

PHYS2502 Mathematical Physics Homework #7 Due 14 Mar 2023

This homework assignment is due at the start of class on the date shown. Please submit a PDF of your solutions to the Canvas page for the course.

(1) Find the equation of a plane which contains the point $(x, y, z) = (1, -2, 5)$ and which is perpendicular to a vector pointing from the origin into the first quadrant and which makes equal angles with the x , y , and z axes. Write your equation in the form $Ax + By + Cz = D$, where A , B , C , and D have numerical values.

(2) A line in space passes through the origin and is at an angle of 45° with respect to the positive z -axis and is at equal angles with respect to the positive x - and y -axes. Find the coordinates of the intersection point of this line with the plane in Problem **(1)** above.

(3) For spatial vectors \vec{A} , \vec{B} , \vec{C} , and \vec{D} , prove that

$$(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D}) - (\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C})$$

I think the easiest way to do this is to write the vectors in terms of their components and make use of the Kronecker δ and the Levi-Civita symbol, and their properties.

(4) Use the result from Problem **(3)** to find an expression for $|\vec{A} \times \vec{B}|^2$ in terms of the magnitudes of \vec{A} and \vec{B} and their dot products. Explicitly show that this is the same as the geometric definition of the magnitude of the cross product.

(5) For a particle of mass m moving in a plane located at position $\vec{r}(t)$, find an expression for the kinetic energy

$$K = \frac{1}{2}m \left(\frac{d\vec{r}}{dt} \right)^2$$

in terms of plane polar coordinates r and ϕ . Do this explicitly by writing \vec{r} first in terms of Cartesian coordinates x and y , convert to polar coordinates, and then take derivatives.