
PHYS2502 Mathematical Physics Homework #1 Due 24 Jan 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) The Hubble constant H0 measures the expansion rate of the universe. It’s value has been
measured to be 70 km/sec per Mpc, where one megaparsec (Mpc) is a common measure of
cosmological distances, and equals 3.1 × 1019 km. If H0 is truly a constant in time, then
what is the age of the universe? Express your answer in years.

(2) Use dimensional analysis to estimate the energy of an electron with mass m bound in an
atom with size a = 10−10 m. In this case, the scale is set quantum mechanically according
to the quantity ℏ, which has the same dimensions as angular momentum. Express your
answer in electron volts. (When working in quantum mechanics, it is handy to remember
that ℏc = 200 MeV·fm and that mc2 = 0.511 MeV for an electron.)

(3) Use dimensional analysis to find an expression for the pressure at the center of the Sun,
assuming it only depends on gravity and the solar mass and radius. Now assume the Sun
has uniform density, is made only of hydrogen, and follows the ideal gas law to find the
temperature at the center of the Sun.

(4) The equation ax2+by2 = c, where a, b, and c are positive constants, describes a collection
of points (x, y) that lie on an ellipse. Find the two points at which the slope dy/dx = 1 in
terms of a, b, and c.

(5) You have a fixed number of square feet of lumber with which to build an open box of
maximum volume. The box must have square sides, and no top:

Find the ratio of the length of the base to the height of the box.



PHY2502 Mathematical Physics Homework #1 Solutions

(1) The only parameter we have is H0 which has units of inverse time, so the age of the
universe would be 1/H0 = (1/70) 3.1× 1019 = 4.4× 1017 sec = 14 billion years.

(2) Energy has dimensions ML2T−2 and [ℏ] =ML2T−1 so write E = mxℏyaz giving

ML2T−2 =MxMyL2yT−yLz =Mx+yL2y+zT−y

so y = 2, z = 2 − 2y = −2, x = 1 − y = −1 and E = ℏ2/ma2 = ℏ2c2/(mc2)a2. Therefore
E = (200 MeV · fm)2/(0.511 MeV(105 fm)2) = 7.8×10−6 MeV=7.8 eV, which is about right.

(3) Write P = GxMy
⊙R

z. Now [P ] =MLT−2/L2 =ML−1T−2, so

ML−1T−2 =M−xL3xT−2xMyLz =My−xL3x+zT−2x

and it follows that x = 1. Also y − x = 1 so y = 2, and 3x+ z = −1 so z = −4 and we find

P = G
M2

⊙

R4
= 6.67× 10−11 (1.99× 1030)2

(6.96× 108)4
≈ 1015 N/m2

Now PV = nkT = (M⊙/mp)kT so the temperature at the center is

T = P

(
4

3
πR3

)
mp

M⊙

1

k
= 1015

4

3
π(6.96× 108)3

1.67× 10−27

1.99× 1030
1

1.38× 10−23
≈ 108 K

(4) Differentiating gives 2ax + 2by(dy/dx) = 0 so the points must satisfy y = −ax/b.
Substituting into the ellipse equation gives ax2 + a2x2/b = (a+ a2/b)x2 = c. This gives the
two solutions for x = ±

√
c/(a+ a2/b) with the corresponding values for y.

(5) The volume is V = xy2 and the area is A = 3xy + 2y2. We could solve for x in terms of
y and (the constant) A, and then find the derivative of V with respect to y, but I think it is
easier to use implicit differentiation, as we did in Problem (4) above. That is

dV

dx
= y2 + 2xy

dy

dx
= 0 with 0 = 3y + 3x

dy

dx
+ 4y

dy

dx

We want the ratio r = x/y, so rewrite the second equation as

3 + (3r + 4)
dy

dx
= 0 so

dy

dx
= − 3

3r + 4

and the first equation becomes

1 + 2r

(
− 3

3r + 4

)
= 0 or 3r + 4− 6r = 0 i.e. r =

4

3



PHYS2502 Mathematical Physics Homework #2 Due 31 Jan 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) The motion of a damped harmonic oscillator in one dimension is given by

x(t) = Ae−βt cos(ωt+ ϕ)

Find A and ϕ in terms of the initial conditions x(0) = x0 and v(0) = v0. Assume that A,
β, and ω are all real and positive. (You are welcome to solve this in Mathematica, but in
this case submit a PDF of your solution notebook.)

(2) Consider a straight rod of length ℓ and mass m. The center of mass of the rod is

xCM =
1

m

∫ L

0

x dm

where x measures the position along the rod.
(a) Show that xCM is what you expect if the rod has uniform mass density.
(b) Now calculate xCM assuming that the mass density λ(x) of the rod grows linearly

from zero at the end of the rod at x = 0. Express your answer as a constant times L.

(3) The figure shows an inverted vertical right circular
cone of uniform mass density and height h and base ra-
dius R, with symmetry around the z-axis. The moment
of inertia for an object O with mass m is given by

I =

∫
O
(x2 + y2) dm =

∫
O
ξ2 dm

where ξ = (x2+y2)1/2 is the distance from the z-axis for
an infinitesimal mass element dm. Find the moment of
inertia of the cone in terms of m, h, and R. You might
start by finding the moment of inertia of a disk with
radius r and thickness dz.

(4) Use the definitions of hyperbolic sine and hyperbolic cosine in terms of exponential
functions to prove that

sinh(x+ y) = sinh(x) cosh(y) + sinh(y) cosh(x)

(5) Evaluate the following integral ∫ ∞

0

x4e−ax2

dx

using the techniques described in Section 1.5.6. This integral is used to find the root-mean-
square velocity of gas particles that follow the Maxell-Boltzmann Distribution in statistical
mechanics.
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(1) See the Mathematica notebook. The answers are

A =

√
2βv0x0 + v20 + x20 (β

2 + ω2)

ω
and ϕ = − cos−1

(
x0ω√

2βv0x0 + v20 + x20 (β
2 + ω2)

)

(2) For (a), the mass density is λ = m/L, so dm = λdx = (m/L)dx and

xCM =
1

L

∫ L

0

x dx =
1

L

x2

2

∣∣∣∣L
0

=
1

L

L2

2
=

1

2
L

which is what you expect. For (b), we write λ = ax and to determine a we have

m =

∫ L

0

λ dx = a

∫ L

0

x dx = a
L2

2
so a =

2m

L2

The center of mass is therefore

xCM =
1

m

∫ L

0

ax2 dx =
2

L2

x3

3

∣∣∣∣L
0

=
2

3
L

This makes sense. The rod gets heavier as you move to the right, so the center of mass
should be somewhat right of center.

(3) Build the cone out of thin disks (which we analyzed in class) of radius r(z) as shown in
the figure, each of which has mass dm = ρ × πr2 dz and moment of inertia dmr2/2. The
mass density ρ is the cone mass m divided by its volume V . You can look up the volume of
a circular cone, but it’s easy enough to calculate, namely

V =

∫
O

dV =

∫ h

0

πr2 dz = π

(
R

h

)2 ∫ h

0

z2 dz = π
R2

h2
z3

3

∣∣∣∣h
0

=
1

3
πR2h

Now calculate the moment of inertia by adding up the contributions from the little disks:

I =

∫
O

1

2
dmr2 =

1

2
ρπ

(
R

h

)4 ∫ h

0

z4 dz =
1

2
ρπ

(
R

h

)4
h5

5

=
1

2

m

πR2h/3
π
R4h

5
=

3

10
mR2

This calculation is also carried out in Classical Mechanics, by John Taylor, as Example 10.3,
where the distinction is made that our I is the component Izz of the inertia tensor.



(4) I think it is easier to start with the right hand side and show that it equals the left.

sinh(x) cosh(y) + sinh(y) cosh(x)

=
ex − e−x

2

ey + e−y

2
+
ey − e−y

2

ex + e−x

2

=
ex+y + ex−y − e−x+y − e−x−y

4
+
ex+y + e−x+y − ex−y − e−x−y

4

=
ex+y − e−x−y

2
= sinh(x+ y)

(5) Start with (1.12), that is

I(a) =

∫ ∞

−∞
e−ax2

dx =
√
πa1/2 =

√
πa−1/2

Now take the derivative with respect to a twice.

I ′(a) =

∫ ∞

−∞
(−x2)e−ax2

dx =
√
πa1/2 = −1

2

√
πa−3/2

I ′′(a) =

∫ ∞

−∞
x4e−ax2

dx =
√
πa1/2 =

1

2

3

2

√
πa−5/2

The integral we want is ∫ ∞

0

x4e−ax2

dx =
1

2
I ′′(1) =

3

8

√
π

The answer is easily confirmed with Mathematica.
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PHYS2502 Mathematical Physics Homework #3 Due 7 Feb 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Using an appropriate trigonometric change of variables, show that

tan−1(x) =

∫ x

0

du

1 + u2

and then use this to show that

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · ·

(2) Make a plot of the function log(1+x) over the range −1 < x ≤ 1.5. Then add to the plot
successive approximations by powers of x for x0 = 0. That is, make a figure similar to Fig.2.1
in the Concepts text. I suggest you work this problem out using either Mathematica or
your favorite programming language or computer application.

(3) The “effective potential energy” for a planet orbiting a star can be written as

U(r) = −2a

r
+

b

r2

where a and b are positive constants. Find the radius r = r0 that gives the minimum value
of U(r), in terms of a and b. (This would be the radius of a circular orbit.) Now you know
that the angular frequency for a mass m in a potential energy function U(x) = kx2/2 is
ω =

√
k/m. Use this, and a Taylor expansion of U(r) about the minimum value, to find the

approximate period of small oscillations of the planet of mass m about r = r0.

(4) Express cos2(x/2) in terms of cosx by first writing cos(x/2) using Euler’s Formula. Use
your result to derive Equation (1.6g) in the Concepts text.

(5) Using Equation (2.16) in the Concepts text, make two plots of the motion x(t) as a
function of time t for a simple harmonic oscillator with angular frequency ω = 2π and
amplitude R = 4. One of the plots should have phase ϕ = +π/4 and the second should have
phase ϕ = −π/4. Which of these plots, would you say, “lags” the other by 90◦?
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(1) If we write u = tan y (which is the obvious substitution given what we are to show) then

1 + u2 = 1 + tan2 y = 1 +
sin2 y

cos2 y
=

cos2 y + sin2 y

cos2 y
=

1

cos2 y

Now we also have

du =
du

dy
dy =

d

dy

[
sin y

cos y

]
dy =

[
cos y

cos y
− sin y

cos2 y
(− sin y)

]
dy =

[
1 +

sin2 y

cos2 y

]
dy =

dy

cos2 y

Therefore ∫ x

u=0

du

1 + u2
=

∫ tan−1 x

y=0

cos2 y
dy

cos2 y
=

∫ tan−1 x

y=0

dy = y|tan
−1 x

y=0 = tan−1(x)

Now π/4 = tan−1(1), so it is more or less obvious that what we want to do is form a Taylor
series expansion of the integrand about u = 0. We write f(u) = 1/(1 + u2) and then

f(0) = 1

f ′(u) =
−2u

(1 + u2)2
so f ′(0) = 0

f (2) =
6u2 − 2

(u2 + 1)3
so f (2)(0) = −2

f (3) = −24u (u2 − 1)

(u2 + 1)4
so f (3)(0) = 0

f (4) =
24 (5u4 − 10u2 + 1)

(u2 + 1)5
so f (4)(0) = 24

f (5) = −240u (3u4 − 10u2 + 3)

(u2 + 1)6
so f (5)(0) = 0

f (6) =
720 (7u6 − 35u4 + 21u2 − 1)

(u2 + 1)7
so f (6)(0) = −720

(I actually used Mathematica to calculate the derivatives to avoid the tedium.) Then

π

4
=

∫ 1

0

du

1 + u2
=

∫ 1

0

[
1− 2

2!
u2 +

24

4!
u4 − 720

6!
u6 + · · ·

]
du

= 1− 2

2

1

3
+

24

24

1

5
− 720

720

1

7
+ · · · = 1− 1

3
+

1

5
− 1

7
+ · · ·



(2) See the Mathematica notebook. Here is the plot, with the second version made with
an smaller vertical scale.

-1.0 -0.5 0.5 1.0 1.5

-2

-1

1

Function

f0

f1

f2

f3

f4

-1.0 -0.5 0.5 1.0 1.5

-0.5

0.5

1.0

Function

f0

f1

f2

f3

f4

(3) Finding the radius r0 at which the potential is a minimum, means that we take the
derivative dU/dr and set it equal to zero. So,

dU

dr
=

2a

r2
− 2

b

r3
=

2

r2

[
a− b

r

]
= 0 so r0 =

b

a

Now if we Taylor expand U(r) about the minimum, the first term is a constant (which
does not affect the motion, since the force from it is zero) and the second term, which is
proportional to dU/dr at r = r0, is zero by construction. So, the first important term is the
quadratic term, which is what gives us the oscillatory motion. That is, we calculate

1

2

d2U

dr2

∣∣∣∣
r=r0

(r − r0)
2 =

1

2

[
−4a

r3
+

6b

r4

]
r=b/a

(r − r0)
2 =

1

2

[
−4a4

b3
+

6a4

b3

]
(r − r0)

2

=
1

2

2a4

b3
(r − r0)

2

In other words “k” is 2a4/b3 and the period of small oscillations is

T =
2π

ω
= 2π

√
m

k
= 2π

√
mb3

2a4

(4) This is pretty simple. We have

cos2
(x
2

)
=

(
ex/2 + e−x/2

2

)2

=
ex + 2 + e−x

4
=

1 + cos x

2

which immediately gives you (1.6g).



(5) This is a simple exercise, only trying to make the point about what “lag” means. Equa-
tion (2.16) is

x(t) = R cos(ωt+ ϕ)

The plots are (from the Mathematica notebook)
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The plot for ϕ = −π/4 lags behind the plot for ϕ = +π/4, by one quarter of a period,
or π/2 = 90◦. The term “phase lag” is often used in electrical engineering or mechanical
response, so sometimes the equation is written instead as x(t) = R cos(ωt − ϕ) so that the
phase lag is a positive quantity.



PHYS2502 Mathematical Physics Homework #4 Due 14 Feb 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A function y = y(x) obeys the second order linear differential equation

y′′ + f(x)y′ + g(x)y = 0

where f(x) and g(x) are arbitrary functions. Show that if y1(x) and y2(x) both solve the dif-
ferential equation, then the linear combination y3 = ay1(x)+ by2(x) also solves the equation,
where a and b are arbitrary constants. This is called the Principle of Superposition.

(2) Use the “integrating factor” approach to find the solution y(x) to the differential equation

dy

dx
− y = 2xe2x

subject to the boundary condition y(0) = 1. Do this by hand, but you are of course welcome
to check your answer with Mathematica, either by direct substitution or by using DSolve.

(3) Assume that a spherical raindrop evaporates at a rate proportional to its surface area.
If its radius is initially 3 mm, and one hour later its radius is 2 mm, find the radius of the
raindrop at any time t.

(4) Given the second order linear differential equation

x2
d2y

dx2
+ 2x

dy

dx
− 1 = 0 where x > 0

Find the general solution for the function y(x). (The general solution is a solution with two
arbitrary constants.) You can do this by first converting the equation to first order, and
then integrating the result. You can check your solution with Mathematica.

(5) Find the unique solution y(x) to the differential equation and boundary conditions

d2y

dx2
+
dy

dx
− 2y = 2x with y(0) = 0 and y′(0) = 1

You can do this by using the ansatz y(x) = eαx to find the general solution to the homo-
geneous equation, and then make a good guess to find a particular solution to the com-
plete equation. Given this, use the boundary conditions to find the two otherwise arbitrary
constants from the general solution. You’re of course welcome to check your answer with
Mathematica.
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(1) Just do the work and the solution falls out:

y′′3 + f(x)y′3 + g(x)y3 = [ay′′1 + by′′2 ] + f(x)[ay′1 + by′2] + g(x)[ay1 + by2]

= a[y′′1 + f(x)y′1 + g(x)y1] + b[y′′2 ++f(x)y′2 + g(x)y2]

= a[0] + b[0] = 0

(2) This equation has the form (3.6) in the text, namely

dy

dx
+ p(x)y = g(x) where p(x) = −1 and g(x) = 2xe2x

In this case, the integrating factor

µ(x) = exp

[∫
p(x) dx

]
= e−x

should render the differential equation exact. In fact

e−x dy

dx
− e−xy =

d

dx

[
e−xy

]
and integrating the left hand side becomes simple. Using integration by parts on the right,∫

2xex dx = 2xex − 2

∫
ex dx = 2(x− 1)ex

Therefore, the general solution is

e−xy = 2(x− 1)ex + C or y = 2(x− 1)e2x + Cex

Now y = 1 when x = 0, so

1 = −2 + C so C = 3 and y = 2(x− 1)e2x + 3ex

It is simple to use Mathematica to confirm that this is the correct answer, either by just
substituting this expression into the given differential equation, or by using DSolve to solve
the differential equation directly.



(3) The volume of the raindrop is V = 4πr3/3 where r is the radius of the raindrop. The
surface area of the raindrop is A = 4πr2, so we are told that

dV

dr
= kA

where k is a proportionality constant. This reduces to the differential equation

4πr2
dr

dt
= k4πr2 or

dr

dt
= k so r(t) = kt+ a

We can determine k and a from the information given. r = 3 mm when t = 0, and r = 2 mm
when t = 1 hour, so a = 3 mm and

2 = k · 1 + 3 so k = −1 and r(t) = 3− t

where the radius is in mm and time is in hours. The raindrop disappears after three hours.

(4) If we write v = dy/dx and do a little rearranging, the equation becomes

x2
dv

dx
+ 2xv = 1

which can be further rearranged and use the integrating factor approach. However, since

d

dx
(x2v) = x2

dv

dx
+ 2xv

the left side is already exact! This makes the solution simple, namely

x2v = x+ C1 so v =
dy

dx
=
x+ C1

x2
=

1

x
+
C1

x2

We get the final solution by integrating again, namely

y = log(x)− C1

x
+ C2

It is easy to insert this into the differential equation to confirm that it is a solution, either
with Mathematica or by hand.



(5) For the homogeneous solution yh(x), we need to solve the equation

d2yh
dx2

+
dyh
dx

− 2yh = 0

Using the suggestion yh(x) = eαx leads to

(α2 + α− 2)eαx = 0 so (α− 1)(α + 2) = 0

which means we have two solutions, namely ex and e−2x. The equation is linear, so we apply
superposition and write

yh(x) = C1e
x + C2e

−2x

For the particular solution, if we choose yp(x) = ax+ b, then we should find values for a and
b from the equation, since the second derivative is zero and all that is left is proportional to
x. We find

0 + a− 2(ax+ b) = (a− 2b)− 2ax = 2x

in which case a = −1 = 2b. Putting this together, the general solution is

y(x) = yh(x) + yp(x) = C1e
x + C2e

−2x − x− 1

2

which has the derivative
y′(x) = C1e

x − 2C2e
−2x − 1

Now y(0) = 0 gives C1 + C2 − 1/2 = 0 and C1 − 2C2 − 1 = 1, that is

C1 + C2 =
1

2
and C1 − 2C2 = 2

Subtracting the second equation from the first gives 3C2 = −3/2 so C2 = −1/2. Then
C1 = 1/2− C2 = 1 and

y(x) = ex − 1

2
e−2x − x− 1

2

Direct substitution with Mathematica confirms that this is the solution.



PHYS2502 Mathematical Physics Homework #5 Due 21 Feb 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A mass m moves in one dimension x(t) connected to a spring with stiffness k, and is
driven by a force term F = ma cosωt where a and ω are constants. Write down and solve the
differential equation for x(t) in terms of ω2

0 ≡ k/m for the initial conditions x(0) = ẋ(0) = 0.
Use a trigonometric identity to cast your solution in the form of a single product of sines.
Write ω0 − ω = ϵ with |ϵ| ≪ ω0, and describe the motion for short times t ≪ 1/|ϵ| (but
t≫ 1/ω0) and long times t≫ 1/|ϵ|.

(2) An mechanical oscillator has position x(t) governed by the equations

ẍ(t) + 2ẋ(t) + 5x(t) = e−t cos(3t) x(0) = 0 ẋ(0) = 0

Find the motion x(t) and plot it for 0 ≤ t ≤ 2π. (You can use Mathematica to handle the
algebra, if you like, but I want you to solve the differential equation by hand.)

(3) The diagram below is of an electrical circuit with a resistor R, capacitor C, inductor L,
and an AC voltage source V (t) connected in series:

The voltage drop across the capacitor is q/C where q(t) is the charge on the capacitor, the
voltage drop across the resistor is iR where i = dq/dt is the current in the circuit, and the
voltage drop across the inductor is Ldi/dt. Kirchoff’s Law says that the sum of all voltage
drops around a closed path must be zero. If V (t) = −V0 cos(ωt), then find q(t) assuming
that q(0) = 0 and i(0) = 0. You are welcome to quote directly from the solution we derived
in class for the driven mechanical oscillator.

(4) Find the general solution y(x) for the differential equation y′′(x) = y using the series
solution approach, about x = 0, written as a linear combination of two separate infinite
series. Show that that two series are in fact those for cosh(x) and sinh(x).

(5) Find a series solution for y(x) about x = 0 for the differential equation

y′′ − 2xy′ + λy = 0

in terms of two independent series solutions y0(x) and y1(x). For what values of λ is the
solution a polynomial? Find the polynomial solution for λ = 4.
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(1) The differential equation is given by Newton’s Second Law, that is

−kx+ F = mẍ nor
d2x

dt2
+ ω2

0x = a cosωt

Write the solution to the homogeneous equation as xh(t) = c1 cosω0t+ c2 sinω0t. A more or
less obvious form for the particular solution is

xp(t) = A cosωt so − ω2A cosωt+ ω2
0A cosωt = a cosωt and A =

a

ω2
0 − ω2

Putting these together, the general solution is

x(t) = xh(t) + xp(t) = c1 cosω0t+ c2 sinω0t+
a

ω2
0 − ω2

cosωt

Now apply the boundary conditions, namely

x(0) = c1 +
a

ω2
0 − ω2

= 0 and ẋ(0) = ω0c2 = 0

which give c1 = −a/(ω2
0 − ω2) and c2 = 0, and finally

x(t) =
a

ω2
0 − ω2

(cosωt− cosω0t)

Now it’s easy to derive that

cos(α− β)− cos(α + β) = 2 sinα sin β

so putting α− β = ωt and α + β = ω0t gives α = (ω0 + ω)t/2 and β = (ω0 − ω)t/2 and

x(t) =
2a

ω2
0 − ω2

sin

[
(ω0 + ω)t

2

]
sin

[
(ω0 − ω)t

2

]
≈ 2a

ω2
0 − ω2

sin(ω0t) sin
( ϵ
2
t
)

At short times, this oscillates with frequency ω0 but with an amplitude that grows linear
with time. At long times, the oscillations follow a beat pattern.

(2) First tackle the homogenous equation. Using the ansatz x = eαt we find

α2 + 2α + 5 = 0 so α =
−2±

√
4− 20

2
= −1± 2i

and we can write the homogenous solution as

xh(t) = e−t[c1 cos(2t) + c2 sin(2t)]

For the particular solution, we can try xp(t) = ae−t cos(3t) + be−t sin(3t) and find values of
a and b that give us a solution. We need to calculate

ẋ(t) = −ae−t cos(3t)− 3ae−t sin(3t)− be−t sin(3t) + 3be−t cos(3t)

= −(a− 3b)e−t cos(3t)− (3a+ b)e−t sin(3t)

ẍ(t) = (a− 3b)e−t cos(3t) + (3a− 9b)e−t sin(3t) + (3a+ b)e−t sin(3t)− (9a+ 3b)e−t cos(3t)

= (−8a− 6b)e−t cos(3t) + (6a− 8b)e−t sin(3t)



Now insert this into the differential equation. The factor e−t cancels through and we get

(−8a−6b−2a+6b+5a) cos(3t)+(6a−8b−6a−2b+5b) sin(3t) = −5a cos(3t)−5b sin(3t) = cos(3t)

Therefore a = −1/5 and b = 0 so the general solution is

x(t) = e−t[c1 cos(2t) + c2 sin(2t)]−
1

5
e−t cos(3t)

See the Mathematica notebook for confirmation that this is the correct solution. Applying
the initial conditions, x(0) = c1 − 1/5 = 0 so c1 = 1/5. The derivative is

ẋ(t) = −e−t[c1 cos(2t)+c2 sin(2t)]+e
−t[−2c1 sin(2t)+2c2 cos(2t)]+

1

5
e−t cos(3t)− 1

5
e−t sin(3t)

so ẋ(0) = −c1 + 2c2 + 1/5 = 2c2 = 0, so c2 = 0 and the full solution and plot are

x(t) =
1

5
e−t cos(2t)− 1

5
e−t cos(3t)

1 2 3 4 5 6

-0.04

-0.02

0.02

0.04

0.06

(3) The series LCR circuit is an electric oscillator, in complete analogy with the driven
mechanical oscillator. This is easy to see just by applying Kirchoff’s Law to the voltage drop
in terms of q(t), i = q̇(t), and di/dt = q̈(t):

V (t) + iR +
q

C
+ L

di

dt
= 0 so q̈(t) +

R

L
q̇(t) +

1

LC
q(t) =

V0
L

cosωt

Defining 2β = R/L, ω2
0 = 1/LC, and γ = V0/L, we get the same differential equation for

q(t) as (3.11) for x(t). All results on the resonant behavior for the circuit follow from here.

This is a nice experiment for the undergraduate instructional laboratory. The amplitude
and phase of q(t) can easily be measured as a function of ω by hanging oscilloscope leads
across the capacitor.

(4) We proceed in standard fashion. There are no tricks or pitfalls with this particular
differential equation.

y(x) =
∞∑
n=0

anx
n

y′′(x) =
∞∑
n=0

n(n− 1)anx
n−2 =

∞∑
n=2

n(n− 1)anx
n−2

=
∞∑

m=0

(m+ 2)(m+ 1)am+2x
m =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

y′′ − y =
∞∑

n=−

[(n+ 2)(n+ 1)an+2 − an]x
n = 0



Therefore, the recursion relation is an+2 = an/(n+2)(n+1). If we choose a0 = a and a1 = 0,
we get

a2 =
1

2 · 1
a a4 =

1

4 · 3
a2 =

1

4!
a so an =

1

n!
a

for even n. On the other hand, if we take a0 = 0 and a1 = b, then we get

a3 =
1

3 · 2
b a5 =

1

5 · 4
a3 =

1

5!
b so an =

1

n!
b

for odd n. The general solution therefore has the form

y(x) = a

[
1 +

1

2!
x2 +

1

4!
x4 + · · ·

]
+ b

[
x+

1

3!
x3 +

1

5!
x5 + · · ·

]
Since d(coshx)/dx = sinh x and d(sinhx)/dx = cosh x, and cosh(0) = 1 and sinh(0) = 0,
the Taylor series for these functions look just like the exponential functions but with only
the even (cosh) or odd (sinh) terms. That is

y(x) = a coshx+ b sinhx

(5) We start in the standard way and write

y(x) =
∞∑
n=0

a0x
n

and substitute into the differential equation. This gives

∞∑
n=0

{
n(n− 1)anx

n−2 − 2nanx
n + λanx

n
}
=

∞∑
n=0

{[(n+ 2)(n+ 1)an+2 − 2nan + λan]x
n} = 0

which gives the recursion relation

an+2 =
2n− λ

(n+ 2)(n+ 1)
an

To find y0(x), put a1 = 0 in which case the only nonzero terms are even powers of x. With
a0 = 1 you find

y0(x) = 1− 1

2
λx2 − λ(4− λ)

4 · 3 · 2
x4 + · · ·

For a0 = 0 you only get odd powers, and with a1 = 1 you get

y1(x) = x+
2− λ

3 · 2
x3 +

(2− λ)(6− λ)

5 · 4 · 3 · 2
x5 + · · ·

It is clear that whenever λ is an even integer, for some value of n we will have λ = 2n and
the series will terminate. Indeed, for λ = 4, the (finite length) polynomial is the solution
y0(x) with highest power n = 2, namely

y
(λ=4)
0 (x) = 1− 2x2



PHYS2502 Mathematical Physics Homework #6 Due 28 Feb 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Starting from the infinite power series expression for the Bessel function Jm(x), where
m is an integer, prove that

d

dx
[xmJm(x)] = xmJm−1(x)

(2) Prove that the Legendre polynomials are “orthogonal”, that is
∫ 1

−1
Pℓ(x)Pm(x) dx = 0 if

ℓ ̸= m. You can do this by writing down the differential equation for Pℓ(x) and multiplying
through by Pm(x). Then create a second equation by reversing the indices, subtract the two
equations and then integrate.

(3) It is possible to prove that
∫ 1

−1
Pℓ(x)Pℓ(x) dx = 2/(2ℓ+1). (But we won’t try to do that

now.) Use this, along with the orthogonality of Legendre polynomials, to find an expression
for the coefficients an in the expansion

f(x) =
∞∑

m=0

amPm(x)

where f(x) is defined for −1 ≤ x ≤ 1. You can do this by multiplying both sides of this
expression by Pℓ(x) and integrating. Now use this find the first few nonzero coefficients for
f(x) = sin(πx) and make a plot of the expansion compared to f(x). (Doing the integrals
and making the plots is much easier in Mathematica than by hand.)

(4) Two identical mass hang vertically under their own weight from two
identical springs from a fixed point on the ceiling, as shown in the figure on
the right. Find the two normal frequencies and describe the amplitudes of the
two normal modes.

(5) Three identical capacitors C are connected to two identical
inductors L as shown in the figure below. Find two coupled differential
equations for q1(t) and q2(t) and find the normal mode frequencies.
Analyze the problem by equating the potential differences for legs 1, 2,
and 3 between nodes A and B. Use the sign convention shown for the
currents in each of the three legs which implies that i1 + i2 + i3 = 0.
You can assume the charges are all zero when the currents are all zero.
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(1) Just follow along from the series expansion for the Bessel function:

d

dx
[xmJm(x)] =

d

dx

[
xm

∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)m+2k
]

=
d

dx

[
2m
(x
2

)m ∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)m+2k
]
=

d

dx

[
2m

∞∑
k=0

(−1)k

k!(m+ k)!

(x
2

)2m+2k
]

= 2m
∞∑
k=0

(−1)k

k!(m+ k)!
(2m+ 2k)

(x
2

)2m+2k−1 1

2

= 2m
∞∑
k=0

(−1)k

k!(m+ k − 1)!

(x
2

)2m+2k−1

=
∞∑
k=0

(−1)k

k!(m− 1 + k)!
xm
(x
2

)m−1+2k

= xmJm−1(x)

(2) Just follow the instructions:

(1− x2)Pm
d2Pℓ

dx2
− 2xPm

dPℓ

dx
+ ℓ(ℓ+ 1)Pℓ(x)Pm(x) = 0

(1− x2)Pℓ
d2Pm

dx2
− 2xPℓ

dPm

dx
+m(m+ 1)Pℓ(x)Pm = 0

Before subtracting these two equations, realize that

(1− x2)Pm
d2Pℓ

dx2
− 2xPm

dPℓ

dx
=

d

dx

{
(1− x2)Pm

dPℓ

dx

}
− (1− x2)

dPm

dx

dPℓ

dx

The second term is symmetric between ℓ and m so

d

dx

{
(1− x2)

[
Pm

dPℓ

dx
− Pℓ

dPm

dx

]}
+ [ℓ(ℓ+ 1)−m(m+ 1)]Pℓ(x)Pm(x) = 0

When you integrate from −1 to +1, the first term is zero because 1−x2 is zero at both ends.
With ℓ ̸= m, the factor in front of the second term is nonzero, and this leaves you with the
orthogonality integral.



(3) Doing as we are told, we find∫ 1

−1

f(x)Pℓ(x) dx =
∞∑

m=0

am

∫ 1

−1

Pℓ(x)Pm(x) dx

If ℓ ̸= m, then the relevant terms in the sum on the right side are all zero. If ℓ = m, however,
the only surviving term in the sum is 2aℓ/(2ℓ+ 1). Therefore

aℓ =
2ℓ+ 1

2

∫ 1

−1

f(x)Pℓ(x) dx

Since f(x) is odd, and the Pℓ(x) are even (odd) for ℓ even (odd), the only nonzero a)ℓ are
for odd ℓ. The calculation is done in the accompanying Mathematica notebook, and the
plot for only terms ℓ = 1, 3 is the following:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Sin(πx)

Approximation

Using more terms makes it hard to see the difference between f(x) and the approximation.

(4) Label the bottom mass #1 and the top mass #2, and let y1 and y2 measure the vertical
displacements of the masses from their equilibrium positions. (The gravitational force on
each mass just moves the equilibrium position downward, so we can ignore it.) The force on
mass #1 is F1 = −k(y1 − y2) and the force on mass #2 is F2 = −k(y2 − y1)− ky2, so

mÿ1 = F1 = −ky1 + ky2 and mÿ2 = F2 = ky1 − 2ky2

Now define ω2
0 ≡ k/m and use y1 = a1e

iωt and y2 = a2e
iωt to get

(ω2 − ω2
0)a1 + ω2

0a2 = 0 and ω2
0a1 + (ω2 − 2ω2

0)a2 = 0

To avoid trivial solutions for a1 and a2 we must have

(ω2 − ω2
0)(ω

2 − 2ω2
0)− ω4

0 = ω4 − 3ω2
0ω

2 + ω4
0 = 0

Solving for ω2 gives the normal mode frequencies

ω2 =
3ω2

0 ±
√

9ω4
0 − 4ω4

0

2
=

3±
√
5

2
ω2
0



Use the equations above to determine the ratios of the amplitudes in each of the normal
modes. For ω2 = [(3 +

√
5)/2]ω2

0, we find

a2
a1

= −ω
2 − ω2

0

ω2
0

= −3 +
√
5

2
+ 1 = −

√
5 + 1

2
< 0

and the two masses oscillate against each other, with the amplitude of the top mass about
1.6 times the amplitude of the bottom mass. For ω2 = [(3−

√
5)/2]ω2

0, we find

a2
a1

= −ω
2 − ω2

0

ω2
0

= −3−
√
5

2
+ 1 =

√
5− 1

2
> 0

and the two masses oscillate in phase, with the amplitude of the top mass about 0.6 times
the amplitude of the bottom mass.

(5) Integrating i1 + i2 + i3 = 0 gives q1 + q2 + q3 = 0. Equating the potential differences
along the three legs,

q1
C

+ L
di1
dt

=
q3
C

= −q1
C

− q2
C

and
q2
C

+ L
di2
dt

=
q3
C

= −q1
C

− q2
C

Now use i1 = q̇1, i2 = q̇2, divide through by L, and definie ω2
0 = 1/LC to get

q̈1 + 2ω2
0q1 + ω2

0q2 = 0

q̈2 + ω2
0q1 + 2ω2

0q2 = 0

These are similar, but not identical, to (3.36). Nevertheless, approach the problem the same
way and insert the ansatz q1(t) = q01e

iωt and q2(t) = q02e
iωt to get

(2ω2
0 − ω2)q01 + ω2

0q
0
2 = 0

ω2
0q

0
1 + (2ω2

0 − ω2)q02 = 0

This means we solve for ω in (2ω2
0 − ω2)2 − ω4

0 = 0 for ω, that is

ω2 − 2ω2
0 = ±ω2

0 so ω2 = 2ω2
0 ± ω2

0 = ω2
0, 3ω

2
0

These are the same two normal mode frequencies as for the mechanical oscillator we covered
in class.



PHYS2502 Mathematical Physics Homework #7 Due 14 Mar 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Find the equation of a plane which contains the point (x, y, z) = (1,−2, 5) and which is
perpendicular to a vector pointing from the origin into the first quadrant and which makes
equal angles with the x, y, and z axes. Write your equation in the form Ax+By+Cz = D,
where A, B, C, and D have numerical values.

(2) A line in space passes through the origin and is at an angle of 45◦ with respect to the
positive z-axis and is at equal angles with respect to the positive x- and y-axes. Find the
coordinates of the intersection point of this line with the plane in Problem (1) above.

(3) For spatial vectors A⃗, B⃗, C⃗, and D⃗, prove that

(A⃗× B⃗) · (C⃗ × D⃗) = (A⃗ · C⃗)(B⃗ · D⃗)− (A⃗ · D⃗)(B⃗ · C⃗)

I think the easiest way to do this is to write the vectors in terms of their components and
make use of the Kronecker δ and the Levi-Civita symbol, and their properties.

(4) Use the result from Problem (3) to find an expression for |A⃗ × B⃗|2 in terms of the

magnitudes of A⃗ and B⃗ and their dot products. Explicitly show that this is the same as the
geometric definition of the magnitude of the cross product.

(5) For a particle of mass m moving in a plane located at position r⃗(t), find an expression
for the kinetic energy

K =
1

2
m

(
dr⃗

dt

)2

in terms of plane polar coordinates r and ϕ. Do this explicitly by writing r⃗ first in terms of
Cartesian coordinates x and y, convert to polar coordinates, and then take derivatives.
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(1) The normal vector is n̂ = (x̂+ ŷ + ẑ)/
√
3. For r⃗0 = x̂− 2ŷ + 5ẑ, the plane is

(r⃗ − r⃗0) · n̂ = [(x− 1) + (y + 2) + (z − 5)]
1√
3
= 0 or x+ y + z = 4

(2) Let the unit vector pointing in the direction of the line be m̂ = mxx̂+myŷ+mz ẑ. Then the
equation of the line is r⃗ = m̂t, where t is any real number. Now mz = m̂ · ẑ = cosπ/4 = 1

√
2,

and mx = my where both are positive. Since m2
x +m2

y +m2
z = 2m2

x + 1/2 = 1, we find that

mx = 1/2 = my and the line is x = t/2, y = t/2, and z = t/
√
2. Inserting into the equation

for the plane, t(1/2 + 1/2 + 1/
√
2) = t(1 + 1/

√
2)/2 = 4 so t = 8

√
2/(1 +

√
2) and so

r⃗ =
4
√
2

1 +
√
2
x̂+

4
√
2

1 +
√
2
ŷ +

8

1 +
√
2
ẑ

(3) This is pretty straightforward:

(A⃗× B⃗) · (C⃗ × D⃗) = ϵijkAjBkϵimnCmDn = (δjmδkn − δjnδkm)AjBkCmDn

= AjBkCjDk − AjBkCkDj = AjCjBkDk − AjDjBkCk

= (A⃗ · C⃗)(B⃗ · D⃗)− (A⃗ · D⃗)(B⃗ · C⃗)

(4) This is also pretty straightforward:

|A⃗×B⃗|2 = (A⃗·A⃗)(B⃗·B⃗)−(A⃗·B⃗)(B⃗·A⃗) = A2B2−(AB cosψ)2 = A2B2(1−cos2 ψ) = A2B2 sin2 ψ

(5) In Cartesian coordinates, ˙⃗r = ẋî+ ẏĵ, so K = ṁ⃗r2/2 = m(ẋ2 + ẏ2)/2. Now

ẋ = cosϕ ṙ − r sinϕ ϕ̇ and ẏ = sinϕ ṙ + r cosϕ ϕ̇

The rest is just algebra:

K =
1

2
ṁ⃗r2 =

1

2
m
[
(cosϕ ṙ − r sinϕ ϕ̇)2 + (sinϕ ṙ + r cosϕ ϕ̇)2

]
=

1

2
m
[
cos2 ϕ ṙ2 − 2r cosϕ sinϕ ṙϕ̇+ r2 sin2 ϕ ϕ̇2

+sin2 ϕ ṙ2 + 2r sinϕ cosϕ ṙϕ̇+ r2 cos2 ϕ ϕ̇2
]

=
1

2
m(ṙ2 + r2ϕ̇2)



PHYS2502 Mathematical Physics Homework #8 Due 21 Mar 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Prove the “chain rule” for the divergence operator, namely for a scalar field f(r⃗) and a

vector field A⃗(r⃗),

∇⃗ · (fA⃗) = ∇⃗f · A⃗+ f ∇⃗ · A⃗

(2) The time-dependent Schrödinger Equation in three dimensions is

− ℏ2

2m
∇⃗2ψ(r⃗, t) + V (r⃗)ψ(r⃗, t) = iℏ

∂ψ

∂t

where V (r⃗) is a potential energy function and ψ(r⃗, t) is called the “wave function.” Show
that this equation implies that ρ(r⃗, t) = ψ∗ψ is a conserved density if its current density is

given by j(r⃗, t) = ℏ Im(ψ∗∇⃗ψ)/m.

(3) A magnetic field B⃗(r, ϕ) = ϕ̂ B0 (r/a)
2 cos2 ϕ where r and ϕ are the polar coordinates

in the (x, y) plane, and B0 is a constant. Find the total enclosed current passing through
a circle of radius a in the (x, y) plane.centered at the origin. Do the necessary line integral
directly, and compare to the result you get using Stokes’ Theorem.

(4) An electric field E⃗(r, θ, ϕ) = r̂ E0 (r/a) cos
2 θ where r, θ, and and ϕ are the usual spherical

coordinates, and E0 is a constant. Find the total enclosed charge contained in a sphere of
radius a centered at the origin. Do the necessary surface integral directly, and compare to
the result you get using Gauss’ Theorem.

(5) Find the solutions u(x, y) to the partial differential equation

x
∂u

∂x
− 2y

∂u

∂y
= 0

separately for each of the following two boundary conditions:

(a) u(x, y) = 2y + 1 along the line x = 1

(b) u(1, 1) = 4, that is, a single point.

You may want to start by looking for a solution u(x, y) = f(p) where p = p(x, y). One way
to do this (other than just guessing outright) is to relate the given differential equation to
dp = 0. That is, the differential equation should be satisfied if dp = 0 as x and y change.
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(1) It is easiest to do this with Cartesian coordinates, making use of the summation notation:

∇⃗ · (fA⃗) = ∂

∂xi
(f Ai) =

∂f

∂xi
Ai + f

∂Ai

∂xi
= ∇⃗f · A⃗+ f ∇⃗ · A⃗

(2) Multiply the Schrödinger Equation through by ψ∗. Next, take the complex conjugate.
of the Schrödinger Equation and multiply through by ψ:

− ℏ2

2m
ψ∗∇⃗2ψ + V (r⃗)ψ∗ψ = iℏψ∗∂ψ

∂t

− ℏ2

2m
ψ∇⃗2ψ∗ + V (r⃗)ψ∗ψ = −iℏψ∂ψ

∗

∂t

Now subtract these two equations. Note that the potential energy term cancels due to the
fact that V (r⃗) is a real number. You get

− ℏ2

2m

[
ψ∗∇⃗2ψ − ψ∇⃗2ψ∗

]
= iℏ

[
ψ∗∂ψ

∂t
+ ψ

∂ψ∗

∂t

]
= iℏ

∂

∂t
(ψ∗ψ) = iℏ

∂ρ

∂t

For the left side, make use of Problem (1) to get

∇⃗ · (ψ∗∇⃗ψ − ψ∇⃗ψ∗) = ∇⃗ψ∗ · ∇⃗ψ + ψ∗∇⃗2ψ − ∇⃗ψ · ∇⃗ψ∗ − ψ∇⃗2ψ∗ = ψ∗∇⃗2ψ − ψ∇⃗2ψ∗

The difference between complex conjugates is just twice the imaginary part times i, so

ψ∗∇⃗ψ − ψ∇⃗ψ∗ = 2i Im(ψ∗∇⃗ψ)

Our subtracted Schrödinger Equations then become

− ℏ2

2m
∇⃗ ·
[
2i Im(ψ∗∇⃗ψ)

]
= iℏ

∂ρ

∂t
or

∂ρ

∂t
+ ∇⃗ · j⃗ = 0 where j⃗ =

ℏ
m
Im(ψ∗∇⃗ψ)

(3) The total enclosed current comes from Ampere’s Law, namely (in CGS units)

Ienclosed =
c

4π

∮
C

B⃗ · dℓ⃗

In this case, with C being a circle of radius r = a centered at the origin, it is easiest to just
evaluate the line integral directly. Since we have dℓ⃗ = ϕ̂a dϕ, we write∮

C

B⃗ · dℓ⃗ =
∫ 2π

0

B0(1) cos
2 ϕ a dϕ =

1

2
B0a

∫ 2π

0

(1 + cos 2ϕ) dϕ = πB0a

which gives Ienclosed = cB0a/4, We can also do the integral with Stokes’ Theorem, that is∮
C

B⃗ · dℓ⃗ =

∫
(∇⃗ × B⃗) · dS⃗ =

∫
S

(
k̂
1

r

∂[rBϕ]

∂r

)
· k̂ dS

=

∫ a

0

∫ 2π

0

r dr dϕ
1

r

∂

∂r

[
rB0

(r
a

)2
cos2 ϕ

]
= 3πB0

1

a2

∫ a

0

r2 dr = πB0a



(4) The total enclosed charge Q is from Gauss’ Law, and the surface integral can be done

directly. The electric field has only a r̂ component and dS⃗ = r̂ dS, so

Qenclosed =
1

4π

∮
S

E⃗ · dS⃗ =
1

4π

∮
S

E0
a

a
cos2 θ dS =

E0

4π

∫ 2π

0

∫ π

0

cos2 θ a2 sin θ dθ dϕ

=
E0

4π
a2 2π

∫ 1

−1

µ2 dµ =
1

3
E0a

2

where I made the substitutions µ = cos θ with dµ = − sin θ dθ. To do the integral with
Gauss’ Theorem, we have

Qenclosed =
1

4π

∮
S

E⃗ · dS⃗ =
1

4π

∫
V

∇⃗ · E⃗ dV =
1

4π

∫
V

1

r2
∂

∂r

[
r2E0

r

a
cos2 θ

]
=

E0

4π

∫ 2π

0

dϕ

∫ π

0

sin θ dθ

∫ a

0

r2 dr
1

r2
3r2

1

a
cos2 θ

=
E0

4π
2π

∫ 1

−1

µ2 dµ

∫ a

0

r2 dr
3

a
=
E0

2

3

a

2

3

a3

3
=

1

3
E0a

2

(5) We start by realizing that

∂u

∂x
=
df

dp

∂p

∂x
and

∂u

∂y
=
df

dp

∂p

∂y

In this case, our differential equation becomes

x
df

dp

∂p

∂x
− 2y

∂u

∂y
=
df

dp

∂p

∂y
=

[
x
∂p

∂x
− 2y

∂p

∂y

]
df

dp
= 0

If we set the expression in square brackets to be zero, and compare this to

dp =
∂p

∂x
dx+

∂p

∂y
dy = 0

we see that the two expression become the same if

∂p/∂x

∂p/∂y
=

2y

x
= −dy

dx
or

2

x
dx = −1

y
dy

Integrating this gives 2 log x = − log y − log c or log(cx2y) = 0 where c is a constant. In
other words, if p = x2y remains constant as x and y vary, then u(x, y) = f(p) = f(x2y) is
a solution to the original differential equation. (You actually might have gotten there by
guessing from inspection.)

Now for boundary condition (a), we need f(x2y) = 2y + 1 when x = 1, so

u(x, y) = 2(x2y) + 1 = 2x2y + 1

Boundary condition (b) is defined at just one point, and not along a line, so the answer might
be more flexible. Indeed, u(x, y) = 4x2y is one solution, but so is u(x, y) = 3x2y + 1. For
that matter, u(x, y) = 4 also works. In fact, any solution of the form u(x, y) = 4 + g(x2y),
where g(p) is only constrained by g(1) = 0, fills the bill.
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PHYS2502 Mathematical Physics Homework #9 Due 28 Mar 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A string with fixed ends at x = 0 and x = L has a mass density µ per unit length and is
under tension T . Find the vertical motion u(x, t) of the shape of the string if it is initially
flat, that is u(x, 0) = 0, but has an initial vertical velocity profile u̇(x, 0) = V sin(3πx/L).

(2) A string with fixed ends at x = 0 and x = L has an initial shape give by

Use a Fourier decomposition to find the shape of the string as a function of time, using
enough terms in the expansion so that the true shape is clear. Plot the shape at various
times within one fundamental period (or make an animation).

(3) A string with fixed ends at x = 0 and x = L has a total mass M and is under tension
T . Assume the string is vibrating in normal mode n. Integrate over the length of the string
to find its total kinetic energy as a function of time. You can assume the solution for the
string motion where it is initially at rest, and express your result in terms of the Fourier
coefficients Bn in (5.12).

(4) Find the Fourier Transform A(k) of a pulse f(x) = C(x2 − a2)2, where C is a constant,
for −a ≤ x ≤ a and f(x) = 0 for |x| > a. Plot f(x) and A(k) and briefly compare them.
Find the RMS width of f(x) and of A(k), and show that their product is independent of a.

(5) Use the generalized definition of the δ-function to show that

δ(x) = lim
n→∞

n√
π
e−n2x2



PHY2502 Mathematical Physics Homework #9 Solutions

(1) The general approach using separation of variables gives

u(x, t) =
∞∑
n=1

Bn sin
(nπx
L

)[
Cn cos

(
nπvt

L

)
+Dn sin

(
nπvt

L

)]
which satisfies u(0, t) = 0 = u(L, t) by design. The “flat” initial shape means that

u(x, 0) =
∞∑
n=1

CnBn sin
(nπx
L

)
= 0

which implies that Cn = 0 for all n. Defining An = BnDn we have

u(x, t) =
∞∑
n=1

An sin
(nπx
L

)
sin

(
nπvt

L

)
The vertical velocity of the string is therefore

u̇(x, t) =
∂u

∂t
=

∞∑
n=1

nπv

L
An sin

(nπx
L

)
cos

(
nπvt

L

)
The initial vertical velocity of the string is

u̇(x, 0) =
∞∑
n=1

nπv

L
An sin

(nπx
L

)
= V sin

(
3πx

L

)
We don’t need to do any fancy Fourier analysis to find the An in this case, because it is
obvious that An = 0 except for n = 3, in which case An = LV/3πv. Therefore the complete
solution is

u(x, t) =
LV

3πv
sin

(
3πx

L

)
sin

(
3πvt

L

)

(2) See the accompanying Mathematica notebook.



(3) This problem is, more or less, an illustration of Parseval’s Theorem.

K =

∫ L

0

1

2
µ dx

(
∂u

∂t

)2

=

∫ L

0

1

2
µ dx

[
∞∑
n=1

Bn sin
(nπx
L

) nπv
L

sin

(
nπvt

L

)][ ∞∑
m=1

Bm sin
(mπx

L

) nπv
L

sin

(
mπvt

L

)]

=
∞∑
n=1

∞∑
m=1

1

2
BnBm µ

(πv
L

)2
mn

[∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx

]
sin

(
nπvt

L

)
sin

(
mπvt

L

)
=

∞∑
n=1

∞∑
m=1

1

2
BnBm µ

(πv
L

)2
mn

[
L

2
δmn

]
sin

(
nπvt

L

)
sin

(
mπvt

L

)
=

1

4

∞∑
n=1

B2
nM

(nπv
L

)2
sin2

(
nπvt

L

)
where M = µL is the mass of the string. This agrees, essentially, with the result given in
Section 5.13 of Introduction to Vibrations and Waves by Rankin and Pain (2015).

(4) The Fourier Transform is (5.18), and f(−x) = f(x), so

A(k) =

∫ ∞

−∞
e−ikxf(x) dx =

∫ ∞

−∞
[cos(kx)− i sin(kx)]f(x) dx =

∫ ∞

−∞
cos(kx)f(x) dx

=

∫ a

−a

C(x2 − a2)2 cos(kx) dx =
16

k5
[(
3− a2k2

)
sin(ak)− 3ak cos(ak)

]
where I did the integral in Mathematica. The plots are (for a = 1 and C = 3)
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The width of the functions come from (5.20). We find

∆x =
a√
7

and ∆k =
2

a
so ∆x∆k =

2√
7
= 0.756 >

1

2

The widths are consistent with the plots, and the product is consistent with the “uncertainty
principle.”



(5) From (1.13), we see that for all values of n,∫ ∞

−∞
e−n2x2

dx =

√
π

n2
=

√
π

n
so

∫ ∞

−∞

n√
π
e−n2x2

dx = 1

so this function maintains unit area as n → ∞. Now for all finite values of x, the function
goes to zero as n → ∞ because the exponential falls more rapidly than n grows. However,
for x = 0, the function is infinite. This is all we need to call it a δ-function.



PHYS2502 Mathematical Physics Homework #10 Due 4 Apr 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Write out the three equations for x, y, and z represented by

AX = C where A =

 1 2 4
2 0 1
1 1 1

 X =

 x
y
z

 C =

 c1
c2
c3


and solve them for x, y, and z. Then determine the matrix A−1 by writing your answer as

X = A−1C. You might want to check your answer using Mathematica.

(2) Find the inverse matrix A−1 for the matrix A in Problem (1) by calculating the deter-
minant using an expansion in minors, and then forming the matrix of cofactors.

(3) Construct a 3 × 3 matrix that rotates a three-dimensional vector v through an angle θ
about the x-axis, combined with a reflection about the yz-plane, that is, takes x to −x. Pick
two specific examples for v and show that your matrix does what it is supposed to do.

(4) Prove that if AB = 0 for two matrices A and B, then the determinant of at least one of
them must be zero. Find an example, however, of two 3× 3 matrices that are each nonzero,
and in fact do not have any full rows or columns with all zeros, but whose product AB = 0.

(5) A Lorentz transformation tells you how to convert space and time between two reference
frames, call them the “primed” and “unprimed” frames, moving at a velocity v relative to
each other, in accordance with the framework of Special Relativity. For a reference frame
moving in the x-direction with respect to another frame, the Lorentz transformation is

x′ = γ(x− vt) and t′ = γ
(
t− vx

c2

)
where γ = 1/

√
1− β2 and β = v/c, with c being the speed of light. Then define a vector

x =

[
ct
x

]
(a) Show that the transformation maintains the value of s2 = (ct)2 − x2. (We say

that the Lorentz transformation maintains the norm of a vector with a “Minkowski metric,”
instead of a “Euclidean metric.”)

(b) Find the Lorentz transformation matrix Λ which takes you from the unprimed
frame to the primed frame, by acting on x.

(c) Write Λ in terms of a single parameter η which combines γ and β. Compare this
to a rotation matrix in two dimensions.

(d) Show that the inverse transformation Λ−1 corresponds to v → −v or, equivalently,
to the change η to −η.



PHY2502 Mathematical Physics Homework #10 Solutions

(1) The equations are

x+ 2y + 4z = c1

2x+ 0y + z = c2

x+ y + z = c3

The second equation says that z = c2 − 2x and if you subtract the third equation from the
first, you get y + 3z = c1 − c3, so y = c1 − c3 − 3z = c1 − 3c2 − c3 + 6x. Therefore

x+ y + z = x+ c1 − 3c2 − c3 + 6x+ c2 − 2x = c3 so x =
1

5
[−c1 + 2c2 + 2c3]

It follows that

y = c1 − 3c2 − c3 +
6

5
[−c1 + 2c2 + 2c3] =

1

5
[−c1 − 3c2 + 7c3]

and z = c2 −
2

5
[−c1 + 2c2 + 2c3] =

1

5
[2c1 + c2 − 4c3]

which can be written as  x
y
z

 =
1

5

 −1 2 2
−1 −3 7
2 1 −4

 c1
c2
c3


which agrees with what Mathematica tells me. I had to check, though, it’s easy to make
algebra errors and I made a few myself.

(2) First find the determinant by using minors across the first row:∣∣∣∣∣∣
1 2 4
2 0 1
1 1 1

∣∣∣∣∣∣ = 1

∣∣∣∣ 0 1
1 1

∣∣∣∣− 2

∣∣∣∣ 2 1
1 1

∣∣∣∣+ 4

∣∣∣∣ 2 0
1 1

∣∣∣∣ = 1(−1)− 2(1) + 4(2) = 5

Now we have to find the cofactor matrix C, where Cij equals (−1)i+j times the determinant
of the matrix left when we cross off row i and column j of A. Do these one-by-one:

C11 = (+)

∣∣∣∣ 0 1
1 1

∣∣∣∣ = −1 C12 = (−)

∣∣∣∣ 2 1
1 1

∣∣∣∣ = −1 C13 = (+)

∣∣∣∣ 2 0
1 1

∣∣∣∣ = +2

C21 = (−)

∣∣∣∣ 2 4
1 1

∣∣∣∣ = +2 C22 = (+)

∣∣∣∣ 1 4
1 1

∣∣∣∣ = −3 C23 = (−)

∣∣∣∣ 1 2
1 1

∣∣∣∣ = +1

C31 = (+)

∣∣∣∣ 2 4
0 1

∣∣∣∣ = +2 C32 = (−)

∣∣∣∣ 1 4
2 1

∣∣∣∣ = +7 C33 = (+)

∣∣∣∣ 1 2
2 0

∣∣∣∣ = −4

You can see at a glance that A−1 = CT/|A| by comparing with the result from Problem (1).



(3) For a counter clockwise rotation about the x-axis, we have to following to maintain a
right-handed coordinate system:

So, following what we did in class but with x→ y and y → z, and also including a reflection
x→ −x, we have

D =

 −1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Consider a vector v⃗ = îvx + ĵvy in the xy plane, and do a 90◦ rotation. You get

Dv = D =

 −1 0 0
0 0 1
0 1 0

 vx
vy
0

 =

 −vx
0
vy


This is just what you expect. The x-component reverses sign, and there is now a z-component
with the same value as the original y-component.

(4) Since |AB| = |A| |B| and |0| = 0, |A| |B| = 0 and of the determinants must be zero.
This can happen, of course, if matrix itself is nonzero. For example, the determinant of

A =

 1 0 −1
0 1 1
0 1 1


is clearly zero. If I construct a matrix of the form

B =

 b11 b12 b13
−b11 −b12 −b13
b11 b12 b13


Then the product will be zero, although B also has zero determinant. I haven’t tried very
hard, but I wonder if it is easy to find a matrix that gives a zero product but is not singular.



(5) The first part is straightforward. Just do the algebra.

s′
2

= (ct′)2 − x′
2

= c2γ2
(
t− vx

c2

)2
− γ2(x− vt)2

= c2γ2t2 − 2γ2tvx+ γ2v2x2/c2 − γ2x2 + 2γ2xvt− γ2v2t2

= c2γ2t2
(
1− v2

c2

)
− γ2x2

(
1− v2

c2

)
= (ct)2 − x2 = s2

The matrix Λ is simple to construct just by looking at the transformation equations:

ct′ = γct− γ
v

c
x = γct− γβx

x′ = −γ v
c
ct+ γx = −γβct+ γx

so Λ =

[
γ −γβ

−γβ γ

]
Observing that γ2−(γβ)2 = γ2(1−β2) = 1, it is possible to write γ = cosh η and γβ = sinh η.
In other words, the Lorentz transformation matrix becomes

Λ =

[
cosh η − sinh η

− sinh η cosh η

]
The similarity to a rotation in two dimensions is striking. Since v → −v means β → −β
means γβ → −γβ means η → −η, we have

ΛΛ−1 =

[
cosh η − sinh η

− sinh η cosh η

] [
cosh η sinh η
sinh η cosh η

]
=

[
cosh2 η − sinh2 η cosh η sinh η − cosh η sinh η

− cosh η sinh η + cosh η sinh η − sinh2 η + cosh2 η

]
=

[
1 0
0 1

]



PHYS2502 Mathematical Physics Homework #11 Due 11 Apr 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) A matrix A is unitary if Ã = A−1. Prove that the eigenvalues λ of a unitary matrix

must be of the form λ = eiϕ where ϕ is a real number. (We say that the eigenvalues are
“unimodular.”) Demonstrate this using the matrix

A =

[
i 0
0 −i

]
by showing that it is unitary and then finding its eigenvalues.

(2) Consider two Hermitian matrices A and B. Prove both of the following assertions:

(a) If A and B commute, that is if AB = BA, then the two matrices share a common
set of eigenvectors, albeit with (in principle) different eigenvalues. (You can assume that
there is a unique set of eigenvectors for any particular Hermitian matrix.)

(b) If A and B share a common set of eigenvectors, then they commute. (Remember
that any vector can be written as a linear combination of the eigenvectors of any particular
Hermitian matrix.)

This theorem is critically important for quantum mechanics and the concept of simultaneous
measurement.

(3) An “ellipsoid” is a three dimensional surface with three orthogonal symmetry axes, and
which appears as an ellipse when viewed along any one axis. Show that the surface described
by the points (x, y, z) that satisfy

5x2 + 11y2 + 5z2 − 10yz + 2xz − 10xy = 4

is an ellipsoid. Find the directions of the axes of symmetry. Also, determine the lengths of
the symmetry axes. (You are welcome to use Mathematica to help find the eigenvalues
and eigenvectors.)

(4) Find the four eigenfrequencies in terms of ω2
0 ≡ k/m, and describe the amplitudes for

the normal modes to which they correspond, for the four masses connected by five springs
on a frictionless horizontal surface, as shown below:

(5) For the system shown in Problem (4) above, find and plot the motions of each of
the four masses as function of time, when all masses start from rest, with initial positions
corresponding to each of the four normal modes. Most of the work for this problem is setting
it up correctly in Mathematica, identifying each eigenvector component with the correct
mass and frequency.



PHY2502 Mathematical Physics Homework #11 Solutions

(1) The eigenvalue equation is Ax = λx. This can be written in terms of the transpose

matrix and vector as xTAT = λxT, and then taking the complex conjugate to get x̃Ã = λ∗x̃.
Now multiply these two results together and find(

x̃Ã
) (
Ax
)
= x̃

(
ÃA
)
x = λ∗λ∗ x̃x or ⟨x|x⟩ = |λ|2⟨x|x⟩

since ÃA = I. Therefore |λ|2 = 1 which implies that λ = eiϕ. For the given matrix

ÃA =

[
−i 0
0 i

] [
i 0
0 −i

]
=

[
1 0
0 1

]
and the characteristic equation is (i− λ)(−i− λ) = 1 + λ2 = 0 so λ = ±i = eiπ/2, e3iπ/2.

(2) For (a), suppose that x is an eigenvector of A with eigenvalue λ, that is Ax = λx. Then

B (λx) = BAx = ABx = A
(
Bx
)

and B (λx) = λ
(
Bx
)

so A
(
Bx
)
= λ

(
Bx
)

which is just a statement that Bx is also an eigenvector of A. The eigenvectors of A are
unique, however, to within some scale factor. That is Bx = µx, which means that x is also
an eigenvector of B.

For (b), write x(i) for a particular simultaneous eigenvector of A and B where Ax(i) = λ(i)x(i)

and B x(i) = µ(i)x(i). Now write, for an arbitrary vector x,

x =
N∑
i=1

cix
(i)

and consider separately the actions of the matrices AB and BA on x:

AB x = AB
N∑
i=1

cix
(i) = A

N∑
i=1

ciB x(i) = A

N∑
i=1

ciµix
(i) =

N∑
i=1

ciµ
(i)Ax(i) =

N∑
i=1

ciµ
(i)λ(i)x(i)

BAx = BA
N∑
i=1

cix
(i) = B

N∑
i=1

ciAx
(i) = B

N∑
i=1

ciλ
(i)x(i) =

N∑
i=1

ciλ
(i)B x(i) =

N∑
i=1

ciλ
(i)µ(i)x(i)

These are the same result, since, of course, λ(i)µ(i) = µ(i)λ(i). Therefore, AB and BA are
the same since they give the same result when acting on an arbitrary vector.



(3) We need to diagonalize the symmetric matrix

A =

 5 −5 1
−5 11 −5
1 −5 5


This is simple to do withMathematica. (I tried writing out by hand, but I couldn’t see any
easy way to factorize the characteristic polynomial.) The eigenvalues are λ1 = 16, λ2 = 4,
and λ3 = 1, so in the new coordinate system, the surface is

16x′
2

+ 4y′
2

+ z′
2

= 4

which is indeed an ellipsoid. The directions are given by the corresponding eigenvectors,
namely

v1 =

 1
−2
1

 v2 =

 −1
0
1

 v3 =

 1
1
1


Setting x′ = 0 in the ellipsoid equation tells us that the ends are at z′±2 and y′ = ±1, while
the ends in the other direction are x′ = ±1/2, so the lengths of the axes are 4, 2, and 1.

(4) The setup for this problem is rather standard, giving the coupled equations of motion

mẍ1 = −kx1 + k(x2 − x1) = −2kx1 + kx2

mẍ2 = −k(x2 − x1) + k(x3 − x2) = kx1 − 2kx2 + kx3

mẍ3 = −k(x3 − x2) + k(x4 − x3) = kx2 − 2kx3 + kx4

mẍ4 = −k(x4 − x3)− kx4 = kx3 − 2kx4

Dividing through by m, inserting xi = aie
iωt and rearranging gives the eigenvalue problem

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



a1
a2
a3
a4

 = λ


a1
a2
a3
a4

 where λ =
ω2

ω2
0

This is doable by hand, but see the Mathematica notebook. You find λ(1) = (5 +
√
5)/2,

λ(2) = (3 +
√
5)/2, λ(3) = (5−

√
5)/2, and λ(4) = (3−

√
5)/2, and the eigenvectors

a(1) =


−1

1
2

(
1 +

√
5
)

−1
2

(
1 +

√
5
)
1

 a(2) =


1
1
2

(
1−

√
5
)

1
2

(
1−

√
5
)
1

 a(3) =


−1
1
2

(
1−

√
5
)

−1
2

(
1−

√
5
)
1

 a(4) =


1
1
2

(
1 +

√
5
)

1
2

(
1 +

√
5
)
1


Note that (1 +

√
5)/2 ≈ 1.6 > 1 and −1 < (1 −

√
5)/2 ≈ −0.6 < 0, so the first mode has

alternating signs with big amplitudes in the middle, the second mode is inners with small
amplitude in synch with each other and out of synch with the outers, the third has the outer
pairs in synch with each other with smaller amplitudes int he middle, and the fourth has all
in synch with each other and larger amplitudes in the middle.



(5) We have the problem all set up and the eigenvalues and eigenvectors all determined, so
use Mathematica to write the full solution out and apply the initial conditions. See the
Mathematica notebook. Here are the plots, sorted left to right by eigenvalue, that is, the
frequency of the normal mode:
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These are clearly single-frequency oscillations, and match up well with what we determined
for the eigenvalues and eigenvectors.



PHYS2502 Mathematical Physics Homework #12 Due 18 Apr 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) Two horizontal identical circular hoops, each having radius R, are coaxial and separated
vertically by a distance 2h. A continuous soap film is attached to the hoops and drapes
between them. Assuming that the surface tension of the film is proportional to its surface
area, and that the film is in equilibrium when the surface tension is minimized, find the
shape of the soap film. You can ignore the mass of the film, and you can leave your answer
in terms of a single undetermined constant.

(2) A point particle of mass m moves in space as a function of time, following the position
vector r⃗(t) = î x(t) + ĵ y(t) + k̂ z(t). Assuming the particle moves according to the Principle
of Least Action, that is, the path r⃗(t) is the one that minimizes the functional

S[r⃗(t)] =

∫ t2

t1

L(x, y, z, ẋ, ẏ, ż) dt where L =
1

2
ṁ⃗r2 − V (r⃗)

show that F⃗ = ma⃗, aka “the equation of motion,” where F⃗ = −∇⃗V and a⃗ =¨⃗r.

(3) Two identical masses m slide on a frictionless horizontal surface and are each connected
to a fixed outside wall and to each other by identical springs of stiffness k. The positions of
the masses are given by x1(t) and x2(t). Knowing that the potential energy of a spring that
is compressed or stretched a distance ∆ is k∆2/2, find the equation of motion for each of
the two masses using the Principle of Least Action and the Euler-Lagrange equation. Check
your answer against the example we have studied in class.

(4) A particle of mass m moves horizontally on a frictionless surface defined by the x, y
plane. Convert to polar coordinates ρ and ϕ, and find the Euler-Lagrange equations of
motion. Assuming that potential energy V = V (ρ), that is it has no ϕ-dependence, show
that one of the equations of motion leads to a “conserved quantity,” that is, something that
does not change with time. What is the common name for this conserved quantity?

(5) A highly flexible cable of linear mass density µ and fixed length ℓ hangs motionless in
the vertical plane, where its shape minimizes the gravitational potential energy. The cable
is fixed at two points at the same vertical position, but separated horizontally by a distance
d < ℓ. Assuming the shape of the cable is given by the function f(x) where x measures the
horizontal position, write the integrals that express (a) the gravitational potential energy
and (b) the total length of the cable. Combine these integrals and use this to derive a
constrained Euler-Lagrange equation that can be solved to find the shape of the hanging
cable. Solve this equation for the shape. You don’t need to get the result in terms of ℓ and
d, but show how you would do that, in principle.
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(1) Let the vertical position be measured by z, with z = 0 as the midpoint between the
hoops, and ρ = f(z) be the radial distance from the axis to the surface contour. An element
ds of the surface area is

ds = 2πρ
[
dz2 + dρ2

]1/2
= 2πρ

[
1 +

(
dρ

dz

)2
]1/2

dz

Therefore we want to minimize

S[f(z)] =

∫ h

−h

2πf(z)
[
1 + (f ′(z))2

]1/2
dz = 2π

∫ h

−h

F (f(z), f ′(z)) dz

This is an example of the “second” special case, namely when F does not depend on z, so

F − f ′ ∂F

∂f ′ = f(z)
[
1 + (f ′(z))2

]1/2 − f ′(z)

{
f(z)f ′(z)

[1 + (f ′(z))2]1/2

}

=
f(z)

[1 + (f ′(z))2]1/2
{
1 + (f ′(z))2 − (f ′(z))2

}
=

f(z)

[1 + (f ′(z))2]1/2
= constant ≡ k

Manipulate this a little to get a manageable differential equation for y = f(z).

y2 = k2(1 + y′
2

) so
dy

dz
=

(
y2

k2
− 1

)1/2

and
dy

(y2/k2 − 1)1/2
= dz

This can be integrated using y = k coshu so dy = k sinhu du and (y2/k2 − 1)1/2 = sinhu.
The result is

ku = z + kc so k cosh−1
(y
k

)
= x+ kc and y = f(z) = k cosh

(z
k
+ c
)

The symmetric boundary conditions f(±h) = R imply that c = 0. The value of k would be
set by some constraint on how much the soap film can stretch.



(2) It is helpful to write the Lagrangian as

L(x, y, z, ẋ, ẏ, ż) =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
mż2 − V (x, y, z)

Now, there are three different Euler-Lagrange equations, one for each of the three dependent
variables x(t), y(t), and z(t). These are

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 or −∂V

∂x
−mẍ = 0

∂L

∂y
− d

dt

∂L

∂ẏ
= 0 or −∂V

∂y
−mÿ = 0

∂L

∂z
− d

dt

∂L

∂ż
= 0 or −∂V

∂z
−mz̈ = 0

Using unit vectors to combine the second version of each of these equations, we get

−î∂V
∂x

− ĵ
∂V

∂y
− k̂

∂V

∂z
= m

[̂
iẍ+ ĵÿ + k̂z̈

]
that is − ∇⃗V = ma⃗

(3) In this case, the Lagrangian is

L(x1, ẋ1, x2, ẋ2) =
1

2
mẋ21 +

1

2
mẋ22 −

1

2
kx21 −

1

2
kx22 −

1

2
k(x2 − x1)

2

The two Euler-Lagrange equations are therefore

d

dt

∂L

∂ẋ1
=

∂L

∂x1
so mẍ1 = −kx1 − k(x2 − x1)(−1) = −2kx1 + kx2

d

dt

∂L

∂ẋ2
=

∂L

∂x2
so mẍ1 = −kx1 − k(x2 − x1) = kx1 − 2kx2

which are the same two equations we ended up with before.

(4) The kinetic energy term is

1

2
ṁ⃗r2 =

1

2
m
[
ẋ2 + ẏ2

]
=

1

2
m
[
(ρ̇ cosϕ− ρ sinϕ ϕ̇)2 + (ρ̇ sinϕ+ ρ cosϕ ϕ̇)2

]
=

1

2
m(ρ̇2 + ρ2ϕ̇2)

Therefore the Lagrangian is

L(ρ, ρ̇, ϕ̇) =
1

2
m(ρ̇2 + ρ2ϕ̇2)− V (ρ)

which is independent of ϕ. The Euler-Lagrange equation for ϕ becomes

d

dt

∂L

∂ϕ̇
=

d

dt
mρ2ϕ̇ = mρv⊥ = constant

which just says that angular momentum is conserved (for central potential energy functions).



(5) Position the y axis so that it is midway between the two fixed points at x = ±d/2. Then

U [f(x)] =

∫ d/2

−d/2

(µ ds)gy = µg

∫ d/2

−d/2

f(x)
√
1 + f ′(x)2 dx

and ℓ =

∫ d/2

−d/2

ds =

∫ d/2

−d/2

√
1 + f ′(x)2 dx

Since δℓ = 0, we can find the minimum potential energy from

δU = δ

{∫ d/2

−d/2

[
µgf(x)

√
1 + f ′(x)2 + λ

√
1 + f ′(x)2

]
dx

}
= 0

which is your standard calculus of variations problem with the function

F (f, f ′) = µgf(x)
√

1 + f ′(x)2 + λ
√
1 + f ′(x)2

This function is independent of x, so we have

F − f ′ ∂F

∂f ′ = µgf(x)
√

1 + f ′(x)2 + λ
√

1 + f ′(x)2 − f ′(x)
(µ gf(x) + λ)f ′(x)√

1 + f ′(x)2

= (µ gf(x) + λ)
√

1 + f ′(x)2
[
1− f ′(x)2

1 + f ′(x)2

]
=

µ gf(x) + λ√
1 + f ′(x)2

= constant ≡ c

Writing y = f(x), this gives, taking the positive square root,

(µg y + λ)2 = c2(1 + y′
2

) so
dy

dx
=

√
(µg y + λ)2

c2
− 1

This is easy to solve by putting µg y + λ = c coshu in which case

dy

dx
=

c

µg
sinhu

du

dx
=
√

cosh2 u− 1 = sinhu so u =
µg

c
(x+ k)

for some constant k. Therefore, the shape of the cable is given by

y =
c

µg

[
cosh

(µg
c
(x+ k)

)
− λ
]

In order to have y = 0 at x = ±d/2 we need k = 0 and cosh(µgd/2c) = λ relates the values
of c and λ. By integrating over the length of the cable, and setting it equal to ℓ, we would
get another equation and determine separately their values.



PHYS2502 Mathematical Physics Homework #13 Due 25 Apr 2023

This homework assignment is due at the start of class on the date shown. Please submit a
PDF of your solutions to the Canvas page for the course.

(1) If z = x+ iy, where x and y are real numbers, then prove that the function f(z) = ez is
analytic everywhere in the complex plane.

(2) If z = x+ iy, where x and y are real numbers, then prove that the function f(z) = 1/z
is analytic everywhere in the complex plane except at z = 0.

(3) By direct integration, calculate the integral

I =

∫
C

1

z
dz

around the square contour with side
length 2a shown here

and compare to the result you get from the Cauchy Integral Theorem.

(4) Evaluate the integral

I =

∫ ∞

−∞

eikx

4x2 + 1
dx

separately for the cases k > 0 and k < 0. Check your answers using Mathematica.

(5) Consider two complex variables w = u+ iv and z = x+ iy, and the “map” given by

w = z2

For contours u = constant in the w-plane, draw the contours to which they map in the z-
plane. Repeat for contours v = constant in the w-plane. Show that the two sets of contours
in the z-plane are orthogonal to each other. That is, just as the contours for u = constant
and v = constant are perpendicular to each other everywhere they intersect, so for the
corresponding contours in the z-plane. For this reason, we refer to this mapping function as
a “conformal map.” Conformal maps have many applications in science and engineering.
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(1) We have f(z) = ez = exeiy = ex cos y + iex sin y = u(x, y) + iv(x, y). Now test the
Cauchy-Riemann relations, namely

∂u

∂x
= ex cos y =

∂v

∂y
and

∂v

∂x
= ex sin y = −∂u

∂y

so the function is analytic everywhere.

(2) This one is a little more complicated. We write

f(z) =
1

z
=

1

z

z∗

z∗
=

x− iy

x2 + y2
so u(x, y) =

x

x2 + y2
and v(x, y) = − y

x2 + y2

Now test the Cauchy-Riemann relations, namely

∂u

∂x
=

1

x2 + y2
− x2

(x2 + y2)2
=

y2

(x2 + y2)2
and

∂v

∂y
= +

y2

(x2 + y2)2

so the first relation is satisfied. We also need to check

∂v

∂x
= +

xy

(x2 + y2)2
and

∂u

∂y
= − xy

(x2 + y2)2

and the second relation is satisfied. Of course, neither the function nor its derivatives are
defined at z = 0, so the function is not analytic there.

(3) Symmetry argues that we should get the same result on each of the four sides of the
square, so let’s do the bottom leg where y = Im z = −a and we are integrating over x = Re z
between −a and +a:

I = 4

∫ a

−a

1

x+ i(−a)
dx = 4

∫ a

−a

x+ ia

x2 + a2
dx = 4

∫ a

−a

x

x2 + a2
dx+ 4ia

∫ a

−a

1

x2 + a2
dx

The first integral in the last expression is zero, since the integrand is an odd function. For
the second term we make the substitution x = a tan θ to get∫ a

−a

1

x2 + a2
dx =

∫ tan−1(x/a)

− tan−1(x/a)

1

a2
cos2 θ

dx

dθ
dθ =

1

a2

∫ tan−1(x/a)

− tan−1(x/a)

a dθ =
2

a
tan−1(1) =

πa

2

Therefore I = 4ia(πa/2) = 2πi. The Cauchy Integral Theorem says the result should be
2πi(1), so this is correct.



(4) This is very similar to the example worked in the textbook. We write

I =
1

4

∫ ∞

−∞

eikx

x2 + 1/4
=

1

4

∫ ∞

−∞

eikx

(x+ i/2)(x− i/2)

so the poles are at z0 = ±i/2. For k > 0, we close the infinite semicircle in the upper plane
so that the exponential goes to zero. This means that we pick up the pole at z0 = +i/2 and
the result is

I =
1

4
2πi

eik(i/2)

i/2 + i/2
=
π

2
e−k/2

For k < 0 we close (in the clockwise direction) in the lower plane and pick up z0 = −i/2, so

I = −1

4
2πi

eik(−i/2)

−i/2− i/2
=
π

2
ek/2

(5) This is pretty simple. First we have

w = (x+ iy)2 = x2 − y2 + 2ixy so u(x, y) = x2 − y2 and v(x, y) = 2xy

Contours of these functions are below, for u and v equal to the integers between −4 and 4,
with u in black and v in red:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

It certainly looks like the contours are perpendicular at all intersections, but let’s prove it.

The slopes of two perpendicular lines have a product of −1. This is not hard to prove if you
interpret the slope as the tangent of the angle with the horizontal, and compare the tangents
of angles that differ by π/2, but let’s prove it instead using the formalism we came up with
in the book.

If a line is given by x = mxt + bx and y = myt + by then (x − bx)/mx = (y − by)/my so
writing the line in the form y = mx+ b says that the slope m = my/mx. Now if two lines a



and b are perpendicular, then m
(a)
x m

(b)
x +m

(a)
y m

(b)
y = 0 so

m
(b)
y

m
(b)
x

= −m
(a)
x

m
(a)
y

Therefore

m(a)m(b) =
m

(a)
y

m
(a)
x

m
(b)
y

m
(b)
x

= −m
(a)
y

m
(a)
x

m
(a)
x

m
(a)
y

= −1

The tangents for the u = constant curves are

m(u) =
dy

dx

∣∣∣∣
u=c

and 2x− 2y
dy

dx
= 0 so m(u) =

x

y

The tangents for the v = constant curves are

m(v) =
dy

dx

∣∣∣∣
v=c

and 2y + 2x
dy

dx
= 0 so m(v) = −y

x

and, indeed, m(u)m(v) = −1.


