

PHYS2502 Mathematical Physics Homework #8 Due 21 Mar 2023

This homework assignment is due at the start of class on the date shown. Please submit a PDF of your solutions to the Canvas page for the course.

(1) Prove the “chain rule” for the divergence operator, namely for a scalar field $f(\vec{r})$ and a vector field $\vec{A}(\vec{r})$,

$$\vec{\nabla} \cdot (f \vec{A}) = \vec{\nabla} f \cdot \vec{A} + f \vec{\nabla} \cdot \vec{A}$$

(2) The time-dependent Schrödinger Equation in three dimensions is

$$-\frac{\hbar^2}{2m} \vec{\nabla}^2 \psi(\vec{r}, t) + V(\vec{r})\psi(\vec{r}, t) = i\hbar \frac{\partial \psi}{\partial t}$$

where $V(\vec{r})$ is a potential energy function and $\psi(\vec{r}, t)$ is called the “wave function.” Show that this equation implies that $\rho(\vec{r}, t) = \psi^* \psi$ is a conserved density if its current density is given by $j(\vec{r}, t) = \hbar \text{Im}(\psi^* \vec{\nabla} \psi)/m$.

(3) A magnetic field $\vec{B}(r, \phi) = \hat{\phi} B_0 (r/a)^2 \cos^2 \phi$ where r and ϕ are the polar coordinates in the (x, y) plane, and B_0 is a constant. Find the total enclosed current passing through a circle of radius a in the (x, y) plane centered at the origin. Do the necessary line integral directly, and compare to the result you get using Stokes’ Theorem.

(4) An electric field $\vec{E}(r, \theta, \phi) = \hat{r} E_0 (r/a) \cos^2 \theta$ where r , θ , and ϕ are the usual spherical coordinates, and E_0 is a constant. Find the total enclosed charge contained in a sphere of radius a centered at the origin. Do the necessary surface integral directly, and compare to the result you get using Gauss’ Theorem.

(5) Find the solutions $u(x, y)$ to the partial differential equation

$$x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$$

separately for each of the following two boundary conditions:

- (a) $u(x, y) = 2y + 1$ along the line $x = 1$
- (b) $u(1, 1) = 4$, that is, a single point.

You may want to start by looking for a solution $u(x, y) = f(p)$ where $p = p(x, y)$. One way to do this (other than just guessing outright) is to relate the given differential equation to $dp = 0$. That is, the differential equation should be satisfied if $dp = 0$ as x and y change.