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Abstract

CholeskyQR2 and shifted CholeskyQR3 are two state-of-the-art algo-
rithms for computing tall-and-skinny QR factorizations since they attain
high performance on current computer architectures. However, to guar-
antee stability, for some applications, CholeskyQR2 faces a prohibitive
restriction on the condition number of the underlying matrix to factor-
ize. Shifted CholeskyQR3 is stable but has 50% more computational and
communication costs than CholeskyQR2. In this paper, a randomized
QR algorithm called Randomized Householder-Cholesky (rand cholQR) is
proposed and analyzed. Using one or two random sketch matrices, it is
proved that with high probability, its orthogonality error is bounded by a
constant of the order of unit roundoff for any numerically full-rank matrix,
and hence it is as stable as shifted CholeskyQR3. An evaluation of the
performance of rand cholQR on an NVIDIA A100 GPU demonstrates that
for tall-and-skinny matrices, rand cholQR with multiple sketch matrices
is nearly as fast as, or in some cases faster than, CholeskyQR2. Hence,
compared to CholeskyQR2, rand cholQR is more stable with almost no
extra computational or memory cost, and therefore a superior algorithm
both in theory and practice.

Keywords: Randomized Linear Algebra, QR Factorization, Communication-
Avoiding Algorithms, Error Analysis, Numerical Stability, GPUs
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1 Introduction

Computing the QR factorization of tall-and-skinny matrices is a critical com-
ponent of many scientific and engineering applications, including the solution
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of least squares problems, block orthogonalization kernels for solving linear
systems and eigenvalue problems within block or s-step Krylov methods, di-
mensionality reduction methods for data analysis like Principal Component
Analysis, and many others. The current state-of-the-art QR algorithms for
tall-and-skinny matrices are the CholeskyQR2 and shifted CholeskyQR3 algo-
rithms [12, 13], thanks to their communication-avoiding properties along with
their exploitation of vendor provided highly-optimized dense linear algebra sub-
routines [2, 22, 23]. However, CholeskyQR2 may fail to accurately factorize a
matrix V when its condition number κ(V ) ⪆ u−1/2, where u is unit round-
off [36]. Shifted CholeskyQR3 is numerically stable as long as κ(V ) ⪅ u−1,
but it requires over 50% more computational and communication cost than
CholeskyQR2 [12]. Although more stable communication-avoiding algorithms
exist, such as TSQR [8], they rely on Householder QR factorizations of poten-
tially large matrices, and are often significantly slower than CholeskyQR2 in
practice [13].

In this paper, we first present and analyze a randomized algorithm called
randQR for orthogonalizing the columns of a tall-and-skinny matrix with respect
to a specific inner product. In order to reduce the cost of the computations, we
propose to use “multisketching,” i.e., the use of two consecutive sketch matrices,
within randQR. Using randQR with multisketching as a preconditioner for less
stable QR factorizations can be an efficient strategy for computing the true QR
factorization of a matrix, which leads to the primary focus of this paper, which
is an algorithm called rand cholQR for computing the true QR factorization
of a tall-and-skinny matrix V . Our approach is general in the sense that our
analysis applies to any two ϵ-subspace embedding sketching matrices (see Sec-
tion 3 for definitions), but is specifically motivated by the use of a large sparse
sketch followed by a smaller dense sketch, such as a Gaussian or Radamacher
sketch [1]. Our analysis applies in particular to Count-Gauss (one application
of CountSketch followed by a Gaussian sketch), as described in [18, 29, 30].

We prove that with high probability, the orthogonality error of rand cholQR

is on the order of unit roundoff for any numerically full-rank matrix V (i.e.,
κ(V ) ⪅ u−1) and hence it is as stable as shifted CholeskyQR3 and it is signifi-
cantly more numerically stable than CholeskyQR2. Our numerical experiments
ilustrate the theoretical results. In addition, the rand cholQR algorithm may
be implemented using the same basic linear algebra kernels as CholeskyQR2.
Therefore, it is simple to implement and has the same communication-avoiding
properties. We perform a computational study on a state-of-the-art GPU to
demonstrate that rand cholQR can perform up to 4% faster than CholeskyQR2
and 56.6% faster than shifted CholeskyQR3, while significantly improving the
robustness of CholeskyQR2.

In summary, our primary contribution consists of a new error analysis of a
multisketched randomized QR algorithm, proving it can be safely used for matri-
ces of larger condition number than CholeskyQR2 can handle. This analysis also
applies to the case of one sketch, improving upon the existing results. Our im-
plementation confirms and illustrates the theory developed in this paper. Our
secondary contribution is a computational study that tangibly demonstrates
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that the multisketched algorithm has superior performance over the existing
single sketch algorithm and similar performance to the high-performance but
less stable CholeskyQR2 algorithm.

In Section 2, we begin by discussing prior work on similar topics. Then, in
Section 3, we present some preliminary definitions and known results from ran-
domized linear algebra relevant to this work. We follow with Section 4, where
we present multisketching on a conceptual level, and how to incorporate it into
a randomized QR factorization (rand cholQR). We also discuss performance
considerations for rand cholQR compared to other high performance tall-skinny
QR algorithms, leading to the motivation as to why multisketching is recom-
mended. In Section 5, we present rigorous error bounds and their proofs for the
proposed multisketched rand cholQR. These bounds can also be applied to the
case of a single sketch matrix, and we compare the new results to those available
in the literature. Numerical experiments are presented in Section 6, followed
by our conclusions. For completeness, all detailed run times of our experiments
are reported in an Appendix.

2 Related Work

In the case of a single sketch matrix, the concept of sketching a tall-and-skinny
matrix, computing its QR factorization, and then preconditioning the matrix
with the resulting triangular factor like randQR (Algorithm 1) is not new. The
earliest appearance of such an algorithm was by Rokhlin and Tygert in 2008
[27] for solving overdetermined least squares problems, where they proposed a
version of randQR with a column-pivoted QR factorization and a single sub-
sampled randomized Hadamard transform sketch. Fan et al. [10] proposed a
similar algorithm called rQR-CholQR, but they only used a very simple sketch
based on sampling rows of A. They did not consider subspace embeddings or
multisketching.

Prior to this paper, Balabanov and Grigori proposed the “RCholeskyQR”
method in an unpublished manuscript [5], which is identical to what we refer
to as randQR, in the case of a single (ε, d,m) oblivious ℓ2-subspace embedding.
While this paper was being written, Balabanov gave stability results similar to
Corollary 5.2 in an additional unpublished manuscript [3]. However, our results
differ from Balabanov’s, as ours impose no assumptions on the level of accu-
racy performed by subroutines within the algorithm, and we meticulously derive
all bounds from existing roundoff error analysis of each subroutine. Addition-
ally, Balabanov’s work imposes a far stricter limit on the subspace embedding
parameter ϵ ≤ 1

2 , while ours provides analysis up to ϵ < 616
634 for a (ε, d,m)

oblivious ℓ2-subspace embedding, which is nearly the theoretical upper limit of
ϵ < 1 imposed by the theory in Section 3. This is significant, because stability
guarantees for larger values of ϵ ensure high accuracy with smaller sketch ma-
trices, resulting in a more computationally efficient algorithm, as demonstrated
in Section 6.4.

Our results extend beyond a single (ε, d,m) oblivious ℓ2-subspace embed-
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ding, and cover the more generalized case of two subspace embeddings (i.e.,
multisketch). Also, our work includes explicit analysis of the S2S1-orthogonality
error of randQR, which is a specific notion of orthogonality with respect to a
sketched inner product, and the loss of orthogonality error in the standard Eu-
clidean inner product of rand cholQR.

Our work is novel in several ways. To our knowledge, this work is the first to
propose and analyze a randomized QR algorithm with multiple sketches. The
stability results in this paper improve upon and expand the existing stability
analysis of randQR and rand cholQR, and considers the multisketch case for the
first time. Additionally, our experimental results are the first to demonstrate the
performance of rand cholQR in a parallel heterogeneous computing environment
under any sketching framework, particularly in the multisketch case which allows
the algorithm to sometimes run faster than the widely used high-performance
cholQR2 algorithm. This tangibly demonstrates the potential of the multisketch
rand cholQR in exascale applications.

3 Preliminaries on Random Sketching

Suppose one would like to compress V ∈ Rn×m into a matrix with fewer rows
with nearly the same norm. We denote the sketch matrix by S ∈ Rp×n for
p ≪ n. The sketch matrix is typically chosen to be a ϵ-subspace embedding
(defined below), or a linear map to a lower dimensional space that preserves
ℓ2-inner products and norms of all vectors within the subspace up to a factor of√
1± ε for ε ∈ [0, 1) [4, 20, 28].

Definition 3.1 (ε-subspace embedding). Given ε ∈ [0, 1), the sketch matrix
S ∈ Rp×n is an ε-subspace embedding for the subspace V ⊂ Rn if ∀x, y ∈ V,

|⟨x, y⟩ − ⟨Sx, Sy⟩| ≤ ε∥x∥2∥y∥2,

where ⟨·, ·⟩ is the Euclidean inner product.

Proposition 3.1. [4] If the sketch matrix S ∈ Rp×n is an ε-subspace embedding
for the subspace V ⊂ Rn, then ∀x ∈ V, then,

√
1− ε ∥x∥2 ≤ ∥Sx∥2 ≤

√
1 + ε ∥x∥2. (1)

Corollary 3.1. If the sketch matrix S ∈ Rp×n is an ε-subspace embedding for
the subspace V ⊂ Rn, and V is a matrix whose columns form a basis of V, then

√
1− ε∥V ∥2 ≤ ∥SV ∥2 ≤

√
1 + ε∥V ∥2, (2)

√
1− ε∥V ∥F ≤ ∥SV ∥F ≤

√
1 + ε∥V ∥F , (3)

√
1− ε σmin(V ) ≤ σmin(SV ). (4)

Proposition 3.1 follows simply by substituting y = x in Definition 3.1, and
Corollary 3.1 is a simple consequence of Proposition 3.1 using the definition
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of the ℓ2 matrix norm, the Frobenius norm, and the minimum singular value.
Furthermore, Proposition 3.1 can be used to relate the singular values of SV to
those of V in a different way to bound the condition number of V by that of
SV .

Proposition 3.2. [4] If the sketch matrix S ∈ Rp×n is an ε-subspace embedding
for the subspace V ⊂ Rn, and V is a matrix whose columns form a basis of V,
then

(1 + ε)−1/2 σmin(SV ) ≤ σmin(V ) ≤ σmax(V ) ≤ (1− ε)−1/2 σmax(SV ). (5)

Thus,

κ(V ) ≤
√

1− ε

1 + ε
κ(SV ). (6)

Proposition 3.2 implies that if SV is well conditioned, then so is V .
While ε-subspace embeddings require knowledge of the subspace V ⊂ Rn a

priori, (ε, d,m) oblivious ℓ2-subspace embeddings do not.

Definition 3.2 ((ε, d,m) oblivious ℓ2-subspace embedding). [4] S ∈ Rp×n is
an (ε, d,m) oblivious ℓ2-subspace embedding if it is an ε-subspace embedding
for any fixed m-dimensional subspace V ⊂ Rn with probability at least 1− d.

An example of a (ε, d,m) oblivious ℓ2-subspace embedding is S = 1√
pG for

a fully dense Gaussian matrix G ∈ Rp×n and

p = Ω(ε−2 logm log(1/d));

see, e.g., [28]. Sparse (ε, d,m) oblivious ℓ2-subspace embeddings exist, including
CountSketch, which consists of a single ±1 per column, where the row storing
the entry and its sign are chosen uniformly at random [6, 35]. In order to
be a (ε, d,m) oblivious ℓ2-subspace embedding, the number of columns of the
CountSketch matrix must satisfy

p ≥ m2 +m

ε2d
; (7)

see [19]. Other popular (ε, d,m) oblivious ℓ2-subspace embeddings include sub-
sampled randomized Hadamard and Fourier transforms, and “sparse dimension
reduction maps” [4, 20], though obtaining high performance with these is diffi-
cult, and the complexity of applying them is higher than CountSketch. We do
not consider such embeddings in this paper.

4 Multisketching

Next, we consider the case of applying two sketch matrices one after the other,
which is what we refer to as “multisketching” in this paper, generalizing the
approach of [18, 30], where one application of a large sparse CountSketch is
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followed by a smaller dense Gaussian sketch. In these references though, there
is no analysis of stability, as we do here. The main motivation for this approach
is to be able to apply the dense Gaussian sketch to a smaller matrix, obtained
after the application of a sparse sketch, thus significantly reducing the size of
the matrix with little computational cost; see more details on this motivation
in Section 4.2.

We first present the algorithm randQR using this multisketching approach,
and then prove bounds similar to those in Proposition 3.2 for the case of two
sketches. We emphasize that Algorithm 1 will be used as a pre-processing
procedure for the final algorithm of interest, Algorithm 3, which will form the
true QR factorization of a tall-and-skinny matrix.

Let V ∈ Rn×m, and suppose S1 ∈ Rp1×n and S2 ∈ Rp2×p1 are (ε1, d1,m)
and (ε2, d2,m) oblivious ℓ2-subspace embeddings, respectively. Let d = d1 +
d2 − d1d2, so that 1 − d = (1 − d1)(1 − d2). We define the Randomized
Householder QR algorithm (randQR) in Algorithm 1, where we use MATLAB
function call notation.

Algorithm 1 Randomized Householder QR: [Q,R] = randQR(V, S1, S2)

Input: Matrix V ∈ Rn×m, sketch matrices S1 ∈ Rp1×n, S2 ∈ Rp2×p1

Output: S2S1-Orthogonal factor Q ∈ Rn×m, Triangular factor R ∈ Rm×m

such that QR = V .
1: Apply sketches W = S2S1V
2: Perform Householder QR: [Qtmp, R] = hhqr(W )
3: Recover S2S1-orthogonal matrix: Q = V R−1

Remark 4.1. In exact arithmetic, provided that V ∈ Rn×m is full rank, then
randQR produces a matrix Q that is S2S1-orthogonal

1 with probability at least
1− d; i.e., it satisfies (S2S1Q)T (S2S1Q) = I, because

S2S1Q = S2S1V R−1 = WR−1 = Qtmp,

where Qtmp is the orthogonal factor produced by the Householder QR factor-
ization of W = S2S1V . Observe that Q being S2S1-orthogonal is equivalent to
being an orthonormal matrix with respect to the inner product2 ⟨S2S1·, S2S1·⟩.
Unlike traditional Householder QR, even in exact arithmetic V must have full
rank, since step 3 of Algorithm 1 requires rank(V ) = rank(R) = m. In finite
precision, intuition suggests that an inevitable requirement of randQR is that V
must be numerically full rank (i.e., κ(V ) ⪅ u−1).

Next, we introduce some convenient norm, singular value, and condition
number inequalities when one uses the multisketching approach with two obliv-
ious ℓ2-subspace embeddings.

1In exact arithmetic, Q will only fail to be S2S1-orthogonal if V ∈ null(S2S1), which by
Proposition 3.2, occurs with probability at most d.

2Although ⟨S2S1·, S2S1·⟩ is not an inner product over the traditional vector space Rn×m,
it is an inner product over the complement of null(S2S1).

6



Proposition 4.1. Let S1 ∈ Rp1×n be a (ε1, d1,m) oblivious ℓ2-subspace em-
bedding in Rn, S2 ∈ Rp2×p1 be a (ε2, d2,m) oblivious ℓ2-subspace embedding in
Rp1 , generated independently. Let εL = ε1+ ε2− ε1ε2, εH = ε1+ ε2+ ε1ε2, and
d = d1 + d2 − d1d2. Then for any m-dimensional subspace V ⊂ Rn and ∀x ∈ V,

√
1− εL ∥x∥2 ≤ ∥S2S1x∥2 ≤

√
1 + εH ∥x∥2, (8)

with probability at least 1− d.

Proof. Let x ∈ V. Then, S1V ⊂ Rp1 . By assumption, S2 is a (ε2, d2,m)
oblivious ℓ2-subspace embedding, and thus it is an ε2-subspace embedding of
S1V with probability at least 1 − d2. Observe that S1x ∈ S1V. Therefore, by
(1), √

1− ε2∥S1x∥2 ≤ ∥S2S1x∥2 ≤
√
1 + ε2∥S1x∥2,

with probability at least 1 − d2, because this is the probability at which (1)
holds.

Again, by assumption, S1 is a (ε1, d1,m) oblivious ℓ2-subspace embedding,
and thus it is an ε1-subspace embedding of V ⊂ Rn with probability at least
1− d1. Now, using (1) again for S1 and ϵ1, we have

√
1− ε1∥x∥2 ≤ ∥S1x∥2 ≤

√
1 + ε1∥x∥2,

with probability at least 1− d1.
Combining these results, we find that√

1− (ε1 + ε2 − ε1ε2)∥x∥2 =
√

(1− ε2)(1− ε1)∥x∥2 ≤
√
1− ε2∥S1x∥2

≤ ∥S2S1x∥2 ≤
√
1 + ε2∥S1x∥2

≤
√

(1 + ε2)(1 + ε1)∥x∥2
=

√
1 + (ε1 + ε2 + ε1ε2)∥x∥2

with probability at least (1− d1)(1− d2) = 1− (d1 + d2 − d1d2).
Proving d and consequently 1− d are between [0, 1] is equivalent to showing

p(d1, d2) = d1 + d2 − d1d2 ∈ [0, 1] for any (d1, d2) ∈ [0, 1]2. This is straight-
forward, as on the boundaries, p(0, d2) = d2 ∈ [0, 1], p(d1, 0) = d1 ∈ [0, 1],
p(1, d2) = p(d1, 1) = 1 ∈ [0, 1], and ∇p ≥ 0 on [0, 1]2, and therefore p(d1, d2)
cannot go below 0 or above 1.

If S1, S2 are ε1, ε2 embeddings respectively, then by Corollary 3.1 along with
Propositions 3.2 and 4.1,

√
1− εL∥V ∥2 ≤ ∥S2S1V ∥2 ≤

√
1 + εH∥V ∥2, (9)

√
1− εL∥V ∥F ≤ ∥S2S1V ∥F ≤

√
1 + εH∥V ∥F , (10)

√
1− εL σmin(V ) ≤ σmin(S2S1V ), (11)

(1 + εH)−1/2 σmin(S2S1V ) ≤ σmin(V ) ≤ σmax(V ) (12)

≤ (1− εL)
−1/2 σmax(S2S1V ),
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and so,

κ(V ) ≤
√

1− εL
1 + εH

κ(S2S1V ). (13)

Remark 4.2. By Remark 4.1, in exact arithmetic, the Q factor computed by
randQR is S2S1-orthogonal, and therefore, by (13),

κ(Q) ≤
√

1− εL
1 + εH

κ(S2S1Q) =

√
1− εL
1 + εH

= O(1) . (14)

Thus, randQR serves well for applications where a well-conditioned set of vectors
is sufficient, or as a pre-processing algorithm for less stable orthogonalization
schemes.

4.1 Algorithms and Performance Considerations

We introduce the main algorithm of interest for this paper, rand cholQR

(Algorithm 3) and compare its performance to cholQR2 [13] (Algorithm 4 be-
low). In this paper, randQR is strictly used to precondition the tall-and-skinny
matrix V as a pre-processing step for rand cholQR, which is a true orthogonal-
ization scheme.

As a proof of concept for why rand cholQR (Algorithm 3) should be expected
to form a reasonable QR factorization, in step 1, the algorithm computes a
S2S1-orthogonal factor Q0 from randQR (Algorithm 1). By Remark 4.2, in
exact arithmetic, κ(Q0) = O(1). In step 2 of rand cholQR, Q is computed
by re-orthogonalizing Q0 using Cholesky QR (cholQR, Algorithm 2). Since
κ(Q0) = O(1), one can expect the resulting Q satisfies ∥QTQ − I∥2 = O(u)
using the roundoff error analysis of cholQR [36].

Algorithm 2 Cholesky QR: [Q,R] = cholQR(V )

Input: Matrix V ∈ Rn×m

Output: Orthogonal factor Q ∈ Rn×m, Triangular factor R ∈ Rm×m such
that QR = V .

1: Compute Gram matrix G = V TV
2: Perform Cholesky on G: R = chol(G), where G = RTR
3: Recover orthogonal matrix: Q = V R−1

Algorithm 3 Rand. Householder-Cholesky: [Q,R] = rand cholQR(V, S1, S2)

Input: Matrix V ∈ Rn×m, sketch matrices S1 ∈ Rp1×n, S2 ∈ Rp2×p1

Output: Orthogonal factor Q ∈ Rn×m, Triangular factor R ∈ Rm×m such
that QR = V .

1: Recover S2S1-orthogonal matrix Q0: [Q0, R0] = randQR(V, S1, S2)
2: Perform Cholesky QR on Q0: [Q,R1] = cholQR(Q0)
3: Return R: R = R1R0
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Next, we examine the expected performance of randQR and rand cholQR

by first discussing their communication costs compared to cholQR and cholQR2

(Algorithm 4) respectively, and then analyze their arithmetic costs. The most
computationally intensive parts of randQR (steps 1 and 3) are nearly identical
to those of cholQR, in the sense that both perform a product of tall and skinny
matrices, followed by a triangular solve of a tall and skinny matrix. Similar to
the way cholQR requires only one processor synchronization total to compute the
Gram matrix in step 1 of Algorithm 2, randQR only requires one synchronization
total to compute W in step 1 of Algorithm 1 provided m ≤ p2 ≤ p1 ≪ n and
therefore the algorithms incur the same number of processor synchronizations3.
Moreover, rand cholQR and cholQR2 simply build on these algorithms, adding
passes of cholQR to matrices of the same size for both algorithms. Thus, like
cholQR2, rand cholQR only requires two synchronizations total.

Algorithm 4 CholeskyQR2: [Q,R] = cholQR2(V )

Input: Full rank matrix V ∈ Rn×m

Output: Orthogonal factor Q ∈ Rn×m, Triangular factor R ∈ Rm×m

1: Perform Cholesky QR on W : [Q0, R0] = cholQR(V )
2: Perform Cholesky QR on Q0: [Q,R1] = cholQR(Q0)
3: Return R: R = R1R0

Next, we consider the computational costs of the algorithms. The computa-
tional cost of step 2 of randQR (Algorithm 1) is negligible compared to steps 1
and 3, since W ∈ Rp2×m with p2 ≪ n. The arithmetic cost of step 1 is de-
pendent on the type of sketch matrices used. Suppose one replaces S2S1 with
a single dense Gaussian sketch matrix S ∈ Rp×n, which is conceptually simple,
very efficient in parallel, but computationally expensive since it is very dense.
Then the arithmetic cost of randQR and rand cholQR (in FLOPs) are:

randQR FLOPs: pm(2n− 1)︸ ︷︷ ︸
Sketching

+ 2pm2 − 2

3
m3︸ ︷︷ ︸

Householder QR

+ nm2︸︷︷︸
Tri. solve

≈ 2nmp+ nm2.

rand cholQR FLOPs: 2nmp+ nm2︸ ︷︷ ︸
randQR

+2nm2︸ ︷︷ ︸
cholQR

+m2(2m− 1)︸ ︷︷ ︸
Matrix mult.

≈ 2nmp+ 3nm2.

Provided that p = O(m), e.g., p ≈ 2m, then rand cholQR FLOPs ≈ 7nm2.
In contrast, CholeskyQR2 (cholQR2, Algorithm 4) incurs a cost of

cholQR2 FLOPs: 2nm2︸ ︷︷ ︸
cholQR

+2nm2︸ ︷︷ ︸
cholQR

+m2(2m− 1)︸ ︷︷ ︸
Matrix mult.

≈ 4nm2.

3Specifically, suppose one has p parallel processes and m ≤ p2 ≤ p1 ≪ n so that
S2 ∈ Rp2×p1 can be stored locally on each process. One can distribute block row partitions of
V = [V T

1 , . . . , V T
p ]T and block column partitions of the larger sketch S1 = [(S1)1, . . . , (S1)p]

to each of the processes, along with the entire small sketch S2 to each process. Then on pro-
cess k, one computes Wk = S2(S1)kVk, and then one synchronizes the processes to compute
W = S2S1V =

∑p
k=1 Wk in a single reduction.
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Thus, randQR (using a dense Gaussian sketch) and cholQR have about the
same asymptotic arithmetic costs. Because the two algorithms have the same
communication costs and rand cholQR has a slightly higher arithmetic cost,
in a large scale parallel setting, one can expect rand cholQR to run slightly
slower but on the same order of runtime as cholQR2 and scale in the same way.
However, as we show in Section 5.3, rand cholQR is significantly more stable
with high probability.

4.2 Motivation for Multisketching

To motivate the use of multisketching, we first discuss a few straightforward
options using a single sketch matrix. Using a single Gaussian sketch requires
a dense matrix-matrix multiply with a sketch matrix S of dimension p× n. In
addition to performing O(nmp) FLOPs to apply this sketch, we need to store
and load this completely dense p × n sketch matrix. As shown in Section 4.1,
the time to sketch the matrix with the dense Gaussian can dominate the total
factorization time for randQR and consequently rand cholQR.

One can reduce the sketching cost using a sparse sketch such as a CountS-
ketch matrix [6]. Since the CountSketch matrix has only one non-zero per
column, the cost of applying the CountSketch matrix to V ∈ Rn×m is only
O(nm), and it requires the storage of only O(n) numerical values. Additionally,
CountSketch can be implemented using the sparse-matrix multiple-vector mul-
tiply (SpMM), whose optimized implementation is often available on specific
architectures. A clever implementation can exploit the fact that applying the
CountSketch matrix is equivalent to adding/subtracting subsets of rows of V ,
and can therefore be parallelized well using batched BLAS-1 kernels or a highly-
optimized sparse linear algebra library. Hence, high performance implementa-
tions of CountSketch can be achieved using only readily available linear algebra
libraries. However, a CountSketch matrix requires a sketch size of p = O(m2)
to maintain the ε-embedding properties, so randQR/rand cholQR requires one

to factorize W ∈ RO(m2)×m with Householder QR, which incurs O(m4) FLOPs.
In contrast, a sketch size of p = O(m) ensures the Gaussian sketch is an ε-
subspace embedding, meaning the cost of the Householder QR factorization is
only O(m3) FLOPs. Householder QR imposes high communication costs and
does not parallelize well [8]. As a result, on current computers, it obtains much
lower performance than the BLAS-3 operations like the dense matrix product
(gemm), and these O(m4) FLOPs for Householder QR become a performance
bottleneck for sufficiently large m.

Ideally, we want an embedding that offers low computational and storage
costs like CountSketch, while returning a sketched matrix W ∈ Rp×m with
p = O(m) like the Gaussian sketch does, to avoid a performance bottleneck from
Householder QR. This is possible by using the multisketching framework with
first a sparse CountSketch and then a Gaussian sketch. To see this, suppose

S1 ∈ Rp1×n is a CountSketch matrix with p1 = m2+m
ε21d1

, cf. (7), and suppose

S2 ∈ Rp2×p1 is a Gaussian sketch where p2 = 2m.

10



We split the computation of W = S2S1V into two steps: first computing
W1 = S1V , then W = S2W1. Storing S1 only requires O(n) bytes of memory,
and the sparse matrix product W1 = S1V costs O(nm) FLOPs. The cost to
compute W = S2W1 costs O(m4) FLOPs, but since the dense matrix product
(gemm) obtains much higher performance than the Householder QR, this cost
became negligible in our performance studies with a GPU. The storage of S2

only requires O(m3) bytes of memory, and the Householder QR factorization of
the O(m)×m matrix W incurs negligble computational cost as well.

Moreover, the O(nm+m4) total FLOPs incurred by randQR using the mul-
tisketch framework can actually be lower than the O(nm2) FLOPs required to
perform cholQR, making rand cholQR sometimes cheaper than cholQR2 under
the multisketch framework while incurring the same number of communications
(as discussed in Section 4.1). Thus, the multisketch framework provides an
avenue for an extremely efficient, stable QR factorization that can potentially
outperform cholQR2 in terms of both stability and practical speed on modern
parallel machines.

5 Error Analysis of randQR and rand cholQR

In this section we present the main results of this work on theoretical properties
(with high probability) of Q̂ and R̂ computed by randQR and rand cholQR. The
structure of the section is as follows. First, we highlight the sources of floating
point error of the randQR algorithm in Section 5.1. Then, in Section 5.2, we
introduce our assumptions for the proofs and some preparatory results for the
error analysis.

We identify which results are probabilistic, and explicitly state the neces-
sary assumptions and some useful initial consequences in Sections 5.2.1–5.2.2.
In Sections 5.2.3–5.2.7, we analyze how errors propagate through each step of
rand cholQR. Finally, in Section 5.3, we provide the key theorems on the stabil-
ity and accuracy of our randQR and rand cholQR algorithms, and prove them
primarily through the preparatory results from Section 5.2. Some readers may
want to go directly to Section 5.3 for our main results.

5.1 Sources of Floating Point Error in randQR

We use a hat to denote a computed version of each of the matrix in all al-
gorithms. First, errors are incurred when performing the matrix products
W = S2S1V in step 1 of Algorithm 1. Specifically, there exist error terms
∆Ŵ1, ∆Ŵ such that

Ŵ1 = S1V +∆Ŵ1,

Ŵ = S2Ŵ1 +∆Ŵ · (15)

We can group these error terms together so that the computed Ŵ satisfies

Ŵ = S2S1V + E1, (16)

11



where E1 = S2∆Ŵ1 +∆Ŵ . The error term E1 is analyzed in Section 5.2.3.
Applying Householder QR to Ŵ in step 2 incurs error E2. Only the trian-

gular factor R̂ is needed, so some (exactly) orthogonal Qtmp exists such that

QtmpR̂ = Ŵ + E2 = S2S1V + E1 + E2. (17)

Analysis of E2 is provided in Section 5.2.4.
In step 3, solving the triangular system QR̂ = V also creates errors. These

are analyzed in a row-wise fashion in Section 5.2.5, taking the form

Q̂i,: = Vi,:(R̂+∆R̂i)
−1 (i = 1, 2, . . .m), (18)

where Q̂i,: and Vi,: denote the ith rows of Q̂ and V , respectively, and ∆R̂i is an
error term incurred during the solution of the triangular systems. Finally, we
recast the errors incurred in step 3 as Q̂ = (V +∆Ṽ )R̂−1 in Sections 5.2.6–5.2.7,
which simplifies the analysis of the orthogonality of Q̂ in Section 5.3.

5.2 Assumptions and Preparatory Results for our Proofs

Let V ∈ Rn×m, n ≫ m, and suppose S1 ∈ Rp1×m and S2 ∈ Rp2×p1 are
(ε1, d1,m) and (ε2, d2,m) oblivious ℓ2-subspace embeddings, respectively, gen-
erated independently. Define d = d1 + d2 − d1d2, εL = ε1 + ε2 − ε1ε2, εH =
ε1 + ε2 + ε1ε2.

5.2.1 Assumptions

For the sake of organization, we define a set of assumptions stating that V is
sufficiently numerically full rank (i.e., κ(V ) ⪅ u−1), n ≫ m, and that the sketch
matrices S1, S2 simultaneously satisfy the subspace embedding properties, en-
suring equations (1)–(6), (8)–(13) hold with probability at least 1− d. We also
impose an assumption that ϵL is sufficiently–but need not be too far–below 1,
to obtain a positive lower bound on σm(Q̂) while maintaining as general of a
result as possible.

Assumptions 5.1. Suppose S1 ∈ Rp1×m and S2 ∈ Rp2×p1 are (ε1, d1,m)
and (ε2, d2,m) oblivious ℓ2-subspace embeddings respectively, generated inde-
pendently. Define d = d1 + d2 − d1d2, εL = ε1 + ε2 − ε1ε2, εH = ε1 + ε2 + ε1ε2,
where

εL ∈
[
0,

616

625
− 9

625
εH

)
.

Further, suppose V ∈ Rn×m has full rank and 1 < m ≤ p2 ≤ p1 ≤ n where
nmu ≤ 1

12 , p1
√
p2u ≤ 1

12 , and

δ =
383

(√
1 + εH p2m

3/2 +
√
m∥S2∥2(p1

√
p2
√
1 + ε1 + n∥S1∥F )

)
√
1− εL

u κ(V ) ≤ 1 .

(19)
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The assumption that the integers m, p2, p1, and n have the ordering

1 < m ≤ p2 ≤ p1 ≤ n (20)

is logical, otherwise the embeddings S2 ∈ Rp2×p1 and S1 ∈ Rp1×n project V
into a larger space, defeating the purpose of sketching. Further, we assume

nmu ≤ 1

12
and p1

√
p2u ≤ 1

12
, (21)

which are not directly implied by (19), but, depending of the values of p1, p2,
m, ∥S1∥F , and ∥S2∥2, typically are consequences of it. Note that for the usual
case of u = 2−52 ≈ 10−16, the assumption (21) is easily satisfied, e.g,. with
n = 1012, m = 102.

As is customary in error analysis calculations, e.g., as in [11, 16, 34], we
define for any positive integer k

γk :=
ku

1− ku
· (22)

Provided ku < 1
11 , it follows that γk ≤ 1.1ku. In particular, since κ(V ) ≥ 1, we

can deduce from (19) that the constants that we use in our analysis are bounded
as follows,

p2m
3/2u ≤ 1

383
<

1

11
, (23)

so (20)–(23) imply

γn ≤ 1.1nu, γm ≤ 1.1mu, γp1
≤ 1.1p1u, γp2m ≤ 1.1p2mu,

γ29p2m ≤ 31.9p2mu <
383

12
p2mu , (24)

and
1 + γn < 1.1.

Observe that by (19), it follows that 383p2m
3/2u ≤ 1. This implies that

γ29p2m ≤ 31.9p2m
3/2u <

383

12
p2m

3/2u ≤ 1

12
, (25)

and so

1 + 1.1p2m
3/2u ≤ 1 + 31.9p2m

3/2u ≤ 1 +
1

12
< 1.1 . (26)

Finally, we will repeatedly use well-known bounds relating the ℓ2 and Frobe-
nius norms,

∥X∥2 ≤ ∥X∥F ≤
√
m∥X∥2, (27)

∥XY ∥F ≤ ∥X∥2∥Y ∥F , for any X ∈ Rn×m, Y ∈ Rm×k. (28)
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Remark 5.1. Note that instances of ∥S1∥F and ∥S2∥2 in (19) do not dominate
the bound on κ(V ) imposed by (19). If S1 ∈ Rp1×n is an unscaled CountSketch
and S2 ∈ Rp2×p1 is a scaled Gaussian sketch, there is a deterministic bound

∥S1∥2 ≤ ∥S1∥F ≤
√
n,

and there is a probabilistic bound that there is some constant C such that

∥S2∥2 ≤ 1 + C

(√
p1
p2

+
3

√
p2

)
,

with probability at least 1−2e−9 ≈ 0.9998 [31]. Thus, in the case of p1 = O(m2)
and p2 = O(m), it follows that ∥S1∥2 = O(

√
n) and ∥S2∥2 = O(

√
m) with very

high probability. Therefore, condition (19) ultimately requires

δ ≤ g(n,m, p1, p2)u κ(V ) ≤ 1,

where g is some low-degree polynomial for reasonable choices of sketches S1, S2.

5.2.2 Notes on Probabilistic Results

While some bounds constructed throughout the proofs of our results are deter-
ministic, several are probabilistic. Here, we address specifically which equations
are not deterministic, their prerequisite assumptions, and the probabilities with
which they hold.

Throughout the proofs, it is assumed that S1 embeds the column space of
V and S2 embeds the column space of S1V simultaneously, which happens with
probability at least 1 − d = (1 − d1)(1 − d2) because S1 and S2 are indepen-
dently generated (ε1, d1,m) and (ε2, d2,m) oblivious ℓ2-subspace embeddings
respectively. Therefore,

√
1− ε1∥V ∥2 ≤ ∥S1V ∥2 ≤

√
1 + ε1∥V ∥2

√
1− εL∥V ∥2 ≤ ∥S2S1V ∥2 ≤

√
1 + εH∥V ∥2

√
1− ε1∥V ∥F ≤ ∥S1V ∥F ≤

√
1 + ε1∥V ∥F (29)

√
1− εL∥V ∥F ≤ ∥S2S1V ∥F ≤

√
1 + εH∥V ∥F , (30)

√
1− εL σmin(V ) ≤ σmin(S2S1V ), (31)

and

(1 + εH)−1/2 σmin(S2S1V ) ≤ σmin(V ) ≤ σmax(V ) (32)

≤ (1− εL)
−1/2 σmax(S2S1V ),

along with the analogous statements for matrices whose column spaces are iden-
tical to V , will simultaneously hold with probability at least 1− d. Specifically,
this implies equations (36), (39), (45), (46), (53), and (60) simultaneously hold
with probability at least 1 − d, which are used to build all of the results from
(36)–(65) that are prerequisite to prove Theorems 5.1–5.4, all of which hold with
high probability.
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5.2.3 Forward Error in matrix-matrix multiplication S2S1V

By [16, Section 3.5], for A ∈ Rm×n, B ∈ Rn×k, C = AB executed in floating
point satisfies

Ĉ = AB +∆C, |∆C| < γn|A||B| ,

where γn is defined in (22). Thus, in floating point, step 1 of Algorithm 1
becomes:

Ŵ1 = S1V +∆Ŵ1, |∆Ŵ1| < γn|S1||V | , (33)

Ŵ = S2Ŵ1 +∆Ŵ , |∆Ŵ | < γp1
|S2||Ŵ1| = γp1

|S2||S1V +∆Ŵ1| · (34)

In other words,
Ŵ = S2S1V + E1, (35)

where the forward error of these matrix-matrix products E! is defined as:

E1 = Ŵ −W = ∆Ŵ + S2∆Ŵ1 ·

By (27), (28), (29), (33), and (34),

∥E1∥2 ≤ ∥∆Ŵ∥2 + ∥S2∥2∥∆Ŵ1∥2
≤ ∥∆Ŵ∥F + ∥S2∥2∥∆Ŵ1∥F
≤ γp1

∥S2∥F ∥S1V +∆Ŵ1∥F + ∥S2∥2∥∆Ŵ1∥F
≤ γp1

∥S2∥F (∥S1V ∥F + ∥∆Ŵ1∥F ) + ∥S2∥2∥∆Ŵ1∥F
≤ γp1

∥S2∥F (
√
1 + ε1∥V ∥F + ∥∆Ŵ1∥F ) + ∥S2∥2∥∆Ŵ1∥F

≤ √
p2γp1

∥S2∥2(
√
1 + ε1∥V ∥F + ∥∆Ŵ1∥F ) + ∥S2∥2∥∆Ŵ1∥F

=
√
p2γp1

∥S2∥2
√
1 + ε1∥V ∥F + ∥S2∥2(1 +

√
p2γp1

)∥∆Ŵ1∥F
≤ √

p2γp1∥S2∥2
√
1 + ε1∥V ∥F + ∥S2∥2(1 +

√
p2γp1)γn∥S1∥F ∥V ∥F

= ∥S2∥2
(√

p2γp1

√
1 + ε1 + γn(1 +

√
p2γp1)∥S1∥F

)
∥V ∥F

≤
√
m∥S2∥2

(√
p2γp1

√
1 + ε1 + γn(1 +

√
p2γp1)∥S1∥F

)
∥V ∥2.

Notice (21) and (24) imply γn(1 +
√
p2γp1) < 1.21nu. Hence,

∥E1∥2 ≤
√
mu∥S2∥2(1.1p1

√
p2
√
1 + ε1 + 1.21n∥S1∥F )∥V ∥2. (36)

Lemma 5.1. If S1 is a ε1 embedding of the column space of V and S2 is a ε2
embedding of the column space of S1V , then

12√
1− εL

(
31.9

√
1 + εH p2m

3/2u κ(V ) + 1.1∥E1∥2 σm(V )−1
)
≤ δ ≤ 1 . (37)

Proof. Follows directly from using (36) and the definition of δ in (19).
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5.2.4 Backward Error of Householder QR of Ŵ

By [16, Theorem 19.4], Householder QR of Ŵ ∈ Rp2×m returns a triangular
R̂ ∈ Rm×m so that some orthogonal Qtmp ∈ Rp2×m satisfies,

Ŵ + E2 = QtmpR̂, ∥(E2)j∥2 ≤ γ29p2m∥ŵj∥2, for j = 1, . . . ,m. (38)

We mention that in [16], the bound in (38) has γcp2m, for some small integer
constant c. It is mentioned there that the exact value of c is “unimportant” for
the general analysis. A careful look at the proof of [16, Theorem 19.4] indicates
that one can take c = 29, and this is what we have done.

By (27), (35), and the embedding properties of S2S1 on V given in (30),

∥Ŵ∥F ≤ ∥S2S1V ∥F + ∥E1∥F ≤
√
1 + ϵH∥V ∥F + ∥E1∥F

≤
√
m

(√
1 + ϵH∥V ∥2 + ∥E1∥2

)
, (39)

and therefore by (38),

∥E2∥F ≤ γ29p2m∥Ŵ∥F ≤ γ29p2m

√
m

(√
1 + ϵH∥V ∥2 + ∥E1∥2

)
, (40)

with probability at least 1− d. Finally, by (24) and (25),

∥E2∥2 ≤ ∥E2∥F ≤ 31.9p2mu(
√
1 + ϵH∥V ∥F + ∥E1∥F )

≤ 31.9p2m
3/2u(

√
1 + ϵH∥V ∥2 + ∥E1∥2)

= 31.9p2m
3/2u

√
1 + ϵH∥V ∥2 + 31.9p2m

3/2u∥E1∥2
≤ 31.9p2m

3/2u
√
1 + ϵH∥V ∥2 + 0.1∥E1∥2 , (41)

with probability at least 1− d.

5.2.5 Backward Error of the Forward Substitution

In Step 3 of randQR, we solve for Q via the triangular system QR̂ = V . By [16,
Theorem 8.5], in floating point, Q̂i,: satisfies

Q̂i,:(R̂+∆Ri) = Vi,:, |∆Ri| < γm|R̂| for i = 1, . . . n. (42)

While it would be convenient to simply write Q̂(R + ∆R) = V for some ∆R,
each ∆Ri error incurred depends on each right hand side of (42), and therefore
each row must be accounted for separately. For each i = 1, . . . , n,

∥∆R̂i∥2 ≤ ∥∆R̂i∥F = ∥|∆R̂i|∥F < γm∥|R̂|∥F = γm∥R̂∥F · (43)

By (38), (40), and the orthogonality of Qtmp, it follows that

∥R̂∥F = ∥QtmpR̂∥F = ∥Ŵ + E2∥F ≤ (1 + γ29p2m)∥Ŵ∥F , (44)

∥R̂∥2 = ∥Ŵ + E2∥2 = ∥S2S1V + E1 + E2∥2
≤

√
1 + εH∥V ∥2 + ∥E1∥2 + ∥E2∥2. (45)

Therefore, by (23)–(26), (39), (43), and (44),

∥∆R̂i∥2 ≤ 1.1m3/2u(1 + 31.9p2mu)
(√

1 + ϵH∥V ∥2 + ∥E1∥2
)

≤ 1.21m3/2u
(√

1 + ϵH∥V ∥2 + ∥E1∥2
)
·
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5.2.6 Bounding the 2-norm of R̂−1 and V R̂−1

By (31), (16), and Weyl’s inequality [33], with probability at least 1− d,

σm(Ŵ + E2) ≥ σm(Ŵ )− ∥E2∥2 ≥ σm(S2S1V )− (∥E1∥2 + ∥E2∥2)
≥

√
1− ϵL σm(V )− (∥E1∥2 + ∥E2∥2). (46)

By Lemma 5.1, and the fact that the fact that ∥V ∥2 = κ(V ) σm(V ),

31.9p2m
3/2u

√
1 + εH∥V ∥2 + 1.1∥E1∥2 ≤

√
1− ϵL
12

σm(V ) δ. (47)

Combining (41) and (47) and the assumption that δ ≤ 1, results in:

∥E1∥2 + ∥E2∥2 ≤ 31.9p2m
3/2u

√
1 + εH∥V ∥2 + 1.1∥E1∥2

≤
√
1− ϵL
12

σm(V )δ ≤
√
1− ϵL
12

σm(V ), (48)

so by (46) and (48),

σm(R̂) = σm(QtmpR̂) = σm(Ŵ + E2) ≥
11

√
1− ϵL
12

σm(V ). (49)

Therefore, by (49)

∥R̂−1∥2 ≤ 12

11
√
1− ϵL

(σm(V ))
−1

. (50)

By (17), we have that Step 2 of randQR satisfies

S2S1V R̂−1 = Qtmp − (E1 + E2)R̂
−1. (51)

Thus, by (48), (50), (51), the fact that Qtmp is orthogonal,

∥S2S1V R̂−1∥2 ≤ ∥Qtmp∥2 + (∥E1∥2 + ∥E2∥2)∥R̂−1∥2 ≤ 12

11
. (52)

Observe that V and V R̂−1 have the same column space; therefore if S1, S2

embed the column space of V , they will also embed the column space of V R̂−1.
Therefore, by (8),

∥V R̂−1∥2 ≤ 1√
1− ϵL

∥S2S1V R̂−1∥2 ≤ 12

11
√
1− ϵL

, (53)

with probability at least 1− d.
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5.2.7 Evaluation of the Backward Error ∆Ṽ = Q̂R̂− V

Instead of using backward errors ∆Ri for each triangular solve in equation (18),
we capture the errors of each triangular solve in a matrix ∆Ṽ , where

Q̂ = (V +∆Ṽ )R̂−1 ⇐⇒ Q̂R̂ = V +∆Ṽ . (54)

From (18), we have Q̂i,:(R+∆Ri) = Vi,:. Then ∆Ṽ can be defined row-wise,

∆Ṽi,: = −Q̂i,:∆Ri. (55)

Thus, by (42), |∆Ṽi,:| ≤ 1.1mu|Q̂i,:||R̂|, and so |∆Ṽ | ≤ 1.1mu|Q̂||R̂|, hence,

|∆Ṽ:,i| ≤ 1.1mu|Q̂||R̂:,i|.

From this, it follows that for each column i = 1, . . . ,m,

∥∆Ṽ:,i∥2 ≤ 1.1mu∥|Q̂|∥2∥|R̂:,i|∥2 ≤ 1.1mu∥|Q̂|∥F ∥|R̂:,i|∥2
= 1.1mu∥Q̂∥F ∥R̂:,i∥2 ≤ 1.1m3/2u∥Q̂∥2∥R̂:,i∥2,

and therefore by (25), (39), and (44),

∥∆Ṽ ∥2 ≤ ∥∆Ṽ ∥F ≤ 1.1m3/2u∥Q̂∥2∥R̂∥F
≤ 1.1m3/2u∥Q̂∥2(1 + γ29p2m)∥Ŵ∥F
≤ 1.1m3/2u∥Q̂∥2(1 + γ29p2m)

√
m

(√
1 + εH∥V ∥2 + ∥E1∥2

)
≤ 1.21m2u∥Q̂∥2

(√
1 + εH∥V ∥2 + ∥E1∥2

)
. (56)

By (20) it follows that 1.1
√
m ≤ p2, and so by (26), (48), and (56),

∥∆Ṽ ∥F ≤ 1.21m2u∥Q̂∥2
(√

1 + εH∥V ∥2 + ∥E1∥2
)

= ∥Q̂∥2
(
1.21m2u

√
1 + εH∥V ∥2 + 1.21m2u∥E1∥2

)
≤ ∥Q̂∥2

(
1.1p2m

3/2u
√
1 + εH∥V ∥2 + 1.1p2m

3/2u∥E1∥2
)

≤ ∥Q̂∥2
(
1.1p2m

3/2u
√
1 + εH∥V ∥2 + (1 + 1.1p2m

3/2u)∥E1∥2
)

≤ ∥Q̂∥2
(
1.1p2m

3/2u
√
1 + εH∥V ∥2 + 1.1∥E1∥2

)
≤ ∥Q̂∥2

(
31.9p2m

3/2u
√
1 + εH∥V ∥2 + 1.1∥E1∥2

)
≤ ∥Q̂∥2

√
1− ϵL
12

σm(V ) δ · (57)

The remaining issue to resolve is that the bound on ∥∆Ṽ ∥F in (57) requires
knowledge of ∥Q̂∥2, which we have not yet found. Combining (19), (50), and
(57) gives,

∥Q̂− V R̂−1∥F = ∥∆Ṽ R̂−1∥F ≤ ∥∆Ṽ ∥F ∥R̂−1∥2

≤ ∥Q̂∥2
√
1− ϵL
12

σm(V )δ
12

11
√
1− ϵL

(σm(V ))
−1

=
δ

11
∥Q̂∥2 ≤ 1

11
∥Q̂∥2· (58)
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Now, by (48), (50), and (51),

∥S2S1V R̂−1 −Qtmp∥2 ≤ (∥E1∥2 + ∥E2∥2) ∥R̂−1∥2 ≤ δ

11
· (59)

Applying Weyl’s inequality to (59) and the fact that Qtmp is orthogonal yields,

1− δ

11
≤ σm(S2S1V R̂−1) ≤ σ1(S2S1V R̂−1) ≤ 1 +

δ

11
·

Since V and V R̂−1 have identical column spaces and S1,S2 embed the column
space of V , the embedding properties in (32) also apply to V R̂−1, and so

1− δ
11√

1 + ϵH
≤ σm(V R̂−1) ≤ σ1(V R̂−1) ≤

1 + δ
11√

1− ϵL
≤ 12

11
√
1− ϵL

· (60)

Then, we can use Weyl’s inequality again on Q̂− V R̂−1. In particular,

σm(V R̂−1)− ∥Q̂− V R̂−1∥2 ≤ σm(Q̂) ≤ σ1(Q̂) ≤ σ1(V R̂−1) + ∥Q̂− V R̂−1∥2 ·
(61)

Then, by (58), (60), and (61),

∥Q̂∥2 = σ1(Q̂) ≤ σ1(V R̂−1) + ∥Q̂− V R̂−1∥2 ≤ 12

11
√
1− ϵL

+
1

11
∥Q̂∥2, (62)

and thus,

∥Q̂∥2 ≤ 6

5
√
1− ϵL

· (63)

Then, we obtain from (58),

∥Q̂− V R̂−1∥2 = ∥∆Ṽ R̂−1∥2 ≤ ∥∆Ṽ R̂−1∥F ≤ δ

11
∥Q̂∥2 ≤ 6δ

55
√
1− ϵL

. (64)

5.2.8 Bounding ∥S2S1∆Ṽ R̂−1∥2
If no additional assumptions on the embedding of S1, S2 are made, clearly it
follows that

∥S2S1∆Ṽ R̂−1∥2 ≤ ∥S2∥2∥S1∥2∥∆Ṽ R̂−1∥2 ≤ 6∥S2∥2∥S1∥2
55

√
1− ϵL

δ. (65)

Alternatively, if we assume S1, S2 embed ∆Ṽ R̂−1, by (8),

∥S2S1∆Ṽ R̂−1∥2 ≤
√
1 + ϵH∥∆Ṽ R̂−1∥2 ≤ 6

√
1 + ϵH

55
√
1− ϵL

δ. (66)
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5.3 Key Theoretical Results

We begin by re-stating the assumptions of the theoretical results for readability.

Assumptions 5.1. Suppose S1 ∈ Rp1×m and S2 ∈ Rp2×p1 are (ε1, d1,m)
and (ε2, d2,m) oblivious ℓ2-subspace embeddings respectively, generated inde-
pendently. Define d = d1 + d2 − d1d2, εL = ε1 + ε2 − ε1ε2, εH = ε1 + ε2 + ε1ε2,
where

εL ∈
[
0,

616

625
− 9

625
εH

)
.

Further, suppose V ∈ Rn×m has full rank and 1 < m ≤ p2 ≤ p1 ≤ n where
nmu ≤ 1

12 , p1
√
p2u ≤ 1

12 , and

δ =
383

(√
1 + εH p2m

3/2 +
√
m∥S2∥2(p1

√
p2
√
1 + ε1 + n∥S1∥F )

)
√
1− εL

u κ(V ) ≤ 1 .

Remark 4.1 indicates that in exact arithmetic, randQR yields a matrix Q that
is orthogonal with respect to ⟨S2S1·, S2S1·⟩. We show next that provided V has
full numerical rank, then in floating point arithmetic, the orthogonality error
of the matrix Q̂ generated by randQR measured in ⟨S2S1·, S2S1·⟩ is O(u)κ(V ),
and the factorization error is O(u)∥V ∥2 with high probability.

Theorem 5.1 (randQR Errors). Suppose Assumptions 5.1 are satisfied. Then
the Q̂, R̂ factors obtained with Algorithm 1 (randQR) satisfy

∥V − Q̂R̂∥2 ≤ δ

10
σm(V ), (67)

and

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6∥S2∥2∥S1∥2
55

√
1− ϵL

δ +

(
6∥S2∥2∥S1∥2
55
√
1− ϵL

δ

)2

. (68)

with probability at least 1− d, where δ is defined in (19). Furthermore,

∥(S2S1Q̂)T (S2S1Q̂)− I∥2 ≤ 3δ (69)

with probability at least (1− d)2.

Proof. Equation (67) follows by combining (57) and (63), since ∆Ṽ = Q̂R̂− V ,
and this holds with probability at least 1 − d because (57) and (63) hold with
this probability, as discussed in Section 5.2.2.

Observe that by (17), we have S2S1V = QtmpR̂− (E1 + E2), and thus

(S2S1V )T (S2S1V ) =

R̂T R̂− (E1 + E2)
TQtmpR̂− R̂TQT

tmp(E1 + E2) + (E1 + E2)
T (E1 + E2).
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Using (54) to expand S2S1Q̂ = (S2S1V + S2S1∆Ṽ )R̂−1, we obtain

(S2S1Q̂)T (S2S1Q̂) = I − R̂−T (E1 + E2)
TQtmp −QT

tmp(E1 + E2)R̂
−1

+ R̂−T (E1 + E2)
T (E1 + E2)R̂

−1 + (S2S1∆Ṽ R̂−1)T (S2S1V R̂−1)

+ (S2S1V R̂−1)TS2S1∆Ṽ R̂−1 + (S2S1∆Ṽ R̂−1)T (S2S1∆Ṽ R̂−1).

Therefore, by (48), (50), and (52),

∥(S2S1Q̂)T (S2S1Q̂)− I∥2
≤ 2(∥E1∥2 + ∥E2∥2)∥R̂−1∥2 + (∥E1∥2 + ∥E2∥2)2∥R̂−1∥22
+ 2∥S2S1∆Ṽ R̂−1∥2∥S2S1V R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22

≤ 2
δ

11
+

(
δ

11

)2

+
24

11
∥S2S1∆Ṽ R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22. (70)

Observe that (48), (50), and (52), simultaneously hold with probability at
least 1 − d, because they rely on V and S1V being simultaneously embedded
by S1 and S2 respectively, which with this probability occurs, as discussed in
Section 5.2.2. Thus, (70) holds with probability at least 1 − d. Observe that
(65) requires no further assumptions on the embedding properties of S1, S2 and
so applying (65) to (70) gives

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11
∥S2S1∆Ṽ R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6∥S2∥2∥S1∥2
55
√
1− ϵL

δ +

(
6∥S2∥2∥S1∥2
55
√
1− ϵL

δ

)2

,

with probability at least 1− d, producing result (68).
On the other hand, observe that (66) requires not only the assumption that

S1, S2 simultaneously embed V and S1V respectively, but also that the sketch
matrices embed ∆Ṽ R̂−1 and S1∆Ṽ R̂−1 respectively. Thus, (66) and (70) si-
multaneously hold with probability at least (1− d)2, and the result of applying
both of these results together yields,

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11
∥S2S1∆Ṽ R̂−1∥2 + ∥S2S1∆Ṽ R̂−1∥22

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6
√
1 + εH

55
√
1− ϵL

δ +

(
6
√
1 + εH

55
√
1− ϵL

δ

)2

, (71)

with probability at least (1 − d)2. A useful consequence of Assumptions 5.1 is
that

1− εL >
9

625
(1 + εH),
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and thus
1 + εH
1− εL

<
625

9
⇒

√
1 + εH
1− εL

<
25

3
· (72)

Applying (72) to (71) (which holds with probability at least (1−d)2) along with
the fact that δ ≤ 1 from (19) implies δ2 ≤ δ, and therefore,

∥(S2S1Q̂)T (S2S1Q̂)− I∥2

≤ 2
δ

11
+

(
δ

11

)2

+
24

11

6
√
1 + εH

55
√
1− ϵL

δ +

(
6
√
1 + εH

55
√
1− ϵL

δ

)2

≤ 2

11
δ +

(
1

11

)2

δ +
24

11

6 · 25
55 · 3

δ +

(
6 · 25
55 · 3

)2

δ

=
2 · 11 · 552 · 32 + 552 · 32 + 24 · 6 · 25 · 11 · 55 · 3 + 62 · 252 · 112

112 · 552 · 32
δ

= 3δ ,

with probability at least (1− d)2, and thus result (69) follows.

Similar to the analysis of the condition number of Q generated by randQR

in exact arithmetic in Section 4, we show next that provided that V has full
numerical rank, then Q̂ generated by randQR in floating point arithmetic also
satisfies κ(Q̂) = O(1).

Theorem 5.2 (Conditioning of randQR). Suppose Assumptions 5.1 are satis-
fied. Then with probability at least 1−d, the Q̂ matrix obtained with Algorithm 1
(randQR) has condition number κ(Q̂) = O(1). In fact,

κ(Q̂) ≤ 33

25
√

1−ϵL
1+ϵH

− 3
· (73)

Proof. As a direct consequence of (60), (61), (64), and the fact that δ ≤ 1,

σm(Q̂) ≥ σm(V R̂−1)− ∥Q̂− V R̂−1∥2 ≥
1− δ

11√
1 + ϵH

− 6δ

55
√
1− ϵL

≥ 10

11
√
1 + ϵH

− 6

55
√
1− ϵL

·

Additionally, we found in (63) that

σ1(Q̂) = ∥Q̂∥2 ≤ 6

5
√
1− ϵL

·

Thus,

κ(Q̂) =
σ1(Q̂)

σm(Q̂)
≤ 33

25
√

1−ϵL
1+ϵH

− 3
,
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which is the desired result. Since the intermediate results (60), (61), (63),
and (64) simultaneously hold with probability at least 1 − d, as discussed in
Section 5.2.2, the final result (73) holds with this probability as well.

In the following result we show that rand cholQR(V ) (Algorithm 3) produces
a factor Q̂ that is orthogonal in the Euclidean inner product up to a factor of
O(u) and has a factorization error of O(u)∥V ∥2 for any numerically full rank V .

Theorem 5.3 (rand cholQR Errors). Suppose Assumptions 5.1 are satisfied.
Then with probability at least 1− d, the Q̂, R̂ factors obtained with Algorithm 3
(rand cholQR) has O(u) orthogonality error and O(u)∥V ∥2 factorization error.
More specifically,

∥Q̂T Q̂− I∥2 ≤ 5445(
25

√
1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u, (74)

∥V − Q̂R̂∥2 ≤

 56

25 1−εL√
1+ϵH

− 3
√
1− εL

+
1.5√
1− εL

√√√√1 +
5445(nm+m(m+ 1))u(

25
√

1−εL
1+εH

− 3
)2


(√

1 + εH∥V ∥2 +
√
1− εL
12

σm(V )δ

)
m2u+

δ

10
σm(V ), (75)

where δ is bounded as in (19).

Proof. In Algorithm 3, we obtain Q̂0, R̂0 from randQR (so that the results in
Section 5.2 apply to Q̂0, R̂0), and then obtain Q̂, R̂ where R̂ = fl(R̂1R̂0) and
Q̂, R̂1 are the outputs of Cholesky QR applied to Q̂0. As a direct consequence
of Theorem 5.2, Q̂0 arising from Step 1 of Algorithm 3 satisfies

κ(Q̂0) ≤
33

25
√

1−ϵL
1+ϵH

− 3
·

By [36, Lemma 3.1], it follows that step 2 of Algorithm 3 gives Q̂ satisfying

∥Q̂T Q̂− I∥2 ≤ 5

64
64κ(Q̂0)

2 (nm+m(m+ 1))u

≤ 5445(
25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u,

and thus (74) follows.
Now, notice that by (21)–(24),√

1 + γnm

1− γm+1m
≤

√
1 + 1.1nmu

1− 1.1(m+ 1)mu
≤

√
1.1

0.9
≤ 1.11. (76)
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Observe that R̂ = R̂1R̂0+∆R̂ where R̂1 is the Cholesky factor of Q̂T
0 Q̂0, where

Q̂0 results from randQR, and |∆R̂| < γm|R̂1||R̂0| [16, Eq. (3.13)]. Then, it
follows by [36, Eq. (3.16)], (24), (45), (48), (63), and (76), that

∥∆R̂∥2 ≤ ∥∆R̂∥F ≤ γm∥R̂1∥F ∥R̂0∥F ≤ mγm∥R̂1∥2∥R̂0∥2

≤ mγm

√
1 + γnm

1− γm+1m
∥Q̂0∥2∥R̂0∥2

≤ 1.23m2u
6

5
√
1− εL

(
√
1 + εH∥V ∥2 +

√
1− εL
12

σm(V )δ)

≤ m2u
1.5√
1− εL

(
√
1 + εH∥V ∥2 +

√
1− εL
12

σm(V )δ) · (77)

Next, observe that by (54) we have that Q̂0R̂0 = V + ∆Ṽ from randQR.
Using this and [36, Eq. (3.24)] to bound ∥Q̂0 − Q̂R̂1∥2,

−∥∆Ṽ ∥2 + ∥V − Q̂R̂∥2 ≤ ∥V +∆Ṽ − Q̂R̂∥2 = ∥Q̂0R̂0 − Q̂R̂1R̂0 − Q̂∆R̂∥2
≤ ∥R̂0∥∥Q̂0 − Q̂R̂1∥2 + ∥Q̂∥2∥∆R̂∥2
≤ 1.4∥R̂0∥2κ(Q̂0)∥Q̂0∥2m2u+ ∥Q̂∥2∥∆R̂∥2· (78)

Note that (74) implies

∥Q̂∥2 ≤
√√√√1 +

5445(
25

√
1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u .

Additionally, by (67) in Theorem 5.1,

∥∆Ṽ ∥2 = ∥V − Q̂0R̂0∥2 ≤ δ

10
σm(V ). (79)

Now, starting from (45), we can use (48) to obtain

∥R̂0∥2 ≤
√
1 + εH∥V ∥2 + ∥E1∥2 + ∥E2∥2

≤
√
1 + εH∥V ∥2 +

√
1− εL
12

σm(V )δ. (80)

Using (73) and (63) to bound κ(Q̂0) and ∥Q̂0∥2, (77) to bound ∥∆R̂∥2, (80) to
bound ∥R̂0∥2, adding ∥∆Ṽ ∥2 to both sides of (78) and then bounding ∥∆Ṽ ∥2
using (79), we finally obtain

∥V − Q̂R̂∥2 ≤

 56

25 1−εL√
1+ϵH

− 3
√
1− εL

+
1.5√
1− εL

√√√√1 +
5445(nm+m(m+ 1))u(

25
√

1−εL
1+εH

− 3
)2


(√

1 + εH∥V ∥2 +
√
1− εL
12

σm(V )δ

)
m2u+

δ

10
σm(V ),
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which does indeed satisfy ∥V − Q̂R̂∥2 = O(u)∥V ∥2, since σm(V )δ = O(u)∥V ∥2.
Finally, observe that the probabilistic results used in this proof, namely (36)–

(65) and Theorems 5.1–5.2, simultaneously hold with probability at least 1− d
(see Section 5.2.2 for details), and hence (74) and (75) hold with this probability
as well.

Theorem 5.2 guarantees randQR(V ) produces a well-conditioned Q̂. We show
next that rand cholQR(V ) produces a factor Q̂ with κ(Q̂) ≈ 1 (up to unit
roundoff) for any numerically full rank V .

Theorem 5.4 (Conditioning of rand cholQR). Suppose Assumptions 5.1 are
satisfied. Then with probability at least 1− d, the matrix Q̂ obtained with Algo-
rithm 1 satisfies κ(Q̂) ≈ 1. More specifically,

κ(Q̂) <

√√√√√√1 + 5445(
25

√
1−ϵL
1+ϵH

−3
)2 (nm+m(m+ 1))u

1− 5445(
25

√
1−ϵL
1+ϵH

−3
)2 (nm+m(m+ 1))u

· (81)

Furthermore, if 5445(
25

√
1−ϵL
1+ϵH

−3
)2 (nm+m(m+ 1))u < 1

2 , then

κ(Q̂) < 1 +
10890(

25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u. (82)

Proof. It follows from (74) that the ith eigenvalue of Q̂TQ satisfies

λi(Q̂
T Q̂) ≥ 1− 5445(

25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u,

λi(Q̂
T Q̂) ≤ 1 +

5445(
25

√
1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u.

Thus, the ith singular value of Q̂ satisfies

σi(Q̂) ≥
√√√√1− 5445(

25
√

1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u,

σi(Q̂) ≤
√√√√1 +

5445(
25

√
1−ϵL
1+ϵH

− 3
)2 (nm+m(m+ 1))u,

which gives (81). Further, for any x < 1
2 ,

√
1+x
1−x < 1 + 2x, which gives (82).

Since (74) holds with probability at least 1 − d, (81) and (82) hold with this
probability as well.
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Theorems 5.1–5.4 correspond to multisketchings, that is, to the application
of one sketch matrix after another. In the rest of the section, we recast our error
bounds for a single sketch matrix in Corollaries 5.1–5.4. The results apply for
a single (ε, d,m) oblivious ℓ2-subspace embedding for any ε ∈ [0, 616

634 ), covering
nearly the entire range of possible ε ∈ [0, 1) for such embeddings.

We prove all the Corollaries simultaneously, as they are direct consequences
of Theorems 5.1–5.4 by exploiting the fact that a single sketch can be recast as
a product of two sketches, one of which is the identity, which is by definition a
(0, 0,m) oblivious ℓ2-subspace embedding.

Assumptions 5.2. Suppose ε ∈ [0, 616
634 ) and S ∈ Rp×m is a (ε, d,m) obliv-

ious ℓ2-subspace embedding. Further, suppose V ∈ Rn×m has full rank and
1 < m ≤ s ≤ n where nmu ≤ 1

12 , p
3/2u ≤ 1

12 , and

δ =
383

(
pm3/2 +

√
m(p3/2

√
1 + ε+ n∥S∥F )

)
√
1− ε

u κ(V ) ≤ 1. (83)

Corollary 5.1 (randQR Errors). Suppose Assumptions 5.2 are satisfied. Then
the Q̂, R̂ factors obtained with Algorithm 1 (randQR) satisfy

∥V − Q̂R̂∥2 ≤ δ

10
σm(V ),

and

∥(SQ̂)T (SQ̂)− I∥2 ≤ 2δ

11
+

(
δ

11

)2

+
24

11

6∥S∥2
55

√
1− ϵ

δ +

(
6∥S∥2

55
√
1− ϵ

δ

)2

with probability at least 1− d, where δ is defined as in (83). Furthermore,

∥(SQ̂)T (SQ̂)− I∥2 ≤ 3δ

with probability at least (1− d)2.

Corollary 5.2 (Conditioning of randQR). Suppose Assumptions 5.2 are satis-
fied. Then with probability at least 1−d, the Q̂ matrix obtained with Algorithm 1
(randQR) has condition number κ(Q̂) = O(1). In fact,

κ(Q̂) ≤ 33

25
√

1−ϵ
1+ϵ − 3

·

Therefore, if ε ≤ 0.9,
κ(Q̂) ≤ 12.07.
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Corollary 5.3 (rand cholQR Errors). Suppose Assumptions 5.2 are satisfied.
Then with probability at least 1− d, the Q̂, R̂ factors obtained with Algorithm 3
(rand cholQR) has O(u) orthogonality error and O(u)∥V ∥2 factorization error.
In fact,

∥Q̂T Q̂− I∥2 ≤ 5445(
25

√
1−ϵ
1+ϵ − 3

)2 (nm+m(m+ 1))u,

∥V − Q̂R̂∥2 ≤

 56

25 1−ε√
1+ϵ

− 3
√
1− ε

+
1.5√
1− ε

√√√√1 +
5445(nm+m(m+ 1))u(

25
√

1−ε
1+ε − 3

)2


(√

1 + ε∥V ∥2 +
√
1− ε

12
σm(V )δ

)
m2u+

δ

10
σm(V ),

where δ is bounded as in (83).

Corollary 5.4 (Conditioning of rand cholQR). Suppose Assumptions 5.2 are
satisfied. Then with probability at least 1− d, the matrix Q̂ obtained with Algo-
rithm 1 satisfies κ(Q̂) ≈ 1. In fact,

κ(Q̂) <

√√√√√√1 + 5445(
25

√
1−ϵ
1+ϵ−3

)2 (nm+m(m+ 1))u

1− 5445(
25

√
1−ϵ
1+ϵ−3

)2 (nm+m(m+ 1))u
·

Furthermore, if 5445(
25

√
1−ϵ
1+ϵ−3

)2 (nm+m(m+ 1))u < 1
2 , then

κ(Q̂) < 1 +
10890(

25
√

1−ϵ
1+ϵ − 3

)2 (nm+m(m+ 1))u.

Proof. We prove Corollaries 5.1–5.4 simultaneously by considering one subspace
embedding S = S1 is equivalent to two subspace embeddings S2S1 simply by
interpreting S2 = Ip,p as the p × p identity, which is by definition a (0, 0,m)
oblivious ℓ2-subspace embedding, therefore giving ε1 = εH = εL = ε, d = d1,
p = p2 = p1, ε2 = 0 and d2 = 0.

We show next that if ε = εL = εH ∈ [0, 616
634 ), then εL ∈ [0, 616

625 − 9
625εH).

Indeed, εL ∈ [0, 616
625 − 9

625εH) is equivalent in this case to 0 ≤ ε < 616
625 − 9

625ε,
or 0 ≤ 634

625ε < 616
625 , or what is the same, ε ∈ [0, 616

634 ). This means that when
εH = εL = ε ∈ [0, 616

634 ), Assumptions 5.1 imply Assumptions 5.2. Thus, As-
sumptions 5.1 are satisfied and Corollaries 5.1–5.4 are direct consequences of
Theorems 5.1– 5.4.

Remark 5.2. Observe that (83) in Assumptions 5.2 is identical to (19) in As-
sumptions 5.1 using S1 = S and S2 = Ip,p, where p1 = p2 = p. However,
the analysis in Section 5.2.3 of ∥E1∥2 takes into account roundoff errors for
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two matrix multiplications for two sketches to compute Ŵ , while in the case of
Corollaries 5.1–5.4, only one sketch and therefore one matrix multiplication to
compute Ŵ is necessary. Therefore, we are over-estimating the error ∥E1∥2 in
the single sketch case, and if the analysis in Sections 5.2 were carefully performed
again, we could tighten the bound on δ in (83), thereby loosening the require-
ments on κ(V ) in Assumptions 5.2. However, asymptotically, the requirement
on κ(V ) would ultimately still be that δ ≤ g(n,m, p1, p2)u κ(V ) ≤ 1 for some
low-degree polynomial g.

6 Numerical Experiments

We conducted numerical experiments with two goals in mind. First, we compare
the performance of rand cholQR with the performance of cholQR2, sCholQR3,
and Householder QR on a high-performance GPU leveraging vendor-optimized
libraries. Second, we empirically validate the bounds given in Section 5.3,
and more generally, compare the stability of rand cholQR to the stability of
cholQR2, sCholQR3, and Householder QR.

6.1 Implementation Details

We implemented rand cholQR, cholQR2, sCholQR3, and Householder QR in
C++. To be portable to a GPU, we used the Kokkos Performance Portability
Library [9] and Kokkos Kernels [26]. For our experiments on an NVIDIA GPU,
we configured and built our code such that Kokkos Kernels calls NVIDIA’s
cuBLAS and cuSPARSE linear algebra libraries for optimized dense and sparse
basic linear algebra routines [21, 24]. To perform LAPACK routines that are
not currently available natively within Kokkos Kernels (i.e., dgeqrf and dorgqr

for computing the Householder QR factorization, and dpotrf for the Cholesky
factorization), we directly called NVIDIA’s cuSOLVER linear algebra library
[2, 22, 23]. Test results were obtained using Kokkos 3.7.01, Cuda 11.7.99, and
GCC 7.2.0 on an AMD EPYC 7742 64-Core 2.25GHz CPU with an NVIDIA
A100-SXM4 40GB GPU. All computations were done in double precision, so
u = 2−52 ≈ 10−16.

6.2 Performance Results

We tested rand cholQR with a variety of sketching strategies. The simplest was
the case of a Gaussian sketch S = 1√

pG ∈ Rp×n, which was chosen to embed

V ∈ Rn×m with distortion ϵ = 0.99, using a sketch size of p = ⌈36.01 log(m)⌉
to produce a (0.99, 1/m,m) oblivious ℓ2-subspace embedding [1, Lemma 4.1].
We tested the CountSketch by explicit construction of the sparse matrix and
applied it using a sparse-matrix vector product. The sketch size used with a
S ∈ Rp×n CountSketch matrix was p = ⌈6.8(m2 +m)⌉, which can be shown to
be a (0.99, 0.15,m) oblivious ℓ2-subspace embedding [19, Theorem 1].
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Figure 1: Performance of QR algorithms on matrices with n = 100, 000 rows.

In our implementation of multisketching, we chose S1 ∈ Rp1×n as a CountS-
ketch with ε1 = 0.9 requiring sketch size p1 = ⌈8.24(m2 + m)⌉ to produce
a (0.9, 0.15,m) oblivious ℓ2-subspace embedding, and S2 ∈ Rp2×p1 a Gaus-
sian sketch with p2 = ⌈74.3 log(p1)⌉ giving ε2 = 0.49 to give a (0.49, 1/m,m)
oblivious ℓ2-subspace embedding. Overall, S2S1 produced an embedding with
εL ≈ 0.9490, εH ≈ 1.8310, and d ≈ 0.15. It is easily verified that S2S1 is in
line with Assumptions 5.1, and that both of S1 and S2 satisfy Assumptions 5.2,
ensuring the analysis in Section 5.3 is relevant to the experiments. Runtimes
of rand cholQR did not include the time to generate the sketch, as this was
assumed to be a fixed overhead time.

Figures 1–3 show the performance of each QR method for test problems with
n = 105 − 107 rows and m = 10–100 columns. Within each figure, subfigure (a)
shows the runtimes of each algorithm, and subfigure (b) shows the “normalized
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Figure 2: Performance of QR algorithms on matrices with n = 1, 000, 000 rows.
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Figure 3: Performance of QR algorithms on matrices with n = 10, 000, 000 rows.
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GFLOP/s” of each algorithm, which measured by

Householder QR FLOPs/runtime× 10−9.

The purpose of the normalization is to more fairly reflect the performance of
each algorithm, as algorithms like cholQR2 and rand cholQR do more arithmetic
operations than Householder QR, while they accomplish the same task, thereby
skewing true GFLOP/s their favor. Since cholQR2 is typically expected to
be the fastest algorithm, subfigure (c) shows the relative speedup of each QR
method compared to cholQR2.

Figures 1–3 indicate that cholQR2 is indeed the fastest method in general,
while multisketch rand cholQR performs the closest to cholQR2. Additionally,
Figures 2 (c) and 3 (c) show that in some cases, multisketch rand cholQR ac-
tually outperforms cholQR2, specifically for n = 106 rows and m = 70 columns,
and for n = 107 rows and m = 70–90 columns. The most notable result is that
for n = 107 rows and m = 70 columns, multisketch rand cholQR is 4% faster
than cholQR2. Multisketch rand cholQR is significantly faster than sCholQR3,
as evidenced by Figures 1–3, and both algorithms have the same O(u)κ(V ) < 1
stability requirement.

Subfigure (b) of Figures 1–3 demonstrate that the implementations and al-
gorithms are indeed high-performance, with cholQR2 and the multisketched
rand cholQR achieving up to 1,000 (normalized) GFLOP/s on a single GPU.
It is important to note that for these algorithms, the normalized GFLOP/s
are actually substantially lower than their true GFLOP/s, as both algorithms
perform significantly more arithmetic operations than HouseholderQR.

6.3 Numerical Results

Figure 4 shows the orthogonalization error ∥I − Q̂T Q̂∥F and the relative fac-
torization error ∥V − Q̂R̂∥F /∥V ∥F for condition number κ(V ) ∈ [1, 1016]. The
results demonstrate that rand cholQR maintains O(u) orthogonality error and
O(u)∥V ∥2 factorization error4 while κ(V ) < O(u−1), as predicted by Theo-
rem 5.3, and is more robust than cholQR2 and sCholQR3. In practice, it ap-
pears that rand cholQR is stable even when V is numerically rank-deficient. In
summary, Figures 1–4 demonstrate that multisketch rand cholQR significantly
improves the robustness of cholQR2 and sCholQR3 at little to no cost, therefore
making rand cholQR a superior high-performance QR algorithm. Additionally,
observe that, as indicated by a large dot, lines for cholQR2 and sCholQR3 end
at κ(V ) = 108 and κ(V ) = 1012 respectively, as the methods fail beyond these
points.

6.4 Effect of Larger Distortion Factor ϵ in rand cholQR

In Section 2, we claimed that the stability guarantees for ϵ ≈ 1 is an improve-
ment over existing results only providing stability guarantees up to ϵ ≈ 0.5

4This follows because ∥V − Q̂R̂∥F /∥V ∥F = O(u).
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Indicated by a large dot, lines for cholQR2 and sCholQR3 end at κ(V ) = 108

and κ(V ) = 1012 respectively, as the methods fail beyond these points.

as the larger values of ϵ allow for better performance. In this subsection, we
include experiments that justify this and highlight why theoretical results for
larger values of ϵ should be studied further in the context of randomized QR
factorizations.

In Figures 5–7, we begin by demonstrating the speedup attained by using a
single sketch with ϵ = 0.99 over a sketch with ϵ = 0.49 where subfigures (a) and
(b) correspond to the Gaussian sketch and CountSketch experiments, respec-
tively. Thereafter, we demonstrate the speedup in attained in the multisketch
case using a larger ϵ1 = 0.9 compared to ϵ1 = 0.49 in subfigure (c). In the mul-
tisketch case, we keep ϵ2 = 0.49 fixed, and did not push ϵ1 over 0.9 to ensure
Assumptions 5.1 and therefore the theoretical results in Section 5.3 hold.

Specifically, in the case of the Gaussian experiments (Figures 5–7 (a)),
we used p = ⌈36.01 log(m)⌉ to attain distortion factor ϵ = 0.99 and p =
⌈74.3 log(m)⌉ to attain distortion factor ϵ = 0.495. In the case of the CountS-
ketch (Figures 5–7 (b)), we used sketch size p = ⌈6.8(m2+m)⌉ to attain ϵ = 0.99
and sketch size p = ⌈27.8(m2 + m)⌉ to attain ϵ = 0.49 6. Finally, in the mul-
tisketch case (Figures 5–7 (c)), the first sketch was a CountSketch with em-
bedding dimension p1 = ⌈8.24(m2 + m)⌉ to attain ε1 = 0.9 and embedding
dimension p1 = ⌈27.8(m2 +m)⌉ to attain ϵ = 0.497.

5These sketch sizes can be shown to produce (0.99, 1/m,m) and (0.49, 1/m,m) oblivious
ℓ2-subspace embeddings, respectively

6This can be shown to attain (0.99, 0.15,m) and (0.49, 0.15,m) oblivious ℓ2-subspace em-
beddings, respectively.

7These choices can be shown to produce (0.9, 0.15,m) and (0.49, 0.15,m) oblivious ℓ2-
subspace embeddings, respectively
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Figure 6: Speedup attained in rand cholQR using different values of ϵ, n =
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35



10 20 30 40 50 60 70 80 90 100

Number of Columns of V

-30%

-20%

-10%

0%

10%

20%

30%

40%

S
p

e
e
d

u
p

 o
v
e
r 

 =
 0

.4
9

Speedup over  = 0.49: N = 10,000,000 rows

rand_cholQR: Gauss Sketch (  = 0.49)

rand_cholQR: Gauss Sketch (  = 0.99)

(a) Gaussian Sketch

10 20 30 40 50 60 70 80 90 100

Number of Columns of V

-30%

-20%

-10%

0%

10%

20%

30%

40%

S
p

e
e
d

u
p

 o
v
e
r 

 =
 0

.4
9

Speedup over  = 0.49: N = 10,000,000 rows

rand_cholQR: Sparse Sketch (  = 0.49)

rand_cholQR: Sparse Sketch (  = 0.99)

(b) Sparse Sketch

10 20 30 40 50 60 70 80 90 100

Number of Columns of V

-30%

-20%

-10%

0%

10%

20%

30%

40%

S
p

e
e
d

u
p

 o
v
e
r 

1
 =

 0
.4

9

Speedup over 
1
 = 0.49: N = 10,000,000 rows

rand_cholQR: Multi-Sketch (
1
 = 0.49)

rand_cholQR: Multi-Sketch (
1
 = 0.9)

(c) Multi-Sketch

Figure 7: Speedup attained in rand cholQR using different values of ϵ, n =
10, 000, 000.
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As predicted, the results indicate that the in most cases, the impact of
choosing a larger ϵ allows for significant runtime improvements in the random-
ized QR routine tested. Presumably, these results would translate to other
randomized methods where a large distortion is acceptable, such as in pre-
processing/preconditioning procedures or inexact orthogonalization schemes,
where only linear independence is strictly necessary.

7 Conclusions and Future Work

The results in Section 5.3 indicate that rand cholQR using one or two sketch
matrices orthogonalizes any numerically full-rank matrix V up to O(u) error.
This is a significant improvement over CholeskyQR2, which requires
κ(V ) ⪅ u−1/2 to ensure a stable factorization. Our results for a single sketch
apply for any ε-embedding with ε ∈ [0, 616

634 ), covering nearly the entire possible
range for ε-embeddings.

Our performance results in Section 6 indicate that the significantly better
stability properties of rand cholQR over cholQR2 come at virtually no increase
in the factorization time on a modern GPU. Additionally, rand cholQR is theo-
retically just as stable and in practice more stable than sCholQR3, while being
substantially faster. This is due to the fact that rand cholQR and cholQR2 incur
the same number of processor synchronizations, while leveraging mostly BLAS-3
or optimized sparse matrix-vector routines for most of the required computa-
tion. In fact, rand cholQR can perform better than cholQR2 when using the
multisketch framework. Of the sketching strategies considered, the multisketch
framework is the most advantageous, likely because it requires little additional
storage compared to cholQR2, and applying the sketches in this framework is
extremely cheap.

Future work includes applying rand cholQR to Krylov subspace methods
that require tall-and-skinny QR factorizations, particularly block [15, 25],
s-step [7, 17, 32], and enlarged Krylov methods [14], and further investiga-
tions into efficient multisketching implementations on a GPU, as our analysis is
amenable to any multisketching strategy (not just a CountSketch followed by
a dense Gaussian). In particular, applying the CountSketch matrix could po-
tentially be optimized better than using a sparse-matrix vector multiplication
by using a custom routine to add/subtract subsets of randomly selected rows
in parallel using batched BLAS-1 routines, which should be investigated. Addi-
tionally, the performance of randQR and rand cholQR using dense Rademacher
sketch matrices in place of dense Gaussian sketches as in [1] should be inves-
tigated, as Rademacher sketches impose far lower storage requirements than a
Gaussian sketch and can be generated much more efficiently.
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A Raw Runtimes From Experiments

Columns
Algorithm 10 20 30 40 50 60 70 80 90 100

rand cholQR: Gauss
0.0005 0.0007 0.0009 0.0012 0.0015 0.0017 0.0024 0.0024 0.0028 0.0030

(ϵ = 0.99)
rand cholQR: Gauss

0.0005 0.0008 0.0010 0.0014 0.0017 0.0019 0.0025 0.0027 0.0029 0.0034
(ϵ = 0.49)

rand cholQR: Sparse
0.0004 0.0010 0.0015 0.0020 0.0027 0.0036 0.0047 0.0058 0.0077 0.0100

(ϵ = 0.99)
rand cholQR: Sparse

0.0005 0.0013 0.0019 0.0027 0.0059 0.0108 0.0113 0.0192 0.0296 0.0302
(ϵ = 0.49)

rand cholQR: Multi
0.0004 0.0006 0.0008 0.0011 0.0014 0.0017 0.0022 0.0025 0.0027 0.0034

(ϵ1 = 0.9, ϵ2 = 0.49)
rand cholQR: Multi

0.0005 0.0008 0.0011 0.0015 0.0019 0.0021 0.0029 0.0036 0.0042 0.0054
(ϵ1 = 0.49, ϵ2 = 0.49)

cholQR2 0.0003 0.0004 0.0006 0.0009 0.0011 0.0013 0.0018 0.0019 0.0021 0.0024

sCholQR3 0.0005 0.0009 0.0011 0.0014 0.0018 0.0020 0.0028 0.0029 0.0032 0.0037

Householder 0.0005 0.0009 0.0011 0.0014 0.0018 0.0020 0.0028 0.0029 0.0032 0.0037

Table 1: Raw runtimes (in seconds) of all experiments with n = 100, 000 rows.

Columns
Algorithm 10 20 30 40 50 60 70 80 90 100

rand cholQR: Gauss
0.0024 0.0040 0.0051 0.0080 0.0105 0.0120 0.0178 0.0190 0.0206 0.0231

(ϵ = 0.99)
rand cholQR: Gauss

0.0029 0.0048 0.0063 0.0091 0.0117 0.0127 0.0206 0.0211 0.0234 0.0258
(ϵ = 0.49)

rand cholQR: Sparse
0.0022 0.0041 0.0054 0.0078 0.0107 0.0127 0.0172 0.0195 0.0229 0.0275

(ϵ = 0.99)
rand cholQR: Sparse

0.0018 0.0040 0.0061 0.0084 0.0138 0.0200 0.0239 0.0334 0.0469 0.0509
(ϵ = 0.49)

rand cholQR: Multi
0.0021 0.0034 0.0046 0.0069 0.0094 0.0108 0.0147 0.0161 0.0181 0.0208

(ϵ1 = 0.9, ϵ2 = 0.49)
rand cholQR: Multi

0.0022 0.0038 0.0051 0.0070 0.0098 0.0112 0.0153 0.0176 0.0229 0.0266
(ϵ1 = 0.49, ϵ2 = 0.49)

cholQR2 0.0015 0.0031 0.0042 0.0065 0.0087 0.0099 0.0150 0.0161 0.0179 0.0199

sCholQR3 0.0024 0.0047 0.0068 0.0100 0.0134 0.0152 0.0226 0.0244 0.0270 0.0301

Householder 0.0024 0.0047 0.0068 0.0100 0.0134 0.0152 0.0226 0.0244 0.0270 0.0301

Table 2: Raw runtimes (in seconds) of all experiments with n = 1, 000, 000 rows.
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Columns
Algorithm 10 20 30 40 50 60 70 80 90 100

rand cholQR: Gauss
0.0212 0.0371 0.0473 0.0766 0.1008 0.1140 0.1657 0.1790 0.1984 0.2268

(ϵ = 0.99)
rand cholQR: Gauss

0.0264 0.0462 0.0600 0.0888 0.1157 0.1258 0.1921 0.2150 0.2380
(ϵ = 0.49)

rand cholQR: Sparse
0.0159 0.0317 0.0436 0.0660 0.0904 0.1039 0.1414 0.1541 0.1756 0.2025

(ϵ = 0.99)
rand cholQR: Sparse

0.0147 0.0316 0.0438 0.0664 0.0931 0.1105 0.1466 0.1726 0.2152 0.2635
(ϵ = 0.49)

rand cholQR: Multi
0.0185 0.0312 0.0427 0.0650 0.0889 0.1019 0.1378 0.1508 0.1706 0.1962

(ϵ1 = 0.9, ϵ2 = 0.49)
rand cholQR: Multi

0.0148 0.0309 0.0428 0.0651 0.0894 0.1023 0.1386 0.1575 0.1903 0.2398
(ϵ1 = 0.49, ϵ2 = 0.49)

cholQR2 0.0134 0.0287 0.0396 0.0625 0.0848 0.0964 0.1433 0.1545 0.1724 0.1958

sCholQR3 0.0206 0.0433 0.0598 0.0942 0.1278 0.1453 0.2158 0.2328 0.2603 0.2955

Householder 0.0206 0.0433 0.0598 0.0942 0.1278 0.1453 0.2158 0.2328 0.2603 0.2955

Table 3: Raw runtimes (in seconds) of all experiments with n = 10, 000, 000
rows. Blank entry indicates the experiment could not fit in GPU memory.
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