as a homework problem to calculate ~∇ × ~B and ~∇ · ~E. Not to spoil the
suspense, but you will find that the answer is zero in both cases. This is despite the fact
that, if you make VectorPlot plots of these, ~B(~r) will clearly look like it “curls” and ~E(~r)
will very obviously “diverge.”

In fact, if you try testing the surface theorems on these fields, you will get nonzero results!
The easiest way to do this is using a circle centered at the origin in the xy plane as the closed
loop for ~B(~r), and a sphere centered on the origin for the closed surface for ~E(~r). For each
of these, the surface integrals are trivial if you use the appropriate polar coordinate system.

This looks like violations of Stokes’ Theorem and Gauss’ Theorem, but in fact they are not.
There is a subtlety that should be obvious when you think about it. It will take us a little
while to get to the mathematics we need to write down what I’m talking about, but I wanted
to get you thinking about it first.

4.5 Partial Differential Equations

Partial Differential Equations, or PDE’s, are differential equations with more than one in-
dependent variable, so involve partial derivatives with respect to those variables. You will
see them everywhere in Physics, from electromagnetism, to quantum mechanics, and contin-
uum mechanics. We can only barely have a discussion about PDE’s in general, but we will
highlight the most common techniques used to solve them.

Probably the most important difference, effectively, between PDE’s and ODE’s is that the
boundary conditions are much more involved and can lead to much more general solutions.
We will be dealing with linear PDE’s only, so superposition will still be valid. This will be
key to determining linear combinations of solutions that satisfy boundary conditions.

It’s good to illustrate these points with a problem that looks simple, but shows that boundary
conditions are critical to finding even the general form of a solution. Consider the PDE

∂f

∂x
= x

∂f

∂y

to be solved for the function f(x, y). You can easily verify (with Mathematica if you want
to) that the following are all solutions to this PDE:

f1(x, y) = x4 + 4(x2y + y2 + 1)

f2(x, y) = sinx2 cos 2y + cosx2 sin 2y

f3(x, y) =
x2 + 2y + 2

3x2 + 6y + 5
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That seems odd until you realize that all three are functions of z = x2 + 2y. That is,

f1(x, y) = z2 + 4

f2(x, y) = sin z

f3(x, y) =
z + 2

3z + 5

Indeed, for any function g(z),

∂g

∂x
= g′(x)

∂z

∂x
= 2xg′(x) and x

∂g

∂y
= xg′(x)

∂z

∂y
= 2xg′(x)

so any function f(x, y) = g(z) solves the PDE. Which of these infinite possible forms of the
solution you pick, though, will depend on what boundary conditions you need to satisfy.

4.5.1 Separation of variables

Most if not all of the PDE’s you’ll need to solve in your studies of Physics will be linear and
second order, and most if not all of these can be solved using a technique called Separation of
Variables. This section goes through the principles of this technique, and it will be applied
in various places throughout the rest of this course. You will see it used often in your courses
on electromagnetism and quantum mechanics.

Separation of variables turns a partial differential equation for a function in terms of two or
three independent variables (like x, y, and z, or r, θ, and φ into a set of separate ordinary
differential equations, one for each of the independent variables. Suppose we are looking to
solve a PDE for a function f(~r) = f(x, y, x). The first step is to write

f(x, y, z) = X(x)Y (y)Z(z)

and insert into the PDE. It is generally possible to arrange the terms in a way that some
constant or constants can be used to isolate the different ODE’s.

We will illustrate this idea in a moment, but first an important point: What coordinate
system you use is probably most dependent on what are the boundary conditions. If you have
f(r) and its partial derivatives defined along the boundaries of a rectangle or rectangular box,
then you likely want to use Cartesian coordinates. If they are defined along the boundaries
of a sphere, then you are apt to use spherical coordinates.

Each problem is different, though, and you have to consider it carefully before you plow
forward. Remember that you still have existence and uniqueness to help you out. Any way
that you can find a solution to the PDE that satisfies the boundary conditions, will give you,
essentially, the right solution.

So, instead of writing down any general rules, let’s solve a specific problem so that you can
see how this technique works. Let’s solve the partial differential equation

∂2f

∂x2
=
∂2f

∂y2
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for the function f(x, y) subject to the boundary conditions

f(0, y) = f(a, y) = f(x, 0) = f(x, a) = 0

where a is a positive constant. That is, the region of validity of the solution is the square of
side length a in the first quadrant.

If you think about it, there is a more or less obvious solution to the differential equation. If
f(x, y) = g(z) with z = x ± y for any function g(z), then the PDE is satisfied. In fact, a
general solution would be

f(x, y) = g1(x− y) + g2(x+ y)

where g1 and g2 are arbitrary functions. However, it’s not so obvious how to choose these
functions so that the boundary conditions are satisfied.

For this, we turn to a solution that makes use of Separation of Variables. As suggested
above, we write f(x, y) = X(x)Y (y) which gives

d2X

dx2
Y = X

d2Y

dy2
so

1

X

d2X

dx2
=

1

Y

d2Y

dy2

which is a peculiar type of equation. The left side depends only on x, while the right side
depends only on y. Nevertheless, the two sides have to be equal to each other! The only
way this happens if both sides are equal to a constant.

Let’s call this constant −k2 < 0. (You’ll see shortly that this choice for the constant allows us
to satisfy the boundary conditions.) The PDE has now split into two ODE’s, as advertised.
The two ODE’s are

X ′′(x) = −k2X(x) and Y ′′(y) = −k2Y (y)

whose solutions are now very well known to you, namely

X(x) = Ax cos kx+Bx sin kx and Y (y) = Ay cos ky +By sin ky

where Ax, Bx, Ay, and By are constants. The boundary conditions imply that

X(0) = 0 = Y (0) and X(a) = 0 = Y (a)

The first pair of equations say that Ax = 0 = Ay, so the solution to the PDE has the form

f(x, y) = C sin kx sin ky

where C = BxBy. In order for f(a, y) = 0 = f(x, a), and to avoid the trivial solution with
C = 0, we need to set k = nπ/a were n ∈ Z+ is a positive integer. (A negative integer would
give a redundant function, and n = 0 leads to the trivial solution.) Therefore

f(x, y) = C sin
(nπx

a

)
sin
(nπy

a

)
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where the constant C would have to be determined by some additional constraint. If you
recall the trigonometric identity

sinα sin β =
1

2
[cos(α− β)− cos(α + β)]

then you see that, indeed, f(x, y) is a linear combination of functions of x± y.

This worked out nicely because I picked boundary conditions that were amenable to a solution
with separation of variables. Luckily, most of the physics problems you will face work out
nicely like this. For other cases, not uncommon in various types of modeling of systems, you
may need to resort to numerical solutions.

4.5.2 Heat conduction in one dimension

A common problem in the physical and life sciences, including engineering, is the diffusion
of heat (or equivalent entity) through a medium over time. This process is governed by a
partial differential equation of the form

~∇2f = k
∂f

∂t
(4.37)

where f(~r, t) is the temperature field and k is a positive constant, called the diffusivity. This
equation implies that there is no heat source in the medium, but that its internal energy
can only get redistributed by the transfer of heat. We refer to (4.37) as the heat equation or
diffusion equation.

In one spatial dimension x, (4.37) becomes

∂2f

∂x2
= k

∂f

∂t
(4.38)

which would govern, for example, the temperature distribution f(x, t) for position along a
rod as a function of time. If the rod has length `, its ends are held at fixed temperatures,
and its initial temperature distribution is some function u(x) for 0 ≤ x ≤ `, then you have
a prototypical PDE boundary and initial value problem to solve.

We should think for a minute about the physical system (4.38) would describe. After some
time, we expect that the rod would come to thermal equilibrium with its “surroundings”,
namely the source or sink of heat to which each endpoint is attached. In equilibrium, the
temperature f(x, t) would no longer change with time, and the right side of (4.38) would be
zero. The resulting (ordinary) differential equation is trivial to solve. You get

f(x, t→∞) = ax+ b

where the constants a and b are set by the temperatures at the ends of the rod. Something in
the time dependence of f(x, t) must have the time dependence disappear after a long time.
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A natural approach to solving (4.38) for the temperature of a rod, is to use Separation of
Variables and write f(x, t) = X(x)T (t). In this case (4.38) becomes

1

X

d2X

dx2
= k

1

T

dT

dt

and we need to set both sides equal to a constant. If we make this constant negative, for
example −α2, then T (t) will be a decaying exponential, which sounds like it fits the bill for
a disappearing time dependence.

We would also find that X(x) is a linear combination of sines and cosines. Enforcing fixed
temperatures at the end of the rod will have us write the argument of the sines and cosines
as some integer times π/`. In order to satisfy the initial condition that f(x, 0 = u(x) for
an arbitrary u(x), we would have to find the linear combinations of all of the n-valued sines
and cosines that give you u(x).

This process of adding up sines and cosines to give you some arbitrary function was invented
in the early 19th century by Joseph Fourier, and is the subject of Chapter 5. According
to lore, Fourier developed this technique to solve the problem of how to best dissipate heat
in the cannons of Napoleon Bonaparte’s army. We’ll use a more traditional approach to
develop Fourier Series, and then the Fourier Transform, namely standing waves on a string.
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Chapter 5

Fourier Analysis

Fourier Analysis is based on the fact – which we won’t prove – that pretty much any function
can be represented by an infinite sum, or perhaps an integral, of sines and cosines. Although
applicable to any number of physical problems (for example, heat conduction, as mentioned
in Section 4.5.2), we will illustrate it using solutions to the Wave Equation.

Much of this chapter should be review from Wave Physics.

5.1 Waves on a Stretched String

We are going to start this discussion by considering the motion of a string, stretched tightly.
We’ll say the string is in the horizontal direction and moves only in the vertical direction,
because it never bends by very much, but gravity is irrelevant. We are only going to care
about the vertical motion due to the tension in the string. What we’ll find is that the motion
of the string is governed by the same partial differential equation that governs electromagnetic
waves, for example (4.34).

5.1.1 Derivation of the equation of motion

Imagine a string stretched across space. We will derive an equation that governs the up-
and-down motion of the string, assuming that it never bends by very much. We will do this
by considering tiny piece of the string and applying Newton’s Second Law. The only forces
on this piece of string that will concern us are the tensions on the piece from each of its two
ends.

Figure 5.1 shows a small piece of stretched string. We measure the position along the
horizontal direction as x, and the shape of the string at any time t is u(x, t). We assume
that θ is always very small so that the string only moves vertically.

In order to apply Newton’s Second Law, let’s first analyze the vertical forces on the string.
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Figure 5.1: A small piece of a string (drawn in red) acted on by the tension forces from each
end. We use θ to measure the angle of the string with respect to the horizontal at each end.

These are

−T sin θ ≈ −Tθ ≈ −T tan θ = −T ∂u

∂x

∣∣∣∣
x

on the left, and

T sin θ ≈ Tθ ≈ T tan θ = T
∂u

∂x

∣∣∣∣
x+∆x

on the right. Therefore, the sum of forces acting on this small piece of string is∑
Fy = −T ∂u

∂x

∣∣∣∣
x

+ T
∂u

∂x

∣∣∣∣
x+∆x

= T

[
∂u

∂x

∣∣∣∣
x+∆x

− ∂u

∂x

∣∣∣∣
x

]
Now if we let µ be the linear mass density of the string, then the mass of this small piece is
µ∆x, and Newton’s Second Law for the vertical motion of the piece of string is

µ∆x
∂2u

∂t2
= T

[
∂u

∂x

∣∣∣∣
x+∆x

− ∂u

∂x

∣∣∣∣
x

]
or

µ

T

∂2u

∂t2
=

1

∆x

[
∂u

∂x

∣∣∣∣
x+∆x

− ∂u

∂x

∣∣∣∣
x

]
It is easy to see that the constant µ/T on the left has dimensions of velocity2. That is

[µ]

[T ]
=

ML−1

MLT−2
=

1

(L/T )2

So, let’s write v2 = T/µ. Also, as the piece of string gets smaller and smaller, that is ∆x→ 0,
the right side just becomes the second partial derivative with respect to x. In other words,
the motion of the string is governed by the partial differential equation

1

v2

∂2u

∂t2
=
∂2u

∂x2
or

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0 (5.1)

This is known as the Wave Equation and it shows up in many different areas of physics. We
have already seen that it is implied by Maxwell’s Equations in Section 4.3.4.
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Figure 5.2: Motion of a string according to (5.1) for the part of the general solution (5.2)
that is f(x − vt). At t = 0, the height of the string at a point x0 is f(x0), and at a finite
time t, the height of the wave at x0 + vt is the same value f(x0).

5.1.2 General solution of the wave equation

There are many different forms for the function u(x, t) that solves (5.1) that depend on the
initial and boundary conditions. However, we can immediately see a specific general form of
the solution that gives us good intuition as to what’s going on.

First, realize that (5.1) is a linear PDE. That means that if u1(x, t) and u2(x, t) are both
solutions, then any linear combination c1u1(x, t) + c2u2(x, t) is also a solution.

Now it is not hard to see that any function of z = x − vt is a solution to (5.1). That is,
u(x, t) = f(z) = f(x − vt) will be a solution for any (differentiable) function f(z). The
same is true for any function g(x + vt). In other words, the general solution to (5.1) is any
function of the form

u(x, t) = f(x− vt) + g(x+ vt) (5.2)

This general form has a lovely physical interpretation. Consider first the motion in time of
the function f(x− ct), shown in Figure 5.2. Whatever the shape is at t = 0, that is f(x), it
is reproduced exactly at a finite time t except that it is translated to the right by an amount
vt. In other words, it moves to the right with a speed v.

in other words, the first term in the solution (5.2) represents a “wave moving to the right
with speed v.” The second term, that is g(x + vt) represents, similarly, a “wave moving to
the left with speed v.

It is not hard to show that if you start at time t = 0 with some arbitrary string shape f(x),
with the string at rest, then the solution is that the shape splits into two pieces, one moving
to the right and the other moving to the left. This will be a homework problem.

Another easy solution to the wave equation is for a string that is fixed at one end, or allowed
to move freely at one end. These cases correspond to the boundary conditions that u(0, t) = 0
or ∂u(x, t)/∂x|x=0 = 0, assuming the end to be at x = 0. In each case, you find that the
wave is “reflected” from the end, but the characteristics of the reflection are different for the
two cases. This will also be a homework problem.
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5.2 Standing waves

Now we are going to investigate solutions to (5.1) with some specific boundary conditions,
namely that the ends of the string are fixed and cannot vibrate. The result is a phenomenon
that we refer to as standing waves.

You likely solved this in your Wave Physics course, but with the boundaries of the string at
x = 0 and x = L. This simplifies things because the solutions are all sine functions. I will
go through the solution here again, but with the boundaries at x = ±L/2. This will allow
us to exploit the symmetry about x = 0, let us show off the use of complex notation, and
facilitate taking the limit L→∞ when we get to the Fourier Transform.

Our goal is to find a u(x, t) that solves (5.1) subject to the boundary conditions

u

(
−L

2
, t

)
= 0 = u

(
L

2
, t

)
(5.3)

We will worry about initial conditions later. A good approach is separation of variables, so,
recalling Section 4.5.1, we write u(x, t) = X(x)T (t) leading to the equations

1

v2

1

T

d2T

dt2
=

1

X

d2X

dx2
= −k2 (5.4)

where the constant −k2 < 0 is chosen, as we’ll see in a moment, to meet the boundary
conditions. It should be clear to you by now that the solution for X(x) are sines and cosines,
but it will be better for us to use Euler’s Formula to write

X(x) = Aeikx +Be−ikx

The boundary conditions are obviously satisfied by setting X(−L/2) = 0 = X(L/2), that is

Ae−ikL/2 +BeikL/2 = 0

AeikL/2 +Be−ikL/2 = 0

to be solved for A and B. We’ve seen this kind of problem before, for example in solving
for the modes of the coupled oscillator in Section 3.7.1. The solution would be A = B = 0
unless we make these two equations into one equation by making the ratio of coefficients
equal to unity. That is

e−ikL/2

eikL/2
=

eikL/2

e−ikL/2
or e−ikL = eikL or e2ikL = 1

which means that kL = nπ where n is a positive integer. (Since ±k both give solutions, we
might as well just let n be positive.) Therefore we have determined that

X(x) = Ane
inπx/L +Bne

−inπx/L
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where n ∈ Z+, and An and Bn are (complex) constants that need to be determined from the
initial conditions.

Separation of variables also gives us the differential equation to solve for T (t), namely

d2T

dt2
= −k2v2T (t) = −

(nπv
L

)2

T (t)

This determines the form of T (t) to be

T (t) = sin

(
nπvt

L

)
or T (t) = cos

(
nπvt

L

)

or some linear combination of the two. At this point will make a simplifying assumption.
For the sake of avoiding unnecessary complication, we will assume that any problem we want
to solve has the string at rest at t = 0. This assumption implies that T ′(0) = 0, so we choose
the cosine option for T (t).

Therefore, we determined the shape of the string to be

u(x, t) =
[
Ane

inπx/L +Bne
−inπx/L] cos

(
nπvt

L

)
(5.5a)

or u(x, t) =
[
Ãn cos

(nπx
L

)
+ B̃n sin

(nπx
L

)]
cos

(
nπvt

L

)
(5.5b)

where Ãn = An +Bn and B̃n = i(An −Bn). Which form we use depends on which problem
we want to solve. Clearly (5.5b) is best if we are trying to determine the shape of a physical
string. However, we’ll see that (5.5a) is more useful in general, and will in fact lead us in
new directions.

Recall that we decided we needed n ≥ 1. We cannot have n = 0 because that would imply
that u(x, t = 0) is a constant that must be zero because of our boundary conditions. We
also realized that n < 0 is redundant, so we discarded. We will revisit these conditions later.

Now we are armed with the general solution (5.5) so we should be able to solve the mathe-
matical problem posed by (5.1) with boundary conditions (5.3). All we need to do is match
this general form to the initial condition u(x, 0) = f(x). (Remember that we settled on (5.5)
by requiring that u̇(x, 0) = 0.)

But how do we do that, for an arbitrary f(x)? If f(x) is a sine or cosine function or some
linear combination of both, equal to zero at x = ±L/2, then it is easy. We would just pick
the appropriate value of Ãn and B̃n. In general, of course, we’d need to write the solution
as a sum over all possible values of n, and somehow figure out a formula for Ãn and B̃n (or
An and Bn) in terms of n. The result is called a Fourier Series and that’s what we take on
next.
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5.3 Fourier Series

As the story goes, Joseph Fourier developed the idea of expanding a function in terms of
sines and cosines in order to solve the heat conduction equation in Section 4.5.2. As we just
saw in Section 5.2, it is also a path for solving the problem of standing waves on a string.
These are important hints that this is a generally useful technique.

So let’s go through the analysis using more general mathematics. After that, we’ll take a
moment to apply what we have to the problem of standing waves on a string.

It apparently took some time for Fourier’s ideas to be accepted. The notion that an arbitrary
function can be expanded in terms of sines and cosines is not clearly true, and there is some
interesting mathematics that goes along with it. I think mathematicians refer to the need
to prove “completeness”, but we’re not going to get into the details. Our point of view will
be that if we can find a way to calculate the expansion coefficients, then our job is done.

5.3.1 Expansion in terms of harmonics

Referring to standing waves on a string for a moment, our problem comes down to writing
the initial condition u(x, 0) = f(x) in terms of a sum over n of the expressions in (5.5). We’ll
work with the form in (5.5a) and write

f(x) =
∞∑
n=1

[
Ane

iknx +Bne
−iknx

]
which we’ll call an expansion in terms of harmonics. It is important to note that

−L
2
≤ x ≤ L

2
(5.6)

In fact, by enforcing that f(x) = 0 at x = ±L/2, we found that knL = nπ.

Before plowing ahead, let’s make some observations of, and changes in, the harmonic ex-
pansion above. Firstly, we have excluded n = 0 because that term contributes a constant
to f(x), and the standing wave boundary conditions implied that constant had to be zero.
If we want to consider more general forms of f(x), then we can relax that requirement and
include n = 0 in the sum.

Note also that the terms for An and Bn just flip signs in the exponent, so if we let n be
negative, then we only have to do one of the sums. So, now the sum harmonic expansion is
written as

f(x) =
∞∑

n=−∞

Ane
iknx

We will also generalize the boundary conditions. Instead of enforcing f(x) = 0 at x = ±L/2,
let’s use “periodic boundary conditions.” That is, the initial shape f(x) isn’t constrained
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to be between ±L/2, but the shape does repeat periodically with period a. (As we’ll see
later, we can adapt this to a string with ends fixed at u(±L/2, t) = 0 with a = 2L.)
Mathematically, this means

f(x+ a) = f(x)

and this gives us a slightly different expression for kn, namely

eik(x+a) = eikx so eika = 1 or ka = 2πn

for some integer n. Therefore k = kn = n2π/a and we write our general mathematics
problem as

f(x) =
∞∑

n=−∞

Ane
2inπx/a (5.7)

where the goal is to find an expression for An given an arbitrary f(x).

We get a strong hint on how to find the An by integrating both sides over x. Integrating
over one period using the region −a/2 ≤ x ≤ a/2,∫ a/2

−a/2
f(x) dx =

∞∑
n=−∞

An

∫ a/2

−a/2
e2inπx/a dx

=
∞∑

n=−∞

An
a

2inπ

[
einπ − e−inπ

]
=

∞∑
n=−∞

An
a

nπ
sin(nπ)

Now sin(nπ) = 0 for any integer n, so it looks like every term on the right side is zero.
However, we have to be careful about the n = 0 term. In this case∫ a/2

−a/2
f(x) dx = A0

∫ a/2

−a/2
(1) dx = A0a or A0 =

1

a

∫ a/2

−a/2
f(x) dx

and we see that A0 is just the average value of the function over one period. This makes
good sense. If n 6= 0, then the exponential terms are just sines and cosines, all of which
integrate to zero over one period.

This tells us how to find the other An. Multiply f(x) by e−2imπx/a before integrating, where
m is some integer. This gives us∫ a/2

−a/2
e−2imπx/af(x) dx =

∞∑
n=−∞

An

∫ a/2

−a/2
ei(n−m)2πx/a dx =

∞∑
n=−∞

An
a

(n−m)π
sin[(n−m)π]

and we have the same situation we had for m = 0. That is, every term in the expansion is
zero except when n = m, in which case∫ a/2

−aL/2
e−2imπx/af(x) dx = Ama
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Of course, m is just a dummy index, so we have the general expression

An =
1

a

∫ a/2

−a/2
e−2inπx/af(x) dx (5.8)

which is good for all integers n. As far as we’re concerned, this confirms that the harmonic
expansion (5.7) is valid.

Let’s try a simple example, namely f(x) = sin(2πx/a), to check the formalism. Note that
this f(x) has the correct period, namely f(x+ a) = f(x). Write

sin

(
2πx

a

)
=

1

2i
e2iπx/a − 1

2i
e−2iπx/a

and use (5.8) to get the coefficients

An =
1

2ia

[∫ a/2

−a/2
e2iπ(1−n)x/a dx−

∫ a/2

−a/2
e2iπ(−1−n)x/a dx

]

where both integrals are zero unless n = ±1. In those cases, we have

A1 =
1

2ia

∫ a/2

−a/2
(1) dx =

1

2i
and A−1 = − 1

2ia

∫ a/2

−a/2
(1) = − 1

2i

There are only two terms, therefore, in the expansion (5.7) and we have

f(x) =
1

2i
e2iπx/a − 1

2i
e−2iπx/a = sin

(
2πx

a

)
which is of course correct.

A more interesting example is the “sawtooth” function f(x) = x/a for −a/2 ≤ x ≤ a/2 and
which repeats with period a. Maybe for homework. Also the “square wave”, namely

f(x) = 1 for − a

4
≤ x ≤ a

4

and = −1 for − a

2
≤ x ≤ −a

4
and

a

4
≤ x ≤ a

2

and repeating with period a. Maybe these are too difficult, not sure.

5.3.2 Standing wave solution

We can now use the harmonic expansion (5.7), with coefficients given by (5.8), to solve the
problem of standing waves on a string, from Section 5.2. To review, for a stretched string
with ends fixed at x = ±L/2, we found the class of solutions (5.5) for different n ≥ 1. The
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issue now is how to match these to a solution for a string with initial shape u(x, 0) = f(x).
We will do this by starting with (5.7) to find the coefficients Ãn and B̃n in (5.5b).

The first issue we face is to find the relationship between the “periodicity” a and the length
L of the string. Recall that “fixed ends” means f(±L/2) = 0. It is tempting to just write
a = L, but we have to be careful. Certainly, we can have the shape f(x) just repeat itself,
going to zero at every point beyond the ends of the string with period L. However, this is
not general enough. It is also possible for the shape f(x) → −f(x) past the ends of the
strings. For example, the function sin(2πx/L) = 0 at x = ±L/2 and has period L, but the
function cos(πx/L) also goes to zero at x = ±L/2 but has period 2L.

Therefore, to start with (5.7) means we pick a = 2L. That is, we write

f(x) =
∞∑

n=−∞

Ane
inπx/L where An =

1

2L

∫ L

−L
e−inπx/Lf(x) dx (5.9)

Of course, f(x) is a real function since we are talking the motion of a physical string, so it’s
better to write the expansion in terms of sines and cosines. We also split the sum according
to the sign of n and write

f(x) = A0 +
∞∑
n=1

[
Ane

inπx/L + A−ne
−inπx/L]

= A0 +
∞∑
n=1

[
Ãn cos

(nπx
L

)
+ B̃n sin

(nπx
L

)]
where Ãn = An + A−n =

1

L

∫ L

−L
cos
(nπx
L

)
f(x) dx

including A0 =
1

2
Ã0 =

1

2L

∫ L

−L
f(x) dx

and B̃n = i(An − A−n) =
1

L

∫ L

−L
sin
(nπx
L

)
f(x) dx

which is the form (5.5b) but now we have expressions for the coefficients.

These relations are correct (so far as I know) but they are a little inconvenient for describing a
physical string. The variable x doesn’t measure position along the string, because it extends
over a length 2L, and f(x) is a function which connects on the physical string, but extends
beyond its endpoints. So, let’s define the variable

y =
x+ L

2

which extends from 0 to L so measures position along the physical string. Since

cos
(nπx
L

)
= (−1)n cos

(
2nπy

L

)
and sin

(nπx
L

)
= (−1)n sin

(
2nπy

L

)
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the expansion for the physical string becomes

g(y) = Ã0 +
∞∑
n=1

[
Ãn cos

(
2nπy

L

)
+ B̃n sin

(
2nπy

L

)]
where Ãn = (−1)n

2

L

∫ L

0

cos

(
2nπy

L

)
g(y) dy

and B̃n = (−1)n
2

L

∫ L

0

sin

(
2nπy

L

)
g(y) dy

where g(y) = f [(x+ L)/2] describes the shape of the physical string.

This is getting messy. I’m not sure how to treat the need to be continuous nature of the boundary
conditions at the ends, other than to deal differently with even and odd n. I’m bothered by the
“physical string” business, and I don’t know about these factors of (−1)n. I think it is better to
retreat, do the string the standard “easy” way in the Tuesday class, then the generalized Fourier
expansion and then the Fourier transform in the Thursday class.

Standing waves the easy way

Let’s do the conventional approach to solving for standing waves on a string, and stick to
real functions. If we put the ends of the string at x = 0 and x = L, then the solution to
(5.4) for X() is best written as

X(x) = A cos(kx) +B sin(kx)

Enforcing X(0) = 0 gives A = 0. Enforcing X(L) = 0 gives kL = nπ, so the standing wave
solution (for a string that is initially at rest) looks like

un(x, t) = Bn sin
(nπx
L

)
cos

(
nπvt

L

)
(5.10)

which is, essentially, (5.5b). Confronting the initial condition u(x, 0) = f(x) leads to

f(x) =
∞∑
n=1

Bn sin
(nπx
L

)
(5.11)

where the job is now to find the Bn. (Sometimes this is called the Fourier Sine Series.)

There is an easy to find the Bn by exploiting the orthogonality of the sine functions, that is∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

∫ L

0

1

2

{
cos

[
π(n−m)x

L

]
− cos

[
π(n+m)x

L

]}
dx

=
L

2π(n−m)
sin

[
π(n−m)x

L

]∣∣∣∣L
0

− L

2π(n+m)
sin

[
π(n+m)x

L

]∣∣∣∣L
0

= 0
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Figure 5.3: Fourier Sine decompositions of two waveforms. The triangle uses only the first
four terms in the Fourier series, two of which are in fact zero. Even with so few terms, this
approximation is reasonably good. The square wave, however, uses the first 50 terms, and
there are still obvious discrepancies at the discontinuities.

for positive integers n 6= m. On the other hand, if n = m, then∫ L

0

sin
(mπx

L

)
sin
(mπx

L

)
=

1

2

∫ L

0

[
1− cos

(
2mπx

L

)]
=
L

2

for any integer m. The simple way to write this result is∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

L

2
δnm

Applying this to (5.11) gives∫ L

0

f(x) sin
(mπx

L

)
dx =

∞∑
n=1

Bn

∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

∞∑
n=1

Bn
L

2
δnm = Bm

L

2

In other words, switching back to the index n,

Bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx (5.12)

These are the coefficients of the Fourier Sine Series (5.11). Figure 5.3 shows two examples
of Fourier Sine decompositions.

We can now return to our problem of finding the motion of standing waves on a string use
(5.10) to write the solution for the motion of a string that is fixed at x = 0 and x = L and
which starts from rest with shape u(x, 0) = f(x) as

u(x, t) =
∞∑
n=1

Bn sin
(nπx
L

)
cos

(
nπvt

L

)
(5.13)
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Figure 5.4: Fourier decomposition of a lopsided triangle, using the first 50 terms, along with
its motion over time. The decomposition is almost indistinguishable from the exact triangle.
The motion is traced out for t = δ(2π/ω) where ω is the frequency of the lowest frequency
component (n = 1) and δ = 0, 1/8, 1/4, 3/8, 1/2.

where the coefficients Bn are given by (5.12). It is obvious that this has the shape f(x) at
t = 0 from our construction of the Fourier Sine Series, but notice also that the different n
components oscillate with different frequencies nv/2L, so the shape will change as a function
of time, as expected.

Figure 5.4 shows the motion of a lopsided triangle wave, using a large number of terms for
the Fourier expansion. It is not obvious that this is the behavior you might expect, that
is, the trapezoidal motion that maintains the skewness of the initial shape. This example
actually makes a nice Mathematica animation.

5.4 Parsevals theorem

I don’t know that I will have time to cover this, but it is worthwhile at some point to mention
the idea of “completeness.” I also need to be careful of the ordering, because I think this
is best done when we’ve done the generalized Fourier series, and the prior order may be
changing if these notes are redone for another class.

I think the point is to prove that the average |f(x)|2 over one period is just the sum of the
Fourier coefficients squared. That is

1

a

∫ a/2

−a/2
|f(x)|2dx =

∞∑
n=−∞

|An|2 (5.14)
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which is actually quite easy to prove. Just plow ahead and you get

1

a

∫ a/2

−a/2
|f(x)|2dx =

1

a

∞∑
n=−∞

∞∑
m=−∞

A∗nAm

∫ a/2

−a/2
e2i(m−n)πx/adx

=
1

a

∞∑
n=−∞

∞∑
m=−∞

A∗nAm a δnm =
∞∑

n=−∞

|An|2

The connection onto Quantum Mechanics is kind of nice, especially in terms of completeness,
but it just seems like this is something that will have to wait for a later course.

5.5 Fourier Transform

In class I will first start with the general Fourier series, from Section 5.3.1. That is, start by
considering a periodic function f(x) with f(x+ a) = f(x), and an expansion

f(x) =
∞∑

n=−∞

Ane
ikx (5.15)

and end up with k = 2nπ/a and (5.8).

5.5.1 Taking the Limit of the General Fourier Series

We can now ask ourselves a nice little question. What happens if the periodicity a becomes
infinite? You might suspect this can be useful for a “pulse” that is isolated in space and
time. With a → ∞, and n ranging over all the integers, k and n will become continuous
variables. Realizing that ∆n = 1, we can write

f(x) =
∞∑

n=−∞

Ane
ikx∆n −→

a→∞

∫ ∞
−∞

Ane
ikx dn =

∫ ∞
−∞

[aAn]eikx d
(n
a

)
=

1

2π

∫ ∞
−∞

[aAn]eikx dk

Now, from (5.8), we can write that

aAn =

∫ a/2

−a/2
e−ikxf(x) dx −→

a→∞

∫ ∞
−∞

e−ikxf(x) dx

We redefine aAn in the a→∞ limit to be the Fourier Transform of f(x), that is

A(k) =

∫ ∞
−∞

e−ikxf(x) dx (5.16)

The Inverse Fourier Transform goes the other way, giving f(x) from A(k), that is

f(x) =
1

2π

∫ ∞
−∞

eikxA(k) dk (5.17)
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There are different conventions on how to write the Fourier Transform and its inverse. Often-
times, the signs of k are switched between the two (which pretty much amounts to switching
x for k which you’re of course free to do.) Sometimes the factor of 1/2π is “split”, putting a
factor of 1/

√
2π in front of both the transform and the inverse. Another variant is to include

a factor of 2π in the exponent inside the integral.

We will use (5.16) and (5.17) as they are, but you should be aware that there is not a
universal convention.

5.5.2 The Width of the Fourier Transform

The Fourier Transform will find most of its use when we consider “pulses,” waveforms that
are localized in space. For such a waveform f(x), centered at x = 0, we can define a “width”
using a definition inspired by the standard deviation from data analysis. (See Section 9.4.1.)
If we call the width ∆x, then

(∆x)2 =
1

A

∫ ∞
−∞

x2f(x) dx where A =

∫ ∞
−∞

f(x) dx (5.18)

is the area under the pulse. Oftentimes, the pulse shape is defined so that A = 1.

Of course, you can also determine the width of the Fourier transform of some localized
f(x). When we go through some examples of Fourier Transforms, you will see that if f(x)
is localized then so is its Fourier Transform. In fact, the “narrower” the pulse f(x), the
“wider” will be its Fourier Transform.

In fact, it is not always possible to calculate the width of the Fourier Transform. For
many simple forms (two of which we’ll see shortly), the integrals do not converge. We can
nevertheless get a “geometric” interpretation of the widths from the shape of the transform.

5.5.3 Examples of Fourier Transforms

Let’s first consider a simple square pulse. That is f(x) = 1 for −a/2 ≤ x ≤ a/2, and
f(x) = 0 otherwise. It is simple to use (5.16) to calculate the Fourier Transform. We have

A(k) =

∫ ∞
−∞

e−ikxf(x) dx =

∫ a/2

−a/2
e−ikx dx =

1

−ik
[
e−ika/2 − eika/2

]
=

2

k
sin

(
ka

2

)
The function and transform are plotted in Figure 5.5. Similar to the way we saw the Fourier
Sine Series behave, there are strong oscillations when the function has sharp discontinuities.
Notice also that both pulses are localized, the square pulse more so than its transform.

Nevertheless, the product of the widths appears to be constant. Rather than do a precise
calculation of the widths (which is in fact problematic for this particular Fourier Transform),
just notice that the (geometric) width of the square pulse is ∆x = a, whereas the width of
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Figure 5.5: Examples of pulses and their Fourier Transforms. The top row shows a square
pulse and the bottom shows a triangular pulse. Both the square and triangular pulses become
zero at x = ±a. The pulses are plotted versus x/a and the transforms versus ka.

the transform, which we take to be the distance between the first zero-crossings on either
side of k = 0, is ∆k = 2× π/a = 2π/a. That is ∆x∆k = 2π, which is independent of a.

Figure 5.5 also shows the shape and transform of a triangular pulse that goes to zero at x =
±a/2. It is not hard to show that the Fourier Transform for this shape is (8/ak2) sin2(ak/4),
which falls to zero more rapidly than for the square pulse. Once again, geometrically, we
take ∆x = a and ∆k = 2 × π/4a = π/2a so that ∆x∆k = π/2. It seems that this pulse is
“narrower” than the square pulse because ∆x∆k is smaller.

For homework, you will work out the Fourier Transform of a Gaussian pulse. In this case,
you can actually calculate the widths. You will find that ∆x∆k is smaller still.

5.5.4 Working in k-space versus x-space

There is a good opportunity here to discuss quantum mechanics and electrical engineering,
but I don’t think there will be time.
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5.6 The Dirac δ-function

Here’s an interesting question: “What is the Fourier Transform of f(x) = 1?” This function
is infinitely broad, so do we expect the Fourier Transform to be infinitely narrow? How
would we quantify this?

Following (5.16) for f(x) = 1 leads us to

A(k) =

∫ ∞
−∞

e−ikx dx =

∫ ∞
−∞

[cos(kx) + i sin(kx)] dx

The cosines and sines both give zero over any one period, so the integral is zero except for
k = 0. In that case, we integrate unity over infinity and get infinity. That is, A(k) = 0 for
k 6= 0 but is infinite when k = 0. That does sound like something that is infinitely narrow.

We can get more information by considering the integral of A(k) about k = 0. Do this by
integrating from −ε to +ε for some ε > 0. Then∫ ε

−ε
A(k)dk =

∫ ε

−ε
dk

∫ ∞
−∞

e−ikx dx =

∫ ∞
−∞

dx

∫ ε

−ε
dke−ikx =

∫ ∞
−∞

dx
e−iεx − eiεx

−ix

= 2

∫ ∞
−∞

sin(εx)

x
dx = 2

∫ ∞
−∞

sin(y)

y
dy = 4

∫ ∞
0

sin(x)

x
dx (5.19)

where I made the substitution y = εx in the second-to-last step, and finally recognized that
the integral was symmetric about zero and switched the integration variable back to x.

The final integral in (5.19) can in fact be evaluated in several different ways. Here’s one
way, using a neat trick that seems to be attributed to the physicist Richard Feynman. The
integral we need can be written as

I(0) =

∫ ∞
0

sin(x)

x
dx where I(s) =

∫ ∞
0

e−sx
sin(x)

x
dx

We don’t know how to evaluate I(s), but we can evaluate

I ′(s) = −
∫ ∞

0

e−sx sin(x) dx = − 1

2i

∫ ∞
0

[
e−sx+ix − e−sx−ix

]
dx

= − 1

2i

[
e−sx+ix

−s+ i
− e−sx−ix

−s− i

]∞
0

=
1

2i

[
1

−s+ i
− 1

−s− i

]
= − 1

1 + s2

Clearly I(s)→ 0 as s→∞, so

I(0) = −
∫ ∞

0

I ′(s) ds =

∫ ∞
0

1

1 + s2
ds = tan−1(s)

∣∣∞
0

=
π

2

Therefore (5.19) becomes ∫ ε

−ε
A(k)dk = 2π
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Remarkably, we have been able to quantify the “infinity” at k = 0 for Fourier Transform of
unity. Indeed, we write

δ(k) =
1

2π

∫ ∞
−∞

e−ikx dx (5.20)

in which case the Fourier Transform of unity is A(k) = 2πδ(k). The function δ(k) is called
the Dirac δ-function. You will encounter this (very peculiar) function over and over in the
course of studying physics.

Equation (5.20) is only one of very many representations of the Dirac δ-function. For our
purposes, it is sufficient to define δ(x) as a function which is zero for all x 6= 0, but it is
“large enough” at x = 0 so that ∫ ε

−ε
δ(x) dx = 1

for some ε > 0. Some other representations for δ(x) might include a “box” of width a
centered at x = 0 and with height 1/a, or a Gaussian function normalized to have unit area
in the limit of its width going to zero. The form (5.20) will be particularly useful in quantum
mechanics.

A very useful property of the δ-function stems from the relation∫ ε

−ε
f(x)δ(x) dx = f(0) (5.21)

for some function f(x). This is easy to see. Since ε can be taken as small as we want, it is
essentially zero and we can take the f(x = 0) out of the integral, leaving us only with the
integral of δ(x).

There are also two-dimensional and three-dimensional versions of the δ-function, denoted as
δ(2)(~r) and δ(3)(~r). It is straightforward to write these in Cartesian coordinates, for example
δ(2)(~r) = δ(x)δ(y), but more complicated in polar coordinates. However, it is simplest just
to think of these in terms of the fundamental definition of the δ-function, that is δ(2)(~r) and
δ(3)(~r) are zero for all ~r away from the origin, but∫

S

δ(2)(~r) dS = 1 and

∫
V

δ(3)(~r) dV = 1

for any surface S or volume V that encloses the origin.

5.6.1 Surface theorems revisited

We are now finally ready to resolve the apparent paradox we saw in Section 4.4. There was
saw that the fields ~B(~r) and ~E(~r) given by (4.35) and (4.36) had zero curl and divergence,
respectively, but the surface integrals in each case were nonzero. This seemed like a violation
of Stokes’ Theorem and Gauss’ Theorem.
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It is clear now, however, that there is one point, namely the origin, for which (4.35) and
(4.36) are not really defined because the denominator goes to zero. Integrating over a surface
or volume that encloses the origin gives a nonzero result because the curl and divergence are
δ-functions at the origin. Indeed, for (4.35), we have

~∇× ~B = 2πa δ(2)(~r) k̂

and for (4.36), we have
~∇ · ~E = 4πa δ(3)(~r)

In electromagnetism, ~B is the magnetic field from a long, straight, infinitely thin wire in the
z-direction, and ~E is the electric field from a point charge.

5.7 Convolution

I won’t be able to get to this.

5.8 Green’s functions revisited

I won’t be able to get to this either. Didn’t manage to get to Green’s Functions the first
time around anyway!
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Chapter 6

Vectors and Matrices

This chapter concerns the subject known as Linear Algebra. As with so many things in this
course, this is a very large subject so we are only able to scratch the surface.

I will introduce the subject with a very specific example that I can use to set the stage,
namely the problem of how to solve systems of linear algebraic equations. From there, I will
get more formal and generalize to other kinds of physical systems.

6.1 Introduction to Systems of Linear Equations

How would you go about solving the system of equations

2x+ y = 3 (6.1a)

x− y = 0 (6.1b)

for the variables x and y? A glance at the second equation tells you that x = y, and in your
head you see that this gives x = y = 1 from the first equation. Of course, this is a very
simple example, but you know that, in principle, you are able to multiply either or both of
the equations by constants, add or subtract the equations from each other, and manipulate
things one way or another so that you can isolate x and y.

Sometimes you encounter pitfalls, though. Consider solving the system of equations

2x+ y = 3 (6.2a)

4x+ 2y = 6 (6.2b)

for x and y. If you multiply the first equation by 2 and subtract it from the second equation,
you end up with 0 = 0, which is true, but useless for finding x and y. (If the right hand
side of the second equation was something other than 6, you wouldn’t even end up with a
true statement.) The problem, of course, is that these two equations are not independent.
That is, they are really the same equation, because the coefficients of x and y in the second
equation are both just the same factor, namely 2, of the coefficients in the first equation.
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Our first job in this chapter is to formalize how we will write systems of linear equations,
and this will lead us into a discussion of vectors and matrices. The concept of a “vector” will
be a very expanded version of what we discussed in Section 4.1. Seeing this formalism will
create some obvious questions regarding how we solve systems of linear equations, so we’ll
next address those questions before coming back to solving these systems in Section 6.3.9.

So let’s think about a system of equations with more than just two variables x and y. Rather
than run through the alphabet, let’s say there are N equations for N variables x1, x2, . . .xN .
We’ll use an upper case “A” to denote the coefficients with appropriate subscripts, and write

A11x1 + A12x2 + A13x3 + · · · + A1NxN = c1

A21x1 + A22x2 + A23x3 + · · · + A2NxN = c2

A31x1 + A32x2 + A33x3 + · · · + A3NxN = c3
...

...
...

...
...

AN1x1 + AN2x2 + AN3x3 + · · · + ANNxN = cN

(6.3)

where the cN are just the numbers on the right hand sides of the equations. These equations
are the same as writing

N∑
j=1

Aijxj = ci

where i = 1, 2, 3, . . . , N . Using our summation notation agreement, where any index repeated
twice is automatically summed over, we get the compact form

Aijxj = ci (6.4)

which is exactly equivalent to (6.3).

An even more economical way to write (6.3) or (6.4), which in fact is profound, is

Ax = c (6.5)

where

A =


A11 A12 A13 · · · A1N

A21 A22 A23 · · · A2N

A31 A32 A33 · · · A3N
...

...
...

...
AN1 AN2 AN3 · · · ANN

 x =


x1

x2

x3
...
xN

 and c =


c1

c2

c3
...
cN

 (6.6)

define the (square) matrix A and the column vectors x and c. You can now easily visualize
the sum (6.4) by imagining taking the top row of A, matching it against the column x,
multiplying each element by each other one-by-one, adding this up and equating it to the
first element of c, that is c1. Then repeat for the second row and equate to c2 and so forth.

Please take note that the notation that I’m using, a double underline for a matrix and a single
underline for a column vector, is not anyone’s standard so far as I can tell. Different books
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use different notations, and some simply let you figure out what things are from context. I
am using this notation because I can easily write it on the board in class.

Clearly, one can define a matrix that is not square. A proper course in Linear Algebra will
go through the properties of these kinds of matrices as well. In Physics, however, we rarely
encounter matrices that are not square, so I just won’t bother to go there.

Notice that our matrix notation (6.5) is easily generalized to products of matrices. That is,
something like AB has elements

[
AB

]
ij

=

(
N∑
k=1

)
AikBkj

where I put parenthesis around the summation only to warn you that I’m going to stop
writing the summation symbol and resort to our summation convention instead.

The order in which you write matrices and vectors matters! You can talk about
Ax for an N ×N matrix A and N -dimensional column vector x. but xA is nonsense. Also,
AB and BA are both legal, if A and B are both N×N matrices, but in general AB 6= BA.

There is a very special and important matrix called the Identity Matrix I. Its elements are
all zero except for the diagonal elements, which are all unity. That is

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 i.e.
[
I
]
ij

= δij (6.7)

It should be clear that I x = x for any column vector x, and I A = A for any matrix A.

There is one more thing to show you about systems of linear equations before we jump off
into the formalism of matrices, vectors, vector spaces, and operators.

In principle, for some matrix A there can exist an inverse matrix A−1 such that

A−1A = I = AA−1 (6.8)

Armed with the inverse matrix, we can immediately write down the solution for the xi
represented in (6.5) simply by multiplying both sides by A−1. That is

x = A−1c

This gives you a glimpse of the practical power of using matrices to solve systems of linear
equations. The pitfalls I mentioned at the start of this section will correspond to circum-
stances under which the inverse does not exist for a particular matrix A.

From here we will talk about what we really mean by a vector, namely as an element of a
vector space. An operator can act on a vector to turn it into a different vector. In most
cases, we can represent a vector by a column vector, and an operator by a matrix, but there
are a lot of blanks to fill in before we get into this in any level of detail.
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6.2 Generalized Vectors

Section 4.1.4 gave you a hint that a “vector” is actually much more than a collection of two
or three coordinates that specify the position in a plane or in space. In fact, a mathematical
definition of a vector requires a good deal of sophistication in order to define a vector space.
A vector is an element of a vector space.

I’m going to take a more practical approach here. For one thing, we don’t have a lot of time
and I’m afraid of getting some of you lost in the formalism if I tried. (Nevertheless, I urge you
to take a math course in Linear Algebra at some point.) Secondly, and more importantly, I
think it is better to take an incremental approach to abstract notion of vectors. By now you
should be comfortable with the vector as a quantity in two-dimensional or three-dimensional
space. The abstraction level I will take you to now, will be for an N -dimensional space with
vectors that might contain complex numbers.

I refer you to Chapters 6 and 7 of Nearing’s book “Mathematical Tools for Physics” for a nice
Physics-friendly description of vector spaces, including operations on vectors and matrices.

6.2.1 The N-Dimensional complex vector

This is the entity that we will consider a “generalized vector” in this course. As I said, it is
not as general as it could be, but will work for us.

A vector v is a collection of N (possibly) complex numbers v1, v2, . . . , vN . That is v ∈ CN .
If we want to write v in terms of its specific elements, we do so with a column vector, namely

v =


v1

v2
...
vN


We refer to the individual vi as components of the vector. The collection of all possible
vectors forms a vector space.

It is also possible to represent a vector by its transpose, that is

vT =
[
v1 v2 · · · vN

]
which we also refer to as a column vector. We will in fact more often use the Hermitian
transpose

ṽ = v∗T =
[
v∗1 v∗2 · · · v∗N

]
which is the transpose of the complex conjugates of the components of v. Sometimes, espe-
cially in Quantum Mechanics, we refer to the space of Hermitian conjugate vectors as the
dual space.
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Multiplying a vector by a (complex) numbers means to multiply each component by that
number, that is

cv =


cv1

cv2
...

cvN


for some complex number c. Clearly, cv is a member of the vector space, assuming that v is
a member.

Addition must be a property of a vector space. Two vectors u and v can be added by adding
their components, that is

u+ v =


u1 + v1

u2 + v2
...

uN + vN


and the result is also clearly a member of the vector space. In fact, the actions of addition
and multiplication mean that any linear combination of two vectors is a vector. That is

w = au+ bv

is a member of the same vector space as u and v where a and b are complex numbers.

The vector space needs to have an identity element under addition. This is of course the
vector 0 where all components are zero. Furthermore, each element of the vector space needs
to have an inverse, that is, something to which it can be added giving the result 0. For a
vector v, the inverse is clearly −v = cv where c = −1.

I remind you again that I am using a rather specific definition of a vector, much more general
than the simple object in 2D or 3D real space, but less general than in fact is possible. I’ll
come back to this point in Section 6.2.5.

6.2.2 Inner product and norm

The inner product of two vectors u and v means to take the Hermitian conjugate of the first
one and multiply it by the second one, in the sense that you are multiplying a column vector
by a row vector as if they were matrices. That is, the inner product is

〈u|v〉 = ũ v = u∗i vi

where I have employed the summation notation. Clearly 〈u|v〉 = 〈v|u〉∗.
It should be obvious to you that the inner (i.e. dot) product of two 3D (real) vectors ~a and
~b is completely consistent with this definition. Indeed, if the inner product of two vectors is
zero, we say that they are orthogonal.
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The inner product of a vector with itself gives the square of the norm of the vector, that is

〈v|v〉 = v∗i vi =
N∑
i=1

|vi|2

Don’t be surprised if every now and then I slip up and refer to the length of a vector instead
of the norm. This is an obvious throwback to the physical notion of a vector measuring the
location of some object in three dimensional space.

6.2.3 Unit vectors

Unit vectors are vectors whose norm equals unity. A particularly useful set of unit vectors
are those where one component equals one and all other components equal zero. We might
denote these unit vectors as

ei =



0
0
...
1
...
0


where the “1“ is in the ith row of the column vector. It is clear that any vector v can be
written as a linear combination of the unit vectors. That is

v = vi ei

where, again, we invoke the summation convention. (I’ll stop staying this at some point.)
We might say something like “the vector space is spanned by the unit vectors” because we
can construct any vector using them in this way.

We say that the unit vectors form a basis for the vector space.

6.2.4 Dyadics and tensors

How might you think about an object like u ṽ, that is the “product” of a vector and its
Hermitian conjugate, but in the “wrong” order? It seems reasonable to think about this sort
of thing in terms of matrix multiplication, and write

u ṽ =


u1

u2
...
uN

 [ v∗1 v∗2 · · · v∗N
]

=


u1v

∗
1 u1v

∗
2 · · · u1v

∗
N

u2v
∗
1 u2v

∗
2 · · · u2v

∗
N

...
... · · · ...

uNv
∗
1 uNv

∗
2 · · · uNv

∗
N
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In other words, this “wrong” product is a matrix. This actually turns out to be a very
useful construction for Physics, and you will see it in various courses. It is a good way to
understand the moment of inertia of rigid bodies in classical mechanics, for example.

We call this kind of construction a dyadic or dyad. It is a special form of something called
a tensor. We won’t spend much time on the concept of tensors in this course, but you will
encounter them elsewhere in your studies of Physics.

6.2.5 Functions can form a vector space

Even though we talked about the complex vector in Section 6.2.1 as our context for this
course, I will take a moment to talk about an important generalization beyond that. I’m
inspired to do this because of a question Jacob Shin asked in class about what I meant when
I referred to “orthogonal functions.”

Recall from Section 5.3.1 that we argued that any function f(x) with periodicity defined by
f(x+ a) = f(x) could be written as a linear combination of the functions e2inπx/a where n is
some integer. If we replace the idea of “inner product” of two vectors by the integration of
two functions over the relevant domain, that is for any two functions g(x) and h(x) we write

〈g(x)|h(x)〉 =

∫ a/2

−a/2
g∗(x)h(x) dx

then we have a well defined vector space. The functions (1/a)e2inπx/a where n ∈ Z are the
unit vectors that form the basis for any function that is a member of the vector space. It is
pretty easy to see that they have unit norm, and are orthogonal to each other.

Another, and perhaps more interesting, example concerns the Legendre Polynomials P`(x)
from Section 3.6.4. Although we didn’t prove it, the P`(x) obey an orthogonality relationship∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm

(I did not bother to take the complex conjugate because the Legendre Polynomials are real.)
This means that we could argue, in exactly the same way we did for Fourier Series, that any
polynomial defined over the range −1 ≤ x ≤ 1 can be written as a linear combination of the
Legendre Polynomials. That is, the (appropriately normalized) P`(x) form the basis vectors
for the vector space of polynomials.

You will encounter both of these examples when you study Quantum Mechanics.

6.3 Operations on Vectors: Matrices

If we were talking about vector spaces in the abstract, the next thing to talk about would
be “operations” on vectors. An operator is an object which can transform a vector into
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another vector. Abstract operators are critical in the formulation of Quantum Mechanics,
for example.

In our context, however, we will be representing operators on vectors as matrices. See, for
example, (6.5) where the matrix A operates on a vector x and transforms it into a vector c.
This is how we will formalize operations on vectors.

Matrices and their actions on vectors arrive naturally in almost ever area of Physics. In
fact, we’ve already seen in Section 3.7.1 how this works in the coupled simple harmonic
oscillator, although I didn’t really show you that we were working with matrices and vectors.
Nevertheless, extending this discussion to N masses, and important problem in classical
mechanics known as “N -body oscillations”, will rely heavily on matrix and vector formalism.

A common use of operators with which you are already familiar are rotations in ordinary
three-dimensional (or two-dimensional) space. A position vector pointed in any direction
can be rotated into a vector in a different direction, and that operation is performed by
multiplying a vector by a rotation matrix. In two dimensions, for example, the rotation of
~r = îx+ ĵy into a vector ~r′ = îx′ + ĵy′ through and angle φ corresponds to the equations

x′ = x cosφ+ y sinφ

y′ = −x sinφ+ y cosφ

which we can write in our vector and matrix notation now as

r′ = D r

where

r′ =

[
x′

y′

]
D =

[
cosφ sinφ
− sinφ cosφ

]
and r =

[
x
y

]
Furthermore, as I’ve already mentioned, Quantum Mechanics is formalized in terms of oper-
ators and (abstract) vectors, where these are “represented” by matrices and column vectors.
Special Relativity is best formulated in terms of “four vectors” which represent “position”
in spacetime, that is, a point in 3D space at a particular time, and “translating to a new
reference frame” means to operate on a four vector with the matrix of the Lorentz Transfor-
mation.

So now let’s gather up many of the things we’ve been saying, and formalize them a bit. Much
of what follows will therefore be a repeat of things earlier in this chapter, but I thought it
would be a good idea to collect things into the same place. There is a lot of terminology
that goes along with matrix algebra, so I’m hoping this section will be a handy reference.

6.3.1 Matrices multiplying vectors

A matrix A multiplies a vector u creating a new vector v as

Au = v (6.9)
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If the vectors have dimension N , then A is an N × N square matrix. We write A in terms
of its elements as

A =


A11 A12 A13 · · · A1N

A21 A22 A23 · · · A2N

A31 A32 A33 · · · A3N
...

...
...

...
AN1 AN2 AN3 · · · ANN

 (6.10)

Equation (6.9) actually represents the N equations

Aijuj = vi

where each value of i is a different equation. In the context of operators, the matrix A
operates on the vector u giving the vector v.

To pictorially understand the operation (6.9) we imagine that the first row of A is pulled
out of the matrix, turned upright to line up alongside the column vector u, and then each
element of the two columns multiplied by each other and added up.1 This sum then is set
equal to the first row of the new vector v.

This is all perfectly consistent with a different multiplication operation, namely

ũ A = ṽ (6.11)

which is that a row vector can multiply a matrix giving a new row vector. By elements,

u∗iAij = v∗j

Here, pictorially, the row vector is tilted upright, lined up against the columns of the matrix
one-by-one, multiplying each pair and adding them up, repeating for each column. It is fair
to think of this as the operator represented by A operating to the left on the row (or dual)
vector ũ. This concept will be found all through Quantum Mechanics.

Since we now think of Av as a new (column) vector, or ũ A as a new (row) vector, the
quantity

〈u|A|v〉 ≡ ũ A v = u∗iAijvj (6.12)

is well defined by the properties of the inner product. In fact, in Quantum Mechanics we
refer to a quantity like this as a matrix element.

6.3.2 Matrices multiplying other matrices

If the equation Au = w means that w is created by operating on u with A, but u was in
fact created by the action of B on a different vector v, that is u = B v, then we would write

AB v = w

1Note how each instance of the repeated index j in this equation is adjacent to the other. We will see
this again when we multiply matrices in Section 6.3.2.
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which implies that we can create a new matrix C = AB with elements

Cij = AikBkj

where we note the placement of the inner indices k and the outer indices i and j. Pictorially,
this means we pick out the first row of A, tilt it upright and line it up against the first
column of B, multiply the pairs and sum up the results, and this becomes the first element
of C in the upper left corner. Then repeat with the first row of A and the second column of
B to get the second element in the first row of C. Repeat this for all the columns of B, and
then again for the second row of A, and so forth.

There is no reason, a priori, that the vector you get from multiplying B on v and then
multiplying the result by A should be the same as if you first multiply v by A and then
multiply the result by B. In other words, in general

AB 6= BA

We say that matrix multiplication is not commutative. There is a lot of physics in knowing
whether or not certain matrices commute.

6.3.3 Symmetric and diagonal matrices

A matrix is called symmetric if the elements above the diagonal are equal, pairwise, to the
elements below the diagonal, just by flipping indices. That is, a matrix A is symmetric if its
elements obey

Aij = Aji

We will see a cleaner definition of a symmetric matrix in Section 6.3.4.

Certain matrices are called diagonal matrices if the only non-zero elements are along the
diagonal. For example

A =


a(1) 0 · · · 0
0 a(2) · · · 0
...

... · · · ...
0 0 · · · a(N)


Or, in term of elements,

Aij = a(i)δij = a(j)δij

where we are not invoking the summation notation because the first i (or j) is a superscript
in parentheses. An important special case is the identity matrix I with elements Iij = δij.

Clearly, all diagonal matrices are symmetric, since δij = δji.

It is worth noting that all diagonal matrices commute with each other, and their product is
also diagonal, with the diagonal elements of the product matrix just equal to the individual
element products. That is, if A and B are both diagonal, then(

AB
)
ij

= a(i)δikb
(j)δkj = a(i)b(j)δij = b(i)a(j)δij = b(i)δika

(j)δkj =
(
BA

)
ij
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6.3.4 Transpose and Hermitian transpose of a matrix

The transpose AT of a matrix A has the same components as the original matrix but with
its rows and columns reversed. That is, in terms of elements(

AT
)
ij

=
(
A
)
ji

Clearly, a succinct definition of a symmetric matrix is just when a matrix equals its transpose.
In other words, A is a symmetric matrix if

AT = A

Given that our vectors and matrices are possibly made of complex numbers, we will find it
handy to also define the Hermitian transpose which is the transpose of the complex conjugates
of the elements of the original matrix, completely analogous to the situation with vectors.
That is the Hermitian transpose2 Ã of a matrix A has elements(

Ã
)
ij

=
(
A
)∗
ji

If the Hermitian transpose leaves the matrix unchanged, we say the matrix is Hermitian.
That is, A is Hermitian if

Ã = A

It is easy to show that the transpose of a product of matrices is the product of the transposed
matrices, but in the reverse order. That is(

AB
)T

= BTAT (6.13)

Just write this out in terms of elements to prove the assertion. We have[(
AB

)T]
ij

=
(
AB

)
ji

= AjkBki =
(
AT
)
kj

(
BT
)
ik

=
(
BT
)
ik

(
AT
)
kj

=
(
BTAT

)
ij

Notice how I made use of the “adjacent indices” association with the matrix product by
putting the two k indices next to each other in the second-to-last step.

It is straightforward to prove that the same thing holds for the Hermitian transpose. That
is

Ã B = B̃ Ã (6.14)

2If I were writing these notes to get students ready for Quantum Mechanics, I would have used the
“dagger” notation instead of the “tilde” notation for dual vectors and Hermitian transpose matrices. That
is, here I am writing Ã instead of A†. However, these concepts are more generally useful and the only place
I’m aware that “daggers” are used is in Quantum Mechanics.

129



6.3.5 Determinant of a matrix

The determinant |A| of a matrix A is an extremely important concept which unfortunately
is difficult to clearly define.3 Happily, we don’t have to calculate the determinant often, and
can generally leave that task to Mathematica or some other application. I will nevertheless
go through the basics here.

The determinant is a peculiar thing, mathematically. It maps the matrices, which we’d write
as the Cartesian product CN × CN onto C. That is, it takes a very large set and maps it
into a much smaller set. (Never mind that both sets are actually infinite.)

Probably the best way to think about the determinant is as the sum of the N terms formed
from every possible product of the elements of the matrix, picking from each row and one
from each column, but never repeating the row or column, and including an alternating
sign. You could write it as the sum over the products of all the elements but including an
N -dimensional version of the totally antisymmetric symbol εijk introduced in Section 4.1.2.

Let’s use this to get the idea. if A a 1 × 1 matrix then the determinant is just the single
element A11. For a 2× 2 matrix, it’s more complicated but still pretty simple. We just have
to multiply along the left and right diagonals, and include the minus sign. That is

|A| =
∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = A11A22 − A12A21

For a 3× 3 matrix, it gets a little hairy, but let’s take it slowly. Go across the top row, and
with each element, form the product with the remaining rows and columns. There are two
choices for each element in the top row. Remembering to alternate signs, you get∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ =
A11A22A33 − A11A23A32

−A12A21A33 + A12A23A31

+A13A21A32 − A13A22A31

This determinant can be rewritten neatly in terms of 2× 2 determinants as∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣ = A11

∣∣∣∣ A22 A23

A32 A33

∣∣∣∣− A12

∣∣∣∣ A21 A23

A31 A33

∣∣∣∣+ A13

∣∣∣∣ A21 A22

A31 A32

∣∣∣∣
It is easy to see that the three 2× 2 matrices in this formula are obtained by removing from
the original matrix the row and column corresponding to the top row element in question.

I won’t prove it, but I think you can believe that this procedure extends to N ×N matrices.
That is, go along the top row (or any other row, for that matter), select the elements one by
one, then multiply that element by the determinant of the sub-matrix obtained by removing
the row and column of the element. This corresponding (N−1)×(N−1) determinant, along

3Never confuse |A| with the concept of “absolute value”. Sometimes we write detA for |A|.
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with the appropriate sign, is called the cofactor of the element you selected. This procedure
is called a cofactor expansion or Laplace’s expansion.

This is enough to write down some important properties of determinants. I won’t prove any
of them, but hopefully they will seem at least plausible to you.

1. If you interchange any two rows or columns of a matrix, then the determinant changes
sign. An obvious corollary is that the determinant |A| = 0 for any matrix A that has
two identical rows or columns.

2. If any one row or column of a matrix A is multiplied by a constant c, then the de-
terminant is c|A|. It therefore follows that if any one row (column) of a matrix is
proportional to any other row (column), then |A| = 0.

3. If a matrix A is multiplied by a constant c, then the determinant is multiplied by cN ,

that is |cA| = cN |A|.

4. The determinant of the transpose of a matrix is the same as the determinant of the
original matrix, that is |AT| = |A|.

5. The determinant of the Hermitian transpose of a matrix equals the complex conjugate
of the determinant of the original matrix, that is |Ã| = |A|∗.

6. For two matrices A and B, |AB| = |A||B| = |BA|. That is, the determinant of the
product of matrices is the product of the determinants, regardless of whether or not A
and B commute.

We will rely on the properties of the determinant much more than actually calculating
determinants. In any case, as I mentioned, nobody really calculates determinants anymore,
much the same as that nobody calculates square roots anymore. We leave these to computer
applications now.

The most important reason for us to know about the determinant is because it is needed to
predict properties of matrix inversion. We take that up now.

6.3.6 Matrix inversion

Another important result that we are not going to prove, is that the elements of the inverse
A−1 of a matrix A are given by

(
A−1

)
ij

=
1

|A|
(
CT
)
ij

(6.15)

where C is the matrix of cofactors. That is, an element Cij of C is just the cofactor you
get when you remove the ith row and jth column of A. As with the determinant, we rarely
actually calculate the inverse matrix anymore, and leave that up to computer applications.
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The important point from (6.15) is that if |A| = 0 then there is no inverse. As we mentioned
in the properties of the determinant, this happens if any two rows or columns are identical,
or if any row or column is just a factor times another row or column.

The inverse of a diagonal matrix is the diagonal matrix of the inverse of each of the diagonal
elements in order. In addition to sounding like this makes sense, it is easy to show. Writing
Aij = a(i)δij, then we are saying that A−1

ij = [1/a(i)]δij so writing it out we get

(
A−1A

)
ij

= A−1
ik Akj =

1

a(i)
δik a

(j)δkj =
a(j)

a(i)
δij =

(
I
)
ij

6.3.7 Orthogonal, Hermitian, and unitary matrices

This section is just to define three types of matrices. I will give you some indication of why
they are important for different physical situations.

A matrix A is said to be orthogonal if its transpose equals its inverse, that is AT = A−1. The
name comes from the fact that these matrices create rotations in two or three dimensions,
and rotations maintain the orthogonality (and norm) of vectors. Note that the elements of
such rotation matrices are real numbers, so there is no difference between the transpose and
Hermitian transpose for rotation matrices.

Let’s see how this works in the case of rotations in two dimensions. For a rotation through
and angle φ, the inverse is simply obtained by taking φ→ −φ, so we have

A =

[
cosφ sinφ
− sinφ cosφ

]
therefore A−1 =

[
cosφ − sinφ
sinφ cosφ

]
= AT

(It is simple to prove this is the right inverse, just by multiplying out A−1A.)

A Hermitian matrix is one for which the Hermitian transpose leaves it unchanged, that is
Ã = A. In Quantum Mechanics, Hermitian matrices represent measurable quantities aka
“observables.” This is closely tied to the fact that Hermitian matrices have real eigenvalues,
as we will discuss in Section 6.4.

If a matrix U has the property that its Hermitian transpose equals its inverse, that is

Ũ = U−1, then we say the matrix is unitary. Unitary matrices are practically useful for
changing from one basis of a vector space to another. All real, orthogonal matrices are
obviously unitary, and are, in fact, useful for changing the axes (i.e. “basis”) for locations
in two- or three-dimensional space.

6.3.8 Classifying matrices with groups

Will have to figure out how far I can go into this. Maybe just no time.
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6.3.9 Revisiting systems of linear equations

We have now gone through all of the necessary material to justify the methodology outlined
in Section 6.1 on solving systems of linear algebraic equations. I introduced the subject of
Linear Algebra this way so that you could immediately see the practical importance of the
formalism. This formalism is, however, useful for a very wide range of Physics problems. We
will begin to see that now, as we study the formalism of eigenvalues and eigenvectors.

Maybe this is a good time to remind you that we’ve in fact already used this formalism in
Section 3.1.1, where we came up with the Wronskian as defined in (3.5) to see if solutions
to a linear ordinary differential equation were independent. The idea was that the ability to
satisfy the boundary conditions on the function and its derivative(s) meant that we had to
solve a system of linear equations. Linear independence meant that that system had to have
a solution, which required the determinant of the coefficients, that is the Wronskian, to be
nonzero.

6.4 The Eigenvalue Problem

A matrix A operates on a vector v turning into another vector u. Suppose (for reasons
that will become clear shortly) we ask ourselves what it means if u is the same vector as v,
perhaps multiplied by some constant λ. That is

Av = λ v (6.16)

In fact, this situation arises very often while solving problems in the physical sciences. We
saw it, for example, in Section 3.7. (I’ll be more explicit in Section 6.4.5.)

Equation (6.16) is called an eigenvalue equation. For a given matrix A, the constant λ is
called an eigenvalue and the vector v is called an eigenvector.

Notice that I can multiply (6.16) through by a constant c, in which the eigenvector would be
cv, so there is clearly some freedom in choosing the norm of v. In most problems, we agree
that v should have unit norm, and that determines the value of c = 1/〈v|v〉1/2.

We will see that an N ×N matrix has N eigenvalues and N eigenvectors to go with each of
the eigenvalues. It is possible that two or more eigenvalues will be equal to each other, and
that introduces some complications. These complications are easily overcome, but we won’t
bother with these situations in this course.

I will illustrate the fundamentals and usefulness of the eigenvalue problem by giving a specific
example, namely finding the axes of a tilted ellipse. Along the way we’ll prove a general
theorem or two that help show why this is such and important problem. After the tilted
ellipse, we’ll get into the nitty gritty of how to solve the eigenvalue problem in general, that
is, finding the eigenvalues and eigenvectors.
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Figure 6.1: The black curve shows the
“tilted ellipse” 6x2 + 4xy+ 3y2 = 16. The
object of this exercise is to find the di-
rections of the major and minor axes of
the ellipse, drawn here in red dashed lines.
In fact, this problem is neatly solved us-
ing the eigenvalue approach, resulting in
a transformation that “diagonalizes” the
matrix used to write the left hand side of
the equation. Details are in Section 6.4.1.
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6.4.1 The axes of a tilted ellipse

Figure 6.1 plots the points which satisfy the equation

6x2 + 4xy + 3y2 = 16 (6.17)

which you probably know is the equation of an ellipse. The presence of the “cross term”
proportional to xy means that the ellipse is “tilted.” That is, its axes do not line up with
the x- and y-axes, as ellipses are usually drawn.

Our job is to find the directions of the axes (in red in Figure 6.1) along which the major
and minor axes lie. We’ll do this by looking for the rotation matrix R that rotates the x-
and y-axes into new axes x′ and y′ so that the cross terms in (6.17) vanish when written in
terms of x′ and y′ instead of x and y.

The first step is to write (6.17) in terms of vectors and matrices. This is easy, that is

xTAx = 16 where A =

[
6 2
2 3

]
and x =

[
x
y

]
(6.18)

I am using the transpose instead of the Hermitian transpose because these are all real
matrices, so that is simpler, and transpose and Hermitian transpose are therefore the same.

I had other choices for A, but I chose this form because it is a symmetric matrix. You’ll see
soon why that is the choice I had to make.

Now we are looking for the real, orthogonal matrix R that makes the transformation x = Rx′

which gets rid of the cross terms in the equation of the ellipse. (Technically, we are looking
for the transformation that takes x to x′, but that’s just the inverse transformation, given
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by the transpose of R.) Since the transformation equation implies that xT = (x′)TRT, the
ellipse equation (6.18) becomes

(x′)TRTARx′ = 16 (6.19)

There are no cross terms in (6.19) if the matrix RTAR is diagonal. Therefore, our job re-
duces, mathematically, to finding the orthogonal matrix R that “diagonalizes” the symmetric
matrix A.

The eigenvalue problem solves this problem for us, because of a very important theorem
that I will now state and prove. The eigenvectors of a Hermitian matrix form an
orthogonal set. A byproduct of this proof will be a proof that the eigenvalues of a Hermitian
matrix are real numbers.

The proof starts here. Consider two eigenvalues λ(a) and λ(b), and their corresponding
eigenvectors va and vb. The eigenvalue equations are

Ava = λ(a)va and Avb = λ(b)vb

Now take the inner product from the left with vb on the first equation, and with va on the
second equation. This gives

ṽbAva = λ(a)ṽb va and ṽaAvb = λ(b)ṽa vb (6.20)

Now look at the left hand side of the first equation. This is a number that we can write as

ṽbAva = v∗biAijvaj =
(
vbiA

∗
ijv
∗
aj

)∗
=
(
v∗aj Ãjivbi

)∗
=
(
ṽa Ã vb

)∗
For the right side of the first equation, we have something similar, namely

ṽb va = v∗bivai =
(
vbiv

∗
ai

)∗
= (ṽa vb)

∗

In other words, flipping the order of these inner products means to take the complex conju-
gate of the result, and replacing the matrix by its Hermitian conjugate. This all means that
we can rewrite (6.20) by using the above relationships and taking the complex conjugate of
the first equation and get

ṽa Ã vb = λ(a)∗ ṽa vb and ṽaAvb = λ(b)ṽa vb (6.21)

If A is Hermitian, that is Ã = A, then the left sides of these two equations are the same.
Subtracting them tells us that

0 =
(
λ(a)∗ − λ(b)

)
ṽa vb

Now if a = b, then the inner product ṽa vb is positive definite, so

λ(a)∗ = λ(a)
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proving that the eigenvalues are real. On the other hand, if a 6= b, and the eigenvalues are
distinct, then

ṽa vb = 0

and the eigenvectors are orthogonal. (As I mentioned earlier, I am leaving the case of different
eigenvectors having the same eigenvalue to a more advanced course.) This completes the
proof.

Now let’s see how this helps us figure out the axes of a tilted ellipse. Our matrix A is real and
symmetric, so it is also Hermitian. Therefore, the two eigenvectors of A will be orthogonal
to each other.

This tells us how to build R. First remember that since R is an orthogonal matrix, RTR = I.
Now, build R by making its columns equal to the (normalized) eigenvectors of A. When we

do AR, then, each column will be just multiplied by the eigenvalue. So, when we do RT on
this, we will get a diagonal matrix with the eigenvalues along the diagonal! This is a general
argument that will work any N ×N matrix A.

This is all best illustrated by going back to our tilted ellipse problem. After doing the work
to get the eigenvalues and eigenvectors of A in (6.18), a procedure we will describe in detail
in Section 6.4.2, we end up with eigenvalues

λ(1) = 7 and λ(2) = 2

corresponding to the (normalized) eigenvectors

v1 =

[
2/
√

5

1/
√

5

]
and v2 =

[
−1/
√

5

2/
√

5

]
Using the eigenvectors as columns in the rotation matrix gives

R =

[
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

]
and, so RT =

[
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

]
It is worth showing explicitly that R is orthogonal, so let’s do it.

RTR =

[
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

] [
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

]
=

[
4/5 + 1/5 −2/5 + 2/5
−2/5 + 1/5 1/5 + 4/5

]
=

[
1 0
0 1

]
= I

You should take a moment to convince yourself that RRT = I as well.

Now let’s check our conjecture that building R this way “diagonalizes” the matrix A. We’ll
do this in two steps for the sake of illustration. First we multiply A times R, so

AR =

[
6 2
2 3

] [
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

]
=

[
14/
√

5 −2/
√

5

7/
√

5 4/
√

5

]
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As predicted, this just multiplies each column by its respective eigenvalue. Of course, it had
to be, because we built R with columns that in fact were the eigenvectors of A.

Second, we complete the transformation indicated in (6.19) to get

RTAR =

[
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

] [
14/
√

5 −2/
√

5

7/
√

5 4/
√

5

]
=

[
(28 + 7)/5 (−4 + 4)/5

(−14 + 14)/5 (2 + 8)/5

]
=

[
7 0
0 2

]
and, again as predicted, the transformed matrix is diagonal with elements given by the
eigenvalues. Therefore, writing out (6.19) in terms of our tilted x′- and y′-axes,

7x′
2

+ 2y′
2

= 16

which is the form we were aiming to achieve.

If we want to find the actual rotation angle that we used, just interpret the element R11 as
the cosine of the angle. That is

φ = cos−1 2√
5

= 26.6◦

To draw the red lines in Figure 6.1 we use the eigenvectors themselves. The eigenvectors
point in the directions of the axes. The equation of a line through the origin is n̂ · ~r where
~r = îx + ĵy and n̂ is a (unit) vector perpendicular to the line. Since the eigenvectors are
orthogonal to each other, we use one eigenvector for the other axis. Therefore (multiplying
through by

√
5) the equations of the red lines are

2x+ y = 0 and − x+ 2y = 0

To summarize, after proving a theorem about the eigenvectors of Hermitian matrices, we
used the results of that theorem to build an orthogonal matrix R that “diagonalized” the
matrix A which solved our problem of finding the tilted axes of an ellipse. It should be
clear, however, that this approach would work for any N ×N Hermitian (or real symmetric)
matrix A. This touches on very many important physical problems.

Now that we see how this works, let’s discuss how to actually go about finding the eigenvec-
tors and eigenvalues of a matrix.

6.4.2 Finding eigenvalues and eigenvectors

First, I will own up to the fact that to find the eigenvalues and eigenvectors of the matrix A
in (6.18), I used the Eigensystem function in Mathematica. Just as “nobody” calculates
determinants anymore, “nobody” does the eigenvector calculation by hand. Nevertheless,
we’ll go through the procedure, just to show you that it is not magic. We’ll also illustrate it
with our 2× 2 matrix example.

We first rewrite (6.16) slightly as
Av = λ I v
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where we have inserted the identity matrix in front of v, that is we’ve used I v = v. With a
little bit of rearranging, this gives (

A− λ I
)
v = 0 (6.22)

where we are being explicit that the right side of the equation is the column vector with all
entries equal to zero. This is just a system of linear algebraic equations for the components
of v. What’s more, it is a homogeneous system of equations. That means that we expect all
of the components of v to be zero.

This is unacceptable, of course, so we need to prevent (6.22) from having a solution. We
know how to do this, though. We just require that the determinant of the matrix on the left
be zero. Mathematically, this means

det
(
A− λ I

)
=

∣∣∣∣∣∣∣∣∣∣∣

A11 − λ A12 A13 · · · A1N

A21 A22 − λ A23 · · · A2N

A31 A32 A33 − λ · · · A3N
...

...
...

...
AN1 AN2 AN3 · · · ANN − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.23)

which is a polynomial of degree N in λ. This is called the characteristic equation and will
have N roots. That is, it yields N values for λ.

Each value of λmakes (6.22) a different set of equations that can be solved for the components
of v. This system is no longer N independent equations, though, so the best you can do is
to solve for N − 1 components in terms of the one remaining. That’s OK, though, because
you want to normalize v, giving you an additional equation, namely 〈v|v〉 = 1.

It’s best to illustrate this with a specific example, so let’s use the matrix A from (6.18). The
characteristic equation is∣∣∣∣ 6− λ 2

2 3− λ

∣∣∣∣ = (6− λ)(3− λ)− 4 = λ2 − 9λ+ 14 = (λ− 7)(λ− 2) = 0

so the eigenvalues are indeed 7 and 2. For λ = 7, the system of equations is

−v1 + 2v2 = 0

2v1 − 4v2 = 0

which are indeed the same equation, which reduces to v1 = 2v2. Combining this with

〈v|v〉 = v2
1 + v2

2 = 5v2
2 = 1

gives us v1 = 2/
√

5 and v2 = 1/
√

5 which is what we quoted for the eigenvector v corre-
sponding to the eigenvalue λ = 7.For λ = 2, the system of equations is

4v1 + 2v2 = 0

2v1 + v2 = 0

so v2 = −2v1 and so forth.
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6.4.3 Coupled oscillations revisited

We studied the problem of two masses and three springs in Section 3.7.1. In fact, that is
an ideal example of an eigenvalue problem in Physics, although we didn’t call it that at a
time. Formulating that problem in terms of eigenvectors is elegant, and straightforward to
generalize to N masses.

In this section we will reformulate the problem of two identical masses connected by three
identical springs in terms of vectors, matrices, and eigenvalues. First let’s rewrite the coupled
differential equations (3.31) as

ẍ1(t) = −2ω2
0x1(t) + ω2

0x2(t) (6.24a)

ẍ2(t) = ω2
0x1(t)− 2ω2

0x2(t) (6.24b)

In terms of vectors and matrices, we can write this as

ẍ(t) = −ω2
0 Ωx(t) (6.25)

where we have made the definitions

x =

[
x1

x2

]
and Ω =

[
2 −1
−1 2

]
It should be clear that if the masses and springs were not all the same, then the formulation
would look the same, but the matrix Ω would be different.

Now we make our standard ansatz, which now takes the form

x(t) = a eiωt where a =

[
a1

a2

]
(6.26)

is a vector of constants a1 and a2. Taking the time derivative and dividing out the factor
eiωt on both sides, the vector differential equation (6.25) now takes the form

Ω a = λa where λ =
ω2

ω2
0

(6.27)

and we have arrived at an eigenvalue problem.

The eigenvalues of Ω are easy to determine. The characteristic equation is∣∣∣∣ 2− λ −1
−1 2− λ

∣∣∣∣ = (2− λ)2 − 1 = 0

is easily solved since 2− λ = ±1 so λ = 1 or λ = 3. As expected an N ×N = 2× 2 matrix
has N = 2 eigenvalues. The eigenvectors are simple to find. Let’s use a labeling scheme
where the first eigenvalue is λ = 1, and the second eigenvalue is λ = 3. Then for λ = 1,[

1 −1
−1 1

][
a

(1)
1

a
(1)
2

]
=

[
0
0

]
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which gives two equivalent equations for a
(1)
1 and a

(1)
2 , namely a

(1)
1 − a

(1)
2 = 0 or a

(1)
1 = a

(1)
2 .

Therefore, including a normalization, the first eigenvector is

a(1) =

[
1/
√

2

1/
√

2

]
(6.28)

For the second eigenvalue λ = 3, we find the eigenvector using[
−1 −1
−1 −1

][
a

(2)
1

a
(2)
2

]
=

[
0
0

]
which implies that a

(2)
1 + a

(2)
2 = 0, so the normalized eigenvector is

a(2) =

[
1/
√

2

−1/
√

2

]
(6.29)

Of course, our real goal here is to find the motions of the two masses, that is x1(t) and
x2(t), or, equivalently (and more succinctly) the vector x(t). Writing the solution as the
ansatz (6.26) was just a means to a solution. What we have learned is that there are two
solutions, one with “eigenfrequency” ω = ±ω0 ≡ ±ω(1) and the other with eigenfrequency
ω = ±ω0

√
3 ≡ ω(2). The “±” is an artifact of our solving a second order differential equation,

giving us in fact two solutions for each eigenvalue.

So, the general solution for the motion of the two masses is

x(t) = c
(1)
+ a(1)eiω

(1)t + c
(1)
− a

(1)e−iω
(1)t + c

(2)
+ a(2)eiω

(2)t + c
(2)
− a

(2)e−iω
(2)t (6.30)

where the four constants c
(1)
+ , c

(1)
− , c

(2)
+ , and c

(2)
− are determined from the four initial conditions,

namely the initial positions and velocities of each of the two masses. Look back now at (3.33),
and refer to the eigenvectors a(1) (6.28)and a(2) (6.29). Equation (6.30) is the same as (3.33),
where

1√
2
c

(1)
+ = a

1√
2
c

(1)
− = b

1√
2
c

(2)
+ = c

1√
2
c

(2)
− = d

Let’s continue with our vector and matrix notation and put in the initial conditions. The
initial position and velocity vectors are

x0 =

[
x10

x20

]
and v0 =

[
v10

v20

]
so applying (6.30) gives us

x0 = c
(1)
+ a(1) + c

(1)
− a

(1) + c
(2)
+ a(2) + c

(2)
− a

(1)

=
[
c

(1)
+ + c

(1)
−

]
a(1) +

[
c

(2)
+ + c

(2)
−

]
a(2)

and v0 = iω(1)c
(1)
+ a(1) − iω(1)c

(1)
− a

(1) + iω(2)c
(2)
+ a(2) − iω(2)c

(2)
− a

(1)

= iω(1)
[
c

(1)
+ − c

(1)
−

]
a(1) + iω(2)

[
c

(2)
+ − c

(2)
−

]
a(2)

140



These equations look messy, but don’t let that slow you down. Remember that the ω(1) and
ω(2) are just numbers, as are the components of x0 and v0, so this is just four equations to

solve for the c
(1)
± and c

(2)
± in terms of the other stuff.

If we look at a simple special case, we can get a better feeling for how the motion breaks
down in terms of the eigenvectors. Let’s say the two masses start from rest, that is v0 = 0.

This means that c
(1)
+ = c

(1)
− ≡ c(1)/2 and c

(2)
+ = c

(2)
− ≡ c(2)/2, and

x0 = c(1)a(1) + c(2)a(2) (6.31)

It is now clear how we excite the “eigenmodes.” If we set x10 = x20 = c, that is

x
(1)
0 =

[
c
c

]
= c
√

2 a(1)

which just means that the initial positions of the two masses correspond to the eigenvalue
λ(1) = 1, i.e. ω = ω0, then c(2) = 0 in order to satisfy (6.31) and the motion (6.30) becomes

x(1)(t) =
1

2
c(1)a(1)eiω

(1)t +
1

2
c(1)a(1)e−iω

(1)t = c(1)a(1) cosω(1)t = c
√

2a(1) cosω0t

If we write this as two separate equations using the eigenvector a(1) from (6.28), we have

x
(1)
1 (t) = c cosω0t and x

(1)
2 (t) = c cosω0t

In other words, in “eigenmode (1)”, the two masses oscillate together, in phase, exactly as
shown on the left in Figure 3.13.

To excite “eigenmode (2)”, we set initial conditions that correspond to eigenvector a(2) from
(6.29). By setting x10 = c and x20 = c we have

x
(2)
0 =

[
c
−c

]
= c
√

2 a(2)

corresponding to λ(2) = 3, i.e. ω = ω0

√
3. We therefore set c(1) = 0 in order to satisfy (6.31)

and the motion (6.30) becomes

x(2)(t) =
1

2
c(2)a(2)eiω

(2)t +
1

2
c(2)a(2)e−iω

(2)t = c(2)a(2) cosω(2)t = c
√

2a(2) cosω0

√
3t

Written as two separate equations using the eigenvector a(2) from (6.29), we have

x
(2)
1 (t) = c cosω0

√
3t and x

(1)
2 (t) = −c cosω0

√
3t

In other words, in “eigenmode (2)”, the two masses oscillate against each other, 180◦ out of
phase, with a frequency that is

√
3 higher than for eigenmode (1), exactly as shown on the

right in Figure 3.13.
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To summarize, we have solved the problem of two identical masses connected the three
identical springs using the eigenvalue problem formalism, and the result is (of course!) exactly
the same as what we got with our seat-of-the-pants approach in Section 3.7.1.

The eigenvalue problem approach gets a little tedious when we actually get down to writing
the motions of the two masses, but there is a very important reason why this approach is
the better way to go. The differential equation written as (6.25) is much more elegant than
writing the two separate equations (3.31), and it is much more easily generalized to systems
of different masses or larger numbers of masses. In fact, in most physical problems, it isn’t
the actual motion of the individual masses that matter, but what are their eigenmodes and
eigenfrequencies. This comes directly from constructing the N × N matrix Ω for a given
problem with N masses.

6.4.4 Example: Principle axes of a rotating rigid body

This will be left to a Mathematica lab.

6.4.5 Example: N-body oscillations

This will be left to a second semester mechanics course.

6.5 Four-Vectors in Spacetime

Not sure how much Special Relativity I can work in here. Would be great if I could work
through boosts in the z-direction.

6.6 The Structure of Quantum Mechanics

Probably won’t have time to cover any of this. Maybe just show them the notation to whet
their appetite, refer to Townsend and MQM3e for details.
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Chapter 7

Calculus of Variations

Here’s a general mathematical problem that turns out to be very important in lots of scientific
fields. Imagine you are looking to find some function f(x) that is defined over a range
a ≤ x ≤ b. You don’t know much about the function, except that you have its values f(a)
and f(b), and that there’s an integral over this range that, involving this function, and you
want that integral to be a minimum. In other words, you want to find the function f(x) so
that the integral

S =

∫ b

a

F [f(x), f ′(x), x] dx (7.1)

is minimized, where f(a) and f(b) have fixed values. You are given the function F of f(x)
and its derivatives (and perhaps x as well). How would you go about finding f(x)?

The solution to this general problem leads us into the Calculus of Variations. The first place
you will encounter this problem in a Physics course will probably be Analytical Mechanics.
You’ll see that it is much more useful in general, though, and we’ll do some examples before
we’re done with this chapter. There are also some fundamental physics implications, because
lots of basic physical laws come down to minimizing the “action” over some “path” through
space and time.

Sometimes the integral S in (7.1) is written as S[f(x)]. That is, S takes on a different value
for a different function f(x). We refer to S[f(x)] by saying the S is a functional of f(x).

You might be interested to know that although it took Einstein a decade to come up with
the correct equations for General Relativity, the mathematician David Hilbert figured out
how to do it with an action principle and came close to beating Einstein to the punch.1

We’ll start this chapter by doing a specific example, namely showing that the shortest dis-
tance between two points is a straight line. Then we’ll generalize the technique and do some
examples.

1“A comment on the relations between Einstein and Hilbert”, Heinrich Medicus, Am. J. Phys.
52(1984)206.
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7.1 The Shortest Distance Between Two Points

What curve has the shortest distance between two points in a plane? Obviously, the answer
is a straight line, but how would you go about proving that? Well, if you put the two points
in the (x, y) plane and assume they are joined by a function y = f(x), then you would
integrate the length along this curve and look for the f(x) that gives you the smallest value.

The length of an infinitesimal area element in the (x, y) plane is

ds =
√
dx2 + dy2

Therefore, the length S between two points a and b in the (x, y) plane is

S =

∫ b

a

ds =

∫ b

a

√
dx2 + dy2 =

∫ b

a

√
1 +

(
dy

dx

)2

dx =

∫ b

a

√
1 + (f ′(x))2dx (7.2)

and we aim to find the function y = f(x) that minimizes S[f(x)]. If we write

Y (x) = f(x) + εη(x)

where ε is just some parameter, f(x) is the right function, and η(x) is some arbitrary function,
then maybe we can find f(x) by considering S[Y (x)] = S(ε) and setting dS/dε = 0 when
ε = 0. Following our nose and using integration by parts, we have

d

dε
S(ε) =

d

dε

∫ b

a

√
1 + (Y ′(x))2dx =

∫ b

a

Y ′(x)√
1 + (Y ′(x))2

dY ′

dε
dx

d

dε
S(ε)

∣∣∣∣
ε=0

=

∫ b

a

f ′(x)√
1 + (f ′(x))2

η′(x) dx

=
f ′(x)√

1 + (f ′(x))2
η(x)

∣∣∣∣∣∣
b

a

−
∫ b

a

d

dx

 f ′(x)√
1 + (f ′(x))2

 η(x) dx = 0

Now η(x) is an arbitrary function, except that we require η(a) = η(b) = 0 so that Y (x) has
the right values at x = a and x = b. So, the first term above is zero, and we are left with∫ b

a

d

dx

 f ′(x)√
1 + (f ′(x))2

 η(x) dx = 0

This is in fact an interesting result. It says that the integral is zero no matter what function
I choose for η(x). The only way to achieve this is to have the factor multiplying η(x) be
zero. That is

d

dx

 f ′(x)√
1 + (f ′(x))2

 = 0 or
f ′(x)√

1 + (f ′(x))2
= constant (7.3)
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which is of course equivalent to f ′(x) =constant. In other words, the curve that connects
x = a to x = b over the shortest distance is the one a constant slope, which is a straight line.
We have proved our assertion.

7.2 The Euler-Lagrange Equations

The approach used to find the path with the shortest distance between two points, used in
Section 7.1, can easily be generalized to find a condition on the function F [f(x), f ′(x), x] in
(7.1) that minimizes the functional S[f(x)].

We start the same way, and write

Y (x) = f(x) + εη(x) with η(a) = 0 = η(b)

where f(x) is the correct answer and η(x) is otherwise arbitrary. Whereas in Section 7.1 the
integrand only depended on f ′(x), this time we have the integrand depending, in principle
on f(x) as well. Therefore, using the chain rule for a multivariable function,

d

dε
S(ε) =

∫ b

a

[
∂F

∂Y

∂Y

∂ε
+
∂F

∂Y ′
∂Y ′

∂ε

]
dx

and the condition that f(x) minimize S(0) becomes

d

dε
S(ε)

∣∣∣∣
ε=0

=

∫ b

a

[
∂F

∂f
η(x) +

∂F

∂f ′
η′(x)

]
dx = 0

Just as in Section 7.1, we treat the second term using integration by parts, so∫ b

a

∂F

∂f ′
η′(x)dx =

[
∂F

∂f ′
η(x)

]b
a

−
∫ b

a

d

dx

(
∂F

∂f ′

)
η(x)dx

The first term is zero because η(a) = 0 = η(b), so our minimization condition becomes∫ b

a

[
∂F

∂f
− d

dx

∂F

∂f ′

]
η(x) dx = 0

Once again, since η(x) is arbitrary, we can only satisfy this if the expression that multiplies
η(x), in square brackets, also zero. That is

∂F

∂f
− d

dx

∂F

∂f ′
= 0 (7.4)

This is called the Euler-Lagrange Equation. Given F [f(x), f ′(x), x], it is a second order
differential that we solve to find the function f(x) that minimizes S[f(x)].

145



Let’s try it out for the straight line in Section 7.1. In that case

F [f(x), f ′(x), x] =

√
1 + (f ′(x))2 (7.5)

Carrying out the calculations in (7.4) one by one, we have

∂F

∂f
= 0

∂F

∂f ′
=

f ′(x)√
1 + (f ′(x))2

d

dx

∂F

∂f ′
=

f ′′(x)√
1 + (f ′(x))2

− [f ′(x)]2 f ′′(x)[
1 + (f ′(x))2]3/2

Therefore, (7.4) becomes

− f ′′(x)[
1 + (f ′(x))2]1/2 +

(f ′(x))2 f ′′(x)[
1 + (f ′(x))2]3/2 = − f ′′(x)[

1 + (f ′(x))2]3/2 [1 + (f ′(x))
2 − (f ′(x))

2
]

= − f ′′(x)[
1 + (f ′(x))2]3/2 = 0

which implies that
f ′′(x) = 0

In other words, f(x) = mx+ c for some constants m and c, a straight line.

7.2.1 Important special cases

There are two cases to mention, in which the Euler Lagrange equations reduce to something
that is often much simpler to solve than (7.4). Both cases are because (7.4) can be partially
integrated, depending on the form of F .

One is the case when F [f(x), f ′(x), x] = F [f ′(x), x], that is F does not depend explicitly
on f . Notice that in Section 7.1 we ended up showing that f ′(x) was a constant via (7.3),
implying a straight line, whereas above, we showed instead that f ′′(x) = 0. Of course, both
are the same, but why did we end up at different places when it seemed like we used the
same approach?

The reason is because the functional (7.5) for the distance between two points does not
depend on f(x), but only on its derivative. That is ∂F/∂f = 0 so (7.4) implies that

d

dx

∂F

∂f ′
= 0 so

∂F

∂f ′
= constant when F [f(x), f ′(x), x] = F [f ′(x), x] (7.6)

which is precisely the statement we concluded with in (7.3).
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The second case is F [f(x), f ′(x), x] = F [f(x), f ′(x)], that is F does not depend explicitly on
x. To exploit this, we first multiply (7.6) by f ′(x) to get

f ′
∂F

∂f
− f ′ d

dx

∂F

∂f ′
= 0

Next we realize that
d

dx

(
f ′
∂F

∂f ′

)
= f ′′

∂F

∂f ′
+ f ′

d

dx

∂F

∂f ′

Therefore, the Euler Lagrange equation (7.6) becomes

f ′
∂F

∂f
+ f ′′

∂F

∂f ′
− d

dx

(
f ′
∂F

∂f ′

)
=

d

dx

(
F − f ′ ∂F

∂f ′

)
− ∂F

∂x
= 0

However, the statement that F does not depend explicitly on x means that ∂F/∂x = 0. So,

F − f ′ ∂F
∂f ′

= constant when F [f(x), f ′(x), x] = F [f(x), f ′(x)] (7.7)

We saw (7.6) applied to the shortest distance between two points, and we will apply (7.7)
in Section 7.3. In classical mechanics, you will learn that (7.6) has to do with “conserved
quantities”, and (7.7) will be used to prove the conservation of energy.

7.2.2 Variational notation

A common notation is used which makes it much easier to work with functionals like S[f(x)].
If we write δf = εη(x), we can interpret δf as a “small change in f(x)” over the range of x
that we care about. In that sense,

δS = S[f(x) + δf(x)]− S[f(x)] = 0

is equivalent to finding a function f(x) which minimizes S. We say that S[f(x)] is stationary
when f(x) minimizes the functional. In terms of the explicit form (7.1) we have

δS = δ

∫ b

a

F [f(x), f ′(x), x] dx =

∫ b

a

[
∂F

∂f
δf +

∂F

∂f ′
δf ′
]
dx = 0

This makes it simple to write down the derivation of (7.4), with the manipulation of the δ’s
looking just like manipulations of differentials. That is∫ b

a

[
∂F

∂f
δf +

∂F

∂f ′
δf ′
]
dx =

∂F

∂f ′
δf

∣∣∣∣b
a

+

∫ b

a

[
∂F

∂f
− d

dx

∂F

∂f ′

]
δf dx = 0 (7.8)

and we once again make the argument that δf(x) is arbitrary, albeit “small”, so the expres-
sion in square brackets must be itself zero.
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7.2.3 More than one dependent variable

It is straightforward to generalize (7.1) to the case of more than one dependent variable. For
example, if we have two dependent variables f(x) and g(x), then

S[f(x), g(x)] =

∫ b

a

F [f(x), f ′(x), g(x), g′(x), x] dx (7.9)

and we let both of them vary by “small’ functions δf(x) and δg(x). You get

δS =

∫ b

a

[
∂F

∂f
δf +

∂F

∂f ′
δf ′ +

∂F

∂g
δg +

∂F

∂g′
δg′
]
dx

=

∫ b

a

{[
∂F

∂f
− d

dx

∂F

∂f ′

]
δf +

[
∂F

∂g
− d

dx

∂F

∂g′

]
δg

}
dx = 0

Allowing f(x) and g(x) to vary independently means that each of the expressions in square
brackets must be zero. Therefore, there are two separate Euler-Lagrange equations, namely

∂F

∂f
− d

dx

∂F

∂f ′
= 0 and

∂F

∂g
− d

dx

∂F

∂g′
= 0

The generalization to more than two dependent variables is obvious.

7.3 Example: The Brachistochrone Problem

Let’s use this formalism now to attack a practical problem. Imagine that you have a bead
of mass m sliding down along a wire with no friction. The wire starts at a point (x1, y1) and
ends at a point (x2, y2), and you want to know the shape of the wire that lets the bead from
the start to the end in the least amount of time.

This is known as the brachistochrone problem, from the Greek for “shortest time”, and the
answer is far from obvious. See the left side of Figure 7.1. Your first thought might be to
take the shortest path length, that is, the straight line. Or maybe, you want to fall directly
down first, to pick up the greatest speed, then move over to the final point. Or maybe it’s
somewhere in between.

To set up the problem, see the right side of Figure 7.1. Let the bead start out at the origin,
and end up at the point (x, y) = (a, b). The path traveled will be y = f(x), and is fixed at
the two endpoints. We want to find the function f(x) that minimizes the time to fall under
gravity. This is a clear example of a problem to be solved with the calculus of variations.

Our axes are defined with y going down. That is the bead moves in the +y direction. The
time dt it takes for the particle to move a distance d` =

√
dx2 + dy2 is d`/v where v is the

particle’s speed. Since the bead starts from rest at the origin, conservation of energy says

1

2
mv2 −mgy = 0 so v =

√
2gy
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Figure 7.1: The brachistochrone problem is to find the path of shortest time for an object to
fall between two points.The left diagram demonstrates that the answer is far from obvious.
The right sets up the problem mathematically. Note that positive y is downward.

We can therefore write the time it takes for the bead to travel along the path y = f(x) as

T [f(x)] =

∫ a,b

0,0

d`

v
=

∫ a,b

0,0

√
dx2 + dy2

√
2gy

=
1√
2g

∫ a,b

0,0

√
1 + (f ′(x))2

f(x)
dx

Finding f(x) that minimizes T [f(x)] means to apply the Euler Lagrange equation (7.4) to

F [f(x), f ′(x), x] =

√
1 + (f ′(x))2

f(x)
=

[
1 + (f ′(x))2

f(x)

]1/2

This time F [f(x), f ′(x), x] does not explicitly depend on x, so we can use the Euler Lagrange
equation as integrated in (7.7). That is

F − f ′ ∂F
∂f ′

=

[
1 + (f ′(x))2

f(x)

]1/2

− 1

(f(x))1/2

(f ′(x))2[
1 + (f ′(x))2]1/2

=
1

(f(x))1/2

1[
1 + (f ′(x))2]1/2 = constant ≡ 1

c1/2

Squaring both sides gives us the differential equation

f(x)
[
1 + (f ′(x))

2
]

= c

where c is a constant that we will determine shortly from the boundary conditions.

If we write y = f(x) the the differential equation becomes

dy

dx
=

√
c− y
y

149



0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.5 1.0 1.5 2.0

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Figure 7.2: Different solutions to the brachistochrone problem. The left is where the endpoint
is fixed. The right is when the vertical position of the endpoint is allowed to float.

where we note that, the way we have defined the axes in Figure 7.1, we expect the derivative
to be positive. Writing this as √

y

c− y
dy = dx

we see that the left side is easy to integrate if we make the substitution y = c sin2 θ. Then
c− y = c cos2 θ and dy = 2c sin θ cos θ dθ, and

sin θ

cos θ
2c sin θ cos θ dθ = 2c sin2 θ dθ = c(1− cos 2θ) = dx

Integrating this and putting it together with our substitution for y gives us

x =
c

2
(2θ − sin 2θ) + d (7.10a)

y = c sin2 θ (7.10b)

where c and d are constants. These parametric equations describe a curve called a cycloid,
which is usually described as the path of a point on the rim of a wheel of radius c. It
apparently is also the shape of the path that minimizes the travel time between two points
for a bead subject to gravity.

To complete the problem, we have to determine c and d. Since θ = 0 gives y = 0 and x = d,
it is clear that d = 0 since the curve includes the origin. Therefore (7.10) can then be solved
for c and the value of θ that gives (x, y) = (a, b). This typically requires a numerical solution,
which is not hard to do in Mathematica.

Figure 7.2 on the left shows the solution for the endpoints (a, b), each with a = 1 and b = 0.6,
0.8, and 1.0. (I did not bother to reverse the sign of the vertical axis.)
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Interestingly, we can find solutions if we instead provide only the value of a, and let the
vertical position of the endpoint float. This would seem to spoil our formalism, where we
required that the endpoints be fixed. However, looking back at our derivation of the Euler
Lagrange equations in (7.8), we could instead require that ∂F/∂f ′ = 0 at the endpoint. In
our case, this means that

1

(f(x))1/2

f ′(x)[
1 + (f ′(x))2]1/2 = 0 for x = a

which in turn implies that the slope y′ = 0 at x = a. From (7.10) this implies that

c sin 2θ = 0 when a = cθ = cπ/2

Plots with this approach, for a = 1, 1.5, and 2.0 are shown on the right in Figure 7.2.

7.4 Example with Constraints: Lagrange Multipliers

It is not uncommon to have a variational calculus problem that involves constraints on the
quantities involved. There is a general approach to all such problems that involves the use
of Lagrange Multipliers. We will illustrate the approach here with one type of constraint,
namely a different integral over the same independent variable which has to be kept at a
fixed value.

Once again, our problem is to find the function f(x) which minimizes the functional

S =

∫ b

a

F [f(x), f ′(x), x] dx (7.11)

This time, however, there is a constraint that the quantity

L =

∫ b

a

G [f(x), f ′(x), x] dx (7.12)

must be kept constant. For example, L might represent the length of the curve y = f(x).
Keeping L constant is the same as writing δL = 0 as we vary δf(x). Since δS = 0 for the
correct f(x), we can get a modified form of the Euler-Lagrange equation by writing

δ(S + λL) = δ

∫ b

a

{F [f(x), f ′(x), x] + λG [f(x), f ′(x), x]} dx = 0 (7.13)

for some constant λ. This modified Euler-Lagrange equation will automatically include the
constraint (7.12). An additional constant λ, known as Lagrange multiplier, will be included
in the differential equation for f(x) that results, but it can be determined using the constraint
equation.
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Figure 7.3: An example of a calculus of variations
problem with an integral constraint. The goal is
to find the function y = f(x) which is fixed to
the x-axis at x = a and x = b and which encloses
the maximum area underneath it, subject to the
constraint that the length L > b−a of the curve is
fixed. You can think of the curve as a fixed length
of rope.

You will see this in an advanced course in classical mechanics, where the Lagrange multipliers
turn out to be the “forces” which lead to constrained motion of a system. See, for example,
Section 19 of “Theoretical Mechanics of Particles and Continua” by Fetter and Walecka.

Let’s again illustrate this approach with a specific problem. Figure 7.3 A “rope” of fixed
length L is attached to the x-axis between the points x = a and x = b. The job is to find
the shape of the rope which maximizes the area it encloses over the x-axis. We are therefore
looking to maximize the functional

S[f(x)] =

∫ b

a

f(x) dx

subject to the constraint that

L =

∫ b

a

ds =

∫ b

a

[
1 + (f ′(x))

2
]1/2

dx

remains fixed. The modified Euler-Lagrange equation is derived from

δ(S + λL) = δ

∫ b

a

{
f(x) + λ

[
1 + (f ′(x))

2
]1/2
}
dx

=

∫ b

a

{
δf(x) + λ

f ′(x)[
1 + (f ′(x))2]1/2 δf ′(x)

}
dx

= λ
f ′(x)[

1 + (f ′(x))2]1/2 δf(x)

∣∣∣∣∣
b

a

+

∫ b

a

{
1− λ d

dx

f ′(x)[
1 + (f ′(x))2]1/2

}
δf(x) dx = 0

where we once again make use of integration by parts. Now, as we have observed previously,
the first term on the right hand size is zero because δf(a) = δf(b) = 0. That is, the endpoints
of the rope are fixed to the x-axis. Also as before, δf(x) is arbitrary, so to have the integral
equal to zero implies that

1− λ d
dx

f ′(x)[
1 + (f ′(x))2]1/2 = 0
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This is the differential equation we need to solve in order to come up with the function
y = f(x). This form is easy to integrate once, and we get

λf ′(x)[
1 + (f ′(x))2]1/2 = x+ c

for some constant c. Squaring both sides and writing dy/dx = f ′(x) we get the differential
equation

λ2

(
dy

dx

)2

= (x+ c)2

[
1 +

(
dy

dx

)2
]

so dy =
x+ c

[λ2 − (x+ c)2]1/2
dx

The right side is not hard to integrate if we make the substitution

x+ c = λ sin t so dx = λ cos θ dθ

in which case the differential equation becomes

dy =
λ sin θ

λ cos θ
λ cos θ dθ = λ sin θ dθ so y + c′ = −λ cos θ

where c′ is some other constant. It is simple to eliminate the variable θ, and we get

(x+ c)2 + (y + c′)2 = λ2

The answer is a circular arc, probably what you would have guessed. The Lagrange multiplier
λ has an obvious physical interpretation as the radius of the circle. In order to find c and c′,
we need to solve

(a+ c)2 + (c′)2 = λ2

and (b+ c)2 + (c′)2 = λ2

for c and c′, in terms of a, b, and λ. Subtracting these two equations gives a+ c = ±(b+ c),
but the plus sign gives nonsense, so c = (a + b)/2. The result is simpler if we translate the
x-axis so that a = −x0 and b = x0 which means that c = 0 and c′ = ±(λ2 − x2

0)1/2. Clearly,
as you would have expected, the radius λ of the circle has to be at least as large as the
displacement of the fixed points from the origin.

We see that the center of the circle is along the y axis, at a distance c′ above (or below)
the x-axis. If θ represents the angular variable that traces the circle, then tan θ = ±x0/c

′

gives the range of angles ∆θ = 2 tan−1(x0/c
′) that are excluded from the circle. The length

constraint then becomes
L = (2π −∆θ)λ

However, it is more important to realize the physical interpretation of λ, namely the radius
of the circle. Sure, if we want to fully solve the problem to find the shape of the curve that
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maximizes the area for these fixed points and length, this is what we need. However, the
“physics” is more in the interpretation, and that’s usually what’s really important.

There’s one other question, which in fact bothers me because I don’t know how to answer
it. We wrote our functional as “the area under a curve y = f(x)” which apparently implies
that f(x) is a single valued function that sits above the x-axis. However, we’ve come up
with a solution that isn’t (necessarily) single valued if the rope is long enough, and that
can also be below the axis. Perhaps understanding “below the axis” isn’t so hard - it’s the
minimum, not the maximum - and maybe the fact that we were careless with signs when
squaring things and taking square roots explains the lack of single-valuedness. Nevertheless,
I thought I would mention it.
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Chapter 8

Functions of a Complex Variable

We have been rather cavalier about complex variables throughout this book so far. After
mentioning them only briefly in Section 1.1.1, we made use of them from time to time when
it was handy. Probably most useful was the relationship

z = x+ iy = reiφ = r cosφ+ i r sinφ

which showed how to represent a complex number z in terms of two real numbers x and y
which identified a point in the complex plane with Cartesian coordinates, or in terms of two
different real numbers r and φ which identify the same point but in plane polar coordinates.
The connection was made using Euler’s Formula, which we “derived” in Section 2.4.

This chapter will get much more serious about complex variables, in particular by discussing
the theory and applications of functions of complex variables. These functions are mappings
C 7→ C, which we can write generically as

w = f(z) = u(x, y) + iv(x, y) where z = x+ iy (8.1)

with x, y, u, v ∈ R and z, w ∈ C. In fact, it will be useful to realize that these functions are
also mappings R2 7→ R2, which means they should have properties of functions in two spacial
dimensions. Indeed, we’ll borrow some things we proved about vector calculus in Chapter 4.

8.1 Differentiability and Convergence

It can seem that the generalization to complex functions from real functions is simple, and
not worth a lot of discussion, but in fact that is not the case. I will illustrate this with a
couple of examples of fundamental differences between real and complex functions.

First our first example, consider the real function

f(x) = 2

∫ x

0

|x′| dx′ =
{

+x2 x ≥ 0
−x2 x ≤ 0

(8.2)
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Figure 8.1: A plot of the (real) function given by
(8.2). This is a smooth, that is continuous, func-
tion, passing through the point (x, y) = (0, 0). It
also has a well defined derivative, equal to zero, at
x = 0. However, higher derivatives do not exist at
x = 0. We will see that you can never have this
situation with a complex function. That is, if it
is differentiable once, then it it is differentiable an
infinite number of times.
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which is plotted in Figure 8.1. It looks like a perfectly reasonable continuous function passing
through the origin. In fact, it has a perfectly definable derivative as x = 0. That is, taking
ε to be positive,

f ′(x) = lim
ε→0

f(+ε)− f(−ε)
2ε

= lim
ε→0

(+ε)2 − (−(−ε)2)

2ε
= lim

ε→0

2ε2

2ε
= lim

ε→0
ε = 0

What’s more, the first derivative is continuous at x = 0, since f(x) = 2x for x > 0 and
f(x) = −2x when x < 0, and both of these approach f ′(0) for x→ 0, regardless of whether
I approach from the negative of positive direction.

However, there is a problem with the second derivative. For x > 0, it is clear that f ′′(x) = +2,
but for x < 0, f ′′(x) = −2. There is a clear discontinuity in the second derivative at x = 0.
That is, f ′′(0) does not exist, even though the function and its first derivative both exist and
are continuous.

We will learn that this never happens for functions of a complex variable. If a function is
differentiable once, then it will be differentiable an infinite number of times. This is due to
the property of analyticity, which we will cover in Section 8.3. The catch is that in order for
a complex function to be analytic, it needs to satisfy a particularly stringent condition.

Now a second example. Consider the (real) function

f(x) =
1

1 + x2

This is perfectly well defined for all real numbers. However, if we perform a Taylor expansion
about x = 0 we find

f(x) = 1− x2 + x4 − x6 + · · ·

and we are going to get into trouble for |x| ≥ 1. We might have expected something like
this if the function were 1/(1− x2) because it would be ill defined at x = ±1. The problem
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here is that if we made the function complex, that is

f(z) =
1

1 + z2

then it would be ill defined for z = ±i. We therefore say that this function, as well as
the function 1/(1 − x2), have radii of convergence given by |z| < 1. Obviously, the idea of
functions of real numbers is somehow incomplete, and we need to consider what happens
when we extend the function into the complex plane.

We will see that it becomes natural to think of functions of real variables as a special case
of functions of complex variables. In fact, we will find that doing things like integrating real
functions is better thought of in terms of integrals over some path in the complex plane.

First, though, let’s do some preliminary and simple investigations of the properties of complex
functions.

8.2 Examples of Complex Functions

In this section we will go through various specific examples of complex functions written
in the form (8.1). We’ll refer back to these examples when we study more fundamental
properties of analytic functions.

8.2.1 Power laws

First consider w = f(z) = z2 where z = x + iy. It is simple to put this in the form (8.1).
We naturally write

w = z2 = (x+ iy)2 = x2 − y2 + 2ixy = u(x, y) + iv(x, y) (8.3a)

where
u(x, y) = x2 − y2 and v(x, y) = 2xy (8.3b)

We can think about the derivative of w = f(z) with respect to z. We sort of expect the
answer to be f ′(z) = 2z, but can we prove it? We would proceed to write

f ′(z) =
dw

dz
= lim

∆z→0

f(z + ∆z)− f(z)

∆z
= lim

∆z→0

(z + ∆z)2 − z2

∆z
= lim

∆z→0

2z∆z + (∆z)2

∆z

but we have to be aware of a potential complication, because ∆z = ∆x + i∆y, so ∆z can
approach zero in various ways, depending on how you take the limits ∆x→ 0 and ∆y → 0.
Writing this all out, and tossing out higher orders in ∆x and ∆y, we find

f ′(z) = lim
∆x→0,∆y→0

2(x+ iy)(∆x+ i∆y)

∆x+ i∆y
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and now you can see clearly that if we take ∆z → 0 by, first, putting ∆y = 0 and then
taking ∆x→ 0, or, second, putting ∆x = 0 and then taking ∆y → 0, then in either case we
get f ′(z) = 2(x+ iy) = 2z.

In fact, we can be more general and write ∆y = a∆x for some constant a, in which case

f ′(z) = lim
∆x→0

2(x+ iy)∆x(1 + ia)

∆x(1 + ia)
= 2(x+ iy) = 2z

so we are confident that the derivative is what we expect. We will investigate the general
circumstances under which the derivative of a complex function makes sense in Section 8.3.

It follows directly from this analysis that higher powers of positive integers are also well
defined and differentiable. This means that infinite series of the form

f(z) =
∞∑
n=0

cnz
n

are also well defined.

Powers that are not positive integers, however, can be problematic. For example, functions
that include terms or factors like

f(z) =
1

z
or f(z) =

1

z − z0

are of course singular at z = 0 or z = z0, so are not differentiable there. We say that these
functions of poles at z = 0 or z = z0.

Different difficulties arise for non-integer positive powers. For example, consider the function

f(z) = z1/2

It is easiest to analyze this by expressing z in polar coordinates, that is z = reiφ, so

f(z) = r1/2eiφ/2

Now if φ→ φ+ 2π, then z → rei(φ+2π) = reiφe2πi = reiφ so z is unchanged. However

f(z)→ r1/2ei(φ+2π)/2 = r1/2eiφ/2eiπ = −r1/2eiφ/2

That is, f(z) changes sign. Therefore, we need to agree on a “standard” range of the phase
φ, and that is −π/2 < φ ≤ +π/2.

8.2.2 Special functions

Most of the special functions discussed in Sections 1.5 and 3.6 are more generally expressed
as functions of a complex variable z = x+ iy. It is easiest to start with

f(z) = ez = exeiy
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from which we can define

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i

and cosh z =
ez + e−z

2
and sinh z =

ez − e−z

2

For the logarithm, we naturally write z = reiφ and so

log z = log r + iφ

where now it is obvious that we need to stick to the standard range of φ.

8.2.3 Peculiar examples

We can also define some oddball functions like

f(z) = z∗ = x− iy and f(z) = |z| = (x2 + y2)1/2

Taking derivatives of these sorts of things will turn out to be problematic.

8.3 Analyticity

If a function of a complex variable has a derivative that exists at some point in the complex
plane, then we say that the function is analytic at that point. We saw in Section 8.2.1 that
we needed to consider approaching from either the x or y direction, or any direction for that
matter, when calculating the derivative of the function f(z) = z2. In this section we will
formalize this requirement for general functions of a complex variable.

8.3.1 Cauchy-Riemann relations

Go back to the basics and you’ll see a potential problem. If you approach the limit to the
point (x, y) in the complex plane along a line of constant y, then

dw

dz
= lim

ε→0

f(z + ε)− f(z)

ε

= lim
ε→0

u(x+ ε, y)− u(x, y)

ε
+ i lim

ε→0

v(x+ ε, y)− v(x, y)

ε

=
∂u

∂x
+ i

∂v

∂x
(8.4)

159



On the other hand, if you approach along a line of constant x, then

dw

dz
= lim

ε→0

f(z + iε)− f(z)

iε

=
1

i
lim
ε→0

u(x, y + ε)− u(x, y)

ε
+ lim

ε→0

v(x, y + ε)− v(x, y)

ε

= −i∂u
∂y

+
∂v

∂y
(8.5)

Therefore, in order to consistently define the derivative, we must have

∂u

∂x
=

∂v

∂y
(8.6a)

and
∂v

∂x
= −∂u

∂y
(8.6b)

These are called the Cauchy-Riemann Relations. Any function f(z) which obeys these
relations is called analytic.

Now just because we’ve come up with conditions based on ε approaching zero along lines
of constant x or constant y, doesn’t mean that the derivative works for ε → 0 from any
direction. It may seem reasonable because we showed it works for two orthogonal directions,
but there are more restrictions that that. I won’t go into these details, but for our purposes,
we can just assume that a function f(z) is analytic if and only if (8.6) hold.

Let’s do a couple of examples, starting with f(z) = z2. See (8.3). We have

∂u

∂x
=

∂

∂x
(x2 − y2) = 2x and

∂v

∂y
=

∂

∂y
(2xy) = 2x

so (8.6a) is satisfied. We also have

∂v

∂x
=

∂

∂x
(2xy) = 2y and

∂u

∂y
=

∂

∂y
(x2 − y2) = −2y

and (8.6b) is also satisfied. Therefore, the function is analytic. In fact, it is analytic for
every z in the complex plane. We therefore say that the function is entire.

Now consider f(z) = z∗ so that u(x, y) = x and v(x, y) = −y. This satisfies (8.6b), but
violates (8.6a), i.e. “1 = −1”, everywhere. This function is analytic nowhere in the complex
plane.

It is easy to see that if f(z) is analytic at a point z, then f ′(z) is also analytic at z. In other
words, if f(z) is differentiable once at z, then it is differentiable an infinite number of times.
If we write (8.6) as

∂u

∂x
− ∂v

∂y
= 0 and

∂v

∂x
+
∂u

∂y
= 0
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and the derivative of f(z) as

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y

then to check for analyticity, we write

∂

∂x

∂u

∂x
− ∂

∂y

∂v

∂x
=

∂

∂x

∂v

∂y
− ∂

∂y

∂v

∂x
= 0

assuming that u(x, y) and v(x, y) are well enough behaved so that we can switch the order
or of differentiation. Therefore (8.6a) is satisfied for f ′(z). We also check

∂

∂x

(
−∂u
∂y

)
+

∂

∂y

∂v

∂y
= − ∂

∂x

∂u

∂y
+

∂

∂y

∂u

∂x
= 0

and (8.6b) is satisfied. Therefore, the derivative is also analytic.

8.4 Contour Integration

It should be clear that if we are going to integrate some function f(z) between z1 and z2, then
we’ll need to specify the path we take in the complex plane to connect these two complex
numbers. Consequently, complex integration, generally referred to as contour integration,
will make use of many of the techniques we developed in Chapter 4, especially Section 4.3.

It is not too hard to turn a contour integral into a set of real integrals. If C is the curve
along we wish to integrate from z1 = x1 + iy1 to z2 = x2 + iy2, then∫

C

f(z) dz =

∫
C

[u(x, y) + iv(x, y)] [dx+ i dy]

=

∫
C

[u(x, y) dx− v(x, y) dy] + i

∫
C

[v(x, y) dx+ u(x, y) dy] (8.7)

=

∫ t2

t1

[
u(x, y)

dx

dt
− v(x, y)

dy

dt

]
dt+ i

∫ t2

t1

[
v(x, y)

dx

dt
+ u(x, y)

dy

dt

]
dt (8.8)

where the form (8.8) makes use of an assumed parameterization of the curve by the functions
x(t) and y(t). This in fact would be a practical way to carry out the integral.

For example, suppose we want to integrate from (x1, y1) = (1, 0) to (x2, y2) = (−1, 0) along
a semicircle C traced counter clockwise through the upper half of the complex plane. Then
x(t) = cos t, y(t) = sin t, t1 = 0, and t2 = π. For the function f(z) = z = x+ iy, we have∫

C

f(z) dz =

∫ π

0

[cos t(− sin t)− sin t(cos t)] dt+ i

∫ π

0

[sin t(− sin t) + cos t(cos t)] dt

=

∫ π

0

2 sin t cos t dt+ i

∫ π

0

[
cos2 t− sin2 t

]
dt =

∫ π

0

sin 2t dt+ i

∫ π

0

cos 2t dt

= −1

2
cos 2t

∣∣∣∣π
0

+ i
1

2
sin 2t

∣∣∣∣π
0

= 0
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This might seem like a peculiar result, but there are a number of peculiar results when doing
contour integration of complex functions. Some of these peculiar results are very useful for
solving problems in Physics.

Now consider the integral along the same contour but for the function

f(z) =
1

z
=

1

z

z∗

z∗
=

x− iy
x2 + y2

The denominator x2 + y2 = 1 along this contour, and u = x and v = −y, so∫
C

f(z) dz =

∫ π

0

[cos t(− sin t) + sin t(cos t)] dt+ i

∫ π

0

[− sin t(− sin t) + cos t(cos t)] dt

= 0 + i

∫ π

0

[
cos2 t+ sin2 t

]
dt = i

∫ π

0

dt = πi

and the result is once again peculiar.

Note that the contour we follow makes an important difference. In the second example
above, if we went from (x1, y1) = (1, 0) to (x2, y2) = (−1, 0) but along a semicircle C traced
clockwise through the lower half of the complex plane, we would have found the integral to
be −πi instead of +πi.

8.4.1 Integral around a closed loop

It is pretty easy to see that if our contour in the two examples of the previous section was a
closed loop, starting and ending at (x, y) = (1, 0), along a circular contour C traced counter
clockwise, then we would have found∮

C

z dz = 0 and

∮
C

1

z
dz = 2πi

This is actually a hint of two very useful theorems that we will now discuss.

First, rewrite (8.7) in terms of two real line integrals in the (x, y) plane using ~A ≡ uî − vĵ
and ~B ≡ vî+ uĵ as ∮

C

f(z) dz =

∮
C

~A · d~r + i

∮
C

~B · d~r

If C is a closed contour, then we can write each of these two integrals using Stoke’s Theorem
(Section 4.3.1). Applying the Cauchy-Riemann relations (8.6), we find∮

C

~A · d~r =

[
∂u

∂y
+
∂v

∂x

]
k̂ = 0 and

∮
C

~B · d~r =

[
∂v

∂y
− ∂u

∂x

]
k̂ = 0

This proves the Cauchy-Goursat Theorem, namely that the integral around any closed con-
tour of any function that is analytic throughout the enclosed region is zero. This explains
the result for the example above when f(z) = z. We did the integral over a circular contour,
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Figure 8.2: A closed contour C in the complex plane
which has a section C0, traversed in the “wrong” di-
rection, that avoids the pole at z = z0. An integral
around C0 in the “right” (that is, counter clockwise)
direction can be added to the integral around C to get
an integral around C that includes the pole, because
the integral around C, as shown, is zero.

but, in fact, it didn’t matter whether the contour was circular or not, only that it was closed,
since f(z) = z is analytic everywhere.

Note that a corollary of the Cauchy-Goursat Theorem is that the contour integral of an
analytic function f(z) between z1 and z2 is independent of the contour. This is easy to see.
If one of the contours from z1 to z2 is reversed, so goes from z2 to z1, then the integral picks
up a minus sign. We now have a closed contour, though, that is z1 → z2 → z1, so the sum
of the two integrals must be zero. That is, the two integrals z1 → z2 must equal each other.

Of course, the reason we don’t get zero when f(z) = 1/z is that this function is not analytic
at z = 0. In this case, however, there is the Cauchy Integral Theorem which states that∮

C

f(z)

z − z0

dz = 2πif(z0) (8.9)

where C is a closed contour containing the point z = z0 and f(z) is analytic inside C. As
usual, we assume the contour is traced in a counter clockwise direction.

It is not hard to prove (8.9). In fact, we’ve already done most of the work. We can replace
any arbitrary contour C that encloses z = z0 with a small circular contour C0 about the
pole, plus the contour shown in Figure 8.2. The integrals along A → B and B → A cancel
each other out, so we can replace the integral around C with the integral around C0. Since
the radius of C0 is arbitrarily small, we can take f(z0) out of the integral, leaving us with
the integral of 1/(z− z0), which we have already shown to be equal to 2πi, after translating
the axis to put z0 at the origin. If you want to be more formal about it, write z − z0 = reiθ

and integrate over 0 ≤ θ ≤ 2π with dz = ireiθ dθ. This proves (8.9).

8.4.2 Practical mathematical examples

The Cauchy Integral Theorem (8.9) makes it possible to do many definite integrals which
might otherwise seem to be intractable. It is best to illustrate this with a specific example,
although different examples might use different, but similar, approaches.

Consider the integral

I =

∫ ∞
0

cosx

1 + x2
dx (8.10)
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Figure 8.3: A contour in the complex plane
used to evaluate the integral (8.10). The con-
tour is traced counter clockwise, and the ra-
dius of the semicircle is taken to infinity. The
integrand goes to zero along the semicircle,
leaving only the contribution from the x-axis.
However, the integral is actually evaluated us-
ing (8.9) and the pole at z0 = +i.

which in fact can be written as a contour integral of the form (8.9) in which case it is simple
to read off the answer. First, realize that the integrand is an even function, and that if I
replace the cosine with a sine function, it would be an odd function. This means that

I =
1

2

∫ ∞
−∞

cosx

1 + x2
dx =

1

2

∫ ∞
−∞

cosx

1 + x2
dx+ i

1

2

∫ ∞
−∞

sinx

1 + x2
dx =

1

2

∫ ∞
−∞

eix

1 + x2
dx

The final form can be equated to a contour integral, using the contour shown in Figure 8.3.
The contour C runs along the x-axis in the positive direction, for some finite length symmetric
with the y-axis, and closes with a semicircle in the upper hemisphere, returning to the x-
axis. We choose the upper hemisphere because we want the integrand to go to zero as the
radius of the semicircle goes to infinity. The denominator of the integrand tends to infinity
for either the upper or lower hemisphere, but the numerator only goes to zero in the upper
hemisphere. This is because the imaginary part of z is large and positive, so the exponential
eix becomes small.

Furthermore, as the radius of C goes to infinity, the contour includes the entire real axis. In
other words, for the contour C in Figure 8.3,

I =
1

2

∮
C

eiz

1 + z2
dz

which is straightforward to evaluate using (8.9). We have

I =
1

2

∮
C

eiz

(z + i)(z − i)
dz = 2πi

1

2

eiz

z + i

∣∣∣∣
z=+i

=
π

2e

which is verified in Mathematica with Integrate[Cos[x]/(1 + x2), {x, 0, ∞}].
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Chapter 9

Probability and Statistics

The notions of probability and probability distributions are central to many fields of physics.
Most notable of these are statistical thermodynamics and quantum mechanics, not to men-
tion experimental physics in general. This chapter will lay down some of the basic mathe-
matics associated with these areas.

If there are a number n of potential different outcomes from some experiment or measure-
ment, and all of these different outcomes are equally probable, then coming up with any one
of them has a probability of just 1/n. If the outcomes are not equally probable, then we
speak of a probability distribution of any one of those outcomes. This distribution is some
function of the different outcomes, labeled in whichever way is appropriate. If I sum this
function over the different possible outcomes (or integrate it if the outcomes are continuous)
then you have to get unity.

When you do an experiment, in which the outcomes of some measurement can be sorted
numerically, a natural way to present the data is using a histogram. Unless the amount of
data is very large, the histogram will be an approximation to the shape of the distribution,
because there will be some statistical fluctuations in each of the groups of measurements.

We are going to start this chapter by “throwing dice.” This is a good way to illustrate all
of these concepts. After that, we’ll get more formal with the mathematics, and then extend
these concepts.

9.1 Throwing Dice

Dice are a prototype for learning about probability and probability distributions. Dice are
little cubes – the singular is “die” – with each side labeled with one through six dots. See
Figure 9.1. If you throw any one die (and it is “fair”) then there is an equal probability of
getting any of the faces to land up. That is, the probability of getting a “one” is 1/6, the
same as the probability of getting a “five”, and so on.

Now imagine that you throw a handful of six dice at the same time, count the number of
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Figure 9.1: Six dice, viewed from different angles, showing each of the six faces. The right
shows the result of an experiment, compared to the expected (average) result, of throwing a
handful of six dice and counting the number of them that land with a “one” face up.

dice that land with a “one” face up, and then repeat the experiment several or many more
times. The result of each throw will be a number between zero and six. It seems likely that
one or two of the dice might land with a “one” face up, but it seems very unlikely that,
for example, all six will land this way. Our goal is to try to understand these probabilities
mathematically.

Figure 9.1 also shows the result of such an experiment, throwing fifty handfuls of six dice
and each time counting the number that land with a “one” facing up. (Actually, I did not
throw fifty handfuls of dice, but instead generated the data using the random number facility
in Mathematica.) The result of the experiment is plotted as a histogram, where a bar is
drawn at each “bin” showing the “frequency” of the result corresponding to that bin. In
other words, 20 of the 50 throws had exactly one die landing with a “one” facing up, 13 had
two dice, and so on.

Indeed, our expectations seem to be borne out. It often happened that one or two, or zero,
dice landed that way. However, it was much rarer that three dice landed with a “one” face
up, and it never happened that more than three came up. Presumably, if I threw ten or a
hundred times as many handfuls, then I would have gotten a few to land with ones on five
or six dice.

Let’s try to predict the outcome that exactly one of the six dice lands with a “one” facing
up. Let p = 1/6 be the probability of any one die landing with a “one” facing up. Then
q = 1 − p = 5/6 is the probability the other five dice landing otherwise. Your first instinct
might be to say that the probability of exactly one of the dice to land face up is (1/6)1(5/6)5.
However, there are six equivalent ways you can get that result, since all six dice are identical.
Therefore, we expect the number of throws that give us exactly one dice with a “one” facing
up is the total number of throws times the probability, namely

N(1) = Ntotal × P(1) = 50× 6

(
1

6

)1(
5

6

)5

=
78125

3888
≈ 20.09
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which is pretty close to the number (20) that were observed. Of course, you can never
observe exactly 20.09 occurrences because the answer has to be an integer, but, on average,
this is presumably what you’d find.

Now let’s predict the number of throws where exactly two dice land “successfully” with
“ones” facing up. The probability of this occurrence for specific dice is now (1/6)2(5/6)4,
but counting up the number of combinations that can land this way is a little trickier. We
need to ask ourselves, “How many ways are there of picking two dice out of a set of six?”

Well, I have six ways to pick the first of the two, and then five ways to pick the second of
the two, but I have to be aware of “double counting.” That is, I could pick die #3 first and
then die #5, but that’s the same result as picking die #5 first and then die #3. So, the
answer is 6 · 5/2 = 15. Therefore, we expect the number of successful throws to be

N(2) = Ntotal × P(2) = 50× 15

(
1

6

)2(
5

6

)4

=
78125

7776
≈ 10.05

which again is pretty close to the number (13) that we observed.

Repeating this process for the other bins gives the black points in Figure 9.1, which I’ve
simply joined with a straight line. It seems like we now have an understanding of how to
handle probabilities of different outcomes, so we’ll formalize the mathematics and then make
some extensions.

9.2 Counting Permutations and Combinations

It sound be clear from our example with the dice, that we need to learn how to count
efficiently. For example, we needed to know the number of ways we could select two dice
from a collection of six of them, which turned out to be 6 · 5/2 = 15. We will now set up the
mathematics for these kinds of calculations in general.

If you have n things arranged in a particular order, then the number possible orderings,
called permutations, is n factorial, that is

n! = n(n− 1)(n− 2) · · · 1

Try it by arranging the numbers 1, 2, and 3 in all possible orders. You have 1, 2, 3 and 3, 1, 2
and 2, 3, 1 (called “cyclic permutations”) and also the three orderings you get by flipping the
first two of each of these, namely 2, 1, 3 and 1, 3, 2 and 3, 2, 1. That’s a total of 3! = 3·2·1 = 6
permutations.

Now suppose you don’t care about the order, but you are interested in different subsets of n
things. (For example, “How many ways are there of picking two dice out of a set of six?”)
You now ask what is the number of combinations of n things taken m at a time. Well, there
are n ways to pick the first thing, then n− 1 ways to pick the second, and so on, you might
write the number of combinations as

n(n− 1)(n− 2) · · · (n−m+ 1)
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Figure 9.2: The integrand xne−x of (9.2) for n = 100,
plotted as a function of x. Notice that the integrand
peaks at x = n = 100, and that the shape resembles that
of a Gaussian. Therefore, an approximation to n! can be
obtained by integrating over a Gaussian function with
the appropriate mean and width. 0 50 100 150 200

1×10156

2×10156

3×10156

4×10156

which is a product of m factors. However, since I don’t care about the order, I could pick
the second first, and the third second, and the first third, and. . . , so I need to divide by
the number of ways that I could order m possibilities, namely m!. Therefore, the number of
combinations is (

n

m

)
≡ n(n− 1)(n− 2) · · · (n−m+ 1)

m!
=

n!

m!(n−m)!
(9.1)

This symbol is called the Binomial Coefficient because it tells you the coefficient of the term
pmqn−m in the expansion of (p+ q)n, namely the number of ways you can get m factors of q
when you expand (p+ q)n.

Note that for throwing six dice, the number of combinations for one and two successes are(
6

1

)
=

6!

1!5!
= 6 and

(
6

2

)
=

6!

2!4!
= 15

which is just what we got in the previous section.

9.2.1 Large numbers and Stirling’s approximation

Equation (9.1) is key to determining many quantities related to probabilities, and this in-
cludes almost the entire field of Statistical Mechanics.1 However, the number of “dice” in
those examples is very large, on the order of Avogadro’s Number, namely N0 = 6.02× 1023.
The form (9.1) is not handy for dealing with numbers like this, and we would really prefer
to have some closed analytic form for n!.

Fortunately, we have the Γ-function (1.7) from Section 1.5.5, which we reproduce here as

Γ(n+ 1) =

∫ ∞
0

xne−x dx = n! (9.2)

for a non-negative integer n = 0, 1, 2, 3, . . .. Figure 9.2 plots the integrand as a function of
x for n = 100, and the peak position and Gaussian shape suggest that we can use what we
know about Gaussian integrals to come up with an approximation for (9.2) when n is large.

1An excellent reference is An Introduction to Thermal Physics, by Daniel V. Schroeder, Oxford University
Press; 1st edition (2021). This derivation follows Appendix B.3.
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Figure 9.3: Plot of the fractional difference between n!
and Stirling’s Approximation (9.3) for n up to 100. The
approximation is rather good at n = 100, differing from
the exact value only by about 0.1%, but the real value of
Stirling’s Approximation is for very large n, on the order
of Avogadro’s Number 6.02× 1023. 20 40 60 80 100
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First let’s establish the position of the peak in Figure 9.2. Since

d

dx
xne−x = nxn−1e−x − xne−x = xn−1e−x(n− x) = 0

it is apparent that the Gaussian approximation peaks at x = n. We then define y = x − n
and write

xne−x = en log xe−x = en log(y+n)e−(y+n) = en log[n(1+y/n)]e−ne−y = en logne−nen log(1+y/n)e−y

Since n is a large number, and it is clear from Figure 9.2 that y = x− n is never very large,
we can Taylor expand log(1 + y/n) using (2.7) to get

xne−x ≈ en logne−nen(y/n−y2/2n2)e−y = en logne−ne−y
2/2n

and we have confirmed that the integrand is a Gaussian in y, centered at y = 0. Finally,
since the width of this Gaussian is on the order of

√
n � 1, we can replace the lower limit

of the integral with −∞, and use (1.8) to evaluate it. This results in

n! ≈ en logne−n
∫ ∞
−∞

e−y
2/2n dy = en logne−n

√
2πn = nne−n

√
2πn (9.3)

which is known as Stirling’s Approximation. An alternate form using the logarithm is

log n! ≈ n log n− n+
1

2
log(2πn)

where the third term is typically neglected for n ∼ 1023 in statistical mechanics.

Figure 9.3 shows the agreement between (9.3) and the exact value for n!, for n up to 100.
The approximation is reasonably good, but gets much better for numbers n that are very
large, on the order of Avogadro’s Number. This is the reason it is very useful in Statistical
Mechanics.

We will also find Stirling’s Approximation useful when we discuss the Gaussian Probability
Distribution Function, Section 9.3.3.
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9.3 Probability Distributions

If a function P(m) gives the probability of measuring outcome m, where m is an integer,
then we call P(m) a discrete probability distribution function. If the outcome is described
by a continuous variable x, then P(x) dx gives the probability of measuring and outcome
between x and x + dx, and P(x) is a discrete probability distribution function. Generically,
we call P a distribution. Probability distributions are important throughout physics, from
data analysis, to quantum mechanics, to statistical mechanics.

Our approach in this section will be to first write down the binomial distribution, which
describes the situation with throwing dice. We will then discuss two extensions of the
binomial distribution, namely the Poisson distribution and the Gaussian distribution, also
known as the normal distribution.

9.3.1 The binomial distribution

We now return to our problem of throwing a handful of dice, and generalize to the question,
“What is the probability that if I throw n dice, then m of them land with a one facing
up?” The probability p = 1/6 that any one of the dice will land this way. Therefore, the
probability that throwing a handful of n dice and having m of them land “successfully” with
“ones” facing up is

P(1/6)
bin (m) =

(
n

m

)(
1

6

)m(
5

6

)n−m
It is obvious how to generalize this to any situation where the probability of an individual
success is p, namely

P(p)
bin(m) =

(
n

m

)
pmqn−m (9.4)

where p+q = 1. As mentioned in Section 9.2, this is called the binomial distribution because
it gives the term proportional to pm of the expansion (p+ q)n. As such, it is clear, then, that

n∑
m=0

P(p)
bin(m) = (p+ q)n = 1n = 1

which must be the case, of course, since the only possible results for m are the integers from
zero to n. We say that the probability distribution is normalized.

The black points on the right in Figure 9.1 are NP(1/6)
bin (m) where m is labeled along the

horizontal axis. Given a number N of dice throws, the number you expect to get would be
NP(1/6)

bin (m) for m dice landing with a “one” facing up. The histogram is an approximation

to P(1/6)
bin (m), after correcting for the normalization.
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9.3.2 The Poisson distribution

The Poisson distribution is a limiting case of the binomial distribution, and is often taken
for granted as the correct distribution for many problems in the statistical analysis of data.
The reason is that this limiting case, namely n → ∞ and p → 0 with µ = np kept finite,
is so often the case in physical systems. The classic case is radioactive decay, where the
probability of any one radioactive nucleus decaying in a certain time interval is very small,
but the number of possible decaying nuclei is very large. Another example might be the
number of people in Philadelphia who might call Temple University on a Tuesday afternoon
between 3pm and 4pm.

If we write (9.4) as

P(p)
bin(m) =

n!

m!(n−m)!
pm(1− p)n−m

then we can see how to take the limit n→∞ and p→ 0 with µ = np kept finite. Firstly

lim
n→∞

n!

(n−m)!
= lim

n→∞
n(n− 1) · · · (n−m+ 1) = nm

which gives a factor nmpm = µm. Now we also have

lim
n→∞

lim
p→0

(1− p)n−m = lim
n→∞

lim
p→0

(1− p)n = lim
p→0

(1− p)µ/p = lim
p→0

(1− p)−µ/(−p) = e−µ

Putting this together gives us the Poisson distribution, namely

P(µ)
Poiss(m) =

µm

m!
e−µ (9.5)

It is easy to confirm that the Poisson distribution is properly normalized, just by summing

n∑
m=0

P(µ)
Poiss(m)→

∞∑
m=0

P(µ)
Poiss(m) =

[
∞∑
m=0

µm

m!

]
e−µ = eµe−µ = 1

Figure 9.4 plots (9.5) for three different values of µ. Note that for low values of µ, the
probability of m = 0 is significant. As µ increases, the distribution peaks close to, and
becomes more symmetric about, the mean.

One of the most useful properties of the Poisson distribution is that the standard deviation
(Section 9.4.1) σ =

√
µ. When you are doing an experiment and you expect the number of

“successes” to be Poisson distributed, the number you observe is your best estimate of what
the average out to be, so you quote a “standard error” that is the square root of the number
you observe.

9.3.3 The Gaussian distribution

The Gaussian (or normal) probability distribution function is probably the most common
example of a continuous variable x. It is widely used in data analysis and other fields of
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Figure 9.4: Three examples of a Poisson distribution, with three different values for the mean
µ = 0.75, 3, 10, are plotted on the left. On the right we reproduce the Poisson distribution
for µ = 10, along with the Gaussian distribution (in red) for the same µ and σ =

√
µ.

physics, and can be derived from the binomial or Poisson distributions in the case where
m � 1 and you don’t stray too far from the average value. Below we will see how do this
with the Poisson distribution. The result is

P(µ,σ)
Gauss(x) =

1

σ
√

2π
e−(x−µ)2/2σ2

(9.6)

It should be clear from Section 1.5.6 that this form is normalized so that∫ ∞
−∞
P(µ,σ)

Gauss(x) dx = 1

Let’s see now how the Gaussian distribution arises from the Poisson distribution for m� 1
and µ� 1. Take the logarithm of (9.5) and use Stirling’s approximation (9.3) to write

logP(µ)
Poiss(m) = m log µ− µ− logm!

= m log µ− µ−m logm+m− 1

2
log(2π)− 1

2
logm

We know that (9.5) has a peak when m ≈ µ, so it makes sense to define a variable y ≡ m−µ
and expand the log around y = 0 using (2.7). We have

logP(µ)
Poiss(m) = (µ+ y) log µ+ y −

(
µ+ y +

1

2

)
log(µ+ y)− 1

2
log(2π)

with logm = log(y + µ) = log µ+ log

(
1 +

y

µ

)
≈ log µ+

y

µ
− y2

2µ2
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Some algebra that is more tedious than tricky gives

logP(µ)
Poiss(m) = y − 1

2
log µ− (µ+ y)

y

µ
+ (µ+ y)

y2

2µ2
− y

2µ
− y2

2µ2
− 1

2
log(2π)

= log
1√
2πµ
− y2

µ
+
y2

2µ
+

y3

2µ2
− y

2µ
− y2

2µ2

= log
1√
2πµ
− y2

2µ
+

y3

2µ2
− y

2µ
− y2

2µ2

Rewriting this in terms of σ =
√
µ gives us

logP(µ)
Poiss(m) = log

1

σ
√

2π
− y2

2σ2
+

1

σ

y3

2σ3
− 1

σ

y

2σ
− 1

σ2

y2

2σ2

If y/σ = y/
√
µ is not very large, that is if we stay close to the mean, and σ =

√
µ� 1, we

can neglect the last three terms compared to the second. The result is

logP(µ)
Poiss(m)→ log

1

σ
√

2π
− y2

2σ2
so P(µ)

Poiss(m)→ 1

σ
√

2π
e−(m−µ)2/2σ2

which is the Gaussian approximation. Figure 9.4 also compares the Poisson distribution for
µ = 10 with the Gaussian distribution for the same mean and σ =

√
µ. The agreement is

obviously very good, even though
√

10 is not so much larger than unity. You might notice,
however, that the fractional disagreement on the tails of the distribution, that is when we
are far from the mean, are rather large.

9.3.4 Data histograms as approximations to distributions

I will conclude this section with a brief remark about histograms, and their role as experi-
mental approximations to the underlying probability distributions that control.

A histogram of a quantity x is ∆N/∆x where ∆N is the number of events that fall into a
“bin” ∆x. This is what we did in the histogram for Figure 9.1, where x is the integer m. It
could easily be that x was some continuous variable, though, in which case we would need
to bin it.

Now, instead of multiplying the probability distribution by the total number of trials N ,
as in Figure 9.1, we can divide by the total number of trials. In this case, the histogram
becomes an approximation to the true distribution, limited by the randomness of the finite
number of trials. Then

P(x) = lim
∆x→0

1

N

∆N

∆x
=

1

N

dN

dx

would in fact give the distribution. It is worth remembering this when using a histogram to
infer a probability distribution function.
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9.4 Basic Data Analysis

The term “data” is impossibly broad, so we’re going to have a discussion here of simple
topics confined to a simple definition of “data.” It will illustrate some of the most important
concepts, though, that you are likely to be concerned with during the studies of physics.

By “data” we mean generic sets of real numbers. For example, we can label them xi and yi
for i = 1, 2, 3, . . . , N . We won’t make use of it here, but it is commonplace to refer to these
data sets as x and y in the sense of generalized vectors, as in Section 6.2.

The arrays {xi} and {yi} are individually sets of data, and we will talk about how to calculate
important quantities that collective describe them. It is also reasonable to think of these as
correlated somehow, in which case we think of the data as {xi, yi}. In this case, it is common
to have some model y = f(x) which describes how the two data sets depend on each other.
In many applications, the function f(x) will have so-called “free parameters” which can be
fit to describe the data, and there are well established techniques for finding the best fit.

9.4.1 Mean, variance, and standard deviation

A very familiar concept that you would use to describe a set of data {xi} is the mean or
average of the values. Notations for the mean include 〈x〉 (which I will use), x̄, and xavg.
You are likely well aware of the calculation of the mean of N values {xi}, namely

x̄ = 〈x〉 =
1

N

N∑
i=1

xi (9.7)

A less familiar concept, but at least as important as the mean, is the variance σ2, which
describes the “spread” of the values around the mean. It is simply the average of the square
of the deviations of the values from the mean. In other words

σ2 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 2〈x〉〈x〉+ 〈x〉2 = 〈x2〉 − 〈x〉2 (9.8)

The square root of the variance, that is σ, is called the standard deviation.

When the values {xi} are distributed according to some established probability distribution
function, then it is possible to quantitatively predict the probability that the mean 〈x〉 is
within some number of standard deviations from the correct value. A measurement of x is
often reported as 〈x〉 ± σ, but the interpretation of the ± clearly depends on what is the
appropriate distribution function. More often than not, however, people will assume it is a
Gaussian distribution where 〈x〉 is a good approximation to the mean µ of the distribution.

Application to binomial, Poisson, and Gaussian distributions

If the values {xi} are nonnegative integers {mi}, then it is possible that they are distributed
according to the binomial or Poisson distributions.If the {xi} are any real numbers, however,
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it might be natural to assume that are distributed according to a Gaussian. In these cases,
we can calculate directly what we expect for the mean and variance. Of course, there are
many other potential distribution functions, but we are only going to consider these three
possibilities.

The mean value of some discrete measurement m that is distributed according to the function
P(m) is simply the sum of the values of the measurement times the probability for getting
that measurement, namely

µ = 〈m〉 =
∑
m

mP(m)

and the variance is
σ2 = 〈(m− µ)2〉 = 〈m2〉 − 〈m〉2

We argued above that the mean of a set of numbers that follow the binomial distribution
was np, where n is the number of chances of success, and p was the probability of a single
success. This makes sense, because if you have n chances with each a probability p, you
expect the average to be np. Let’s prove this statement.

In the case the binomial distribution, we have

〈m〉 =
n∑

m=0

mP(p)
bin(m) =

n∑
m=0

m
n!

m!(n−m)!
pmqn−m =

n∑
m=1

m
n!

m!(n−m)!
pmqn−m

=
n−1∑
k=0

n!

k!(n− k − 1)!
pk+1qn−k−1 = np

n−1∑
k=0

(n− 1)!

k!(n− 1− k)!
pkqn−1−k

= np
l∑

k=0

l!

k!(l − k)!
pkql−k = np(p+ q)l = np (9.9)

where l = n− 1 and q = 1− p. The “obvious” result is in fact correct. In order to calculate
the variance, we need to evaluate

〈m2〉 =
n∑

m=0

m2 n!

m!(n−m)!
pmqn−m = np

l∑
k=0

(k + 1)
l!

k!(l − k)!
pkql−k

= np {lp+ 1} = np {(n− 1)p+ 1} = n2p2 − np2 + np

Therefore, the variance is

σ2 = n2p2 − np2 + np− (np)2 = np(1− p) (9.10)

for the binomial distribution (9.4).

We built the Poisson distribution based on the mean µ = np of the binomial distribution,
where n→∞ and p→ 0. It is therefore clear that

σ2 = µ (9.11)
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for the Poisson distribution (9.5).

For a continuous distribution P(x), we integrate to get the mean and variance, that is

〈x〉 =

∫ ∞
−∞

xP(x) dx and 〈x2〉 =

∫ ∞
−∞

x2P(x) dx

It is easy to apply these to the Gaussian distribution (9.6). Using y = x− µ we get

〈x〉 =

∫ ∞
−∞

xP(µ,σ)
Gauss(x) dx =

1

σ
√

2π

∫ ∞
−∞

xe−(x−µ)2/2σ2

dx =
1

σ
√

2π

∫ ∞
−∞

(µ+ y)e−y
2/2σ2

dy

= µ

[
1

σ
√

2π

∫ ∞
−∞

e−y
2/2σ2

dy

]
+

1

σ
√

2π

∫ ∞
−∞

ye−y
2/2σ2

dy = µ (9.12)

where the integral in square brackets is unity because it is just the integral over the proba-
bility distribution, and the second integral is zero because the integrand is an odd function
of y. Of course, this result is no surprise since we constructed the Gaussian distribution to
have a peak at the mean value. In order to calculate the variance, we need

1

σ
√

2π

∫ ∞
−∞

x2e−(x−µ)2/2σ2

dx =
1

σ
√

2π

∫ ∞
−∞

(µ2 + 2µy + y2)e−y
2/2σ2

dy

which we consider as three integrals. The first integral is just µ2, and the second integral is
zero because the integrand is odd. For the third integral use (1.9) to get∫ ∞

−∞
y2e−y

2/2σ2

dy =
1

2

√
π8σ6 = σ3

√
2π

Therefore, the variance of the Gaussian distribution (9.6) is

µ2 − 1

σ
√

2π
σ3
√

2π − µ2 = σ2 (9.13)

which just goes to show that we used the appropriate notation when we wrote down (9.6).
Of course, we had confidence that this was the right answer when we saw how to get the
Gaussian distribution from the Poisson distribution.

9.4.2 Fitting data to models

Given a set of N correlated data points {xi} and {yi}, where i = 1, 2, . . . , N , is very common
want to “fit” a model function that describes the data as y = f(x; a1, a2, . . . , an). That is, we
want to find the values of the n parameters aj, where j = 1, 2, . . . , n so that the functional
form passes as close as possible through all the data points. Typically, each data value yi
will have some uncertainty that I’ll call σi, implying that somehow we know the standard
deviation for any individual measurement of y.
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If we assume (as everyone pretty much always does) that the points follow a Gaussian
distribution, then the probability that data point i comes from the mean determined by the
fit function is

Pi(a1, a2, . . . , an) =
1

σi
√

2π
exp

{
− [yi − f(xi; a1, a2, . . . , an)]2

2σ2
i

}
The probability for a the entire set of data is therefore the product of the individual proba-
bilities. This product is called the likelihood

L(a1, a2, . . . , an) =
N∏
i=1

Pi(a1, a2, . . . , an)

which is messy to write out, so I won’t bother. The object of fitting the model to the data
then becomes a problem of finding the values of the parameters a1, a2, . . . , an which maximize
the likelihood.

Multiplying all of those exponentials together will give you a very small number for values
of the parameters that are not very close to their final values. This will create headaches
with computer applications that try to maximize L, so instead we minimize the negative of
the logarithm of the likelihood. That is

− logL(a1, a2, . . . , an) = − log
N∏
i=1

(
1

σi
√

2π

)
+

1

2
χ2(a1, a2, . . . , an)

where the first term is just some constant, and the χ2 function is

χ2(a1, a2, . . . , an) =
N∑
i=1

[yi − f(xi; a1, a2, . . . , an)]2

σ2
i

(9.14)

The job of finding the best fit parameters has become a problem of finding the set of pa-
rameters which minimize χ2(a1, a2, . . . , an). This procedure is generally referred to as the
method of least squares.

Given a set of data and some model function f(x; a1, a2, . . . , an), a number of tools are
available for minimizing χ2(a1, a2, . . . , an). In Mathematica, for example, the function
FindFit does the job easily. Any respectable numerical library will have other options.

Fitting to linear models

The fitting problem reduces to a simple problem in linear algebra if the fitting function is
strictly linear in the parameters. That is

f(x; a1, a2, . . . , an) = a1g1(x) + a2g2(x) + · · ·+ angn(x)
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The reason this works out so nicely is that I can take the partial derivatives with respect to
the aj and set them equal to zero to minimize (9.14) and get a system of linear equations to
solve for the aj.

Let’s see how this works. The χ2 function (9.14) becomes

χ2(a1, a2, . . . , an) =
N∑
i=1

[yi − a1g1(xi)− a2g2(xi)− · · · − angn(xi)]
2

σ2
i

Now take the partial derivative of this with respect to ak and set it equal to zero.

−2
N∑
i=1

[yi − a1g1(xi)− a2g2(xi)− · · · − angn(xi)]gk(xi)

σ2
i

= 0

This can be rewritten as

n∑
j=1

[
N∑
i=1

gj(xi)gk(xi)

σ2
i

]
aj =

N∑
i=1

yigk(xi)

σ2
i

which is just a system of linear equations of the form

Rkjaj = bk where Rkj =
N∑
i=1

gj(xi)gk(xi)

σ2
i

and bk =
N∑
i=1

yigk(xi)

σ2
i

The coefficients aj, components of the vector a, are easily obtained by inverting the matrix
R and multiplying times the vector b.

It would make sense here to do an example by reducing to the special case of f(x; a, b) = ax+ b,
and fitting some data. No time left in the course this semester, though.

9.5 Random Numbers and Monte Carlo Simulations

This section will occupy at most a small piece of the last class of the semester. The material
really deserves a longer treatment, though.

9.5.1 Random number generation

I’m not sure how much is worth covering on random number generation. Maybe just allude
to mechanisms in Mathematica and other sources.

Perhaps make generating the data in Figure 9.1 a Mathematica lab.
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Figure 9.5: Figure showing the Monte
Carlo approach to calculating π. The area
inside the red circular arc is π/4. This area
is estimated by generating random number
pairs (x, y) inside the unit square, and then
counting the number of pairs for which
x2 + y2 ≤ 1. An estimate of π comes from
multiplying the ratio of those two numbers
by four. The figures shows the positions of
1000 generated pairs, 792 of which are in-
side the arc, giving π ≈ 3.168.
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9.5.2 Integration using Monte Carlo Techniques

You can use random numbers to calculate difficult integrals numerically. These integrals
could be over several different variables. The idea is to populate all of the available space
defined by the variables, and then count the number of points in this space which satisfy the
“area” defined by the integrand.

I will illustrate this with a simple example. The area of one quarter of the unit circle is π/4,
so we can calculate π by integrating under the curve y = f(x) =

√
1− x2 over the range

0 ≤ x ≤ 1. We can estimate the integral by generating a large number N of random points
(x, y) over the region of the unit square defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and then
counting up the number Nπ of points that end up inside the unit circle. As N gets larger
and larger, we expect to get better and better approximations to π = 4Nπ/N .

This is illustrated in Figure 9.5, which shows the unit circle and 1000 randomly generated
points. Counting up all of the points with x2+y2 ≤ 1 gives 792, or π ≈ 4×792/1000 = 3.168.
This is very close to π = 3.142, only 0.84% larger. Generating a large number of events gives
a value for π that is closer to the right answer. Running the same code but with 105 generated
points gives π ≈ 3.136, only 0.18% from the correct value.

This discussion should include a calculation of the statistical uncertainty, but there won’t be time
in the last class of the term.
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