
PHYS2063 Wave Physics Homework #1 Due Thursday 25 Aug 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

This diagram shows an inductor L and a capacitor C connected in series:

The voltage drop across an inductor is VL = LdI/dt where I is the current flowing through
the inductor. The voltage drop across a capacitor is VC = q/C where q is the charge on
the capacitor plates. Kirchoff’s voltage law says that the sum of all voltage drops around a
closed loop is zero. You can assume that the wires connecting the inductor and capacitor
have no resistance. The charge (and current) are functions of time t.

Find the differential equation for the charge q(t) and show that it implies that q(t) has a
simple harmonic time dependence. Find the (angular) frequency ω in terms of L and C for
these oscillations.

Assume the values L = 0.1 mH and C = 1 µF. At time t = 0 the current in the circuit is
I0 = 100 µA and the charge on the capacitor is q0 = 1 nC. Find the amplitude and phase of
the oscillations for q(t).



Homework #1 Solutions

The current I(t) = dq/dt = q̇, so the voltage drop across L is Lq̈ and Kirchoff’s law gives

Lq̈ +
q

C
= 0 or q̈ + ω2a = 0 where ω2 =

1

LC

The angular frequency, sticking with SI units, is

ω =
1√
LC

=
1√

10−4 × 10−6
= 105 Hz

Write q(t) = A cos(ωt+ ϕ), so I(t) = q̇(t) = −ωA sin(ωt+ ϕ). Then, again with SI units,

q0 = A cosϕ

I0 = −ωA sinϕ

tanϕ = − I0
ωq0

= − 10−4

105 × 10−9
= −1 so ϕ = −π

4
= −45◦

A =

√
q20 +

(
I0
ω

)2

=

√
10−18 +

(
10−4

105

)2

=
√
2 nC



PHYS2063 Wave Physics Homework #2 Due Tuesday 30 Aug 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

(1) A bead of mass m sits in the middle of a string with unstretched length 2L.

The string has tension T and the vertical position of the mass is measured by x. Find the
frequency of oscillations for the mass along the x axis, assuming that the amplitude is much
smaller than 2L.

(2) Use Euler’s formula to prove that

cos(x+ y) = cos(x) cos(y)− sin(y) sin(x)

and sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

(3) An object moves in the xy plane according to the equations

x(t) = Ax cos(ωt+ ϕx) and y(t) = Ay cos(ωt+ ϕy)

Plot and describe the shapes of the trajectories when

• Ax = Ay and ϕx = ϕy

• 2Ax = Ay and ϕx = ϕy

• 2Ax = Ay and ϕx − ϕy = π/4

If you make the plots in Mathematica, the function you want to use is ParametricPlot.

(4) Show that, for the series LC oscillator,

d

dt

[
q2

2C
+

1

2
Lq̇2
]
= 0

and interpret the meanings of the two terms in square brackets.



Homework #2 Solutions

(1) There is only a force acting in the x-direction because the horizontal components cancel.
If θ is the angle the string makes with the horizontal, then the restoring force is

F = 2× T sin θ = 2T
x

L
so mẍ =

2T

L
x giving ω2 =

2T

mL

(2) Just write ei(x+y) = eixeiy and write out both sides using Euler’s formula, and equate
the real and imaginary parts.

cos(x+ y) + i sin(x+ y) = (cosx+ i sinx)(cos y + i sin y)

= cos(x) cos(y)− sin(y) sin(x) + i[sin(x) cos(y) + cos(x) sin(y)]

(3) See the Mathematica notebook. Here are the plots:
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This can also be done algebraically, the the equation of the tilted ellipse is not so obvious.

(4) Just take the derivative and factor out q̇:

d

dt

[
q2

2C
+

1

2
Lq̇2
]
=
qq̇

C
+ Lq̇q̈ = q̇

( q
C

+ Lq̈
)
= 0

where the last step just makes use of the circuit equation we got in the first homework
assignment.

This conserved quantity is just the energy in the circuit. The first term is the energy stored
in the capacitor, and the second term is the energy stored in the inductor.



PHYS2063 Wave Physics Homework #3 Due Thursday 1 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

We now add a resistor R to our series circuit of an inductor and capacitor:

The voltage drop across a resistor with a current I flowing through it is IR. Note that unlike
inductors and capacitors, resistors do not store energy.

Use this information, and what you’ve already done, to find the rate at which energy is
dissipated by the resistor, in terms of I and R. You will almost certainly recognize the
answer from your introductory physics course.



Homework #3 Solutions

The differential equation is now

L
dI

dt
+
q

C
+ IR = 0

Therefore the rate of change of energy in the circuit is

dE

dt
=

d

dt

[
q2

2C
+

1

2
Lq̇2
]
=
qq̇

C
+ Lq̇q̈ = I

( q
C

+ Lİ
)
= −I2R



PHYS2063 Wave Physics Homework #4 Due Tuesday 6 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

(1) We derived a differential equation in class for the damped oscillator, namely

ẍ(t) + 2βẋ(t) + ω2
0x(t) = 0

Consider the “critical damping” case where β = ω0. Substitute x(t) = u(t)e−βt to find, and
then solve, a differential equation for u(t). Apply the initial conditions to find the complete
solution for x(0) = x0 and ẋ(0) = v0.

(2) Make plots of the motion x(t) for the damped oscillator for the initial conditions x0 = 2
and v0 = 0, for each of the three cases

(a) β = ω0/5
(b) β = 5ω0

(c) β = ω0

Plot as a function of the time t in units of 2π/ω0.

(3) Consider a (linear) lightly damped mechanical oscillator with mass m, spring constant
k, and damping coefficient b, where b/m ≪

√
k/m. Find an expression for the fractional

decrease in energy over one period of oscillation, in terms of m, k, and b. (It is probably
easiest to do this by considering how the energy depends on the amplitude, and then finding
the fractional decrease in the amplitude.)

Also express your answer in terms of β = b/2m and ω2
0 = k/m.

The inverse of this fraction is often written as Q/2π where Q is called the Quality Factor.

(4) Find an expression for Q in terms of L, C, and R for the series LCR circuit in the
previous homework assignment.



Homework #4 Solutions

(1) We have ẋ(t) = [u̇(t)− βu(t)]e−βt and ẍ(t) = [ü(t)− 2βu̇(t) + β2u(t)]e−βt, so

ẍ(t) + 2βẋ(t) + ω2
0x(t) = [ü(t)− 2βu̇(t) + β2u(t) + 2βu̇(t)− 2β2u(t) + ω2

0u(t)]e
−βt

= [ü(t) + β2u(t)− 2β2u(t) + ω2
0u(t)]e

−βt = ü(t)e−βt = 0

Therefore ü(t) = 0 so u(t) = a+ bt and

x(t) = (a+ bt)e−βt

x(0) = a = x0

ẋ(t) = be−βt − β(a+ bt)e−βt

ẋ(0) = b− βa = b− βx0 = v0 so b = βx0 + v0

(2) All calculations done in the Mathematica notebook.
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(3) The energy of the oscillator is E(t) = kA2(t)/2 where A(t) = A0e
−βt = A0e

−bt/2m. Since
b/m ≪ ω0, one period of oscillation is very close to T = 2π/ω0. Therefore, the fractional
change in the energy over one oscillation period is

E(0)− E(T )

E(0)
=
A2(0)− A2(T )

A2(0)
= 1− e−2πb/mω0 ≈ 1− 1 +

2πb

mω0

=
2πb

mω0

=
2πb√
km

In other words Q/2π = mω0/2πb so Q = ω0/2β.

(4) We still have Q = ω0/2β but now ω0 = 1/
√
LC and β = R/2L so

Q =
1√
LC

L

R
=

√
L

R2C



PHYS2063 Wave Physics Homework #5 Due Thursday 8 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

Two massesm are connected by three springs, where the middle spring has twice the stiffness
of the outer springs:

Write down the differential equations of motion for x1(t) and x2(t). Find the two fundamental
frequencies in terms of ω2

0 = k/m.



Homework #5 Solutions

Just consider the forces on the two masses and go from there.

mẍ1 = −kx1 + 2k(x2 − x1) = −3kx1 + 2kx2

mẍ2 = −kx2 − 2k(x2 − x1) = 2kx1 − 3kx2

Rewrite in terms of ω2
0 and insert x = aeiωt to get

−ω2a1 = −3ω2
0a1 + 2ω2

0a2

−ω2a2 = 2ω2
0a1 − 3ω2

0a2

Now rewrite as algebraic equations for a1 and a2.

(3ω2
0 − ω2)a1 − 2ω2

0a2 = 0

−2ω2
0a1 + (3ω2

0 − ω2)a2 = 0

Finally, set the determinant equal to zero and solve for ω2.

(3ω2
0 − ω2)2 = (2ω2

0)
2

ω2 − 3ω2
0 = ±2ω2

0

and the two frequencies are ω2 = ω2
0 (when the middle spring keeps its length constant) and

ω2 = 5ω2
0 (when the two masses oscillate opposite to each other).



PHYS2063 Wave Physics Homework #6 Due Tuesday 13 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

Continue with the last homework problem, and find the motion for general initial conditions
x1(0) = x10 , ẋ1(0) = v10 , x2(0) = x20 , and ẋ2(0) = v20 . See the Mathematical Concepts
book, Section 3.7. Make plots similar to Figure 3.13 showing the motion of the fundamental
modes.



Homework #6 Solutions

See the Mathematica notebook.



PHYS2063 Wave Physics Homework #7 Due Thursday 15 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

In class we derived the following formula for the fundamental frequencies for transverse
planar vibrations of the loaded string with n degrees of freedom:

ω2
j = 2ω2

0

[
1− cos

(
jπ

n+ 1

)]
j = 1, 2, 3, . . . , n

Show that this formula reduces to the results we derived in class last week for n = 2 and
n = 3, when we analyzed a system of n masses connected by n+1 springs, oscillating in one
dimension.



Homework #7 Solutions

For n = 2, we consider j = 1 and j = 2, so

ω2
1 = 2ω2

0

[
1− cos

π

3

]
= 2ω2

0

[
1− 1

2

]
= ω2

0

ω2
2 = 2ω2

0

[
1− cos

2π

3

]
= 2ω2

0

[
1−

(
−1

2

)]
= 3ω2

0

which in fact are the results we derived in class, and demonstrated with the carts and springs.

For n = 3, we have

ω2
1 = 2ω2

0

[
1− cos

π

4

]
= 2ω2

0

[
1−

√
2

2

]
= (2−

√
2)ω2

0

ω2
2 = 2ω2

0

[
1− cos

2π

4

]
= 2ω2

0 [1− 0] = 2ω2
0

ω2
3 = 2ω2

0

[
1− cos

3π

4

]
= 2ω2

0

[
1−

(
−
√
2

2

)]
= (2 +

√
2)ω2

0

which also agree with what we derived in class.



PHYS2063 Wave Physics Homework #8 Due Tuesday 20 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

Make plots of the first three fundamental modes of a stretched string of length L. Give all
three modes the same amplitude.

This is a simple exercise. However, I strongly encourage you to solve it with Mathematica.
We will be building on this when we do more work to understand standing waves on a
stretched string. Those exercises will be much easier using Mathematica, and this exercise
is the starting point.



Homework #8 Solutions

See the Mathematica notebook. Here is the plot:
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PHYS2063 Wave Physics Homework #9 Due Thursday 22 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

A Gaussian pulse shape f(x) = Ae−x2
starts from rest on a stretched string. Make an

animation that shows how the pulse splits in two, with half going to the right and half going
to the left. Your animation should look something like the following at the start:

time

-5 0 5

0.5

1.0

1.5

2.0



Homework #9 Solutions

See the Mathematica notebook.



PHYS2063 Wave Physics Homework #10 Due Tuesday 27 Sep 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

Following the examples we did in class, and also the posted Mathematica notebook, gen-
erate the Fourier Sine Series approximations for the two functions depicted here. The first
is a simple triangle on the left half of the string, and flat on the right half:

The second example is a “square wave” of one period. Assume that the string is indeed fixed
to the x-axis at both x = 0 and x = L:

Make plots, as we did in class, with different values for the maximum number Fourier sine
terms, to get a sense of how many terms you need to get a good convergence to the right
answer, in each case.



Homework #10 Solutions

See the Mathematica notebook. Here are some plots. The number at the top tells the
value of nMax.
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PHYS2063 Wave Physics Homework #11 Due Tuesday 4 Oct 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

These are simple exercises to give you some practice in vector operations. I am pretty sure
that you’ve already seen this material in your calculus classes. You might find it handy to
refer to Chapter Four in the “Concepts” book.

I think it is best if you do these problems by hand, although you can check your answers
with Mathematica if you like.

(1) Find a vector v⃗ that is perpendicular to the vector w⃗ = 2̂i + 1ĵ, also lying in the xy
plane, and that has unit length.

(2) Find a vector v⃗ that is perpendicular to the vectors u⃗ = î− ĵ+2k̂ and w⃗ = 2̂i+4ĵ− 3k̂,
and that has unit length.

For the following problems, use the gradient operator in Cartesian coordinates, that is

∇⃗ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

(3) Find the gradient ∇⃗F for the field F (x, y, z) = x2yz1/2.

(4) Find the divergence ∇⃗ · E⃗ for the vector field

E⃗(x, y, z) =
î x+ ĵ y + k̂ z

(x2 + y2 + z2)3/2

(5) Find the curl ∇⃗ × B⃗ for the vector field

B⃗(x, y, z) = −î y

x2 + y2
+ k̂

x

x2 + y2



Homework #11 Solutions

(1) Write v⃗ = âi + bĵ. Then v⃗ · w⃗ = 0 implies that 2a + b = 0 or b = −2a. Unit length
means that a2 + b2 = 5a2 = 1. Therefore a = ±1/

√
5. Picking the positive solution, we have

v⃗ =

√
1

5
î− 2

√
1

5
ĵ

(2) Just take the cross product to get a vector that is perpendicular to both. That is

u⃗× w⃗ = (3− 8)̂i+ (4 + 3)ĵ + (4 + 2)k̂ = −5̂i+ 7ĵ + 6k̂

The sum of squares of the components is 25 + 49 + 36 = 110, so

v = − 5√
110

î+
7√
110

ĵ +
6√
110

k̂

(3) ∇⃗F = î 2xyz1/2 + ĵ x2z1/2 + k̂ x2y/2z1/2.

(4) We have ∇⃗ · E⃗ = ∂Ex/∂x+ ∂Ey/∂y + ∂Ez/∂z. We calculate

∂Ex

∂x
=

1

(x2 + y2 + z2)3/2
− 3

2

x

(x2 + y2 + z2)5/2
2x =

x2 + y2 + z2

(x2 + y2 + z2)5/2
− 3x2

(x2 + y2 + z2)5/2

so it is clear that ∇⃗ · E⃗ =]3(x2 + y2 + z2)− 3x2 − 3y2 − 3z2]/(x2 + y2 + z2)5/2 = 0, except,
of course, at the origin.

(5) There is no component Bz, and neither Bx nor By depend on z, so from (4.20a) in
Concepts,

∇⃗ × B⃗ = k̂

[
∂

∂x

(
− y

x2 + y2

)
+

∂

∂y

(
x

x2 + y2

)]
= k̂

[
1

2

2xy

(x2 + y2)2
− 1

2

2yx

(x2 + y2)2

]
= 0

except, of course, at the origin.



PHYS2063 Wave Physics Homework #12 Due Thursday 6 Oct 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

Use Mathematica to combine a “contour” plot of the scalar field

f(x, y, z) = 100 e−(x2+y2)

and a “vector” plot of ∇⃗f . Make the x and y axis ranges large enough to show several
contours. This will let you observe how the gradient is larger where the contours are closer
together.

The functions you’ll probably want to use are ContourPlot and VectorPlot. I think that
the option ContourShading → None is best. You might try using Contours → N to get N
contours. Use the option PlotLegends → Automatic to include the meaning of the colors in
the vector plot.



Homework #12 Solutions

See the Mathematica notebook. Here is my plot.
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PHYS2063 Wave Physics Homework #13 Due Tuesday 11 Oct 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

(1) In addition to Gauss’ Theorem and Stokes’ Theorem, there is a third “surface theorem”
which, for some reason, doesn’t find its way much into physics problems. The theorem is∫

V

∇⃗f dV =

∮
S

f dS⃗

where f(x, y, x) is some scalar field, and S is the surface enclosing V . Prove this using Gauss’

Theorem and the vector field A⃗ = C⃗ f where C⃗ is some arbitrary constant vector.

(2) Show that Gauss’ Theorem holds for the vector field A⃗ = îx + ĵy + k̂z and the cubic
volume V with side length L in the first octant (x, y, and z all positive) with one corner at
the origin.

(3) Show that Stokes’ Theorem holds for the vector field A⃗ = −îy + ĵx and the square
surface S with side length L in the first quadrant (x and y both positive) with one corner
at the origin.

(4) Two homework assignments ago, you calculated the divergence of the vector field

E⃗(x, y, z) =
î x+ ĵ y + k̂ z

(x2 + y2 + z2)3/2
=

1

r2
r̂

where the second form just uses the definition of the position vector r⃗ = î x+ ĵ y + k̂ z and
the radial unit vector r̂ = r⃗/r. Use your result for the divergence to test Gauss’ Theorem
for the spherical volume V bounded by the spherical surface S with radius R, centered on
the origin. The surface integral is very easy to calculate since r = R on this surface, and
the unit vector r̂ is perpendicular to the surface everywhere. However, the result will look
like a violation of Gauss’ Theorem. Can you see what is the source of the problem? (That’s

a pun, by the way.) You might recognize that E⃗ is proportional to the electric field from a
point charge.



Homework #13 Solutions

(1) Since ∇⃗ · A⃗ = C⃗ · ∇⃗f (which is simple to prove just by looking at the components),∫
V

∇⃗ · A⃗ dV = C⃗ ·
∫
V

∇⃗f dV =

∮
S

A⃗ · dS⃗ = C⃗ ·
∮
S

f dS⃗

From here, you can write that

C⃗ ·
[∫

V

∇⃗f dV −
∮
S

f dS⃗

]
= 0

and argue that since C⃗ is arbitrary, then the expression in square brackets must be zero. Or
you could go through this equation component by component, setting C⃗ = î, ĵ, and k̂.

(2) Three sides of the surface integral give 0× L2 and the other three sides give L× L2 so

the surface integral is 3L3. The volume integral is of ∇⃗ · A = 3 over the volume L3 so the
volume integral is 3L3. These are equal. The theorem works.

(3) Label the sides of the square 1, 2, 3, and 4, starting with the side on the x-axis and

counting counter clockwise. The vector field along these sides are A⃗1 = ĵx, A⃗2 = −îy + ĵL,
A⃗3 = −îL + ĵx, and A⃗4 = −îy, so A⃗1 · dℓ⃗ = 0, A⃗2 · dℓ⃗ = L2, A⃗3 · dℓ⃗ = L2, and A⃗4 · dℓ⃗ = 0.
Therefore, the line integral is 2L2. Since ∇⃗ × A⃗ = k̂[1− (−1)] = 2k̂ and the surface normal
vector is k̂, the surface integral is 2L2. These are equal. The theorem works.

(4) The divergence of this field is zero, although you can’t apply that to the origin since the
field is infinite there. The surface integral is simply∮

S

E⃗ · dS⃗ =
1

R2

∮
r̂ · r̂ dS =

1

R2

∮
dS =

1

R2
4πR2 = 4π

which is not zero. In fact ∇⃗ · E⃗ is a δ-function at the origin. (More on this later.)



PHYS2063 Wave Physics Homework #14Due Thursday 13 Oct 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

A long straight thin wire runs along the z-axis and carries a charge λ per unit length. Find
the magnitude and direction of the electric field E⃗ at a distance r =

√
x2 + y2 from the

wire. Take advantage of symmetries to identify the easiest “Gaussian surface” S, and then
apply Gauss’ Law in integral form. Express your answer for E⃗(x, y) in terms of x, y, and
their unit vectors.

Then take the divergence ∇⃗ · E⃗(x, y) of your result and show that you get the answer you
expect, at least so long as you stay away from the z-axis.



Homework #14 Solutions

The electric field has no choice but to point radially away from the wire, so choose a Gaussian
cylinder of radius r and length L. Therefore∮

S

E⃗ · dS⃗ = E × 2πr × L = 4π λL so E =
1

2

λ

r

The radial unit vector is r̂ = r⃗/r = (̂ix+ ĵy)/
√
x2 + y2, so

E⃗(x, y) =
1

2

λ

r

îx+ ĵy√
x2 + y2

=
λ

2

îx+ ĵy

x2 + y2

The divergence of this field is

∇⃗ · E⃗ =
λ

2

[
∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)]
=

λ

2

[
1

x2 + y2
− 2x2

(x2 + y2)2
+

1

x2 + y2
− 2y2

(x2 + y2)2

]
=

λ

2

[
2

x2 + y2
− 2(x2 + y2)

(x2 + y2)2

]
=
λ

2

[
2

x2 + y2
− 2

x2 + y2

]
= 0

except along the line where x = y = 0, that is, the z-axis. This is all correct, since there is
no charge off the z-axis, so the divergence ought to be zero there.



PHYS2063 Wave Physics Homework #15 Due Tuesday 18 Oct 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

In class, we derived the electric and magnetic fields, as a function of time, for a plane wave
linearly polarized with its electric field in the x-direction and moving in the z-direction. This
homework assignment concerns two variations of this solution.

(1) Show that the electric field, where ω = kc,

E⃗(z, t) = îE0 cos(kz − ωt) + ĵE0 sin(kz − ωt)

also solves the electromagnetic wave equation for E⃗(x, y, z, t). Find the magnetic field

B⃗(x, y, z, t), and demonstrate that E⃗ × B⃗ is in the right direction. Describe the behav-

ior of the polarization of E⃗(z, t), and come up with a name for it.

(2) Find a solution E⃗(x, y, z, t) to the electric field wave equation for a plane wave linearly
polarized with its electric field in the x-direction, but this time moving in the direction of
the line y = z (with y and z both increasing) in the yz plane. Find the magnetic field

B⃗(x, y, z, t), and demonstrate that E⃗ × B⃗ is in the right direction.



Homework #15 Solutions

(1) Since both Ex(z, t) and Ey(z, t) are of the form f(z − ct), it is obvious that this electric
field solves the wave equation for a wave moving towards +z. For the magnetic field, use

∂B⃗

∂t
= −c∇⃗ × E⃗ = ĉi

∂Ey

∂z
− cĵ

∂Ex

∂z
= kcE0

[̂
i cos(kz − ωt) + ĵ sin(kz − ωt)

]
so B⃗ = −î E0 sin(kz − ωt) + ĵ E0 cos(kz − ωt)

Notice that |B⃗| = |E⃗|| as it should be. (Also notice that E⃗ and B⃗ are orthogonal, as they
should be.) The cross product is

E⃗ × B⃗ = k̂ E2
0 cos

2(kz − ωt) + k̂ E2
0 sin

2(kz − ωt) = k̂ E2
0

which points in the +z direction, as it should. As for the polarization, consider the direction
of E⃗ as a function of time for a fixed z, say z = 0. The vector rotates in a circle with angular
frequency ω, keeping the same magnitude. We call this “circular polarization.”

(2) Linearly polarized in the x-direction means that E⃗ = î E0f(x, y, z, t). Moving along the
line y = z in the positive direction means that the unit vector in the direction of the wave
is (̂i+ k̂)/

√
2, so we expect that f(x, y, z, t) = g(y/

√
2 + z/

√
2− ct), and in fact

∂2E⃗

∂x2
+
∂2E⃗

∂y2
+
∂2E⃗

∂z2
− 1

c2
∂2E⃗

∂t2
= î

[
0 +

1

2
+

1

2
− 1

c2
c2
]
E0g

′ = 0

showing that this is indeed a solution to the wave equation. For the magnetic field, use

∂B⃗

∂t
= −c∇⃗ × E⃗ = −cĵ ∂Ex

∂z
+ ck̂

∂Ex

∂y
= −cE0

1√
2
g′
(
y√
2
+

z√
2
− ct

)
(ĵ − k̂)

so B⃗ = E0
1√
2
g

(
y√
2
+

z√
2
− ct

)
(ĵ − k̂)

(Also notice that E⃗ and B⃗ are orthogonal, as they should be.) The cross product is propor-
tional to

î× (ĵ − k̂) = k̂ + ĵ

which is indeed in the direction of propagation.



PHYS2063 Wave Physics Homework #16Due Thursday 20 Oct 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

An electromagnetic plane wave with linear polarization propagates with an electric field

E⃗(x, y, z, t) = ϵ̂E0 cos(k⃗ · r⃗ − ωt)

where ω = |⃗k|c. Assume the wave propagates away from the origin in the direction x = y = z
in the first octant, i.e. x, y, and z all positive, and that the polarization unit vector ϵ̂ lies in
the xy plane.

Find the wave vector k⃗ in terms of k = |⃗k| and unit vectors in the x, y, and z directions.

Find the polarization unit vector ϵ̂.

Find the magnetic field B⃗(x, y, z, t) in terms of E0, k, ω, and unit vectors in the x, y, and z
directions.

Find the Poynting vector S⃗(x, y, z, t) in terms of E0, k, ω, and unit vectors in the x, y, and
z directions.

I encourage you to solve this problem using results that we derived in class, although you
are welcome to find the solution by going back to Maxwell’s Equations if you prefer.



Homework #16 Solutions

k⃗ =
k√
3

(
î+ ĵ + k̂

)
ϵ̂ = âi+ bĵ where a2 + b2 = 1

k⃗ · ϵ̂ =
k√
3
(a+ b) = 0 so b = −a

ϵ̂ =
1√
2

(
î− ĵ

)
B⃗ = k⃗ × E⃗

so calculate k⃗ × ϵ̂ =
k√
6

(
−k̂ − k̂ + ĵ + î

)
=

k√
6

(
î+ ĵ − 2k̂

)
S⃗ =

1

4π
E⃗ × B⃗ =

1

4π

k⃗

k
E2

0 cos
2(k⃗ · r⃗ − ωt)

where I write the unit vector in the propagation direction as k⃗/k to avoid confusion with
the unit vector in the z-direction.



PHYS2063 Wave Physics Homework #17 Due Tuesday 25 Oct 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

(1) Light impinges on the interface between two materials as shown below:

Under the condition that n2 > n1, find an angle θ for which the light cannot propagate into
the top medium. (This phenomenon is called “total internal reflection.”)

(2) (Pain Problem 11.2) A parallel plate of glass of thickness d has a non-uniform refractive
index n given by

n = n0 − αr2

where n0 and α are constants and r is the distance from a certain line perpendicular to the
sides of the plate. Show that this plate behaves as a converging lens of focal length 1/2αd.
You should assume the same small angle “thin lens” approximation we used in class.

(3) (Pain Problem 11.8) An object O is imbedded inside a glass sphere of radius R and
index of refraction n, as shown in the figure.

The object is located at a distance R/n from the center of the sphere. Outside the sphere is
a vacuum (n = 1). Show that any ray OP , when projected back to the line connecting the
object with the center of the sphere, meets at the distance IC = nR. (This is, apparently,
the principle used in the “oil immersion microscope.”



Homework #17 Solutions

(1) From n1 sin θ1 = n2 sin θ2 we have sin θ1 = (n2/n1) sin θ. Since n2/n1 > 1 and sin θ1 ≤ 1,
we reach a critical angle when θ = sin−1(n1/n2). For angles larger than this, there can be
no propagation into medium #1.

(2) If z = z(r) is the distance past the plate to get an equal-time wave front, then

d

c/n0

=
d

c/n
+
z

c
so n0d = nd+ z

which reduces to z = αr2d for the given form for n(r). The ray intersects the axis at a
distance f at an angle θ = tan−1(r/f) ≈ r/f . As we discussed in class, we also have
z = f − f cos θ ≈ fθ2/2 = r2/2f . Therefore f = r2/2z = r2/2αr2d = 1/2αd.

(3) We use the law of sines with the triangles IPC and OPC below:

We have n sin β = sin θ. Note that α + θ + (180◦ − ϕ) = 180◦, so α = ϕ − θ. Similarly
γ = ϕ−β. Applying the Law of Sines to OPC, where R is the radius of the sphere, we have

R

sin γ
=
R/n

sin β
=

R

sin θ
so θ = γ = ϕ− β and α = ϕ− (ϕ− β) = β

Applying the Law or Sines to IPC we have

R

sinα
=

IC

sin θ
so

IC

R
=

sin θ

sinα
=

sin θ

sin β
= n

Therefore IC = nR.



PHYS2063 Wave Physics Homework #18 Due Tuesday 1 Nov 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

A beam of helium atoms emerge from a double slit mask and impinge on a screen 1950 mm
away. The spacing between the slits is 8 µm. For the atoms which take 800 µs to reach the
screen, how far apart are the interference maxima? You can check your answer against the
figure we showed in class and the paper from which it was taken, both of which have links
on the course web page.



Homework #18 Solutions

The velocity of the helium atoms is 1.95/8× 10−4 = 2.4× 103 m/s.

The mass of a helium atom is 6.6× 10−27 kg, so the momentum is 1.6× 10−3 kg·m/s.

Planck’s constant h = 6.6× 10−34 kg·m2/s, so its wavelength λ = h/p = 4.2× 10−11 m.

The angle between maxima is sin θ = λ/d = 5.2× 10−5.

The separation between maxima is therefore 1.95 sin θ = 1.0×10−5 m=10 µm. This looks to
be in good agreement with the figure below, although I can’t find precise confirmation that
the horizontal scale is in microns.



PHYS2063 Wave Physics Homework #19 Due Tuesday 8 Nov 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

(1) An ice pick is a device the size of a screwdriver with a sharp point connected to a handle:

Estimate the rough order of magnitude of the length of time that an ice pick can be balanced
on its point if the only limitation is that set by the Heisenberg uncertainty principle. Assume
that the point is sharp and that the point and the surface on which it rests are hard.
You may make approximations which do not alter the general order of magnitude of the
result. Assume reasonable values for the dimensions and weight of the ice pick. Obtain an
approximate numerical result and express it in seconds.

(2) This question is a bit open ended. I want you to do some investigating about a fascinating
phenomenon that has to do with the the wave nature of matter.

Helium turns into a liquid at atmospheric pressure at a temperature of about four degrees
above absolute zero. Calculate the deBroglie wavelength of a helium atom at a temperature
T = 2K. You can assume the energy of the atom is given by the thermal energy E = (3/2)kT ,
where k is Boltzmann’s constant. Compare this wavelength to the size of helium atom. What
does this suggest to you about the behavior of liquid helium at this very low temperature?
Identify the phenomenon to which this corresponds.

You might enjoy the video http://www.alfredleitner.com/p/liquid-helium.html.



Homework #19 Solutions

(1) We’re looking for a “rough order of magnitude” estimate, so go crazy with the approx-
imations. Model the ice pick as a mass m and length L, standing vertically on the point,
i.e. and inverted pendulum. The angular acceleration is θ̈, the moment of inertia is mL2

and the torque is mgL sin θ where θ is the angle from the vertical. So mL2θ̈ = mgL sin θ or
θ̈ =

√
g/L sin θ. Since θ ≪ 0 as the pick starts to fall, take sin θ = θ so

θ(t) = A exp

(√
g

L
t

)
+B exp

(
−
√
g

L
t

)
x0 ≡ θ(0)L = (A+B)L

p0 ≡ mθ̇(0)L = m

√
g

L
(A−B)L =

√
m2gL(A−B)

Let the uncertainty principle relate x0 and p0, i.e. x0p0 =
√
m2gL3(A2 − B2) = ℏ. Now

ignore B; the exponential decay will become irrelevant quickly. You can notice that the
pick is falling when it is tilting by something like 1◦ = π/180, so solve for a time T where
θ(T ) = π/180. Then

T =

√
L

g
ln
π/180

A
=

√
L

g

(
1

4
ln
m2gL3

ℏ2
− ln

180

π

)
Take L = 10 cm, so

√
L/g ≈ 0.1 sec, but the action is in the logarithms. (It is worth your

time to confirm that the argument of the logarithm in the first term is indeed dimensionless.)
Now ln(180/π) ≈ 4 but the first term appears to be much larger. This is good, since it means
that quantum mechanics is driving the result. For m = 0.1 kg, find m2gL3/ℏ2 = 1064, and
so T = 0.1 sec× (147/4− 4) ∼ 3 sec. I’d say that’s a surprising and interesting result.

(2) First calculate the deBroglie wavelength. I will use SI units everywhere.

E =
3

2
kT =

3

2
× (1.38× 10−23)× 2 = 4.14× 10−23 Joules

p =
√
2mE =

√
2× (6.64× 10−27)(4.14× 10−23) = 7.41× 10−25 kg ·m/sec

λ =
h

p
= 6.63× 10−34/7.41× 10−25 = 8.94× 10−10 m = 8.94 Å

A quick Google search tells you that the size of a helium atom is about 0.1 nm=1 Å, or
maybe as large as 2 Å if you include some extent of the electron orbitals. The point is that
at T = 2K, the wavelength is large enough to include several atoms. This suggests that
liquid helium should be have, somehow, quantum mechanically at this temperature. Indeed,
at T = 2.17 K, liquid helium undergoes a phase transition to a “super fluid” state.



PHYS2063 Wave PhysicsHomework #20Due Thursday 10 Nov 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

Finish the problem we started in class, namely that of a particle wave incident from the left
on a square potential step of height V0 at x = 0 and with energy E > V0:

That is, find the reflection and transmission coefficients R and T as a function of E/V0 and
show that R + T = 1. Make plots of R and T as a function of E/V0. Comment on the
behavior as E/V0 → ∞ and E → V0.



Homework #20 Solutions

Write down the form of the two solutions for x < 0 and x > 0.

uI(x) = AeikIx +Be−ikIx
ℏ2k2I
2m

= E uII(x) = CeikIIx
ℏ2k2II
2m

= E − V0

Match the solutions and their derivatives at x = 0.

A+B = C kIA− kIB = kIIC = kII(A+B)

Now solve for the ratios of the reflected and transmitted coefficients to the incident coefficient.

B

A
=
kI − kII
kI + kII

=
1− kII/kI
1 + kII/kI

and
C

A
= 1 +

B

A
=

2kI
kI + kII

=
2

1 + kII/kI

To get the reflection and transmission coefficients, we need to remember that the flux is
proportional to k, so

R =

∣∣∣∣BA
∣∣∣∣2 = (1− kII/kI

1 + kII/kI

)2

and T =
kII
kI

∣∣∣∣CA
∣∣∣∣2 = 4kII/kI

(1 + kII/kI)2

It is easy to show that the sum is unity. If we write α = kII/kI , then

R + T =
(1− α)2

(1 + α)2
+

4α

(1 + α)2
=

1 + 2α + α2

(1 + α)2
= 1

From this you can see immediately that since kII → kI as E → ∞, you expect that R → 0
and T → 1 in this limit. Furthermore, as E → V0, kII → 0 so R → 1 and T → 0.

To plot the expressions for R and T , it is simplest to express the answers in terms of

kII
kI

=

√
E − V0
E

=

√
1− 1

ε
where ε ≡ E

V0

The expressions themselves are a bit messy, so I won’t write them out. The plot below comes
from Mathematica.
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PHYS2063 Wave Physics Homework #21 Due Tuesday 15 Nov 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

In class we analyzed quantum mechanical penetration through a square barrier, that is, for
the energy E less than the barrier height V0. Now analyze the same problem, but for E > V0:

Find the transmission coefficient T and plot it as a function of E/V0. I showed you how to
make the plot for barrier penetration using

V0 = g
ℏ2

2ma2
where g = 16

but you can use a different value for g if you want. In any case, also plot the result for
E < V0 and show that the two curves “connect.”

Also analyze the case of transmission past a “quantum well” of the form

and plot the transmission coefficient as a function of energy E > 0.

In both cases, there are values of the energy for which there is perfect transmission, that is,
T = 1. What is the physical significance of these energies? That is, what is the property of
the particle wave that leads to perfect transmission?



Homework #21 Solutions

We follow from the result in class for C/A but put q → iq. That is

C

A
=

−4kq e−i(k−q)a

(e2iqa − 1)(k2 + q2)− 2kq(e2iqa + 1)
=

−2kq e−i(k−q)a

i sin(qa)(k2 + q2)− 2kq cos(qa)

with ℏ2q2/2m = E − V0, as well as ℏ2k2/2m = E. Therefore

1

T
=

1

4k2q2
[
sin2(qa)(k2 + q2)2 + 4k2q2 cos2(qa)

]
= 1 +

(k2 − q2)2

4k2q2
sin2(qa)

and (k2 − q2)2/4k2q2 = V 2
0 /E(E − V0). It’s interesting that this is the expression for barrier

penetration but with q → iq, but I’m not sure that isn’t an accident.

For the case of a potential well, you just change V0 → −V0.

The transmission coefficient becomes unity whenever qa = n× 2π for some integer n, that is

λ =
h

p
=

h

ℏq
=

2π

n× 2π/a
=
a

n
or nλ = a

So there is perfect transmission if an integral number of wavelengths span the barrier or well.

TheMathematica notebook makes the plots below, barrier on the left and well on the right:
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The barrier plot includes the barrier penetration result from class, showing that it joins
smoothly onto the case for E > V0.



PHYS2063 Wave PhysicsHomework #22Due Thursday 17 Nov 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

In class we derived the wave functions and energy levels for the infinite square well in one
dimension with width a, where the well was placed symmetrically between x = −a/2 and
+a/2. Show that you get the same solution, for the normalized wave functions as well as
the energy levels, if you instead place one side of the well at x = 0, namely

You will find that the solution follows very closely from our work from several weeks ago on
standing waves on a stretched string.



Homework #22 Solutions

Define k through E ≡ ℏ2k2/2m. Then the time-independent Schrödinger equation becomes

− ℏ2

2m

d2u

dx2
= Eu =

ℏ2k2

2m
u so

d2u

dx2
= −k2u

so u(x) = A cos(kx) + B sin(kx). Requiring u(0) = A = 0 leaves us with u(x) = B sin(kx).
In order to satisfy u(a) = B sin(ka) = 0 we must have ka = nπ for positive integers n. The
energy levels are therefore

E =
ℏ2k2

2m
=

ℏ2π2

2ma2
n2

which is what we found in class for the symmetric well. The normalization follows from∫ a

0

B2 sin2
(nπx

a

)
dx =

B2

4
a

[
2− sin(2πn)

πn

]a
0

=
B2a

2
= 1 so B =

√
2

a

The wave functions then become

u(x) =

√
2

a
sin
(nπx

a

)
If we switch to a variable ξ ≡ x− a/2 then

u(ξ) =

√
2

a
sin

(
nπξ

a
+
nπ

2

)
=

√
2

a
cos

(
nπξ

a

)
n odd

=

√
2

a
sin

(
nπξ

a

)
n even

which is just what we got in class, ignoring overall signs (which just serves to redefine the
normalization constant).



PHYS2063 Wave Physics Homework #23 Due Tuesday 29 Nov 2022

This homework assignment is due at the start of class on the date shown. You may sub-
mit a PDF of your solutions to the Canvas page for the course, or bring a paper copy to class.

(1) In class we studied the expectation value of position with an infinite-square-well wave
function u(x) that was equal parts u1(x) and u2(x) with real coefficients. Recalculate this
expectation value with a similar wave function, but which has an arbitrary phase between
u1(x) and u2(x), namely

u(x) =
1√
2

[
u1(x) + eiϕu2(x)

]
Confirm that you get the same result we had in class for ϕ = 0. You should find the integral
we did in class useful.

(2) Now calculate the ime dependent expectation value of position for an equal superposition
of ψ1(x, t) = u1(x)e

−iE1t/ℏ and ψ2(x, t) = u2(x)e
−iE2t/ℏ. You should find the results of

Problem (1) useful. How would you describe the behavior of the particle in the well, briefly?

(3) In class we worked through the numerical calculation of the finite square well with

V0 = g
ℏ2

2ma2

with a “very deep well” namely g = 100. Repeat the calculation for an extremely deep well
with g = 1000, and compare the bound state energies with the results for an infinitely deep
well. You are welcome to adapt the Mathematica notebook we used in class.



Homework #23 Solutions

(1) The integrand for the calculation of the expectation value is

u∗(x)xu(x) =
1

2
xu21(x) +

1

2
xu22(x) + cosϕxu1(x)u2(x)

Integrating each of the first two terms gives zero because they are odd functions integrated
over −a/2 ≤ x ≤ +a/2. Integrating the third term is just cosϕ times the integral we did in
class. Therefore

⟨x⟩ =
∫ a/2

−a/2

u∗(x)xu(x) dx = cosϕ
16a

9π2

Clearly we get the same answer as in class when ϕ = 0, but it is interesting to note that the
result can be zero or negative depending on the value of ϕ.

(2) The calculation for the expectation value now uses the wave function

ψ(x, t) =
1√
2

[
u1(x)e

−iE1t/ℏ + u2(x)e
−iE2t/ℏ

]
= e−iE1t/ℏ 1√

2

[
u1(x) + u2(x)e

−i(E2−E1)t/ℏ
]

The overall factor of e−iE1t/ℏ cancels in ψ∗ψ, so this reduces to Problem (1) with ϕ = −ω21t
where ω21 ≡ (E2 − E1)t/ℏ. So the expectation value is

⟨x⟩ = cos(ω21t)
16a

9π2

The probability density “sloshes” left and right with frequency ω21. It represents the particle
“in motion.”

(3) See the Mathematica notebook. The following plot compares the values gϵ for the
different solutions to the values of π2n2 as a function of n. The comparison is very good,
especially at the lower values, as expected.
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