

PHYS2502 Mathematical Physics Homework #2 Due 31 Jan 2023

This homework assignment is due at the start of class on the date shown. Please submit a PDF of your solutions to the Canvas page for the course.

- (1)** The motion of a damped harmonic oscillator in one dimension is given by

$$x(t) = Ae^{-\beta t} \cos(\omega t + \phi)$$

Find A and ϕ in terms of the initial conditions $x(0) = x_0$ and $v(0) = v_0$. Assume that A , β , and ω are all real and positive. (You are welcome to solve this in MATHEMATICA, but in this case submit a PDF of your solution notebook.)

- (2)** Consider a straight rod of length ℓ and mass m . The center of mass of the rod is

$$x_{CM} = \frac{1}{m} \int_0^L x \, dm$$

where x measures the position along the rod.

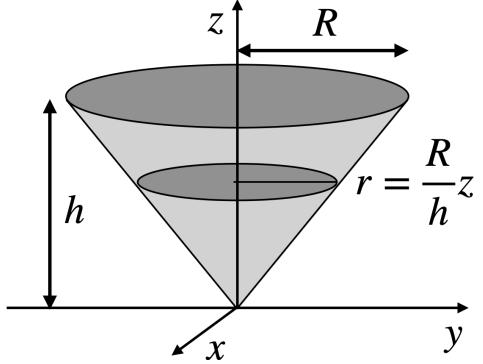
(a) Show that x_{CM} is what you expect if the rod has uniform mass density.

(b) Now calculate x_{CM} assuming that the mass density $\lambda(x)$ of the rod grows linearly from zero at the end of the rod at $x = 0$. Express your answer as a constant times L .

- (3)** The figure shows an inverted vertical right circular cone of uniform mass density and height h and base radius R , with symmetry around the z -axis. The moment of inertia for an object \mathcal{O} with mass m is given by

$$I = \int_{\mathcal{O}} (x^2 + y^2) \, dm = \int_{\mathcal{O}} \xi^2 \, dm$$

where $\xi = (x^2 + y^2)^{1/2}$ is the distance from the z -axis for an infinitesimal mass element dm . Find the moment of inertia of the cone in terms of m , h , and R . You might start by finding the moment of inertia of a disk with radius r and thickness dz .



- (4)** Use the definitions of hyperbolic sine and hyperbolic cosine in terms of exponential functions to prove that

$$\sinh(x + y) = \sinh(x) \cosh(y) + \sinh(y) \cosh(x)$$

- (5)** Evaluate the following integral

$$\int_0^{\infty} x^4 e^{-ax^2} \, dx$$

using the techniques described in Section 1.5.6. This integral is used to find the root-mean-square velocity of gas particles that follow the Maxwell-Boltzmann Distribution in statistical mechanics.