(1) Solve the simple harmonic oscillator equation of motion $\ddot{x} + \omega_0^2 x = 0$ using the ansatz $x(t) = ae^{i\omega t}$ by first solving for the value(s) of ω , and then applying the initial conditions $x(0) = x_0$ and $\dot{x}(0) = v_0$. Show that the result is a purely real number and in fact agrees with our original solution in terms of sine and cosine functions.

(2) A child sits on the end of a flexible diving board, which vibrates vertically with frequency $f = \omega/2\pi$. Find an expression for the amplitude A of the vertical oscillations so that the child loses contact with the board. Calculate this displacement when f = 5 Hz.