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Abstract

We integrate random sketching techniques into block orthogonalization schemes needed for s-step GMRES. The resulting, one-
stage and two-stage, block orthogonalization schemes generate the basis vectors whose overall orthogonality error is bounded by
machine precision as long as each of the corresponding block vectors are numerically full rank. We implement these randomized
block orthogonalization schemes using standard distributed-memory linear algebra kernels for s-step GMRES available in the
Trilinos software packages. Our performance results on the Perlmutter supercomputer (with four NVIDIA A100 GPUs per node)
demonstrate that these randomized techniques can enhance the numerical stability of the orthogonalization and overall solver,
without a significant increase in the execution time.

1. Introduction

Generalized Minimum Residual (GMRES) [1] is a popu-
lar subspace projection method for iteratively solving a large
linear system of equations as it computes the approximate solu-
tion that minimizes the residual norm in the generated Krylov
subspace. To compute the approxmate solution, GMRES gen-
erates the orthonormal basis vectors of its projection subspace
based on two main computational kernels: 1) Sparse-Matrix
Vector multiply (SpMV), typically combined with a precondi-
tioner, and 2) orthogonalization.

Though GMRES is a robust iterative method for solving
general linear systems, the performance of these two kernels
can be limited by communication costs (e.g., the cost of moving
data through the local memory hierarchy and between the MPI
processes). For instance, on a distributed-memory computer,
to orthogonalize a new basis vector at each iteration, GMRES
requires global reduces among all the MPI processes and per-
forms its local computation based on either BLAS-1 or BLAS-2
operations. Hence, though the breakdown of the iteration time
depends on the target hardware architecture and problem prop-
erties (e.g., the sparsity structure of the matrix and the precondi-
tioner being used), orthogonalization can become a significant
part of the iteration time, especially when scalable implemen-
tations of SpMV and preconditioner are available.

To improve the performance of the orthogonalization and of
GMRES, communication-avoiding (CA) variants of GMRES [2,
3], based on s-step methods [4, 5], have been proposed. These
variants generate a set of s basis vectors at a time, utilizing two
computational kernels: 1) the Matrix Powers Kernel (MPK) to
generate the set of s Krylov vectors by applying SpMV and pre-
conditioner s times, followed by 2) the Block Orthogonalization
Kernel that orthogonalizes the set of s+ 1 basis vectors at once.
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This provides the potential to reduce the communication cost
of generating the s basis vectors by a factor of s (requiring the
global reduce only at every s step and using BLAS-3 for per-
forming most of the local computation). This is a very attractive
feature, especially on currently available GPU clusters, where
communication can be significantly more expensive compared
to computation.

Since the potential speedup from the block orthogonaliza-
tion is limited by the small step size s required to maintain
the numerical stability of MPK (e.g., to keep the s + 1 ba-
sis vectors numerically full rank), a two-stage variant of block
orthogonalization was proposed [6]. In order to maintain the
well-conditioning of the basis vectors, at every s steps, the first
stage of this orthogonalization scheme pre-processes the block
of new s + 1 basis, while the full orthogonalization is delayed
until enough number of basis vectors, ŝ+1, are generated to ob-
tain the higher performance. This improves the performance of
the block orthogonalization process while using the small step
size s.

Block orthogonalization consists of 1) inter block orthogo-
nalization to orthogonalize a new block of vectors against the
already-orthogonalized blocks of vectors and 2) intra block or-
thogonalization to orthogonalize among the vectors within the
new block. For the inter-block orthogonalization, Block Classi-
cal Gram-Schmidt with re-orthogonalization (BCGS twice, or
BCGS2) obtains good performance on current hardware archi-
tectures because it is based entirely on BLAS-3. For robust-
ness and performance of the overall block orthogonalization,
the critical component is the algorithm used for the first intra-
block orthogonalization [7]. In this paper, we consider the use
of CholQR [8] twice (CholQR2) as our intra-block orthogo-
nalization, which is based mainly on BLAS-3. Unfortunately,
though the above combinations of the algorithms performs well
on current hardware, s-step basis vectors can be ill-conditioned,
and CholQR2 can fail when the condition number of the block
of s + 1 vectors is greater than the reciprocal of the square-root

Preprint submitted to Elsevier September 25, 2025



of machine epsilon (see Section 5.1).
To enhance the numerical stability of the above block or-

thogonalization schemes and of the overall s-step GMRES solver,
we integrate random sketching techniques. Theoretical studies
of such randomized schemes for the intra-block orthogonaliza-
tion have been established in two recent papers [9, 10]. We ex-
tend these studies to develop randomized BCGS2 schemes that
generate the blocks of basis vectors whose overall orthogonal-
ity errors are bounded by machine epsilon. We have initially
presented our preliminary results of the current paper at the
SIAM Conference on Parallel Processing for Scientific Com-
puting (SIAM PP), 2024 [11].

Our main contributions are:

• We integrate random sketching techniques into BCGS2
such that overall orthogonalization error is on the order of
machine precision in both one-stage and two-stage frame-
works as long as each of the corresponding block of s+1
and ŝ + 1 vectors are numerically full-rank, respectively.

• We present numerical results to demonstrate the improved
numerical stability using random sketching techniques
(to pre-process the basis vectors) compared to the state-
of-the-art deterministic algorithms (BCGS2 with CholQR2).

• We implement Gaussian and Count sketching, and its
combination, Count-Gauss sketching [12], for the s-step
GMRES in Trilinos [13, 14], which is a collection of
open-source software packages for supporting large-scale
scientific and engineering simulation codes. Trilinos soft-
ware stack allows the solvers, like s-step GMRES, to be
portable to different computer architectures, using a sin-
gle code base. In particular, our implementation of the
random-sketching is based solely on standard distributed-
memory linear algebra kernels (GEMM and SpMM), which
are readily available in vendor-optimized libraries.

• We study the performance of the block orthogonalization
and s-step GMRES on the Perlmutter supercomputer at
National Energy Research Scientific Computing (NERSC)
center. Our performance results on up to 64 NVIDIA
A100 GPUs show that random sketching has virtually no
overhead to enhance the numerical stability of the one-
stage BCGS2. Although it has a higher overhead due
to the larger sketch size required for the two-stage al-
gorithm, the overhead became less significant as we in-
creased the number of MPI processes. For example, the
overhead was about 1.49× on 1 node, while it was about
1.19× on 16 nodes.

Table 1 lists the notation used in this paper. In addition,
we use Qℓ:t to denote the blocks column vectors of Q with the
block column indexes ℓ to t, while qk:s is the set of vectors with
the column indexes k to s. We then use the bold small letter v j

to denote the sketched version of the block vector V j, e.g., v j =

ΘT V j. Finally, [Q,V] is the column concatenation of Q and
V . For our numerical analysis, we use ck(ϵ, n, s) to represent a
scalar constant that is in the order of the machine epsilon ϵ but
also depends on the matrix dimensions n and s.

notation description
n problem size
m subspace dimension
s step size (for the first stage)
ŝ second step size (for the second stage and s ≤ ŝ ≤ m)
v( j)

k kth basis vector within the j-th s basis vectors
V j jth s-step basis vectors including the starting vector, i.e.,

a set of s + 1 vectors generated by MPK
V j = [vs( j−1)+1, vs( j−1)+2, . . . , vs j+1]
and V0 = [v0] to simplify the notation

V j same as V j except excluding the last vector,
which is the first vector of V j+1, i.e.,
a set of s vectors V j = [vs( j−1)+1, vs( j−1)+2, . . . , vs j]

V̂ j V j after the first inter-block orthogonalization
Q j V j after the pre-processing stage
Q̂ j V j after the first intra-block orthogonalization
Q j orthogonal basis vectors of V j
Θ sketch matrix
v j sketched version of the block vector V j (i.e., v j := ΘT V j)
ϵ machine epsilon
ck(ϵ, n, s) a scalar constant in the order of ϵ but also depends on n and s
κ(V j) ℓ2-norm condition number of V j
∥ · ∥ ℓ2-norm

Table 1: Notation used in the paper.

2. Related Work and Our Motivations

In recent years, random sketching has been used to improve
the performance of Krylov solvers [15, 9, 16, 17]. In contrast to
the previous works that have focused on “pseudo-optimal” GM-
RES, generating the basis vectors that are orthonormal with re-
spect to the sketched inner-product, we use the random sketch-
ing to generate the well-conditioned basis vectors, but then ex-
plicitly generate the ℓ2-orthonormal basis vectors.

• One reason for this is that except for one special case
(i.e., two-stage with ŝ = m, where m is the restart length),
we sketch only a part of the Krylov subspace (e.g., each
panel or big panel of s + 1 or ŝ + 1 basis vectors, re-
spectively), requiring the ℓ2-orthogonality to ensure the
overall consistency of the basis vectors over the restart
loop.

• In addition, though the sketched norm is expected to be
close to the original norm, they could deviate from the ℓ2-
norm in practice [17]. Though generating the ℓ2-orthonormal
basis vectors requires additional cost (both in term of
computation and communication), we expect the conver-
gence of our implementation of sketched s-step GMRES
to be the same as the original s-step GMRES, which is
useful in practice.

Communication-avoiding (CA) variants of the tall-skinny
Householder QR algorithm have been proposed [18] and its su-
perior performance over the standard algorithm has been demon-
strated [19]. In this paper, we focus on the performance com-
parison of the randomized algorithm against CholQR-like al-
gorithms. Although with a careful implementation, CA House-
holder may obtain the performance close to CholQR, we believe
CholQR, which is mostly based on standard BLAS-3 operation,
as the baseline performance is beneficial. In addition, for s-step
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GMRES, it is convenient to explicitly generate the orthogonal
basis vectors, where the CA variants require non-negligible per-
formance overhead.

The GPU performance of random sketching has been pre-
viously studied [20, 21]. This paper differs from these pre-
vious works since we focus on the algorithmic development
of numerically stable block orthogonalization schemes. We
then integrate the resulting randomized block orthogonalization
schemes into s-step GMRES, and study their performance im-
pact on a GPU cluster. We focus on the practical implemen-
tations of random sketching, using readily-available standard
linear algebra kernels, though specialized kernels may improve
the performance.

Some of the sparse sketching techniques have the potential
to reduce the computational complexity of the orthogonaliza-
tion process. Unfortunately, we have not seen this performance
benefit in our performance experiments, using the standard lin-
ear algebra kernels, while it may be possible by developing spe-
cialized implementations of sketching. Nervelessness, our main
focus is to enhance the numerical stability of the solver by in-
tegrating the random sketching techniques. Specifically, we de-
velop randomized block orthogonalization algorithms that ob-
tain O(ϵ) orthogonality errors, given the corresponding block
vectors are numerically full-rank.

Since random sketching enhances the stability, it may be
possible to use a larger step size for some matrices. However,
it is often not feasible to tune the step size for each problem
on a specific hardware (the largest step size to maintain the
stability of MPK). Hence, we focus on improving the stabil-
ity of the solver with the current default setup of Trilinos (i.e.,
s = 5) allowing us to solve the problem, where the original al-
gorithm failed, and study the required performance overhead.
However, we will also discuss the computational and commu-
nication complexities of each algorithm in Section 8.

There have been significant advances in the theoretical un-
derstanding of s-step Krylov methods [2] including the recent
arXiv papers [22, 23]. We will leave the potential integration
and application of the specific random sketching techniques
studied in this paper to those recent works as potential future
studies.

3. Background

By Θ ∈ Rn×m̂, we denote a random sketch matrix, with
m̂ ≪ n. The general concept of “random sketching” is to apply
this random sketch matrixΘ (generated using specific probabil-
ity distributions) to a large matrix V to obtain a “sketched” ma-
trix v = ΘT V that greatly reduces the row dimension of V while
preserving its fundamental properties, such as its norm and sin-
gular values, as much as possible. In particular, the sketch ma-
trix Θ is typically chosen to be a subspace embedding, or a
linear map to a lower dimensional space that preserves the ℓ2-
inner product of all vectors within the subspace up to a factor
of

√
1 ± µ for some µ ∈ (0, 1) [24, 25]. Such embeddings also

preserve ℓ2-norms in a similar way [9].

Definition 3.1 (µ-subspace embedding). Given µ ∈ (0, 1), the
sketch matrix Θ ∈ Rn×m̂ is a µ-subspace embedding for the
subspaceV ⊂ Rn if ∀x, y ∈ V,

|⟨x, y⟩ − ⟨ΘT x,ΘT y⟩| ≤ µ∥x∥2∥y∥2. (1)

Equation (1) provides a straightforward relation between
the sketching matrix and the preservation of the ℓ2-norm.

Corollary 3.1.1. If the sketch matrix Θ ∈ Rn×m̂ is a µ-subspace
embedding for the subspaceV ⊂ Rn, then ∀x ∈ V,√

1 − µ ∥x∥2 ≤ ∥ΘT x∥2 ≤
√

1 + µ ∥x∥2. (2)

Corollary 3.1.1 implies that we can also bound the singu-
lar values of a matrix V by those of the sketched matrix ΘT V .
Hence if ΘT V is well conditioned, then so is V .

Corollary 3.1.2. If the sketch matrix Θ ∈ Rn×m̂ is a µ-subspace
embedding for the subspace V ⊂ Rn, and V is a matrix whose
columns form a basis ofV, then

(1 + µ)−1/2 σmin(ΘT V) ≤ σmin(V) ≤ σmax(V) (3)

≤ (1 − µ)−1/2 σmax(ΘT V).

Thus,

κ(V) ≤

√
1 + µ
1 − µ

κ(ΘT V). (4)

Proofs for Corollary 3.1.1 and 3.1.2 can be found in [9].
The limitation of µ-subspace embedding presented in Defi-

nition 3.1 is that to ensure that the sketch matrix approximately
preserves norms and inner products, one needs to know the sub-
spaceV ⊂ Rn a priori. In contrast, to use sketching techniques
in Krylov subspace methods efficiently, we need a sketch ma-
trix that does not require complete prior knowledge of the sub-
space, since Krylov subspaces are generated as the algorithm
iterates. This can be accomplished by using (µ, δ, ŝ) oblivious
ℓ2-subspace embeddings [9].

Definition 3.2 ((µ, δ, ŝ) oblivious ℓ2-subspace embedding). The
sketch matrix Θ ∈ Rn×m̂ is a (µ, δ, ŝ) oblivious ℓ2-subspace
embedding if it is a µ-subspace embedding for any fixed ŝ-
dimensional subspaceV ⊂ Rn with probability at least 1 − δ.

One concrete example of a (µ, δ, ŝ) oblivious ℓ2-subspace
embedding is Θ = 1

√
m̂

G where G ∈ Rn×m̂ is a Gaussian matrix
and the sketch size is given by m̂ = Ω(µ−2 ŝ) [26]. In prac-
tice, the sketch size may be chosen as m̂ ≈ ŝ/µ2 [24]. This
relation allows a simple correspondence between the sketch
size (or equivalenty the embedding dimension) m̂ and the sub-
space dimension ŝ for a given µ. For instance, to achieve µ =
1/
√

2, the sketch size of m̂ ≈ 2ŝ is sufficient, though in prin-
ciple, one could choose a different value of µ to construct a
different sketch size. Other (µ, δ, ŝ) oblivious ℓ2-subspace em-
beddings exist that can be stored in a sparse format, includ-
ing sub-sampled randomized Hadamard and Fourier transforms
(SRHT and SRFT, respectively), and “sparse dimension reduc-
tion maps” [9, 24].
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Input: coefficient matrix A, right-hand-side vector b, initial vec-
tor x, and appropriately-chosen “change-of-basis-matrix” T (see [3,
Section 3.2.3] for details)
Output: approximate solution x

1: r = b − Ax,
2: γ = ∥r∥2
3: while not converged do
4: q1 = r/γ, and h1,1 = 0
5: for j = 1 : m/s do
6: // Matrix Powers Kernel to generate new s vectors
7: v( j)

1 := q( j−1)
s+1

8: for k = 1 : s do
9: v( j)

k+1 = AM−1v( j)
k

10: end for
11: // Block orthogonalization of s + 1 basis vectors
12: [Q j,R j] := BlkOrth(Q

1:( j−1)
,V j)

13: end for
14: // Generate the Hessenberg matrix such that AQ = QH
15: H1:m+1,1:m = R1:m+1,1:m+1TR−1

1:m,1:m
16: // Compute approximate solution with minimum residual
17: ŷ = arg miny∈Q1:m+1

∥γe1 − H1:m+1,1:my∥2
18: x = x + Vmŷ
19: r = b − Ax
20: γ = ∥r∥2
21: end while

Figure 1: Pseudocode of s-step GMRES where [Q j,R j] = qr(Q,V j) extends
the QR factorization such that QR = V with QT Q = I and upper-triangular R
with non-negative diagonals

4. Block Orthogonalization for s-step GMRES

Figure 1 shows the pseudocode of s-step GMRES for solv-
ing a linear system Ax = b with a preconditioner M−1, which
has been also implemented in Trilinos software framework [13,
14]. Though we focus on monomial basis vectors in this paper,
Trilinos also has an option to generate Newton basis [27] to im-
prove the numerical stability of the basis vectors V j generated
by the “matrix-powers kernel” (MPK).

Compared to the standard GMRES, s-step GMRES has the
potential to reduce the communication cost of generating the s
basis vectors by a factor of s, where standard GMRES is essen-
tially s-step GMRES with the step size of one. For instance, to
apply SpMV s times (Lines 7 to 9 of the pseudocode), several
CA variants of MPK exist [28]. On a distributed-memory com-
puter, CA variants may reduce the communication latency cost
of SpMV, associated with the point-to-point neighborhood Halo
exchange of the input vector, by a factor of s (though it requires
additional memory and local computation, and it may also in-
crease the total communication volume). However, while in
practice, SpMV is typically combined with a preconditioner to
accelerate the convergence rate of GMRES, only a few CA pre-
conditioners of specific types have been proposed [29, 30]. To
support a wide-range of preconditioners used by applications,
instead of CA MPK, Trilinos s-step GMRES uses a standard
MPK (applying each SpMV with neighborhood communica-
tion in sequence), and focuses on improving the performance
of block orthogonalization. Also, avoiding the global commu-
nication may lead to a greater gain on the orthogonalization
performance than CA MPK does on SpMV performance.

In this paper, to maitain the stability of s-step GMRES, we

focus on block orthogonalization schemes that can maintain the
overall O(ϵ) orthogonality error of the generated orthonormal
block basis vectors Q1: j, where ϵ is the machine precision:

∥I − QT
1: jQ1: j∥ = O(ϵ). (5)

The block orthogonalization algorithm consists of two steps:
the inter- and intra-block orthogonalization to orthogonalize the
new set of s + 1 basis vectors against the previous vectors and
among themselves, respectively. To maintain orthogonality, in
practice, both steps are applied with re-orthogonalization.

There are several combinations of the inter- and intra-block
orthogonalization algorithms [31], but in this paper, we focus
on the block-orthogonalization process that uses Block Classi-
cal Gram-Schmidt (BCGS) both for the first inter-block orthog-
onalization and for the re-orthogonalization, and uses Cholesky
QR (CholQR) factorization [8] for the intra-block
re-orthogonalization. To ensure the stability and performance
of the overall block orthgonalization, the remaining critical com-
ponent is the first intra-block orthogonalization scheme [7], which
is the focus of this paper. Beside this first intra-block orthogo-
nalization, such a block orthogonalization can be implemented
using mostly BLAS-3 operations and needs only three global
reduces. As a result, it performs well on current hardware archi-
tectures. The pseudocode of this block orthogonalization pro-
cess is shown in Figure 2c.

In [7], it has been shown that in order to ensure the O(ϵ)
orthogonality error of all the basis vectors Q1: j, the first intra-
orthogonalization algorithm (Line 3 of Figure 2c) needs to gen-
erate Q̂ j such that the backward and orthogonality errors satisfy

∥V̂ j − Q̂ jR̂ j, j∥ / ∥V̂ j∥ = O(ϵ) (6)

and

∥I − Q̂T
j Q̂ j∥ = O(ϵ). (7)

In the next section, we explore two algorithms, which performs
well on the current hardware architectures and achieves both
(6) and (7), for the first intra-block orthogonalization. Although
we can show that the condition (6) holds for the algorithms, we
focus on discussing the condition on each block vector (i.e., the
required condition number κ(V̂ j) of the input basis vectors V̂ j)
that is sufficient in order for each algorithm to guarantee (7) on
the orthogonality error.

5. Intra-Block Orthogonalization Algorithms

5.1. CholQR twice (CholQR2)

For the first intra-block orthogonalization, we first explore
the use of CholQR [8] twice (CholQR2). As we can see in Fig-
ure 2b, CholQR can be implemented mostly based on BLAS-3
and requires only one synchronization.

In [6, 8, 32, Theorem IV.1], it has been shown that the or-
thogonality error of Q̂ j generated by CholQR in Figure 2b is
bounded as

∥I − Q̂T
j Q̂ j∥ = O(ϵ)κ(V̂ j)2, (8)
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Input: Q1: j−1 and V j

Output: V̂ j and R1: j−1, j
1: // Orthogonalize V j against Q1: j−1
2: R1: j−1, j := QT

1: j−1V j

3: V̂ j := V j − Q1: j−1R1: j−1, j

(a) BCGS Inter-block orthogonalization.

Input: V̂ j

Output: Q̂ j, R j, j
1: // Form Gram matrix
2: G = V̂T

j V̂ j

3: // Compute its Cholesky factorization to generate R
4: R j, j = chol(G)
5: // Generate orthonormal Q
6: Q̂ j := V̂ jR−1

j, j

(b) CholQR Intra-block orthogonalization.

Input: Q1: j−1 and V j
Output: Q j and R1: j−1, j

1: // BCGS orthogonalization
2: [V̂ j, R1: j−1, j] := BCGS(Q1: j−1, V j)
3: [Q̂ j, R j, j] := IntraBlk(V̂ j)
4: if j == 1 then
5: Q j := Q̂ j
6: else
7: // BCGS re-orthogonalization
8: [Q j, T1: j−1, j] := BCGS(Q1: j−1, Q̂ j)
9: [Q j, T j, j] := CholQR(Q j)

10: // Update upper-triangular matrix
11: R1: j−1, j := R1: j−1, j + T1: j−1, jR j, j
12: R j, j := T j, jR j, j
13: end if

(c) BCGS twice (BCGS2).

Figure 2: Block Classical Gram-Schmidt (BCGS) to orthogonalize V j against
the orthonormal vectors Q1: j−1, where “chol(G)” returns the upper-triangular
Cholesky factor of G.

when the following condition is satisfied:

c1(ϵ, n, s)κ(V̂ j)2 < 1/2, (9)

where c1(ϵ, n, s) is a constant. Hence, BCGS2 with CholQR2
obtains the overall O(ϵ) orthogonality error as formalized in the
following proposition.

Proposition 5.1. When the condition (9) is satisfied, the orthg-
onality error of the basis vectors Q̂ j computed by the CholQR2-
based first intra-block orthogonalization, and hence of the basis
vectors Q1: j generated by BCGS2 with CholQR2, is of the or-
der of the machine precision (as the condition (7) ensures the
condition (5)).

Proof. The proof of Proposition 5.1 follows by combining the
results from two facts: first, BCGS2 attains O(ϵ) orthogonality
error overall provided each “IntraBlk” step on Line 3 of Fig-
ure 2c satisfies (6) and (7) [7], and CholQR2 satisfies these
conditions when (9) is satisfied [33, Theorems 3.3 & 3.5].

The main drawback of CholQR is that it computes the Gram
matrix of the input basis vectors V̂ j to be orthogonalized (Line 2
in Figure 2b), and the Gram matrix has the condition number

Input: V̂ ∈ Rn×s+1

Output: Q̂ ∈ Rn×s+1, R ∈ Rs+1×s+1

1: // Form Gram matrix
2: G = V̂T V̂
3: // Compute its Cholesky factorization of G
4: R = chol(G)
5: if Cholesky factorization failed at kth step then
6: if k == 1 then
7: Throw away the rest.
8: else
9: // Orthogonalize V̂1:k−1 and V̂k:s+1 against Q̂1:k−1

10: Q̂1:k−1 := V̂1:k−1R−1
1:k−1,1:k−1

11: V̂k:s+1 := V̂k:s+1 − Q̂1:k−1R1:k−1,k:s+1

12: // Recursively call CholQR on V̂k:s+1
13: [Q̂k:s+1,Rk:s+1,k:s+1] = CholQR(V̂k:s+1)
14: end if
15: else
16: // Orthogonalize V
17: Q̂ := V̂R−1

18: end if

Figure 3: Recursive Cholesky QR (CholQR) to orthonormalize a set of vectors
V ∈ Rn×s, where “chol(G) returns the upper-triangular Cholesky factor of the
Gram matrix G.

which is the square of the condition number of the input vec-
tors V̂ j. Hence, CholQR can fail when the condition number of
the input vectors V̂ j is greater than the reciprocal of the square-
root of the machine epsilon ϵ (i.e., κ(V̂ j) > 1/O(ϵ1/2)). This
can cause numerical issues, especially for the s-step method,
because even when Newton or Chebyshev basis is generated,
the s-step basis vectors can be ill-conditioned with a large con-
dition number.

To alleviate this potential numerical instability, Trilinos im-
plements a “recursive” variant of CholQR, as shown in Fig-
ure 3; when Cholesky factorization of the Gram matrix fails at
the kth step due to a non-positive diagonal, it orthogonalizes
just the first k−1 vectors by CholQR. It then orthogonalizes the
remaining vectors against the first k − 1 (roughly) orthonormal
vectors by BCGS and recursively calls CholQR on the remain-
ing vectors. This avoids the algorithmic breakdown of the or-
thogonalization process by adaptively adjusting the block size
to orthogonalize the s + 1 basis vectors. To orthogonalize the
remaining vectors against the first k − 1 vectors, it uses the
partial Cholesky factors, and hence no additional overhead is
needed. However, it needs to re-compute the dot-products of
the remaining vectors, and may require multiple global reduces
for ill-conditioned basis vectors. Furthermore, though it is of-
ten effective in recovering from the failures in combination with
MPK, there is no bound on the orthogonality error with this re-
cursive variant.

5.2. Randomized-Householder CholQR (RandCholQR)

Since MPK can generate ill-conditioned basis vectors, the
requirement (9) can be too restrictive. To enhance the numerical
robustness, we integrate the random-sketching techniques.

Instead of forming the Gram matrix of the basis vectors,
which is the main cause of the numerical instability, Random-
ized CholQR (RandCholQR) first computes the random sketch
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Input: V̂ j

Output: Q j, R j, j
1: // Sketch the new “panel”
2: v̂ j := ΘT V̂ j
3: // Orthogonalize new sketched panel
4: [q j,R j, j] := HH(v j)
5: // Generate well-conditioned basis
6: Q j := V̂ jR−1

j, j

(a) Randomized Householder QR (RandHH)

Input: V̂ j

Output: Q̂ j, R j, j
1: // RandQR on the new “panel”
2: [Q j,R j, j] := randHH(V̂ j)

3: // Orthogonalize well-conditioned basis
4: [Q̂ j,T j, j] := CholQR(Q j)
5: R j, j := T j, jR j, j

(b) Randomized Householder CholQR (RandCholQR)

Figure 4: Randomized QR algorithm, where HH(V) returns the orthogonal ba-
sis vectors Q and the upper-triangular matrix R based on the Householder QR
algorithm such that V = QR.

v̂ j of the basis vectors V̂ j. It then generates their well-conditioned
basis vectors Q j using the upper-triangular matrix computed by
the stable QR factorization of the sketched vectors v̂ j. When the
input vectors V̂ j are numerically full-rank and the sketch ma-
trix Θ is a (µ, δ, s)-oblivious ℓ2-subspace embedding (see Defi-
nition 3.2), it can be shown that the generated basis vectors Q j
has the condition number of O(1) [15, 10]. Hence, according
to (8), as we call CholQR on Q j, the resulting vector Q̂ j has
an O(ϵ) orthogonality error. Figure 4b shows the pseudocode
of the resulting RandCholQR algorithm for the intra-block or-
thogonalization.

The sketching typically requires one global all-reduce, and
as a result, we expect RandCholQR to perform similarly to
CholQR2. The actual performance of the algorithm depends
on the type of the sketching being used. In this paper, we look
at the following random-sketching techniques that can be im-
plemented using standard linear algebra kernels. Regardless
of the types of the sketching used, the last step of the rand-
CholQR, to generate the well-conditioned basis vectors through
forward substitutions, requires O(ns2) computation (Line 6 of
Figure 4a). Hence, in the discussion below, we focus on the
first two steps of the algorithm (Lines 2 and 4).

• Gaussian-Sketching can be implemented using a dense
GEneral Matrix-Matrix multiply (GEMM) to compute v̂ j

on Line 2 of Figure 4a. The nice feature of this approach
is that it requires the sketch size of only O(s) [26]. How-
ever, this is a “dense” sketch, and the dense sketch matrix
Θ needs to be explicitly stored to call GEMM. Hence, the
Gaussia Sketch has the storage overhead of O(ns) and
the computational complexity of O(ns2) to generate the
sketch v̂ j (Line 2), and its overall computational com-
plexity is O(ns2 + s3), where O(s3) is for computing HH
of v̂ j (Line 4).

Though this complexity is the same as CholQR, the com-
plexity of RandHH with the dense Gaussian-Sketch has
a larger constant associated with the sketch size (i.e., ns2

flops for CholQR to compute the Gram matrix, compared
to 4ns2 floating-point operations (flops) for RandHH to
generate the sketched vectors with the sketch size of 2s).

The terms associated with s2 and s3 in the complexity
O(ns2 + s3) could become significant, especially when
we need to sketch a large number of basis vectors (e.g.,
for the two-stage approach discussed in Section 6).

• Count-Sketching can be implemented using Sparse-Matrix
Matrix (dense vectors) multiply (SpMM) with a sparse
sketch matrix Θ having one nonzero entry in each row
(with numerical values of either 1 or−1). This is a “sparse”
sketching, and compared to Gaussian-Sketching, it has
a lower storage cost of O(n) and a lower computational
complexity of O(ns).

One drawback, however, is that it requires the larger sketch
size of O(s2) [34]. This could be a significant perfor-
mance overhead, or a sequential performance bottleneck,
when we need to sketch a large number of basis vec-
tors, s. In particular, on a distributed-memory computer,
the basis vectors V̂ j are distributed among the MPI pro-
cesses in a 1D block row format (see Section 10 for more
detailed discussion about our implementation). Hence to
form sketched vectors v̂ j, it requires the global all-reduce
of O(s2)-by-s dense sketched vectors, i.e.,

v̂ j :=
np∑

p=1

(Θ(p))T V̂ (p)
j ,

where Θ(p) and V̂ (p)
j are the parts of Θ and V̂ j, which is

distributed on the p-th process, respectively, and
∑np

p=1 is
the global all-reduce. Though both Gaussian and Count
sketching requires all-reduce, the communication volume
O(s3), and hence the time, needed for the all-reduce with
Count sketching can become significantly more, espe-
cially for a large s, compared toO(s2) for Gaussian sketch-
ing (e.g., Figure 15a, and for the two-stage algorithm).

In addition, the Householder QR factorization of the sketched
vectors is performed redundantly on a CPU by each MPI
process (Line 4 of Figure 4a), leading to a potential paral-
lel performance bottleneck (i.e., the O(s4) complexity for
the local computation with the Count-Sketch, compared
to the O(s3) complexity with the Gaussian-Sketch).

The overall computational complexity of the Count Sketch
is O(ns + s4), compared to O(ns2 + s3) of the Gaussian
sketch.

• To combine the advantage of the above two sketching
approaches, Count-Gaussian Sketching uses a O(s2) × n
Count-Sketch followed by aO(s)×O(s2) Gaussian Sketch.
Hence, most of the computational and storage costs are
due to Count-Sketch, and then the Gaussian Sketch is lo-
cally applied such that the size of the final sketched vec-
tor is O(s).
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Compared to the Count-Sketch, the size of the global all-
reduce is reduced from O(s2)-by-s to O(s)-by-s, i.e.,

v̂ j :=
np∑

p=1

ΘT
g ((Θ(p)

c )T V̂ (p)
j ),

where Θc and Θg are the Count and Gaussian sketch ma-
trices, respectively. The communication volume is re-
duced from the Count-Sketch because the Gaussian sketch
is applied locally before the global all-reduce. Hence the
communication volume for the all-reduce is O(s2), and
is the same as the Gaussian-Sketch and is reduced from
O(s3) needed for Count-Sketch.

Though it now requires only O(s3) computation to com-
pute the QR factorization of the final sketch, the Gaus-
sian sketch is applied redundantly on each MPI process,
which has the computational complexity of O(s4) and is
the same as that needed for the Count-Sketch. Neverthe-
less, the local GEMM for the Count-Gauss may perform
more efficiently than the local HH for Count-Sketching.
Moreover, our implementation gathers the results v̂ j of
the all-reduce on CPU, and GEMM before the global-
reduce is computed on a GPU, while HH after the global
reduce is computed on CPU.

Compared to the Gaussian-Sketch (or to the generation
of the Gram matrix for CholQR), the Count-Gaussian
reduces the computation complexity to apply the sketch
fromO(ns2) toO(ns). Moreover, even if the Count-Gaussian
did not lead to a performance improvement over the Gaussian-
Sketch in practice (due to a more efficient dense matrix-
matrix multiply implementation, compared to a sparse-
matrix matrix multiply), the storage requirement is re-
duced from O(ns) to O(n).

The overall computational complexity of the Count-Gaussian
is O(ns + s4).

Proposition 5.2. When RandCholQR is used as the first intra-
block orthogonalization, the orthogonality error of the resulting
basis vectors Q̂ j is of the order of the machine precision when
ΘT forms an µ-subspace embedding over the range of V̂ j, and
the following condition is satisfied:

c2(ϵ, n, s)κ(V̂ j) < 1/2, (10)

where c2(ϵ, n, s) is a constant, or equivalently if MPK generates
numerically full-rank basis vectors V̂ j.

Proof. The proof of Proposition 5.2 follows by combining the
results from two facts: first, BCGS2 attains O(ϵ) orthogonality
error overall provided each “IntraBlk” step in line 3 satisfies (6)
and (7) [7], and RandCholQR satisfies these conditions when
(10) is satisfied [10, Theorem 5.3].

Hence, compared to CholQR2, which requires (9), Rand-
CholQR improves the numerical robustness of the overall block
orthogonalization process, while we expect only a small over-
head in term of its execution time (as shown in Section 11).

Input: Q1:ℓ, s, ŝ
Output: Qℓ+1:t+1 and R1:t+1,ℓ+1:t+1

1: // t is last block column ID of the next big panel
2: t := ℓ + ŝ/s − 1
3: for j = ℓ + 1, ℓ + 2, . . . , t + 1 do
4: // Matrix-Powers Kernel
5: for k = 1, 2, . . . , s do
6: v( j)

k+1 := Av( j)
k

7: end for
8: // Orthogonalize new panel
9: // against previous big panels

10: [V̂ j, R1:ℓ, j] := BCGS(Q1:ℓ,V j)
11: // Intra-Big Panel PreProcess
12: [Q j, Rℓ+1: j, j] := PreProc(Qℓ+1: j−1, V̂ j)
13: end for
14: // CholQR of big panel
15: [Tℓ+1:t+1,ℓ+1:t+1, Q̂ℓ+1:t+1] := CholQR(Qℓ+1:t+1)
16: Rℓ+1:t+1,ℓ:t+1 := Tℓ+1:t+1,ℓ+1:t+1Rℓ+1:t+1,ℓ+1:t+1
17: if ℓ > 0 then
18: // Orthogonalization
19: [Qℓ+1:t+1,T1:t+1,ℓ+1:t+1] = BCGS+CholQR(Q1:ℓ, Q̂ℓ+1:t+1)
20: R1:ℓ,ℓ:t+1 := T1:ℓ,ℓ+1:t+1Rℓ:t+1,ℓ+1:t+1 + R1:ℓ,ℓ+1:t+1
21: Rℓ+1:t+1,ℓ+1:t+1 := Tℓ+1:t+1,ℓ+1:t+1Rℓ+1:t+1,ℓ+1:t+1
22: end if

Figure 5: Two-stage Block Orthgonalization with MPK.

Input: Q1:ℓ and Vℓ+1:t+1
Output: Qℓ+1:t+1 and R1:t+1,k:t+1

1: // First inter big-panel orthogonalization
2: [V̂ℓ+1:t+1, R1:ℓ,ℓ+1:t+1] := BCGS(Q1:ℓ,Vℓ+1:t+1)
3: // First intra big-panel orthogonalization
4: for j = ℓ + 1, ℓ + 2, . . . , t do
5: [Q j, Rℓ+1: j, j] := PreProc(Qℓ+1: j−1, V̂ j)
6: end for
7: [Tℓ+1:t+1,ℓ+1:t+1, Q̂ℓ+1:t+1] := CholQR(Qℓ+1:t+1)
8: Rℓ+1:t+1,ℓ:t+1 := Tℓ+1:t+1,ℓ+1:t+1Rℓ+1:t+1,ℓ+1:t+1
9: if ℓ > 0 then

10: // Re-orthogonalization of big panel
11: [Qℓ+1:t+1,T1:t+1,ℓ+1:t+1] = BCGS+CholQR(Q1:ℓ, Q̂ℓ+1:t+1)
12: R1:ℓ,ℓ:t+1 := T1:ℓ,ℓ+1:t+1Rℓ:t+1,ℓ+1:t+1 + R1:ℓ,ℓ+1:t+1
13: Rℓ+1:t+1,ℓ+1:t+1 := Tℓ+1:t+1,ℓ+1:t+1Rℓ+1:t+1,ℓ+1:t+1
14: end if

Figure 6: Two-stage Block Orthgonalization without MPK.

6. Two-stage Block Orthogonalization Framework

BCGS2 discussed in Section 5 can orthogonalize the set of
s + 1 basis vectors with only five synchronizations and using
BLAS-3 operations to performs most of its local computation.
However, its performance may be still limited by the small step
size s required to maintain the stability of MPK (e.g., to ensure
that the s + 1 basis vectors are numerically full rank). In or-
der to improve the performance of the block orthogonalization
while using the small step size, “two-stage” block orthogonal-
ization algorithms have been proposed [6]. Instead of fully-
orthogonalizing the basis vectors at every s steps, the two-stage
algorithm only “pre-processes” the s-step basis vectors V j at
every s steps. The objective of this first stage is to maintain
the well-conditioning of the basis vectors at a cost that is lower
than that required for the full orthogonalization or with the same
cost as the initial orthogonalization (e.g., BCGS with CholQR).

7



Then once a sufficient number of basis vectors, ŝ, are generated
to obtain higher performance, the second stage orthogonalizes
the ŝ basis vectors at once. For the following discussion, we
refer to the blocks of s and ŝ vectors as the “panels” and “big
panels”, respectively. Also, to distinguish from the two-stage
algorithms, we refer to the BCGS algorithms discussed in Sec-
tions 4 and 5 as “one-stage” algorithms.

For this paper, we focus on the specific variant of the two-
stage algorithm shown in Figure 5. This variant first (roughly)
orthogonalizes the new panel of basis vectors V j against the pre-
vious big panels using BCGS (Line 10). It then pre-processes
the resulting panel vectors V̂ j within the current big panel (Line
12). Finally, the second stage fully orthogonalizes the big panel,
first orthogonalizing the big panel using CholQR (Line 15), fol-
lowed by BCGS with CholQR on the big panels (Line 19).

The main objective of the pre-processing stage is to keep
the condition number of the basis vectors small at a low cost.
Namely, for the two-stage algorithm to maintain the same level
of the stability as the one-stage algorithm, after the first inter-
big panel BCGS (Line 10 of Figure 5), the condition number of
the big panel is hoped to be the same order as that of each panel
in the one-stage algorithm,

κ(V̂ℓ+1: j) ≈ κ(V̂ℓ+1). (11)

Without the pre-processing step (i.e., one-stage with s = ŝ), the
condition number of the basis vectors will increase exponen-
tially with the step size (see numerical results in [6]).

When it is seen as the generic block orthogonalization scheme,
without MPK, in Figure 6, this two-stage algorithm can be con-
sidered as BCGS2 (shown in Figure 2c) that orthogonalizes the
big panel as a set of block vectors, where the pre-processing
step, followed by CholQR, is used as the first intra-block or-
thogonalization (Lines 3 to 8). Hence, if the condition number
of the big panel V̂ℓ+1:t+1, after the pre-processing step (Lines
4 to 6) is O(1), then the orthogonality error of the big panel
Q̂ℓ+1:t+1 after the first CholQR (Line 7) is O(ϵ), and thus, the
overall two-stage block orthogonalization is stable with O(ϵ)
orthogonality error of the resulting vectors, i.e.,

∥I − QT
1:t+1Q1:t+1∥ = O(ϵ).

In the next section, we introduce two pre-processing schemes
and discuss the condition on the input big panel κ(V̂ℓ+1:t+1) to
ensure the overall stability of the two-stage algorithm.

7. Preprocessing Schemes for Two-stage Framework

We first formally establish the following proposition.

Proposition 7.1. If a pre-processing scheme can maintain the
condition number of the big panel to be bounded as

κ
(
Qℓ+1:t+1

)
= O(1), (12)

then the overall stability of the two-stage scheme (5) is ensured.

Input: Q1: j−1 and V̂ j

Output: Q j and R1: j, j
1: // Dot-products
2: R1: j, j := [Q1: j−1, V̂ j]T V̂ j
3: // Gram matrix generation by Pythagorean
4: G := R j, j − RT

1: j−1, jR1: j−1, j

5: // CholQR intra-block orthogonalization
6: R j, j := Chol(G)
7: // Block orthogonalization
8: V̂ j := V̂ j − Q1: j−1R1: j−1, j

9: Q j := V̂ jR−1
j, j

Figure 7: BCGS with Pythagorean Inner Product (BCGS-PIP).

Proof. Using (8), condition (12) implies that Q̂ℓ+1:t+1 produced
by the first intra big-panel CholQR factorization of Qℓ+1:t+1 at
Line 7 of Figure 6 satisfies

∥I − Q̂T
ℓ+1:t+1Q̂ℓ+1:t+1∥ = O(ϵ).

Therefore, the first intra-block orthogonalization, which is based
on the pre-processing scheme satisfying (12) followed by CholQR,
satisfies the orthogonality error (6) of the big-panel, which is re-
quired by [7] to ensure the overall O(ϵ) orthogonality error (5)
of the two-stage scheme.

7.1. BCGS with Pythagorean Inner Product (BCGS-PIP)
Our first pre-processing scheme for the two-stage algorithm

is based on the single-reduce variant [31, 35] of BCGS with
CholQR, shown in Figure 7. Instead of explicitly computing
the Gram matrix, this variant uses the Pythagorean rule, hence
requiring only one global-reduce for both the inter-block and
intra-block orthogonalization.3 In addition, it was shown [31,
Theorem 3.4] that if the condition number of the input basis
vectors is bounded as

c3(ϵ, n, ŝ)κ(V̂ℓ+1:t+1)2 < 1/2, (13)

where c3(ϵ, n, s) is a constant and t+ 1 is the last block index of
the big panel (i.e., t := ℓ+ ŝ/s− 1), then the orthogonality error
of the big panel computed by BCGS-PIP satisfies

∥I − Q
T
ℓ+1:t+1Qℓ+1:t+1∥ ≤ c3(ϵ, n, ŝ)κ(V̂ℓ+1:t+1)2. (14)

Hence, we have the following proposition:

Proposition 7.2. If this pre-processing scheme can maintain
the condition number of the big panel to satisfy the condition (13),
then the overall stability of the two-stage scheme is ensured.

Proof. Because of the assumption (13) and the bound (14), we
have

∥I − Q
T
ℓ+1:t+1Qℓ+1:t+1∥ < 1/2.

Thus, by Weyl’s inequality, we obtain
σmin

(
Q

T
ℓ+1:t+1Qℓ+1:t+1

)
≥ 1 − ∥I − Q

T
ℓ+1:t+1Qℓ+1:t+1∥ > 1/2

σmax

(
Q

T
ℓ+1:t+1Qℓ+1:t+1

)
≤ 1 + ∥I − Q̂T

ℓ+1:t+1Qℓ+1:t+1∥ < 3/2.

3For the first block (i.e., j = ℓ + 1), BCGS-PIP is equivalent to CholQR.

8



Input: V̂ j (new block),
Q j1: j−1 (previous pre-processed blocks), and
q j1: j−1 (previous sketch vectors)

Output: Q j, q j, R1: j, j
1: // Sketch the new “panel”
2: v̂ j := ΘT V̂ j
3: // Orthogonalize new sketched panel within big panel
4: [q j, R j1: j, j] := BCGS2-HH(q j1: j−1, v̂ j)
5: // Generate well-conditioned basis
6: V̂ j := V̂ j − Q j1: j−1R j1: j−1, j

7: Q j := V̂ jR−1
j, j

(a) The jth step (for PreProc for Figure 6)

Input: V̂1:t+1
Output: Q1:t+1, R1:t+1,1:t+1

1: // Sketch the big panel
2: v̂1:t+1 := ΘT V̂1:t+1
3: // Orthogonalize the sketch of the big panel
4: for j = 1, 2, . . . , t + 1 do
5: [q j, R1: j, j] := BCGS2-HH(q1: j−1, v̂ j)
6: end for
7: // Generate well-conditioned basis by forward-substitution
8: for j = 1, 2, . . . , t + 1 do
9: V̂ j := V̂ j − Q1: j−1R1: j−1, j

10: Q j := V̂ jR−1
j, j

11: end for

(b) Accumulated steps.

Figure 8: Randomized BCGS2 (RandBCGS2).

Therefore,

κ
(
Qℓ+1:t+1

)
=

√
κ
(
Q

T
ℓ+1:t+1Qℓ+1:t+1

)
= O(1), (15)

and the proof follows by Proposition 7.1.

A similar two-stage scheme based on BCGS-PIP was stud-
ied in [6]. The variant studied in this paper is slightly different
and has a more stable behavior. Namely, its robustness depends
on the condition number of the big panel V̂ℓ+1:t+1 as shown in
the condition (13), while the stability of the previous variant de-
pended on the condition number of the accumulated big panels,
i.e., c(ϵ)κ([Q1:ℓ, V̂ℓ+1:t+1])2 < 1/2.

Similarly to CholQR, BCGS-PIP can fail when the condi-
tion number of the big panel is greater than the reciprocal of the
square-root of the machine epsilon ϵ. This can cause numerical
issues, especially for the ill-conditioned basis vectors generated
by MPK.

7.2. Randomized BCGS

To enhance the stability of the pre-processing scheme based
on BCGS-PIP, we consider a randomized BCGS scheme shown
in Figure 8 as our pre-processing algorithm. This algorithm
sketches the big panel, but s basis vectors at a time. To ensure
stability, we orthogonalize the sketched vectors v̂ℓ+1:t+1 using
BCGS2 with Householder intra-block orthogonalization. Sim-
ilar randomized block orthogonalization algorithms were dis-
cussed in [15, 16, 10]. We used this randomized algorithm as
the pre-processing scheme for the two-stage BCGS2, in order

to maintain the well-conditioning of the big panel Qℓ+1:t+1 and
obtain the overall O(ϵ) orthogonality error of Q1:t+1.

Proposition 7.3. The overall stability of two-stage algorithm
is ensured when randomized BCGS pre-processing is used with
ΘT that forms an µ-subspace embedding over the range of V̂ℓ+1:t+1,
and the following condition is satisfied:

c4(ϵ, n, ŝ)κ(V̂ℓ+1:t+1) < 1/2. (16)

where c4(ϵ, n, s) is a constant, or equivalently when MPK gen-
erates numerically full-rank basis vectors for each big panel
V̂ℓ+1:t+1.

Proof. Observe that RandBCGS2 (in Figure 8b) is identical to
RandHH (in Figure 4a) except that BCGS2-HH is used, instead
of HH factorization, on the sketched vectors to generate the
upper-triangular matrix. In [10, Corollary 5.2], it was proven
that RandHH results in κ

(
Qℓ+1:t+1

)
= O(1).

We prove in Appendix that the backward error of the QR
factorization via BCGS2-HH only differs from the Householder
QR backward error by a constant factor. Hence, the backward
error analysis in [10, Section 5.2.4] only differs by a constant
factor when BCGS2+HH, instead of HH, was used on the sketched
vectors. Therefore, by [10, Corollary 5.2], RandBCGS2 will
generate the basis vectors Qℓ+1:t+1 whose condition number is
bounded by κ

(
Qℓ+1:t+1

)
= O(1), and the proof follows by Propo-

sition 7.1.

Assuming that the condition number of the big panel is in
the same order as that of each panel in the one-stage algorithm
(as in the condition (11)), the condition (16) on the big panel
for the two-stage algorithm is equivalent to the condition (10)
on the panel for the one-stage algorithm, and hence the two-
stage algorithm with RandBCGS2 is as stable as the one-stage
algorithm with RandHH.

The roundoff error analysis of a randomized BCGS, that
is similar to the one in Figure 8, has been presented in [15],
where their framework allows generating the sketches of the
block for the inter and intra block orthogonalization, separately,
while in this paper, we focus on the one in Figure 8 that uses
a single sketch of the big panel (similar to randCholQR, but by
generating the sketch of each block at a time).

BCGS-PIP and RandBCGS2, shown in Figures 7 and 8, re-
spectively, have a similar algorithmic structure. In particular, at
every s steps, both algorithms would require one global-reduce,
followed by a small local computation (either Cholesky factor-
ization of the Gram matrix or BCGS2 orthogonalization of the
sketched vectors) and forward-substitution to generate the basis
vectors Q j. Though RandBCGS2 has the larger complexity for
the local computation, the main factor that impacts their per-
formance difference is the dot-products required for BCGS-PIP
and the random-sketching required for RandGCGS.

7.3. Remarks on Complexity

We discuss the overall complexity of the various block or-
thogonalization algorithms in Section 8, but we provide a few
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Flop Count
Projection Normalization Total

One-stage:
CGS2 2nm(m + 1/2) 2nm(m + 1/2) 3nm 3nm 2nm2 2nm2

BCGS2+CholQR2 2nm(s + 1)(m − s + 1/2)/s 2nm(s + 1)(m − s + 1/2)/s 4nm(s + 1)(s + 3/2)/s 2nm(s + 1)(s + 3/2)/s 2nm2(s + 1)/s 2nm2(s + 1)/s
BCGS2+RCholQR(ŝ = s) 2nm(s + 1)(m − s + 1/2)/s 2nm(s + 1)(m − s + 1/2)/s 4nm(s + 1)(7s/4 + 2)/s 2nm(s + 1)(s + 3/2)/s 2nm2(s + 1)/s 2nm2(s + 1)/s

Two-stage:
BCGS-PIP 2nm(s + 1)(m − s + 1/2)/s 2nm(s + 1)(m − s + 1/2)/s 4nm(s + 1)(s + 3/2)/s 2nm(s + 1)(s + 3/2)/s 2nm2(s + 1)/s 2nm2(s + 1)/s
RBCGS2(s < ŝ < m) 2nm(s + 1)(m − ŝ + 1/2)/s 2nm(ŝ + 1)(m − ŝ − 1/2)/ŝ 2nm(s + 1)(5ŝ/2 − s/2 + 5/2)/s 2nm(ŝ + 1)(ŝ + 3/2)/ŝ 2nm2(s + 1)/s 2nm2(ŝ + 1)/ŝ

+2nm(ŝ + 1)(ŝ + 3/2)/ŝ
RBCGS2(ŝ = m) 2nm(s + 1)(5m/2 − s/2 + 5/2)/s nm(s + 1)2/s 2n(m + 1)(m + 3/2) 5nm2(s + 1)/s 2nm2

Table 2: Asymptotic computational complexity of orthogonalization scheme over one GMRES restart cycle, where “RCholQR” and “RBCGS” are RandCholQR
and RandBCGS2, respectively. For the complexity with the random sketch, we use Gaussian Sketch with the sketch size of m̂ = 2(̂s + 1). For each components,
there are two columns for each component, “Projection”, “Normalization”, and “Total”, where for the standard and s-step algorithms, the first and second columns
are for orthogonalization and then for reorthogonalization, while for the remaining algorithms, they are for the preprocessing based on Gaussian random-sketching
and then for orthogonalization. For two-stage, “Projection” and “Normalization” are the inter-block and intra-block orthogonalization of big panels. “Total” only
shows the leading terms of the complexity.

remarks on the complexity, comparing the one-stage and two-
stage algorithms, here.

Compared to the one-stage algorithm with RandHH, the
two-stage algorithm with RandBCGS2 reduces the communi-
cation cost by delaying the orthogonalization until ŝ + 1 basis
vectors are generated. However, this two-stage algorithm needs
to sketch the big panel with the total of ŝ+1 basis vectors, hence
requiring a larger sketch size than the one-stage algorithm. For
instance, with the Gaussian sketch, its sketch size for the two-
stage algorithm is proportional to the number of columns in the
big panel, ŝ + 1, while the one-stage algorithm sketches each
panel of s+1 basis vectors, and its sketch size is proportional to
the panel size, s + 1. Hence, in the randomized two-stage algo-
rithm, there is a trade-off between the reduced communication
cost for the orthogonalization and the increased computational
cost for sketching, which we discuss in the next section.4

When ŝ < m, the two-stage algorithm with the two pre-
processing schemes in Section 7 requires about the same com-
putational cost as the one-stage algorithm. On the other hand,
when ŝ = m, the two-stage algorithm has a lower computational
cost than the one-stage algorithm (see the asymptotic complex-
ity discussion in Section 8). This is because if the preprocesing
step can keep the well-conditioning of the basis vectors over the
whole restart-cycle of s-step GMRES, then the reorthogonaliza-
tion (Line 19) is not needed, reducing the total computational
cost of the orthogonalization. In this case, it is also possible
to skip the ℓ2-orthogonalization (i.e., CholQR on Line 15), and
solve the least-square problem in the sketched space. Neverthe-
less, in this paper, we will focus on generating the ℓ2-orthogonal
basis vectors, but will show the breakdown of the orthogonal-
ization time, including the CholQR time, in Section 11.

8. Asymptotic Complexity

Tables 2 and 3 compare the computational, storage, and
communication complexities of the different block orthogonal-
ization schemes, respectively. These complexities are total costs
using one MPI process, and not for distributed-memory.

4As Count-Gaussian sketching has O(n) complexity, it has the potential to
remove this overhead of the randomized two-stage algorithm.

• The s-step GMRES includes the starting vector to the set
of the vectors to be orthogonalize. For instance, with
s = 1, s-step orthogonalizes two vectors at each step.
This leads to about 2× more flops for “Projection” for
s-step GMRES, compared to the standard GMRES. In
addition, CholQR of two vectors requires about (10/3)×
more flops than computing a dot-product and scaling of a
single vector.

• The randomized block orthogonalization algorithm per-
forms the preprocessing based on random-sketching to
generate the well-conditioned basis vectors, followed by
the ℓ2-orthogonalization of the basis vectors. Hence, the
randomized algorithm replaces the first orthogonalization
process of the standard algorithm with the randomized
transformation of the basis vectors, while the orthogonal-
ization process is identical and performs the same num-
ber of flops as the re-orthogonalization process of the
standard algorithm.

• With ŝ = s (one-stage), compared to CholQR2, Rand-
CholQR has higher computation complexity and larger
communication volume, but the relative overhead is small
(about the order of s/m) in the total complexity. This
leads to insignificant increase in the orthogonalization
time (for improving the numerical stability) in our per-
formance tests.

• One-stage algorithm with CholQR2 and two-stage algo-
rithm with BCGS-PIP have about the same computational
complexity.

• With ŝ = m, the two-stage framework has the best com-
munication latency cost, but random-sketching has the
highest computational overhead, where the total compu-
tational cost of the orthogonalization is increased by a
factor of 1.75×. Nevertheless, when the performance is
limited by the latency, this computational overhead may
not be significant.

Though the storage cost is increased by a factor of three,
which could limit the use of the dense Gaussian sketch,
the overhead can be reduced by using sparse Count sketch.
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Communication
Storage Latency Volume

CGS2 nm 4m nm(2m + 4)
BCGS2+CholQR2 nm 4 m

s nm 2m+4+4s
s

BCGS2+RCholQR(̂s = s) n(m + m̂) 4 m
s nm 2m+4+4s+m̂

s
RBCGS2(s < ŝ < m) n(m + m̂) m

s + 3 m
ŝ nm( m+2+2s+m̂

s + m+2+4ŝ
ŝ )

RBCGS2(̂s = m) n(m + m̂) m
s + 1 nm m/2+m̂+2+2s

s + 2nm

Table 3: Asymptotic storage and communication costs of orthogonalization
scheme over one GMRES restart cycle, where “RCholQR” and “RBCGS” are
RandCholQR and RandBCGS2, respectively.

(a) Condition number with CholQR2. (b) Orthogonality errors with CholQR2.

(c) Condition number with RandCholQR. (d) Orthogonality errors with RandCholQR.

Figure 9: Condition number and orthogonality error with one-step BCGS2 with
CholQR2 or RandCholQR first intra-block orthogonalization on glued matrix,
where Cholesky factorization of the Gram matrix G in CholQR failed with non-
positive pivots when κ(V) ≥ 108 in Figures 9a and 9b.

• These storage and computational overheads may be re-
duced using a smaller sketch size (s < ŝ < m). This
reduces the overhead to be O(̂s/m), though the reduction
in the latency is also reduced. Nevertheless, in our exper-
iments, the two-stage algorithm obtained the best perfor-
mance using ŝ = m.

9. Numerical Experiments

We compared the orthogonality errors of the proposed block
orthogonalization schemes using the default double precision in
MATLAB. For these studies, instead of studying the numerical
properties of the proposed methods within the s-step GMRES,
we first treat them as general block orthogonalization schemes
and use synthetic matrices as the input vectors. This allows us
to control the condition number of the matrix easily. Numer-
ical results showing how the condition numbers of the Krylov
vectors could grow, can be found in [6].

We first study how the orthogonality errors grow with the
condition numbers of the input vectors for the one-stage algo-
rithms. Figure 9 shows the orthogonality error when CholQR2

or RandCholQR are used for the first intra block orthogonal-
ization of the one-stage BCGS2. Our test matrix is the glued

matrix [36] that has the same specified order of the condition
number for each panel V j and for the overall matrix V1:12. As
expected, the orthogonality error of the basis vectors Q̂ was
O(ϵ) using CholQR2 when the condition number of the input
matrix is smaller than O(ϵ)−1/2. With RandCholQR, the same
O(ϵ) orthogonality errors were obtained as long as the input
matrix is numerically full-rank with the condition number of
O(ϵ)−1, and hence demonstrating superior stability compared to
CholQR2.

Next, we show that the two-stage approach obtains O(ϵ) or-
thogonality error when the condition (13) or (16) is satisfied, us-
ing BCGS-PIP or RandBCGS2, respectively. Figure 10 shows
the condition number of basis vectors using the two-stage ap-
proach with BCGS-PIP or RandBCGS2 as the preprocessing
schemes, while Figure 11 shows the orthogonality errors using
RandBCGS2. The test matrix is the glued matrix, where each
big panel has the condition number O(1015). For this synthetic
matrix, the Cholesky factorization of the Gram matrix failed
with non-positive pivot in BCGS-PIP when the condition num-
ber of the accumulated panels increased more than O(ϵ)−1/2.
In contrast, RandBCGS2 managed to keep the O(1) condition
number of the big panel [Q1:ℓ−1, Q̂ℓ:t], and the overall orthogo-
nality error of Q was O(ϵ).

Finally, Figure 12 shows the condition number and the or-
thogonality errors based on CholQR2 and RandCholQR where
the basis vectors V1: j+1 are generated by MPK. In particular, we
generated V1: j+1 such that v j+1 := Av j where A is a 2D Lapla-
cian matrix of dimension 1282, v1 = b/∥b∥, b := Ax, and the
numerical values of all x’s entries are one. The condition num-
ber of V1: j+1 grew quickly and CholQR2 failed when j = 11,
while RandCholQR could generate the orthonormal basis vec-
tors as long as the input basis vectors are numerically full rank.
Even though we used the step size of s = 5 for all of our perfor-
mance studies, these numerical results indicate that we could
have used a larger step size with the random sketching tech-
niques and potentially obtained higher performance of s-step
GMRES.

10. Implementation

To study the performance of the block orthogonalization
algorithms for s-step GMRES running on a GPU cluster, we
have implemented these algorithms within the Trilinos software
framework [13, 14]. Trilinos is a collection of open-source soft-
ware libraries, called packages, for solving linear, non-linear,
optimization, and uncertainty quantification problems. It is in-
tended to be used as building blocks for developing large-scale
scientific or engineering applications. Hence, any improvement
in the solver performance could have direct impacts to the ap-
plication performance. In addition, Trilinos software stack pro-
vides portable performance of the solver on different hardware
architectures, with a single code base. In particular, our im-
plementation is based on Tpetra [37, 38] for distributed matrix
and vector operations and Kokkos-Kernels [39] for the on-node
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(a) BCGS-PIP.

(b) RandBCGS2

Figure 10: Condition number (marker at every s steps) using two-stage ap-
proach with BCGS-PIP and RandBCGS2 on glued matrix with (n,m, ŝ, s) =
(100000, 180, 60, 5).

portable matrix and vector operations (which also provides the
interfaces for the vendor-optimized kernels like NVIDIA cuBLAS,
cuSparse, and cuSolver).

On a GPU cluster, our GMRES implementation uses GPUs
to generate the orthonormal basis vectors. The coefficient ma-
trix A and Krylov vectors V are distributed among MPI pro-
cesses in 1D block row format (e.g., using a graph partitoner
like ParMETIS), where A is locally stored as the Compressed
Sparse Row (CSR) format, while V is stored in the column-
major format. The operations with the small projected matrices,
including solving a small least-squares problem, is redundantly
done on CPU by each MPI process.

Our focus is on the block orthogonalization of the vectors,
which are distributed in 1D block row format among the MPI
processes. The orthogonalization process mainly consists of
dot-products, vector updates, and vector scaling (e.g., R1: j−1, j :=
QT

1: j−1V j and V̂ j := V j − Q1: j−1R1: j−1, j of BCGS in Figure 2a,

and Q̂ j := V̂ jR−1
j, j of CholQR in Figure 2b, respectively). The

dot-products QT
1: j−1V j requires a global reduce among all the

MPI processes, and the resulting matrix R1: j−1, j is stored redun-

Figure 11: Orthogonality error (orange circle marker at every s steps, while
green triangle marker at every ŝ steps) using two-stage approach with Rand-
BCGS2 on glued matrix with (n,m, ŝ, s) = (100000, 180, 60, 5).

Figure 12: Condition number and orthogonality error with CholQR2 or Rand-
CholQR where the matrix is generated by MPK for a 2D Laplace matrix of
dimension 1282..

dantly on the CPU by all the MPI processes. Given the upper-
triangular matrix on each MPI process, the vectors can be up-
dated and scaled locally without any additional communication.
All the local computations are performed by the computational
kernels through Kokkos Kernels, either on a CPU or on a GPU.

We have implemented the random-sketching using standard
linear algebra kernels as discussed in Section 5.2. These distributed-
memory or on-node kernels are readily available through Tpetra
or Kokkos-Kernels, given that the random-sketching matrix Θ
is explicitly generated and stored in memory.

• For Gaussian sketch, the dense sketching matrix Θ is dis-
tributed among the MPI processes in the 1D block row
format, and each MPI process stores the local matrix in
the column major order.

• For Count sketch, the sparse sketching matrix Θ is also
distributed in the 1D block row format, where each local
sparse matrix is stored in the CSR format.

• For Count-Gaussian sketching, the sparse Count-sketching
matrix Θc is distributed in the 1D block row format, but
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the dense Gaussian-sketching matrix Θg is duplicated on
all the MPI processes such that it can be applied before
performing the global-reduce of the final sketched basis
vectors.

11. Performance Experiments

We conducted our performance tests on the Perlmutter su-
percomputer at National Energy Research Scientific Comput-
ing (NERSC) Center. Each compute node of Perlmutter has
one 64-core AMD EPYC 7763 CPUs and four NVIDIA A100
GPUs. On each node, we launched 4 MPI processes (one MPI
per GPU) and assigned 16 CPU cores to each MPI process. For
all the performance studies with one-stage or two-stage algo-
rithm, we used the sketch size of 2s or 2ŝ for the Gaussian
Sketch, while the sketch size of 2s2 or 2ŝ2 is used for the Count
Sketch, respectively.

The code was compiled using Cray’s compiler wrapper with
Cray LibSci version 23.2, CUDA version 11.5 and Cray MPICH
version 8.1. The GPU-aware MPI was not available on Perl-
mutter, and hence, all the MPI communications are performed
through the CPU. We configured Trilinos such that all the lo-
cal dense and sparse matrix operations are performed using
CUBLAS and CuSparse, respectively.

11.1. Single-GPU Sketching Performance (Gaussian vs. Count)
Figure 13a compares the time required for Gaussian and

Count sketch on a single NVIDIA A100 GPU, with the time
required for computing the Gram matrix of the block vectors
(e.g., needed for CholQR), where the number of rows is fixed at
n = 105, while the number of columns, m, is increased from 5 to
60. The Count Sketch was slower than the Gaussian Sketch for
a small number of columns (e.g., s = 5 for the one-stage block
orthogonalization). However, because the Count Sketch has
the computational complexity of O(nm) compared to O(nm2)
of Gaussian Sketch, the time required for the Count Sketch in-
creased less with the increasing number of columns, and it be-
came faster than the Gaussian Sketch for a large enough number
of columns (e.g., ŝ = 60 for the two-stage orthogonalization,
though we sketch s columns at a time).

Figure 13b shows the observed bandwidth for the three al-
gorithms with 4 bytes to store the column index for the sparse
CSR format and 8 bytes to store the double-precision numeri-
cal value for both the dense vectors and sparse matrix, respec-
tively. We let the amount of the data required to move to be
8 bytes · mn for computing the Gram matrix (reading V once),
and 8 bytes ·(3mn) or 8 bytes ·mn+(8+4) bytes ·m for the Gaus-
sian Sketch or Count Sketch (reading V and dense or sparse Θ
once), respectively. As we expected, due to the irregular data
access, the Count Sketch obtained the lower bandwidth than the
Gaussian Sketch (which obtained close to the NVIDIA A100
memory bandwidth, 1.5TBytes per second). The bandwidth ob-
tained for computing the Gram matrix was about the half of that
observed for the Gaussian Sketch. This could be because Tpetra
uses non-symmetric dense matrix-matrix multiply (GEMM) for
computing the Gram matrix, potentially doubling the amount of
the required data traffic.

(a) Time in seconds.

(b) Bandwidth.

Figure 13: Sketch performance on one NVIDIA A100 GPU.

11.2. Breakdown of Orthogonalization Time on one and multi-
ple GPUs (Gaussian, Count, vs. CountGauss)

We now study the performance of the block orthogonaliza-
tion kernels. Figure 14 shows the breakdown of time needed for
CholQR on a single NVIDIA A100 GPU. With our experiment
setups, the dense triangular solves (TRSM) required for gener-
ating the orthogonal basis vectors took longer than the dense
matrix-matrix vector multiply (GEMM) needed to generate the
Gram matrix, even though their computational complexity costs
are about the same. The time needed to compute the Cholesky
factorization of the Gram matrix on the CPU was negligible.

Figure 15a shows the breakdown of the intra-block orthog-
onalization time on the four NVIDIA A100 GPUs available on
a single Perlmutter compute node. Compared to the Gaussian
Sketch, the “sketch time” (i.e., the time to apply the sketch)
of Count-Sketch was slightly faster, but due to its larger sketch
size, it required more time for the global-reduce and local House-
holder QR. Overall, Count-Gaussian sketch obtained the best
performance, but the performance on Perlmutter was largely
dominated by the global-reduce and TRSM (and not by the
sketching time), and Gaussian and Count-Gaussian sketch ob-
tained similar performance.

Figure 15b then shows the breakdown of the BCGS, with
CholQR2, orthogonalization time on the four NVIDIA A100

13



GMRES + ICGS (1659) s-step + CholQR2 (1660) s-step + RandQR (1660) Two-stage + PIP (1700) Two-stage + RandBCGS2 (1700)
# nodes SpMV Ortho Total SpMV Ortho Total SpMV Ortho Total SpMV Ortho Total SpMV Ortho Total

1 7.96 35.00 40.81 7.38 9.14+8.42 23.95 7.42 9.11+8.55 24.08 8.14 9.87 16.92 9.10 14.69 21.58
1.99× 1.70× 1.98× 1.69× 3.55× 2.41× 2.38× 1.89×

2 6.26 22.34 26.47 6.28 5.97+4.96 15.65 6.30 6.05+5.04 15.75 6.48 5.41 10.91 7.09 7.85 13.28
2.04× 1.69× 2.01× 1.68× 4.13× 2.43× 2.85× 1.99×

4 5.13 16.56 19.85 5.08 4.10+3.54 11.45 5.06 4.14+3.66 11.54 5.24 3.59 7.87 5.74 4.92 9.25
2.17× 1.73× 2.12× 1.72× 4.61× 2.52× 3.37× 2.15×

8 4.47 14.46 17.31 4.47 3.17+2.88 9.43 4.43 3.13+2.99 9.44 4.44 2.54 6.21 4.66 3.09 6.94
2.39× 1.84× 2.36× 1.93× 5.69× 2.79× 4.68× 2.49×

16 4.41 13.40 15.78 4.06 2.69+2.43 8.24 4.06 2.70+2.51 8.32 4.15 2.24 5.50 4.26 2.66 5.89
2.62× 1.92× 2.57× 1.90× 5.98× 2.87× 5.04× 2.68×

Table 4: Parallel Strong Scaling of time-to-solution with 7-points 3D Laplace, n = 3003. On each node, we launched 4 MPI processes (one MPI per GPU). The
table also shows the speedup gained using s-step (s = 5) and two-stage (̂s = m) over standard GMRES (m = 100) for orthogonalization and total solution time.

(a) Time in seconds.

(b) Ratio.

Figure 14: Time breakdown for CholQR on one NVIDIA A100 GPU.

GPUs. It shows the average time required by the s-step GM-
RES over 600 iterations to orthogonalize the basis vectors with
s = 5 for solving the 2D Laplace problem of dimension 7002,
and hence the number of columns refers to the GMRES’ restart
cycle. The inter-block orthogonalization became more signif-
icant as the restart-cycle length was increased. However, the
TRSM time was still the most dominant part of the overall or-
thogonalization time.

11.3. s-step GMRES Strong-scaling Results
Although the breakdown of the iteration time depends on

the matrix, in Table 4, we show the parallel strong-scaling per-

(a) Breakdown of Intra-block orthogonalization time (m = 40).

(b) BCGS2 with CholQR2.

Figure 15: Breakdown of orthogonalization time on four NVIDIA A100 GPUs.

formance of the s-step GMRES for solving a 3D Laplace prob-
lem, from which we can infer the performance for other prob-
lems (please see, for instance [6], for the performance using
difference matrices). We used the restart length of 100 (i.e.,
m = 100), and considered GMRES to have converged when the
relative residual norm is reduced by six orders of magnitude.

For the one-stage algorithm, compared to CholQR, the ran-
dom sketching had virtually no overhead, while improving the
stability of the orthogonalization as shown in Section 9. Com-
pared to the one-stage algorithm, the random sketching had
more significant overhead for the two-stage orthogonalization
due to the larger sketch size. However, the overhead became
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less significant as we increased the number of MPI processes,
and the latency cost became more significant, with 1.49, 1.45,
1.37, 1.22, and 1.19× overhead on 1, 2, 4, 8, and 16 nodes,
respectively.

12. Conclusion

We integrated random sketching techniques into the block
orthogonalization process, required for the s-step GMRES. The
resulting algorithm ensures that the overall orthogonalization
errors are bounded by the machine precision as long as each of
the block vectors are numerically full-rank. Our performance
results demonstrated that the numerical stability of the block or-
thogonalization process is improved with a relatively small per-
formance overhead. Our implementation of the random sketch-
ing utilizes standard linear algebra kernels such that it is portable
to different computer architectures. Though the vendor-optimized
versions of these kernels are often available, they may not be
optimized for the specific shapes or sparsity patterns of the
sketching matrices, and we have observed the sparse sketch
often obtains the suboptimal performance. Nevertheless, the
sparse random sketching has the complexity of O(n), and with
a careful implementation, RandCholQR, using a spares sketch,
might not only enhance the numerical stability but also be able
to outperform CholQR2.

Appendix

Here we provide a sketch of the proof of Proposition 7.3.

Proof. Because of Proposition 7.1, it is sufficient to prove that
the condition number of the big panel Qℓ+1:t+1, before the CholQR
(on Line 7 of Figure 6), is bounded as

κ
(
Qℓ+1:t+1

)
= O(1). (17)

Then with the bound (8), after the CholQR, the resulting big
panel has the orthogonality error,

∥I − QT
ℓ+1:t+1Qℓ+1:t+1∥ = O(ϵ),

and by an argument identical to [7, Theorem 6.1], the overall
stability of the two-stage BCGS2 is ensured with the O(ϵ) or-
thogonality error among all the generated basis vectors,

∥I − QT
1:t+1Q1:t+1∥ = O(ϵ),

up to a constant term c(ϵ, n, ŝ).
The general strategy for proving (17) is based on the ob-

servation that RandBCGS2 is identical to RandHH except that
BCGS2-HH (Line 5 of Figure 8b) is used to orthogonalize the
sketched vectors v̂1:t+1 , instead of HH (Line 4 of Figure 4a).
For instance, the Lines 8–11 of Figure 8b are equivalent to ap-
plying the forward-substitution to the big panel Q1:t+1 = V̂1:t+1R−1

1:t+1,1:t+1.
Hence, if we show that the backward error incurred during BCGS2-
HH differs from HH by a constant factor c(ϵ, n, ŝ), then we can
use the error analysis of RandHH from [10] to prove (17).

More specifically, in [10, Corollary 5.1], it was proven that
RandHH results in κ

(
Qℓ+1:t+1

)
= O(1). This proof relies on

[10, Sections 5.2.1–5.2.8]. Now, the error analysis in the first
three subsections [10, Sections 5.2.1–5.2.3] applies to Rand-
BCGS2 because they do not depend on the results of the QR
factorization. Furthermore, the analysis of the backward error
with the QR factorization in [10, Section 5.2.4] only differs by
a constant factor if we prove the backward error of the QR fac-
torization via BCGS2-HH only differs from the Householder
QR backward error by a constant factor. Hence, the remain-
ing error analysis in [10, Sections 5.2.5–5.2.8] applies to Rand-
BCGS2, which uses BCGS2-HH in place of Householder QR,
up to a constant factor. Therefore, by [10, Corollary 5.1], we
have κ

(
Qℓ+1:t+1

)
= O(1) with RandBCGS2, thereby completing

the proof. To simplify the notations, for the rest of the proof,
we drop the accents on top of the computed sketched vectors
(e.g., v instead of v̂)

The main component of the proof is to derive the bound

∥v1: j − q̄1: jR1: j,1: j∥2 = O(ϵ)∥v1: j∥2,

where q̄1: j is an exactly orthogonal matrix and R1: j,1: j is the
upper-triangular matrix computed by BCGS2-HH, since such
bound was proved for HH in [10, Section 5.2.4]. Since such re-
sult is not directly available in [7], we show how to obtain such
a bound below.

According to [7, Theorem 6.1], we first note that our com-
puted matrices q1: j and R1: j,1: j satisfy

v1: j + ∆v1: j = q1: jR1: j,1: j, (18)
∥∆v1: j∥2 = c5(ϵ, n, ŝ)∥v1: j∥2, (19)

∥I − qT
1: jq1: j∥2 = c6(ϵ, n, ŝ), (20)

for some constants c5(ϵ, n, ŝ) and c6(ϵ, n, ŝ).
Given the singular value decomposition of q1: j = UΣVT ,

its perturbation ∆q1: j from the exactly-orthonormal vectors q̄1: j

(i.e., ∆q1: j = q̄1: j − q1: j) can be bounded as

∥∆q1: j∥2 = ∥q̄1: j − q1: j∥2

= ∥U(I − Σ)VT ∥2

= ∥I − Σ∥2 ≤ c7(ϵ, n, ŝ). (21)

where the singular values of the exactly-orthonormal vectors
q̄1: j are all ones (i.e., q̄1: j = UVT ). Using Weyl’s inequality,
(20) implies that for each i ∈ {1, . . . , j},√

1 − c6(ϵ, n, ŝ) ≤ Σi,i ≤
√

1 + c6(ϵ, n, ŝ). (22)

Hence, the constant c7(ϵ, n, ŝ) is given by

c7(ϵ, n, ŝ) = max{
√

1 + c6(ϵ, n, ŝ)−1, 1−
√

1 − c6(ϵ, n, ŝ)} = O(ϵ).

Now, by substituting q1: j = q̄1: j −∆q1: j into (18), we obtain

q̄1: jR1: j,1: j = v1: j + ∆v1: j + ∆q1: jR1: j,1: j,

which allows us to derive the bound,

∥R1: j,1: j∥2 ≤
1 + c5(ϵ, n, ŝ)
1 − c7(ϵ, n, ŝ)

∥v1: j∥2,
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because

(1 − c7(ϵ, n, ŝ))∥R1: j,1: j∥2

= (1 − c7(ϵ, n, ŝ))∥q̄1: jR1: j,1: j∥2

= ∥v1: j + ∆v1: j + ∆q1: jR1: j,1: j∥2 − c7(ϵ, n, ŝ)∥R1: j,1: j∥2

≤ ∥v1: j∥2 + ∥∆v1: j∥2 + (∥∆q1: j∥2 − c7(ϵ, n, ŝ))∥R1: j,1: j∥2

≤ ∥v1: j∥2 + ∥∆v1: j∥2 (23)
≤ ∥v1: j∥2 + c5(ϵ, n, ŝ)∥v1: j∥2 (24)
= (1 + c5(ϵ, n, ŝ))∥v1: j∥2.

where the inequalities (23) and (24) follows due to ∥∆q1: j∥2 ≤

c7(ϵ, n, ŝ) and ∥∆v1: j∥2 = c5(ϵ, n, ŝ)∥v1: j∥2 from (21) and (18),
respectively.

Thus, we finally have

∥∆v1: j + ∆q1: jR1: j,1: j∥2

≤ ∥∆v1: j∥2 + ∥∆q1: j∥2∥R1: j,1: j∥2

≤

(
c5(ϵ, n, ŝ) + c7(ϵ, n, ŝ)

1 + c5(ϵ, n, ŝ
1 − c7(ϵ, n, ŝ)

)
∥v1: j∥2

= c8(ϵ, n, ŝ)∥v1: j∥2, (25)

where c8(ϵ, n, ŝ) = O(ϵ).
Therefore, there is an exactly-orthogonal matrix q̄1: j such

that the backward error ∆v̄1: j from BCGS2-HH satisfies

v1: j + ∆v̄1: j = q̄1: jR1: j,1: j,

with ∥∆v̄1: j∥2 = c8(ϵ, n, ŝ)∥v1: j∥2. (26)

In contrast, if we compute the Householder QR of v1: j, the stan-
dard backward error analysis [40, Theorem 19.4] gives

v1: j + ∆ṽ1: j = q̃1: jR̃1: j,1: j,

with ∥∆ṽ1: j∥2 ≤ c9(ϵ, n, ŝ)∥v1: j∥2,

where R̃1: j,1: j is the upper-triangular matrix computed by the
HH factorization in finite precision, q̃1: j is exactly-orthogonal,
and c9(ϵ, n, ŝ) = O(ϵ) is a constant. In other words, the back-
ward error from BCGS2-HH and Householder QR are both
bounded by some O(ϵ)∥v1: j∥2 terms, and therefore they only
differ by a constant factor c(ϵ, n, ŝ).
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