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MULTIPRECISION COMPUTATIONS WITH SCHWARZ METHODS∗

MICHAL OUTRATA† AND DANIEL B. SZYLD‡

Abstract. We explore and analyze the use of multiprecision arithmetic for several classes of Schwarz methods and
preconditioners, where the approximate solution of the local problems is performed at a lower precision, i.e., with fewer digits
of accuracy than in the underlying (double precision) computation. Conditions for the appropriate round-off criteria for the
lower precision are presented. It is found experimentally that for the model problems about 5 digits of accuracy are sufficient
to achieve the theoretical restrictions, and thus, single precision suffices for the local solves. Several numerical experiments
illustrate the obtained results.

1. Introduction. We consider the solution of systems of linear algebraic equations of the form

Au = f , A ∈ RN×N , f ∈ RN . (1.1)

In particular, we analyze the use of multiprecision arithmetic for three types of Schwarz methods (see [21]):
(i) the (damped) additive Schwarz method ((d)AS, see [35, 50]), (ii) the restricted additive Schwarz method
(RAS, see [7]), and (iii) the multiplicative Schwarz method (MS, see [35]); see [30] for an overview of
multiprecision/mixed-precision algorithms. Specifically, we study the solution of the local problems (see
precise definitions below) using lower precision. To the best of our knowledge, this is the first time this
approach is analyzed for Schwarz methods.

The underlying idea of Schwarz methods, as a part of the wider family of domain decomposition methods,
can be summarized as “divide and conquer”, where the solution of a large problem is approximated by sub-
dividing it into many smaller ones that are computationally less demanding than (1.1); these are called
the local problems (or subproblems or subdomain problems); see Section 2 for a detailed discussion. For
matrices obtained by the discretization of a partial differential equation (PDE), the convergence analysis
usually focuses on studying the spectral information of the iteration operator. When the method is used as
a preconditioner, the convergence analysis usually uses the continuous PDE and its discretization, showing
a convergence bound independent of the discretization parameter; see, e.g., [14, 46, 48]. For the algebraic
error analysis of the broader class of stationary iterative methods, we refer the reader to [29, Chapter 17]
and the references therein.

For algebraic Schwarz methods, where analysis does not take advantage of the provenance of the system
matrix, we are usually satisfied with information about the asymptotic convergence factor of the method (see,
e.g., [3, 17, 18]), whereas more complete spectral information is often available once we couple the system
matrix with further information about its origin, leading to a more complete understanding of the method
behavior; see, e.g., [11, 12, 13, 20, 24, 25]. Importantly, these methods are usually used as preconditioners,
i.e., their convergence is further accelerated using Krylov subspace methods. But in our experience, in order
to obtain more insight it is very often very useful to first study the Schwarz methods (or other domain
decomposition methods) as stand-alone solvers. Then, based on their analysis, we can obtain an insight
into or estimate of the type of performance we can expect when we accelerate these methods with a Krylov
subspace method. Moreover, in this way we often get additional insights into the weak points of the method,
which can be then used to propose an improvement such as a coarse space, see, e.g., [11, 22] and also [43].
Schwarz methods as solvers are also fundamental for Schwarz asynchronous iterations; see, e.g., [28, 36].

The goal of multiprecision algorithms is, in general, to reduce the computation, communication and
memory costs by working with some portion of the problem/algorithm in lower precision, e.g., replacing
standard double-precision data representation with a single-precision or even half-precision in the compu-
tationally most challenging part of the algorithm, see, e.g., [30] and the references therein. Intuitively,
working (partially) in a lower precision can introduce new issues, e.g., numerical error propagation, and
thus introduces a trade-off between computational complexity (by virtue of lowering the precision) and the
level of approximation difficulty (e.g., the floating point precision used). However, as shown in [10], using
multiprecision algorithms, where different parts of the algorithm are carried out in different precision, it is
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sometimes possible to get the best of both worlds. To fix ideas, let us consider having a working precision
(say, double precision) and denote its unit round-off by uw (say, uw ≈ 10−16), see [29, p. 3]. The natural
first step is to consider the multiprecision Schwarz methods where the local problems are solved in a “lower
precision”, i.e., in a precision with a unit round-off u` such that u` > uw (we shall identify the precision with
its unit round-off, e.g., by “precision u` is lower than uw” we mean u` > uw). Importantly, working in the
lower precision u` limits not only the precision of the computation but also its range, i.e., without careful
scaling small/large numbers that we can represent in uw may underflow/overflow in u`, see, e.g., [32]. We
comment on the specifics of multiprecision computations relevant to our interest in Section 3.

We note that similar settings has been already considered, e.g., in [27], the authors use the (non-
overlapping) AS as a preconditioner for the conjugate gradient method (CG), using single precision for the
preconditioner solve (i.e., running the AS in single precision) and the rest of the CG algorithm in double
precision. In [2], the authors take the (non-overlapping) block-Jacobi as a preconditioner for CG and based
on the 1-norm condition number of each of the diagonal blocks they calculate their inverses in half, single,
or double precision and then apply these using dense mat-vec products in parallel for each block; similar
methodology has been used also in [47] and tested for practically relevant and challenging 2D and 3D
problems. Similarly, in [44], the authors study (overlapping, with coarse space) AS as the preconditioner
and the effect of using different precision and data formats for the subdomain matrices (fixed vs. floating
point precision as well as dense storage of the inverse vs. storage of the Cholesky factor) on the performance
of the preconditioned CG. Note that the focus in all of these papers is on numerical experiments and
observations about the preconditioned CG, i.e., the interaction of the domain decomposition method and the
different precision choices is present only implicitly. The analysis focuses on the (often questionable, see [34,
Section 5.6, Corollary 5.6.7 and onward]) condition number bound for CG for the preconditioned system and
is not interested in the domain decomposition method of choice as a stand-alone solver.

In this paper we focus on multiprecision Schwarz methods with a lower precision u` for the local solves,
treating both u` and the rounding routine as free variables that can and should be chosen so as to preserve
or even improve the convergence of the Schwarz method. To that end we propose specific rounding routines,
derive sufficient conditions for the convergence of the resulting multiprecision Schwarz methods and numeri-
cally demonstrate their effectiveness. Later in the paper, we also consider the effectiveness of these methods
as preconditioners, i.e., with the Krylov subspace method acceleration.

Thus, our contribution consists of analyzing Schwarz methods where the local problems are solved with
lower precision. Our analysis provides sufficient conditions, and when these conditions are met, one can
calculate the minimum number of digits needed in the approximation to the solution of the local problem to
obtain overall convergence. Our experiments with multiple type of discretized partial differential equations
indicate that our conditions are satisfied with about 5 digits of accuracy. The computations shown illustrate
that this is indeed the case.

The rest of the manuscript is organized as follows: Sections 2 and 3 give a brief introduction to (algebraic)
Schwarz methods and to multiprecision computations. Section 4 introduce and analyze the multiprecision
Schwarz methods and demonstrate their performance on several model problems. Section 5 then explores
some additional avenues for analysis of multiprecision Schwarz methods and we conclude with some remarks
in Section 6.

2. Algebraic Schwarz methods. Consider p subspaces W i ⊂ RN , i = 1 . . . p that form a non-
overlapping decomposition of RN , i.e.,

RN =

p∑
i=1

W i =

{
w |w =

p∑
i=1

wi for some wi ∈W i

}
,

and W i ∩ W j = {0} if i 6= j, and we denote their dimensions by N̄i := dim(W i). If the problem (1.1)
corresponds to a discretization on some grid on a domain Ω, then W i are often subspaces corresponding
to the unknowns in physical subdomains Ωi ⊂ Ω. We set the restriction operators R̄i : RN → RN̄i ,
corresponding to N̄i-by-N zero-one matrices with full row rank N̄i, and obtain the prolongation operators as
the transpose of the restrictions, i.e., R̄Ti : RN̄i → RN . We assume that the restriction matrices are chosen
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so that

R̄i =
[
IN̄i0

]
Πi ∈ RN̄i×N , (2.1)

where IN̄i is the identity matrix of the dimension N̄i, 0 ∈ RN̄i×(N−N̄i) and Πi ∈ RN×N is a permutation
matrix (acting on the rows). Note that composing the prolongation and restriction we have

R̄Ti R̄i = Π
T

i

[
IN̄i 0
0 0

]
Πi ∈ RN×N .

We also consider the analogous objects for the overlapping caseW i ⊂Wi (by enlarging each of the subspaces
W i and omitting the bar in the notation) and set Ni := dim(Wi) and the matrices

Ri =
[
INi0

]
Πi ∈ RNi×N ∈ RNi×N and RTi Ri = ΠT

i

[
INi 0
0 0

]
Πi ∈ RN×N ,

see, e.g., [7, 18] and also [15] for more details. Furthermore, we define the subdomain matrices Ai as the
restriction of A to Wi, i.e., Ai := RiAR

T
i , and we denote the complement of the indices in the range of Ri

by ¬i, e.g.,

A = Πi

[
Ai Ki

Li A¬i

]
ΠT
i ∈ RN×N , for i = 1 . . . , p.

We then set-up the multi-splitting matrices Mi as

Mi = Πi

[
Ai 0
× ∗

]
∈ RN×N , for i = 1 . . . , p,

where the blocks × and ∗ can be, in general, chosen arbitrarily but the common choice is to set × = 0 and
∗ = A¬i ([17]) or ∗ = diag(A¬i) [3, 18]; for more details on multi-splittings, see the cited works and the
references therein.

Equipped with this notation, we can formulate the classical algebraic Schwarz methods – AS, RAS and
MS – in matrix form

u(n+1) = T?u
(n) + c?, or, equivalently, for the errors e(n+1) = T?e

(n), (2.2)

where ? ∈ {AS,RAS,MS}, c? ∈ RN are some constant vectors, e(n) := u − u(n) ∈ RN is the error vector
after n iterations and the matrices T? are the iteration matrices of the respective methods, given by1

TAS := IN −
p∑
i=1

RTi A
−1
i RiA ≡ IN −M−1

ASA, TAS,θ := IN − θ
p∑
i=1

RTi A
−1
i RiA ≡ IN −M−1

AS,θA,

TRAS := IN −
p∑
i=1

R̄Ti A
−1
i RiA ≡ IN −M−1

RASA, TMS :=

1∏
i=p

(
IN −RTi A−1

i RiA
)
≡ IN −M−1

MSA,

(2.3)

where we also included the (damped) additive Schwarz method (dAS) with a damping coefficient θ, corre-
sponding to the iteration matrix TAS,θ. Note that we also write each of the iteration matrices T? in the
form I −M−1

? A so as to highlight the fact that the convergence of these stationary methods can be further
accelerated if we reformulate them as preconditioners for a Krylov method. The preconditioners are then
the matrices M−1

? , where the inverse highlights that these preconditioners are to be “applied” rather then
“solved with”, i.e., the preconditioner matrix-vector action is given for any vector v by v 7→M−1

? v. For the
additive-based methods, the definition ofM−1

? is rather straight-forward while for the multiplicative Schwarz
the definition becomes seemingly artificial by having

M−1
MS = (IN − TMS)A−1, (2.4)

1An equivalent multi-splitting formulation of these can be found in [18, Section 2] and [3, Sections 2 and 3].
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which can be further reformulated for practical use, see, e.g., [42, Section 14.3]. Based on (2.2), we see that
convergence (or divergence) for a particular choice of the method is determined by the spectral radius ρ(T?),
which has been studied in detail for certain classes of matrices A. To that end, we say that a matrix A is
symmetric, positive-definite or SPD (denoted by A � 0), provided that

AT = A and vTAv > 0 for all v 6= 0. (2.5)

Denoting the spectrum of A by σ(A), (2.5) is equivalent to

AT = A and λ > 0 for all λ ∈ σ(A).

We say that A is a nonsingular M -matrix, provided that the off-diagonal elements of A are non-positive and
all elements of the inverse are non-negative, i.e., A − diag(A) ≤ 0 and A−1 ≥ 0, where the inequalities are
understood element-wise, see [4, Chapter 6] or [33, Section 2.5] for further details and references. In the rest
of the paper we will simply say an M -matrix meaning a nonsingular M -matrix. We finish this section by
recalling convergence results for the classical Schwarz methods for these two classes of matrices.

Theorem 2.1 ([17, Lemma 2.8], [3, Theorem 3.8]). Let A � 0 and let q ≤ p be the smallest number of
colors such that we can color all the p subspaces W1, . . . ,Wp so that if Wi ∩Wj 6= {0}, then Wi and Wj have
different colors. Then

ρ(TMS) ≤ ‖TMS‖A < 1 and for θ < 1/q it holds that ρ(TAS,θ) ≤ ‖TAS,θ‖A < 1.

Theorem 2.2 ([17, Theorem 3.4], [18, Theorem 4.4], [3, Theorem 3.5]). Let A be an M -matrix and
q ≤ p be the smallest number of colors such that we can color all the p subspaces W1, . . . ,Wp so that if
Wi ∩Wj 6= {0}, then Wi and Wj have different colors. Then

ρ(TMS) < 1, ρ(TRAS) < 1 and for θ < 1/q it holds that ρ(TAS,θ) < 1.

Remark 1. We note that Theorem 2.2 seemingly guarantees RAS convergence even for “no overlap”
case where Wi = W i for some (or all) i. At first this might seem contradictory to the analytic results for
the standard Laplace test problem, where Wi corresponds to discretization of the problem on Ωi. But there
is no contradiction as even the “no overlap” case in the algebraic sense corresponds to the “h overlap” in the
analytic sense of the subdomains Ωi, thanks to the Dirichlet boundary condition enforcement.

We also note that there are other methods closely related to the metnioned ones, e.g., the RAS method
has number connected variants (e.g., WRAS,ASH,RASH,WRASH, see [18, Section 6] for further references).
We do not consider them in this paper.

3. Multiprecision computations. As we do not work with hardware with a wider selection of pre-
cision, the different precisions in our multiprecision algorithms needs to be simulated in some way. The
number of options available is limited and both theoretically and practically, two stand out – the chop
package [31] and the advanpix package [37], both implemented in MATLAB. To the best of our knowledge,
these are considered the golden standard among the available software for simulating various precisions in
the numerical analysis and scientific computing community.

advanpix package. Using advanpix, we can specify the number of accurate digits d` for each computation,
i.e., the package simulates the precision based on the decadic notation of numbers in contrast to the binary
notation that is commonly used in the hardware, software and also in the IEEE and the definition of the
standard precisions double, single and half, see [1]. Say we want to simulate a half precision (fp16), which
corresponds to uhalf ≈ 4.88 × 10−4. Using advanpix, we have to chose to have either four or five accurate
digits, neither of which maps precisely onto the standardized format of fp16. Moreover, advanpix does not
include underflow/overflow treatment. However, this allows to explore also “new” precisions which are not yet
standardized or even used, e.g., six or eleven accurate digits, and frames the computation precision as more
of a “integer-continuous” parameter. Moreover, the package is a highly optimized software that overwrites
the standard (also highly optimized) MATLAB functions to work with the desired number of accurate digits,
e.g., the MATLAB LU or QR factorizations for sparse matrices. Without exploiting these, many problems
become too computationally demanding (hence the commercial success of this package). In this context

4



we would also like to highlight that a lot of interest has been recently devoted to efficient simulation of
arbitrary precisions on GPUs with astonishing results. For example, although the hardware of GPUs is
highly optimized only for low-precisions, such as fp32, fp16 and even lower, a clever way of simulation
of fp64 on these GPUs using these low-precision formats was competitive with (or even preferable to) the
standard hardware implementation of fp64, see [39, 40, 41] and the references therein. This opens doors to
real possibility of efficiently simulating “new” low-precisions in practice.

chop toolbox. The chop toolbox is an open-source MATLAB toolbox2 developed for simulating different
precisions using the native double of MATLAB, essentially by removing a portion of the mantissa of the
result after each operation, corresponding to “rounding” back to the simulated precision. For computations
in single precision or lower, chop faithfully simulates the computation in the precision (see [31, Section 3.1])
and can also simulate the underflow/overflow during the computation. Although this toolbox outperforms
many other options (see [31, Sections 5 and 6]), it makes some computations prohibitively time-consuming,
even after adapting it to sparse matrices. Although it allows for arbitrary user-defined formats (defined by
the number of bits allocated to the exponent and the significand), we will restrict ourselves to the currently
standard ones, summarized in Table 3.1 below.

Signif. Exp. u xmin xmax
q52 5 2 1.25× 10−1 6.10× 10−5 5.73× 104

q43 4 3 6.25× 10−2 1.56× 10−2 2.40× 102

bfloat16 8 8 3.91× 10−3 1.18× 10−38 3.39× 1038

fp16 11 5 4.88× 10−4 6.10× 10−5 6.55× 104

fp32 24 8 5.96× 10−8 1.18× 10−38 3.40× 1038

fp64 53 11 1.11× 10−16 2.23× 10−308 1.80× 10308

Table 3.1

In most cases, the computationally most demanding part of Schwarz methods are the subdomain solves,
i.e., the operations including A−1

i . The issue of underflow/overflow is, in our opinion, an important piece
in multiprecision calculations and has been, at least partially, addressed in [32], where the authors propose
re-scaling procedures so that (close to) the full range of a given precision is utilized (demonstrated for fp16).
To be concrete, having a subdomain problem

Aiui = fi, (3.1)

(where we omit the iteration index to keep the notation simple) and a precision u` with the positive range
[x

(`)
min, x

(`)
max], the authors propose several algorithms for calculating and using diagonal matrices for row and

column rescaling of (3.1) – let us denote them Dr
i and Dc

i (corresponding to R and S in [32]). For any
non-singular Dr

i and Dc
i we then rewrite (3.1) as

Aivi = µbi (3.2)

with

Ai := µDr
iAiD

c
i , bi := Dr

i fi, ui := Dc
ivi and µ ∈ R.

The goal is to take Dr
i , D

c
i so that |Dr

iAiD
c
i | . 1 entry-wise and then take µ = νx

(`)
max for some ν ∈ (0, 1) so

that

|Ai| ≡ |µDr
iAiD

c
i | . x(`)

max.

A reasonable choice then is to take Dr
i and Dc

i as in [32, Algorithms 2.3 and 2.4], i.e., as the maximum
norms of the rows (and then the columns) of Ai. According to [32, Table 4.5], the choice of ν = 0.1 (the
authors use θ in their notation) is reasonable and we comment on this choice later. For the system (3.2) we
also rescale the right-hand side, namely we write

µbi =
‖bi‖∞
ν̂i

b̂i with b̂i := ν̂i
µ

‖bi‖∞
bi,

2Towards the end of preparing the manuscript, the chop toolbox has been also released for python, see [9].
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where, again, ν̂i ∈ (0, 1) allows us to tailor how close to x(`)
max we rescale the entries of the new right-hand

side vector b̂i. Altogether, we rewrote (3.1) into

Aiv̂i = b̂i, (3.3)

which we solve in the precision u` and then retrieve ui in the precision uw by calculating (also in uw)

ui =
ν̂i
‖bi‖∞

Dc
i v̂i.

Importantly, the rescaling preserves signs of the entries of the matrix and hence Ai is anM -matrix if and only
if Ai is. It can be also adapted to preserve symmetry (see [32, Algorithm 2.5]) and then it also automatically
preserves diagonal dominance.

Remark 2. Since the advanpix toolbox is not open source, possible low-precision overflow/underflow
appearances, e.g., during the LU factorization, are treated automatically and without the user’s knowledge.
In other words, it is fair to say that in spite our best efforts, many experiments are carried out without
overflow/underflow errors, although we carry out the calculations so as to minimize their appearances by
appropriate scaling.

4. Algebraic analysis of multiprecision Schwarz methods. In this section we give analogous
results to Theorems 2.1 and 2.2 when the subdomain solves A−1

i are represented using a lower-precision in
some way. The purpose of the numerical experiments here is twofold – to demonstrate the theoretical results
and also to build an intuition for and understanding of the multiprecision Schwarz methods. Therefore, we
will use the convergence properties (such as number of iterations or the convergence factor) to compare the
results with their “full precision” counterparts, as opposed to, e.g., runtimes. All of the code used to produce
these is available at https://github.com/MichalOutrata/mpSchwarz but, naturally, the code assumes that
both the advanpix as well as the chop toolboxes are available.

We approach the problem from an algebraic point of view, inspired by the results in [3, 17, 18], with the
primary goal of carrying out the subdomain solves – corresponding to A−1

i (or M−1
i ) – in a lower precision

u`, compared to the higher working precision uw. This direction is not explicitly mentioned in either of the
works but follows from the sections focusing on inexact solves; see [17, Sections 2 and 3], [18, Section 7]
and [3, Section 4]. Following the notation there, we will denote with tildes quantities that have been obtained
by precision-reduction in some sense, e.g., if we assume that the matrix Ai is stored in the working precision
uw and we then store it only in a lower precision u`, the new matrix will be denoted by Ãi and replacing
all Ai with Ãi in the definition of Ai or T? gives us Ãi or T̃? (for ? ∈ {AS,RAS,MS}). We emphasize that
the symbol ∼ does not mean that the quantity was obtained by the classic rounding procedure, quite on
the contrary – we always consider a particular way of obtaining Ãi from Ai that suits the situation and is
clear from the context. However, we keep a single notation for all of these cases (using ∼) to highlight the
lower-precision nature. We denote the error in the subdomain matrices by Ei, i.e., we have

Ãi = Ai + Ei. (4.1)

As is standard in the algebraic convergence theory of Schwarz methods, we are interested in properties of
the splittings

Ai = Ãi −
(
Ãi −Ai

)
, i = 1, . . . , p . (4.2)

4.1. The general case. Assuming A is anM -matrix, we recall a sufficient condition for the convergence
of (damped) AS, RAS and MS is to have

Ã−1
i ≥ 0 and Ã−1

i

(
Ãi −Ai

)
= Ã−1

i Ei ≥ 0. (4.3)

These conditions characterize when the splitting (4.2) is weak regular (of the first type, see [18, Section 4])
and thus if (4.3) holds for all i = 1, . . . , p, then (damped) AS, RAS and MS with A−1

i (M−1
i ) replaced with

Ã−1
i (M̃−1

i ) converge, i.e., ρ(T̃?) < 1.
6
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In light of the rescaling (3.1) to (3.3), we see that the rounding error is committed at the level of the
rescaled system, i.e., instead of solving (3.3) we solve

Ãiv̂i = b̃i,

where Ãi (and b̃i) is obtained by a rounding technique of our choice applied to Ai (and b̂i). In other words,
we have

Ãi = µ−1(Dr
i )
−1Ãi(Dr

i )
−1 (4.4)

and so the error matrix Ei is given by

Ei = Ãi −Ai = µ−1(Dr
i )
−1
(
Ãi −Ai

)
(Dr

i )
−1 = µ−1(Dr

i )
−1Fi(D

r
i )
−1,

where we define Fi := Ãi −Ai as the rounding error matrix.
Here we would like to recall a useful observation for diagonal re-scaling of general stationary iterative

methods3 – if the stationary iterative method is based on a splitting A = M − N such that the entries of
M are multiples of the corresponding entries of A, then the iteration matrices for A and D1AD2 are similar
(i.e., have the same convergence factor) for any non-singular diagonal matrices D1, D2. On one hand, this
shows that for u` = uw, the re-scaling above doesn’t affect the asymptotic convergence rate in our case. On
the the other, we are clearly interested in cases where the rounding does make a difference and through this
observation we see that we can expect the convergence factor to be affected by the re-scaling.

Revisiting (4.3), a direct calculation shows that the weak regular splitting conditions are invariant with
respect to diagonal scaling with positive entries, i.e., the conditions (4.3) are equivalent to

Ã−1
i ≥ 0 and Ã−1

i

(
Ãi −Ai

)
= Ã−1

i Fi ≥ 0. (4.5)

The first ingredient for the analysis of (4.5) is rewritting Ã−1
i as

Ã−1
i = A−1

i

(
I + FiA−1

i

)−1
, (4.6)

and expanding the inverse matrix there into its Neumann series under the assumption

‖A−1
i Fi‖ < 1, (4.7)

in some induced norm. Assuming (4.7), the Neumann serie expansion reads

Ã−1
i = A−1

i

+∞∑
k=0

(
−FiA−1

i

)k
, (4.8)

and we further rearrange it as

Ã−1
i = A−1

i

+∞∑
k=0

(
−FiA−1

i

)k
= A−1

i

(
I − FiA−1

i

)
+A−1

i

(
I − FiA−1

i

)
FiA−1

i FiA−1
i + . . .

= A−1
i

(
I − FiA−1

i

) +∞∑
k=0

(
FiA−1

i

)2k
=
(
A−1
i −A

−1
i FiA−1

i

) +∞∑
k=0

(
FiA−1

i

)2k
.

(4.9)

In order to ensure (4.5) we will focus on ensuring Fi ≥ 0 as well as Ã−1
i ≥ 0. Notice that the latter should

be natural as we have A−1
i ≥ 0 and thereby also A−1

i ≥ 0, while the condition Fi ≥ 0 can be accomplished,
at least in theory, by virtue of choosing an appropriate u` and the rounding procedure. In fact, assuming
Fi ≥ 0 the natural condition for ensuring also Ã−1

i ≥ 0 (and hence (4.5)) becomes

A−1
i ≥ A

−1
i FiA−1

i , (4.10)

3We came across this observation in [29, Section 17.2, below eqn. (17.3)] but this is likely not the original reference.
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a second condition on the choice of u` in addition to (4.7). Notice that both (4.7) as well as (4.10) are in
some sense generalizations of the standard relative rounding error assumption

|Fi| ≤ u`|Ai|, (4.11)

which is generally guaranteed (the absolute value is to be understood component-wise). Also, similarly to [2,
Sections 4 and 5], both (4.7) and (4.10) invite us to choose (u`)i for each subdomain independently, based on
the relevant quantities or their estimates4. We keep (4.7) and (4.10) as assumptions, coupling the subdomain
problems and the choice of the lower precision u` and move our attention to the condition Fi ≥ 0.

If we use the standard rounding, then we are unlikely to satisfy Fi ≥ 0 except for some special cases.
However, the process of rounding is very often fully under our control. Since by definition the off-diagonal
entries of Ai are non-positive while its diagonal entries are non-negative, a simple way to ensure Fi ≥ 0 is to
take Ãi as the “sign-informed round up” of Ai.

To this end we assume that for any precision u` we have at our disposal the functions rdu` and ruu`
that round towards zero (down) and towards plus/minus infinity (up)5. We then introduce the rounding
procedure roundMmtrx() that for any matrix X gives its low-precision approximation roundMmtrx(X) given
by

(roundMmtrx(X))mn ≡ (roundMmtrx(X,u`))mn :=

{
ruu` ((X)mn) , if (X)mn > 0,

rdu` ((X)mn) , if (X)mn < 0.

Taking

Ãi = roundMmtrx(Ai), (4.12)

we get Fi ≥ 0 and obtain a convergent multiprecision Schwarz methods under the assumptions (4.7) and
(4.10); we summarize these results in Theorem 4.1 below.

Theorem 4.1. Let A be an M -matrix and q ≤ p be the smallest number of colors such that we can
color all the p subspaces W1, . . . ,Wp so that if Wi ∩ Wj 6= {0}, then Wi and Wj have different colors.
Moreover, assume that for each i = 1, . . . , p we replace the subdomain solver A−1

i in a precision uw with the
subdomain solver Ã−1

i in a precision u`, with uw < u`, obtaining the multiprecision (damped) AS, RAS and
MS methods with the iteration matrices T̃AS,θ, T̃RAS and T̃MS, respectively. Taking Ãi as in (4.4) with Ãi
given as in (4.12), if (4.7) and (4.10) are satisfied, then

ρ(T̃MS) < 1, ρ(T̃RAS) < 1 and for θ < 1/q it holds that ρ(T̃AS,θ) < 1,

and the multiprecision versions of the classical Schwarz methods are convergent.
Following [17, Sections 4], [18, Section 7] and [3, Section 4], we also obtain the comparisons for different

choices of u`. To be more specific, having an M -matrix X and two different low-precisions u(1)
` ≤ u

(2)
` with

uw ≤ u(1)
` ≤ u

(2)
` , we obtain

roundMmtrx(X,u
(1)
` ) ≤ roundMmtrx(X,u

(2)
` ),

and hence (
roundMmtrx(X,u

(1)
` )
)−1

≥
(

roundMmtrx(X,u
(2)
` )
)−1

.

Using this for the Schwarz methods, we obtain

ρ
(
T̃
?,u

(1)
`

)
≤ ρ

(
T̃
?,u

(2)
`

)
, where ? ∈ {AS,RAS,MS}. (4.13)

In other words, the better precision, the faster convergence. The important questions then become

4In [2], the authors work with a similar idea but calculate explicitly the analogue of the inverses Ã−1
i in different precisions

based on their conditioning. This is somewhat complementary to our approach as our interest lies in the analysis of the resulting
method rather than in the practical aspect, which has been covered in [2] and we do not comment further on how to choose u`
(or (u`)i) for the subdomain problems.

5In the chop toolbox, these are already implemented and for the advanpix package, these are straight-forward to implement
as we deal with the precision u` corresponding to d` accurate decimal digits (as opposed to dealing with bits in the case of
chop).
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• Are the conditions (4.7) and (4.10) in some sense sharp or descriptive in the context of convergence
of the multiprecision Schwarz methods?

• When is (4.13) strict?
• Out of those u` for which (4.13) is strict, which should we use, i.e., to what extend are there
diminishing returns as we approach equality in (4.13)?

Next, we investigate these questions numerically on three model problems coming from a discretization
of a reaction-advection-diffusion equation. Taking the unit square, i.e., Ω = {x = [x1, x2]T ∈ [0, 1]2}, we
consider the partial differential equation

Lu = f in Ω and u = g on ∂Ω, (4.14)

with the differential operator L given by

Lu := η(x)u− div (α(x)∇u) + b(x) · ∇u. (4.15)

We take the coefficient functions η(x), α(x) and b(x) = [b1(x), b2(x)]T as follows:
Problem 1. (inspired by [26, Figure 2.1])

η(x) := x2
1 cos(x1 + x2)2, α(x) := 20(x1 + x2)2ex1−x2 and

b1(x) := x2 − 0.5,

b2(x) := x1 − 0.5.

Problem 2. (inspired by [19, Section 4.1])

η ≡ 0, α ≡ 1 and
b1(x) := β(x1(x1 − 1)(1− 2x2)),

b2(x) := −β(x2(x2 − 1)(1− 2x1)),
with β = 100.

Problem 3. (based on Problem 2)

η ≡ 0, α(x) =

{
106 if ‖x− [0.5 0.1]T ‖ < 0.25,

1 otherwise,
and

b1(x) := β(x1(x1 − 1)(1− 2x2)),

b2(x) := −β(x2(x2 − 1)(1− 2x1)),

again with β = 100. To discretize we use the standard 5-point stencil finite difference scheme, adapting
some of the code from [26] and obtain systems of linear equations (1.1) with A being a non-symmetric M -
matrix. We then partition A into two overlapping subdomain problems, taking the size of the overlap block
to correspond to the bandwidth of A, i.e., we consider two overlapping subdomains Ω1,Ω2 ⊂ Ω with overlap
width6 O(h). We take our right-hand side vector f and our initial approximation vector u(0) as random
vectors with entries in (0, 1).

First we fix N = 2500 and show the convergence curves and the observed convergence factor ρconv

in Figure 4.1 for the multiplicative Schwarz method and the standard low-precision formats in the chop
package (see Table 3.1 above), adjusting the scaling from Section 3 so as to use as much of the available
range of each precision while not overflowing during the computations. We see that the methods in fact
converge in all of the considered precisions, although the conditions (4.7) and (4.10) are satisfied only for
fp16, fp32 and fp64. Moreover, once the conditions (4.7) and (4.10) are satisfied, they are also satisfied
for higher precisions and, more importantly, the observed convergence factor ρconv (calculated based on the
convergence curves) essentially becomes invariant to increasing the precision further. In other words, we get
very little additional computational benefits (within the first 60 iterations) by considering higher precisions
once the conditions (4.7) and (4.10) are satisfied. This suggests that the conditions (4.7) and (4.10) offer a
good guidance on the a-priori choice of the working proecision uw.

We illustrate this further by showing the analogous experiment but run using the advanpix toolbox,
which allows us finer tuning of the considered precision for the price of foregoing the control over under-
flow/overflow situation (however since we encountered no overflow with chop, this seems not too worrying)

6As a result, we expect the convergence factor of Schwarz method to deteriorate as N increases, see [18, Section 5] and [3,
Section 5].
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Fig. 4.1. Top: the 2-norm of the error of the multiplicative Schwarz method for different choices of uw using the chop
toolbox. For fp32 and fp64 the graphs are indiscernible from each other. Bottom: the observed convergence factor ρconv for
different methods and choices of u`; if the conditions (4.7) and (4.10) are satisfied for both subdomain i = 1, 2 for a certain
u`, then the marker is filled. For example, for Problem 1 the conditions (4.7) and (4.10) are satisfied for both i = 1, 2 starting
from fp16.

in Figure 4.2. We see that not only the observations from Figure 4.1 still hold true, but the case for the use
of the conditions (4.7) and (4.10) as predictors for the suitable precision u` is further strengthened.

Remark 3. Numerically, the experiments suggest that (4.7) is generally weaker than (4.10), although
we have not been able to establish this as a theoretical result. However, we have never observed this dis-
crepancy to be large, using either chop (e.g., for chop the difference is only present for bfloat16 and
fp16, where (4.7) was - for some problems and mesh-sizes - satisfied for bfloat16, while (4.10) wasn’t) or
advanpix (again, (4.7) was rarely satisfied for d` = 3, while (4.10) wasn’t).

We further illustrate the tipping point of the conditions (4.7) and (4.10) being met or violated by plotting
the error of the multiplicative Schwarz method throughout the initial iterations for different choices of u` for
Problem 1 in Figure 4.3, again using chop with overflow enabled (but not encountered due to the rescaling).
In full precision, we expect the classical two-domain profile of the largest eigenmode of the matrix TMS,
smooth on each of the subdomains. Indeed, for fp16, fp32 and fp64 that is what we observe. However, for
q52 and q43 the ridge in the middle that separates the two subdomains never forms and for bfloat16 it
takes several iterations to establish to the same extend. In other words, for too low precision u` the method
effectively looses its continuous level interpretation as a domain decomposition method, although it is still
a reasonably effective (even convergent) smoother. Importantly, satisfying the conditions (4.7) and (4.10) is
visible not only in the rate of convergence but also in the nature of it.

The above observations remained true when changing
• the chop and advanpix toolboxes,
• the problem (we experimented with various settings of reaction-advection-diffusion problems such

that A is an M -matrix),
• the method (although, e.g., for dAS we observe an initial period before the error converges to the

dominant eigenmode),
• the initial approximation (the only change is in the initial period before the error converges to the

dominant eigenmode).

10



Fig. 4.2. Top: the 2-norm of the error of the multiplicative Schwarz method for different choices of d`, using the advanpix
toolbox. For d` ≥ 6 the graphs are essentially indiscernible from the green one for d` = 5. For Bottom: the observed convergence
factor ρconv for different methods and choices of d`; if the conditions (4.7) and (4.10) are satisfied for both subdomain i = 1, 2
for a certain d`, then the marker is filled. For example, for Problem 1 the conditions (4.7) and (4.10) are satisfied for both
i = 1, 2 from d` = 4 onward.

As we kept the problem size relatively small so far, we next experiment also with varying N . However,
letting N grow, two numerical limitations come forward – (i) the chop toolbox becomes too slow and (ii)
the verification of the condition (4.10) becomes untenable. Hence, for the following experiments we will use
only the advanpix toolbox and only verify the condition (4.7) (essentially testing whether the observation
in Remark 3 holds true also for larger N).

All of the above characteristics remained true with the only change being the first d` so that the condi-
tion (4.7) is satisfied. We show these for N ∈ {2500, . . . , 108900} in Figure 4.4. Notably, we see that after
the first d` such that (4.7) is satisfied there is little to no change in using additional precision, precisely as
observed above for N = 2500. In other words, the dominant eigenmodes of T? with ? ∈ {AS,RAS,MS}
seem to be well-captured already with limited precision and the other eigenmodes are not too sensitive with
respect to small perturbations of the subdomain solves and stay “non-dominant”. In addition, the same type
of behavior as showed in Figure 4.3 is present for larger N , i.e., for too low precision the methods lose their
two-domain nature, converge extremely slow but remain effective smoothers.

We see that the convergence factors ρconv are remarkably uniform for the different problems as well as
with respect to changing the solve precision u`. The condition (4.7) is satisfied either at d` = 4 or d` = 5,
also depending on the size of the problem and once the condition is satisfied, then ρconv stabilizes around
this final value. In other words, based on these experiments the condition (4.7) still governs the required
precision. We note that this is perhaps not too surprising as the condition (4.10) is clearly only a sufficient
one – if it does not hold, then the entries of the matrix Ã−1

i in (4.9) are given as an oscillating sum (rather
than a sum of only non-negative numbers), which still can easily sum-up to a non-negative number. On the
other hand, if (4.7) doesn’t hold, then there’s no easy way around it.

We remark that in both [2, 44] the authors use the condition numbers of the subdomain matrices for
choosing u`. The condition numbers of the subdomain matrices Ai for both Problem 1 and 2 are fairly small
within the range (103, 105), while for Problem 3, the subdomain matrices Ai have condition numbers within
the range (109, 1011). We see that the conditioning of the subdomain problem and the precision u` seems to
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Fig. 4.3. The errors of the multiplicative Schwarz method used for Problem 1 with N = 2500 and chop toolbox after 1, 2
and 3 iterations using q43 (top), bfloat16 and (middle) fp16 (bottom). Up to scaling, the error for q52 is analogous to the
top row and the errors for fp32 and fp64 are are analogous to the bottom row.

interact very little. This remained true for other, similarly focused experiments. We note that the rescaling
process does explain part of this observation but we note that the analogous plots for experiments without
the rescaling, i.e., taking D(r,c)

i = INi , look fairly similar, although the plots are “less smooth”.
Notice that as N increases ρconv tends towards 1. This is a feature of Schwarz methods – the convergence

factor depends on the width of the overlap of the subdomains Ω1 and Ω2. As noted above, in our setting the
overlap width is proportional to h ∼ 1/N and therefore this effect is expected even in full precision, which
is clearly visible in Figure 4.4.

In addition, note that in condition (4.7) the 2-norm can be replaced by any consistent and equivalent
matrix norm and the Neumann series result is still valid; see, e.g., [38, Section 1.3, Lemma 1.3.10]. In other
words, the computationally unfeasible condition (4.7) can be replaced by

‖A−1
i Fi‖2F < 1, or ‖A−1

i Fi‖21 < 1.

Although these are clearly preferable for the purpose of determining the number of digits d` (or d`i , i =
1, . . . , p), see [2], they might give worse indication of whether or not a given precision is suitable for a
given N .

When running Schwarz methods, we can see the effect of the lower precision u` only on the dominant
eigenmode and eigenvalue of T?, as one expects for a fixed-point iteration. However, in practice we usually
accelerate Schwarz methods using Krylov subspace methods, i.e., we use Schwarz methods as preconditioners
for Krylov methods. In order to be successful preconditioners, calculating in u` instead of uw on the
subdomains should not make eigenbasis much more ill-conditioned or the spectrum much more “spread out”,
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Fig. 4.4. We show ρconv of the Schwarz methods for d` = 1, 2, . . . , 16 and different problem sizes N . We highlight the
first d` for which the condition (4.7) is satisfied (it is also satisfied for all the following ones).

otherwise a notable slowdown of GMRES convergence (compared to the appropriate full-precision Schwarz
method) can occur. In other words, the above experiments do not necessarily suggest that the multiprecision
Schwarz methods will be also efficient when used as precnoditioners. We investigate that next numerically
and use the preconditioned GMRES with multiprecision dAS, RAS and MS as the left preconditioners and
with preconditioned relative residual tolerance 10−12, zero initial approximation and maximum number of
iterations set to 100. We show the number of GMRES iterations in Figure 4.5.

We observe that the effect of the low-precision does not meaningfully disrupt the number of iterations
that the preconditioned GMRES needs to reduce the preconditioned relative residual to the tolerance 10−12.
Moreover, we see the same diminishing returns as we did for the convergence factors of the methods in
Figure 4.4 and these occur mostly at the same thresholds, i.e., for the same precisions u`. We again observe
the increase of the iterations as N increases for similar reasons as in Figure 4.4. While we do not consider
the analysis of the multiprecision preconditioned GMRES method, we refer the reader to [6] for analysis and
further references.

Summarizing, we can say that we observe that in the model examples four or five digits suffices to
achieve virtually indistinguishable results to full double precision, i.e., running fp32 (or even fp16 for
smaller N) should be up to twice as fast (four times as fast) to the standard fp64 Schwarz method without
any meaningful drawback. Moreover, the results showcase that running fp16 or even bfloat16 should result
in a negligible slowdown while offering up to a further two-fold speed-up.
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Fig. 4.5. The number of the preconditioned GMRES iterations to reduce the relative residual below 10−12 capped at 100.

4.2. The symmetric case. We consider now symmetric M -matrices, sometimes also called Stieltjes
matrices (Stieltjes matrices are themselves symmetric positive definite, see [4, Chapter 6, Theorem 2.3
(D16)]).

First, we would like to highlight that Theorem 4.1 applies to this case “as is”. Moreover, if the rescaling
and rounding is done symmetrically (or if we store and work only on, say, the upper-triangular part of the
matrix), then the symmetry is preserved as well. Notably, to achieve symmetrical scaling, the proposed
rescaling algorithm needs to be symmetrized, leading to an iterative procedure, see [32, Algorithms 2.5].
Moreover, our rounding routine can be further tailored to preserve other useful properties of the subdomain
matrices.

For example, assuming A has dominant entries on the diagonal, in the sense that aii ≥ |aij | for all
i, j, [32, Algorithms 2.5] converges in a single step, yielding D

(r)
i = D

(c)
i = diag(a

−1/2
11 , . . . , a

−1/2
NiNi

) with
D

(r)
i AiD

(c)
i having all ones on the diagonal and the rest of the entries being bounded in absolute value from

above by one. Then, taking ν as some power of two (or other number we represent exactly in u`), we can
use the rounding routine

(roundDiag(X))mn :=

{
(X)mn , if m = n,

rdu` ((X)mn) , if m 6= n,
(4.16)

in order to preserve this property (or, e.g., diagonal dominance) also for the rescaled, rounded matrix Ãi.
Either way, any reasonable rounding should satisfy FTi = Fi (as Ai is symmetric), which will be enough for
now.

Next, we turn our attention to the classical convergence theory for the algebraic Schwarz methods for
the symmetric, positive-definite case. As the RAS method is inherently non-symmetric, it is standard to
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consider the convergence theory only for the (damped) AS and MS methods and as a result we focus only
on these two classes7. For these, the driving force behind Theorem 2.1 is the so-called P -regular Splitting
Theorem, see, e.g., [38, Theorem 7.1.9]. The core assumption there becomes that the splittings in (4.2) are
P -regular splitting, i.e., that

ÃTi + Ãi −Ai � 0. (4.17)

In order to satify (4.17), the standard assumption in the literature is Ãi � Ai (see, e.g., [3, equation (39),
p.621]) but, unfortunately, this is not an “easy to ensure condition” for a specific rounding routine. Instead,
we first observe that for a symmetric scaling, i.e., the case of D(r)

i = D
(c)
i =: Di, we get

ÃTi + Ãi −Ai = µ−1D−1
i

(
ÃTi + Ãi −Ai

)
D−1
i = µ−1D−1

i

(
Ãi + Fi

)
D−1
i ,

and (4.17) becomes equivalent to

Ãi + Fi � 0,

which is ensured by the two following conditions

Ãi � 0 and λmin(Ãi) ≥ |λ−∞(Fi)| , (4.18)

where λmin(Ãi) ≥ 0 is the smallest eigenvalue of Ãi (as we assume there Ãi � 0) and λ−∞(Fi) is the smallest
eigenvalue of Fi (on the real line, not in absolute value, since FTi = Fi). Notice that these conditions differ
substantially as we allow for the rounding error matrix to be indefinite.

The first condition in (4.18) can be ensured by rounding as in Section 4.1 so that Ãi is still a Stieltjes
matrix and hence symmetric, positive-definite. The second condition can be further expanded on, using
the standard perturbation theory of eigenvalues for symmetric matrices (as both Ai and Fi are symmetric).
Indeed, using Weyl’s Theorem (see) for Ãi = Ai + Fi, we obtain

λmin(Ãi) ≥ λmin(Ai) + λ−∞(Fi), (4.19)

so that to ensure the second condition in (4.18), it is enough to require

λmin(Ai) ≥ 2 |λ−∞(Fi)| . (4.20)

We summarize the results in the following theorem.
Theorem 4.2. Let A be a Stieltjes matrix and q ≤ p be the smallest number of colors such that we

can color all the p subspaces W1, . . . ,Wp so that if Wi ∩Wj 6= {0}, then Wi and Wj have different colors.
Moreover, assume that for each i = 1, . . . , p we replace the subdomain solver A−1

i in a precision uw with
the subdomain solver Ã−1

i with uw < u`, obtaining the multiprecision (damped) AS and MS methods with
the iteration matrices T̃AS,θ and T̃MS. Taking Ãi as in (4.4) with Ãi given as in (4.12) with a symmetric
scaling, if (4.7), (4.10) and (4.20) are satisfied, then

ρ(T̃MS) < 1 and for θ < 1/q it holds that ρ(T̃AS,θ) < 1.

and the multiprecision versions of the classical Schwarz methods are convergent.
We note that analysis for SPD matrices and multiprecision additive Schwarz methods has been considered

elsewhere; see [47, 2, 44, 27]. However, in all of these papers the authors consider the (non-damped) AS as
a preconditioner for CG and hence the analysis and/or numerical investigation focus on the preconditioned
CG method, e.g., using variational techniques that allow establishing a bound on the condition number of
the preconditioned system. We also note that the assumptions look somewhat similar8. Indeed, to get a

7Some theory for SPD matrices has been developed for variants of the RAS method, see [8], and recently, the convergence
of RAS for SPD matrices was studied in [43] using the variational methods for a simple model problem. In general, convergence
of RAS is usually addressed in combination with the particular problem, see [15], or based on other properties of the system
matrix, see [18].

8Compare [44, equations (12) and (14)] and [2, Section 5] with (4.7) and (4.20).
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coarser version of (4.20) we can replace λ−∞(Fi) with − max
λ ∈ σ(Fi)

|λ| ≡ −ρ(Fi) so that instead of (4.20) we

would require

λmin(Ai) ≥ 2ρ(Fi). (4.21)

Since we still have the entry-wise comparison of u`|Fi| and |Ai|, see (4.11), and we have knowledge of the sign
distribution of the entries of these matrices, we could arrive at some comparison theorem for ρ(Fi) and ρ(Ai),
so that (4.21) would relate the condition number ρ(Ai)/λmin(Ai) with the used precision u`, obtaining the
type of condition we encounter in [44, Section 3.2.2, equation (14)] or [2, Section 5]. The above derivation
illustrates that our results are more nuanced compared to the existing ones, also in treating Schwarz methods
(and their convergence) as standalone methods. We focus on more particular systems (in the sense of the
M -matrix property, which together with symmetry constitutes a subclass of SPD matrices) compared to the
existing literature and we carefully exploit this extra information by the specialized rounding techniques.

Next, we show results analogous to the experiments considered in Section 4.1. We consider the same
problem as in (4.14)–(4.15) but omit the advection terms so that we obtain Stieltjes matrices after discretiza-
tion, using the following parameters.

Problem 4. (analogue of Problem 1)

η(x) := x2
1 cos(x1 + x2)2, α(x) := (x1 + x2)2ex1−x2 and b1(x) = b2(x) := 0.

Problem 5. (analogue of Problem 2)

η(x) := 500x1 + x2, α(x) := 1 + 9(x1 + x2) and b1(x) = b2(x) := 0.

Problem 6. (analogue of Problem 3)

η ≡ 0, α(x) =

{
106 if ‖x− [0.5 0.1]T ‖ < 0.25,

1 otherwise,
and b1(x) = b2(x) = 0.

We note that for Problem 4 we added non-constant reaction and diffusion coefficients (otherwise omitting
the advection term leads to the standard Poisson problem).

The same questions as before are of interest. We fix N = 2500 and show the convergence curves
and the observed convergence factor ρconv in Figure 4.6 (using the chop toolbox) and Figure 4.7 (using
advanpix toolbox). We draw very similar conclusions to the ones in Section 4.1. We note that the additional
condition (4.20) was almost always weaker than (4.10) and comparable to (4.7). However, just as in the
non-symmetric case in Section 4.1, the differences were small (e.g., for fp16 and bfloat16 for chop or for
neighboring precisions for advanpix).

In Figure 4.8 we plot the error of the multiplicative Schwarz method at iterations 1, 2 and 3 for different
choices of the precision u` for Problem 5 and see, generally speaking, similar results to Figure 4.3. Our
experience with dAS and RAS is fairly similar.

Looking at the observed convergence factors ρconv in Figure 4.9, similarly to the non-symmetric case,
the dominant eigenmodes of T? with ? ∈ {AS,RAS,MS} appear to be well-captured already with limited
precision, e.g., d` = 4 ∼ 6, and the other eigenmodes are not too sensitive with respect to small perturbations
of the subdomain solves and stay “non-dominant”.

The theoretical results only hold if the all of the conditions (4.7), (4.10) and (4.20) hold true but the
model problems suggest that either of the conditions (4.7) or (4.20) give a good indicator. However, we
note that the condition (4.20) becomes much more pessimistic, if we omit the re-scaling, e.g., if we take
D

(r,c)
i = INi for Problem 6, then (4.20) is satisfied only for d` ' 10, i.e., long after the convergence factor has

in fact stabilized at the final value. The same is true if we replace the condition (4.20) with a cruder version
relating to the condition number of Ai, see (4.21) and below. The condition (4.7), however, has been fairly
robust, localizing fairly accurately the optimal d` regardless of the employed scaling. Also, similarly to the
non-symmetric case, the convergence factor graph becomes notably “less smooth” but otherwise qualitatively
similar. The “non-smoothness” of the convergence factor for Problem 6 and the smallest mesh resolution,
i.e., N = 2500 also stands out. The reason is not due to the low-precision use – the algorithm has simply
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Fig. 4.6. Top: the 2-norm of the error of the multiplicative Schwarz method for different choices of uw using the chop
toolbox. For fp32 and fp64 the graphs are indiscernible from each other. Bottom: the observed convergence factor ρconv for
different methods and choices of u`; if the conditions (4.7), (4.10) and (4.20) are satisfied for both subdomain i = 1, 2 for a
certain u`, then the marker is filled. For example, for Problem 4 the conditions (4.7), (4.10) and (4.20) are satisfied for both
i = 1, 2 starting from fp16.

Fig. 4.7. Left: the 2-norm of the error of the multiplicative Schwarz method for different choices of d`. Right: the observed
convergence factor ρconv for different methods and choices of d`; if the conditions (4.7), (4.10) and (4.20) are satisfied for both
subdomains i = 1, 2 for a certain d`, then the marker is filled.
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Fig. 4.8. The errors of the multiplicative Schwarz method used for Problem 5 with N = 2500 during the initial iterations
using q43 (top), bfloat16 and (middle) fp16 (bottom). Up to scaling, the error for q52 is analogous to the top row and the
errors for fp32 and fp64 are are analogous to the bottom row.

essentially converged after 60 iterations as we have 0.5560 ≈ 2.6 × 10−16; this is also easy to check by
inspecting the error plots directly.

Last, we use the preconditioned GMRES with multiprecision dAS9, RAS and MS as the left precon-
ditioners and with relative residual tolerance 10−12, zero initial approximation and maximum number of
iterations set to 100. We show the GMRES convergence curves and the number of iterations in Figure 4.10.
We see that the number of iterations again stays mostly stable with respect to changing d` for a fixed N
and, moreover, the conditions (4.7) or (4.20) still work as a reasonably accurate indicator for the choice of
the number of digits d`.

5. Comparison of standard and multiprecision Schwarz methods. So far we have studied mul-
tiprecision Schwarz methods as solvers and provided convergence conditions based on the iteration operator
of the multiprecision Schwarz methods. However, another approach would be to use perturbation theory for
the analysis, and in fact, for the case of Schwarz methods as a preconditioners this seems to be a more viable
path.

In this section we compare the convergence of the “exact" method, i.e., with u` = uw, say, double
precision, and that with the multiprecision approach. We consider the general, non-symmetric case and first
focus on the easier-to-analyze additive methods, i.e., (damped) AS and RAS, and comment on the extension
for the multiplicative case later.

9In practice, we would take advantage of the symmetry of the dAS as a preconditioner and would run a left-preconditioned
CG. Here we use GMRES simply to keep the preconditioner results comparable to all of the other methods.
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Fig. 4.9. We show ρconv of the Schwarz method for d` = 1, 2, . . . , 16 and different problem sizes N . We highlight the first
d` for which the conditions (4.7) and (4.20) are satisfied by (or by ).

Additive Schwarz methods. We start by assuming the set-up of Section 4.1, namely, similarly to (4.6) we
can write

Ã−1
i −A

−1
i = µD

(c)
i

(
Ã−1
i −A

−1
i

)
D

(r)
i = µD

(c)
i

(
(I +A−1

i Fi)
−1 − I

)
A−1
i D

(r)
i ,

and denoting Ei := D
(c)
i

(
(I +A−1

i Fi)
−1 − I

)
(D

(c)
i )−1 we get

Ã−1
i −A

−1
i = EiA−1

i . (5.1)

As a result, if we assume10

‖A−1
i Fi‖ ≤ ε <

1

2
, (5.2)

for some ε ∈ (0, 1/2), then

‖Ei‖ =

∥∥∥∥∥D(c)
i

(
+∞∑
k=1

(−1)k
(
A−1
i Fi

)k)
(D

(c)
i )−1

∥∥∥∥∥ ≤ κ(D(c)
i

)
ε

1

1− ε
< 2εκ

(
D

(c)
i

)
,

10This assumption is analogous to (4.7). In fact, the derivations requiring (4.7) can be carried out analogously even if we
assume (5.2) instead of (4.7) but the derivation becomes somewhat more lengthy.
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Fig. 4.10. The number of the preconditioned GMRES iterations to reduce the relative residual below 10−12 capped at 100.

and so

‖Ã−1
i −A

−1
i ‖ = 2εκ

(
D

(c)
i

)
‖A−1

i ‖, (5.3)

where κ(·) denotes the condition number with respect to the norm ‖ · ‖. In other words, the (small)
perturbation of the scaled subdomain matrices can perturb the subdomain solves proportionally to the given
subdomain solve norm, i.e., to ‖A−1

i ‖, and to the condition number κ
(
D

(c)
i

)
of the column-scaling matrix.

This shows that in the ideal scenario, we either get a well-scaled subdomain matrices or we can mostly fix
the scaling by row-scaling (recall that, conveniently, the row-scaling takes precedence in [32, Algorithms 2.3
and 2.4]). Also, notice that (5.2) is similar to the assumption [44, equation (12)], i.e., to the norm-wise
equivalent of (4.11) but for the inverses and after the scaling.

Next, we insert (5.2) into the definition of the additive Schwarz methods in (2.3) and get

M̃−1
? A = M−1

? A+ E? where E? :=


θ

p∑
i=1

RTi EiA
−1
i RiA, for (damped) AS,

p∑
i=1

R̄Ti EiA
−1
i RiA, for RAS.

(5.4)

Recalling the matrix definitions in (2.1) and below, we can write

A−1
i RiA = A−1

i

[
INi 0

]
ΠiΠ

T
i

[
Ai Ki

Li A¬i

]
Πi =

[
INi A−1

i Ki

]
Πi.
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and hence

E? =


AS, θ : θ

p∑
i=1

ΠT
i

[
Ei EiA−1

i Ki

0 0

]
Πi,

RAS :
p∑
i=1

Π
T

i

[
(Ei)1:N̄i,:

(
EiA−1

i Ki

)
1:N̄i,:

0 0

]
Πi.

In fact, we can further rewrite this as

E? =



AS, θ : θ
p∑
i=1

ΠT
i

[
Ei 0

0 0

][
INi A−1

i Ki

0 0

]
Πi,

RAS :
p∑
i=1

Π
T

i


[

(Ei)1:N̄i,:

0N̄i+1:Ni,:

]
0

0 0

[INi A−1
i Ki

0 0

]
Πi,

(5.5)

where we clearly see the main difference between the two methods in the “double-counting of the overlap”,
see [15, 18]. The structure also highlights that the (damped) additive Schwarz can be written in a purely
block diagonal preconditioner while the restricted version cannot.

Next, we proceed with the analysis for the simpler case of only two subdomains, i.e., p = 2, which
directly generalizes to the case of p subdomains with q = 1, i.e., to the “no cross-points” case. In such case
we can choose a global permutation matrix Π so that

EAS,θ = θΠT

[
E1 0
0 E2

] [
IN1

A−1
1 K1

A−1
2 K2 IN2

]
ZΠ, (5.6)

where Z acts as the “zipper” for the overlap, i.e.,

Z =


IN̄1

IN1−N̄1

IN2−N̄2

IN̄2

 .
We notice that this way we managed to factor the error matrix E

(k)
AS,θ so that the first term carries the

multiprecision error while the second term carries the Schwarz-method structure. As a result, bounding the
norm of E(k)

AS,θ and EAS,θ becomes easier11. Assuming (5.2) for both i = 1, 2 and noticing that ‖Z‖ ≤ 2 we
observe that

‖EAS,θ‖ ≤ 2εκ
(
D

(c)
i

)
‖M−1

AS,θA‖. (5.7)

Unfortunately, similar approach does not work for the restricted additive Schwarz method as the “structure
matrix” in (5.5) is that of the additive Schwarz method, rather than of the restricted version.

A natural next step would be to carry out this reformulation also for the iteration matrix T̃AS,θ as it
is its spectral radius that asymptotically governs the convergence. However, since the spectral radius is not
sub-additive or even stable with respect to perturbations, this wouldn’t be directly useful for quantifying
the slow-down of the Schwarz method convergence, unless we consider a more specific situation. An extreme
example is the case when the rounding is in nature only scalar (highlighting the “nicest” case included in
the above setting). That is, there exist a scalar α such that Ai = αAi where Ãi = Ai, i.e., the subdomain
matrices are scalar multiples of a matrix that can be stored “exactly”12 in the considered precision u`. Then

Fi = (α̃− α)Ai, (5.8)

11In many areas of interest it is often more suitable to bound the norm of the iteration matrix (and hence of the error) over
two or more iterations due to the nature of the underlying PDE analysis, see, e.g., [23, 26]. Further research in this direction
might be useful here as well.

12Here “exactly” means to the same precision we store the solution. Also, notice that verifying (4.3) becomes trivial. Notice
that such problems arise, e.g., when discretizing “nice” Poisson-like problems with finite differences so that α = 1/h2.
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and denoting τ := |(α̃− α)/α| ∈ (0, 1) we get

Ei = − τ

1 + τ
I, (5.9)

and hence

T̃AS,θ = TAS,θ +
τ

1 + τ
M−1
AS,θA = I − 1

1 + τ
M−1
AS,θA.

In words, the inexactness of the local solves can be interpreted as an (additional) damping for the additive
Schwarz method. This factor can be conveniently included into the damping factor θ, i.e., the damping factor
θ can be chosen with this in mind, e.g., in our case taking θ = 1/2 still guarantees convergence convergence.
Notice though that τ corresponds to the relative rounding error for α in the precision u` and hence 1/(1 + τ)
tends to 1 as u` decreases.

Multiplicative Schwarz methods. For the multiplicative Schwarz method we start by writing the error
matrix for the iteration matrix T̃MS, i.e., we write

T̃MS = TMS − EMS.

We choose to introduce the sign in this way because then we have

TMS = I −M−1
MSA and T̃MS = I − M̃−1

MSA,

and hence we get a consistent notation with (5.5), i.e.,

M̃−1
MSA = M−1

MSA+ EMS.

Considering the two-subdomains setting, i.e., p = 2, we get

EMS =


=:G1︷ ︸︸ ︷

−
(
I −RT2 A−1

2 R2A
)
RT1 E1A−1

1 R1A

=:G2︷ ︸︸ ︷
−RT2 E2A−1

2 R2A
(
I −RT1 A−1

1 R1A
)

+RT2 E2A−1
2 R2AR

T
1 E1A−1

1 R1A︸ ︷︷ ︸
=:G3

,

and notice that the situation becomes more complicated than for the additive methods as the matrices Ei now
interact with the other subdomain solves. This is a consequence of the sequential nature of MS as opposed
to (damped) AS and RAS and makes fully general and yet insightful analysis not possible, precisely because
of the unknown interaction. To visualize this, let us assume that A has been (symmetrically) permuted so
that

A =

 AI AI,o AI,II
Ao,I Ao Ao,II
AII,I AII,o AII

 with

A1 =

[
AI AI,o
Ao,I Ao

]
,K1 =

[
AI,II
Ao,II

]
,

K2 =

[
Ao,I
AII,I

]
, A2 =

[
Ao Ao,II
AII,o AII

]
.

A direct calculation then gives the formulas13

TMS =

0 0 −
(
A−1

1 K1

)
I,:

0 0
0 0

A−1
2 K2

(
A−1

1 K1

)
I,:
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 I 0 0
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2 K2

0 0
0 0

 E1 0
0

0 0 0

I 0
0 I

A−1
1 K1

0 0 0

 ,
G2 =

0 0 0
0
0

E2

0 0
(
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1 K1

)
I,:

0 0
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−A−1
2 K2

(
A−1

1 K1

)
I,:

+

0 0
0 0

−A−1
1 K1

0 0 I

 ,

G3 =

0 0 0
0
0

E2

 0 0 0

A−1
2 K2

I 0
0 I

 E1 0
0

0 0 0

I 0
0 I

A−1
1 K1

0 0 0

 .
13Many of the following calculations are similar to the ones presented in [26, Section 3.2] for the modified restricted Schwarz

method.
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All hope of obtaining an analogous bound to (5.7) is lost here as any attempt to get a common factor of
ε ≥ ‖Ei‖ necessarily separates the subdomain matrices A−1

1 K1 and A−1
2 K2 in both G1 and G3. Hence, any

such general bound breaks the “continuity” of one MS iteration. However, looking at G2 we see the structure
of TMS appearing, with an additional term. It is useful to notice that the same structure can be retained also
for G1 and G3, provided we have additional knowledge about the interaction of the the subdomain matrices
A−1
i Ki and the matrices Ei. For example, considering the simplest rounding setting as in (5.8)–(5.9) a

straight-forward calculation gives us

G1 =
τ

1 + τ

TMS +

 I 0 0

−A−1
2 K2

0 0
0 0

 , G2 =
τ

1 + τ

TMS +

0 0
0 0

−A−1
1 K1

0 0 I

 ,

G3 =

(
τ

1 + τ

)2
TMS +

 0

A−1
2 K2

0
I
0

A−1
1 K1

0

 ,

and we see that an adapted version of (5.7) can be established in this particular case, i.e.,

‖EMS‖ ≤
τ

1 + τ

(
2(‖M−1

MSA‖+ 1) + ‖A−1
1 K1‖+ ‖A−1

2 K2‖
)

+

(
τ

1 + τ

)2 (
‖M−1

MSA‖+ ‖A−1
1 K1‖+ ‖A−1

2 K2‖+ 2
)
.

Accelerated Schwarz methods. Next, we analyze the methods as preconditioners, using the Schwarz
methods as preconditioners for GMRES. First, we note that the GMRES convergence in the above examples
was almost linear (as opposed to (strongly) superlinear) and this was true also when we used dAS or RAS
instead of MS and in all of our experiments. A recent result in [5, Theorem 1.1 and Corollary 1.2] shows that
for a linear GMRES convergence a perturbation of the system matrix that is sufficiently small in norm slows
the linear convergence only negligibly. Adapted to our case, let us assume that the GMRES preconditioned
with a standard Schwarz method converged linearly with the convergence factor ρGMRES

? . Then, running the
GMRES preconditioned with a multiprecision Schwarz method and obtaining the residual vectors r1, r2, . . . ,
we obtain the following bound

‖rk‖
‖r0‖

≤
(
ρGMRES
? +

1√
k

(1 + ρGMRES
? )‖A−1M?‖‖E?‖F

)k
·

Observe that for any of the Schwarz methods this bound uses the inverse of the norm of the preconditioned
system, which is of course one of the factors of the condition number of the preconditioned system. For the
symmetric case, the condition number is a historically classical quantity used to bound the convergence
behavior of Krylov subspace methods. For the nonsymmetric case, the connection between the condition
number and the convergence is in general not present. For MS the bound also includes additional terms.

Alternatively, we can use the pseudospectra-based bound. As the pseudospectrum of a matrix is stable
with respect to perturbations (as oppose to the the spectrum; see [49, The second definition of pseudospectra,
p. 14]), these are often useful in situation like ours, i.e., when trying to analyze the effect of a (small)
perturbation to the system matrix on the convergence behavior of GMRES, see [45]. First, we recall that
the δ-pseudospectrum of a matrix X, denoted by σδ(X), is defined as

σδ(X) =

{
z ∈ C | ‖(zI−X)−1‖ > 1

δ

}
= {z ∈ σ(X + E) for some E with ‖E‖ < δ} ,

for any δ > 0 and, clearly, for δ = 0 we recover the spectrum, i.e., σ0(X) = σ(X). Moreover, for any δ > 0,
σδ(X) forms a union of Jordan curves enclosing σ(X). Assuming we are solving a problem Xv = b, using
the δ-pseudospectrum, we get the standard ideal GMRES bound

‖rk‖
‖r0‖

≤ Lδ
2πδ

min
deg(ϕ)≤k
ϕ(0)=1

max
z∈σδ(X)

|ϕ(z)|, (5.10)
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where Lδ denotes the arc length of the boundary of σδ(X) and ϕ(z) is a polynomial of the degree up to k
and normalized at the origin; for more details on pseudospectra see [49] and references therein and for their
use in the context of Krylov subspace methods (and GMRES in particular) see [34, Sections 4.9 and 5.7.3]
but also [16, Section 2.3] and the work cited there. We also note that (5.10) is in fact a family of bounds
based on δ, rather than a single bound. The common wisdom is that larger values of δ tend to be more
descriptive at the initial convergence phase (up to a certain δ0 for which the bound stops being useful at
all) while smaller values of δ give a more accurate prediction for later stages of the GMRES convergence,
see [16, Section 2.3].

Importantly, in [45, Section 2.2] the authors give two results relevant to our situation, which we sum-
marize below.

Proposition 5.1 ([45, Theorems 2.1 and 2.3]). Adopting the above notation, let rk (ρk) be the precon-
ditioned GMRES residual with the full-precision (multiprecision, with the solve precision u`) Schwarz method
preconditioner. Assuming that ε := ‖E∗‖ < 1, then for any δ ∈ (0, ε) we have

‖ρk‖
‖b‖

≤
(

1 +
ε

δ − ε

)
Lδ
2πδ

min
deg(ϕ)≤k
ϕ(0)=1

max
z∈σδ(M−1

? A)
|ϕ(z)|. (5.11)

In words, the pseudospectral bound is stable with respect to small perturbations and so an accurate pseu-
dospectral bound on the full-precision system leads to only a slightly more pessimistic bound – a delayed
version of the full-precision one – for the multiprecision preconditioner.

We also note that in [45, Corollary 2.2], the authors show that for a fixed perturbation matrix multiplied
by a magnitude factor, i.e., for the case E?(d`) = εd`Z?, we can expect that the (precondtioned) residual
norms will level-off from a certain precision onward. Moreover, this specific threshold can be estimated
using the pseudospectra of the original (full-precision preconditioner) system. However, the question of
calculating the pseudospectra of the original (full-precision) preconditioned system as well as a reasonable
choice of (several) value(s) of δ remains highly problem dependent and will be a key factor in determining
the accuracy of these bounds.

6. Conclusion and future work. We have proposed and analyzed multiprecision Schwarz methods
that are specifically tailored for problems where we can guarantee the methods convergence – problems where
the system matrix is a so-called M -matrix. Using specific rounding techniques, we were able to preserve
the convergence property and suggest several natural conditions for choosing a suitable precision depending
on the problem. We presented several numerical experiments on PDE model problems that support our
theoretical results and further illustrate aptness of our proposed conditions. As future work we intend to
consider generalizations for multiple subdomains and/or “interface conditions” in the sense of [26].

An understanding of the interaction of the subdomain matrices A−1
i Ki and the matrices Ei for all three

classical Schwarz methods for a wider variety of problems would be certainly interesting and we leave it
open as a possibility for future research. Also, it has been shown that it is often more suitable to bound
the norm of the iteration matrix (and hence of the error) over two or more iterations due to the nature of
the underlying PDE analysis, see, e.g., [23, 26]. Exploiting this to get a better grasp on the multiprecision
Schwarz methods as stand-alone solvers would be useful. Naturally, extending this analysis to preconditioning
or rather understanding how to do that would be also of clear interest. This would be likely overlapping
with the so-called double-sweeping preconditioners and their analysis.
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