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Abstract This work is a follow-up to a poster that was presented at the DD29
conference. Participants were asked the question: “Do you precondition on the left
or on the right?”. Here we report on the results of this social experiment. We also
provide context on left, right and split preconditioning, share our literature review
on the topic, and analyze some of the finer points. Two examples illustrate that
convergence bounds can sometimes lead to misleading conclusions.

Fig. 1 Attendees of DD29 were asked to vote for their favourite way of preconditioning during the
poster session. See Section 4 and Table 1 for more details.
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1 Introduction

This work considers Krylov subspace methods [11, Chapters 6–9] for solving a linear
system Ax = b given A ∈ C𝑛×𝑛 non-singular and b ∈ C𝑛. More precisely, we focus
on the subset of Krylov subspace methods that minimize the residual. These methods
start with an initial vector x0, and thus the initial residual is r0 := b − Ax0. Then,
each iteration 𝑘 ≥ 1 is characterized by an approximate solution x𝑘 which is the
unique element such that the residual r𝑘 := b − Ax𝑘 satisfies

∥r𝑘 ∥ = min
y∈AK𝑘 (A,r0 )

∥r0 − y∥, (1)

where the Krylov subspace is K𝑘 (A, r0) := span{r0,Ar0, . . . ,A𝑘−1r0}.
A well-established idea is to accelerate convergence by preconditioning. Given

two non-singular matrices H𝐿 and H𝑅, the preconditioned system is

H𝐿AH𝑅u = H𝐿b; and x = H𝑅u. (2)

We refer to this system as being split-preconditioned by (H𝐿 ,H𝑅) in which H𝐿 is
the left preconditioner and H𝑅 is the right preconditioner. If H𝐿 = I, then the system
is right-preconditioned by H𝑅. If H𝑅 = I, then the system is left-preconditioned
by H𝐿 . Both systems Ax = b and (2) are equivalent. The objective is to select the
preconditioners in such a way that the Krylov subspace method is more efficient
on (2) than on Ax = b. Applying the characterization (1) to a Krylov subspace
method for solving (2) gives, with r𝑘 = b − Ax𝑘 ,

∥H𝐿r𝑘 ∥ = min
y∈AK𝑘 (HA,Hr0 )

∥H𝐿 (r0 − y)∥, (3)

where K𝑘 (HA,Hr0) := span{Hr0,HAHr0, . . . , (HA)𝑘−1Hr0} in which the com-
bined preconditioner is defined by H := H𝑅H𝐿 .

It is interesting to note that:

• the minimization space depends only on the choice of the combined precondi-
tioner H = H𝑅H𝐿 ,

• the minimized norm depends only on the left preconditioner H𝐿 .

So far, we have not specified the norm ∥ · ∥. In fact, ∥ · ∥ can represent any
weighted norm ∥y∥W :=

√
y∗Wy with W Hermitian positive definite. Using such a

norm yields the so-called weighted GMRES method. Nonetheless, we can choose
the Euclidean norm without loss of generality. This is justified by the fact that
weighting is preconditioning by similarity transformations [6]: unpreconditioned
GMRES using the norm ∥ · ∥W with W := LL∗ is equivalent to GMRES using the
Euclidean norm and split-preconditioned by (L∗,L−∗). Consequently, the paper can
be formulated either from the perspective of preconditioning or of weighted norms.
Since the preconditioning viewpoint is more familiar to most GMRES practitioners,
we adopt this view, together with the Euclidean norm.
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Before setting weighted GMRES aside, we want to emphasize that the triplet (H𝐿 ,
H𝑅, W) contains redundancies that lead to equivalent configurations. For example,
(i) GMRES left-preconditioned by H in norm ∥ · ∥W is equivalent to GMRES right-
preconditioned by H in norm ∥·∥H∗WH; (ii) if H := LL∗ is Hermitian positive definite,
then GMRES right-preconditioned by H in norm ∥ · ∥H is equivalent to GMRES
left-preconditioned by H in norm ∥ · ∥H−1 , which is also equivalent to GMRES
split-preconditioned by (L∗,L) in Euclidean norm. In practice, these equivalences
offer significant flexibility. In particular, (ii) shows how split preconditioning by
the Cholesky factors of a Hermitian positive definite preconditioner can be realized
without explicitly forming those factors. The preconditioned conjugate gradient
method exploits this technique to preserve symmetry [11, Section 9.2.1]. Weighted
GMRES is also valuable for the theoretical analysis of Krylov methods. Firstly,
it creates a unifying framework that includes the conjugate gradient (CG) method
by remarking that, if A is Hermitian positive definite, then CG is simply GMRES
expressed in the A−1-norm. Furthermore, many analytical results are established
in weighted norm (see, e.g., [3, 14, 15, 16]), leaving open whether they extend
to standard Euclidean-norm GMRES. Addressing this latter question is one of the
central motivations of the present work. This question has not been fully answered
yet.

In the remainder of this work we compare left, right and split preconditioning for
unweighted GMRES, which means that ∥ · ∥ is the Euclidean norm. We set out to
determine which is preferable in terms of convergence and quality of the solution.
In order to answer the question, Section 2 presents a literature review from which
we extract the key points. Section 3 analyzes some of these in more detail. In a
more unconventional fashion, Section 4 presents the results of a social experiment
conducted at the DD29 conference on Domain Decomposition Methods where the
participants were asked about their preferred way of preconditioning.

2 Literature Review

We have turned to the literature and found surprisingly few concrete answers. In
what follows we summarize what we found in the following references:

• Iterative methods for sparse linear systems by Y. Saad [11]
• Preconditioning by A. J. Wathen [18]
• Preconditioning and convergence in the right norm by A. J. Wathen [17]
• Preconditioning techniques for large linear systems: A survey by M. Benzi [2]
• Algorithms for sparse linear systems by J. Scott and M. Tůma [13]
• Any nonincreasing convergence curves are simultaneously possible for GMRES

and weighted GMRES, as well as for left and right preconditioned GMRES by P.
Matalon and N. Spillane [9]
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Iterative methods for sparse linear systems by Y. Saad [11]
(Page 271)1 “A question arises on the differences between the right, left, and split
preconditioning options. The fact that different versions of the residuals are available
in each case may affect the stopping criterion and may cause the algorithm to stop
either prematurely or with delay. This can be particularly damaging in case [H] is
very ill-conditioned. The degree of symmetry, and therefore performance, can also
be affected by the way in which the preconditioner is applied. For example, a split
preconditioner may be much better if A is nearly symmetric. Other than these two
situations, there is little difference generally between the three options.”

(Page 271) “When comparing the left, right, and split preconditioning options,
a first observation to make is that the spectra of the three associated operators
[HA, AH, and H𝐿AH𝑅] are identical. Therefore, in principle one should expect
convergence to be similar, although, as is known, eigenvalues do not always govern
convergence.”

(Page 272)“In most practical situations, the difference in the convergence be-
havior of the two approaches is not significant. The only exception is when [H] is
ill-conditioned which could lead to substantial differences.”

Preconditioning by A. J. Wathen [18]
(Pages 356-357) “One aspect which arises in the non-symmetric but not the sym-
metric case is the possibility to left-precondition [...], to right-precondition [...],
or, if [H] is available in split form [H = H𝑅H𝐿], to use [split-preconditioning].
In every case the coefficient matrix is generally again non-symmetric, and obvious
similarity transformations involving [H or (H𝐿 ,H𝑅)] show that all three coefficient
matrices are mathematically similar and so have the same eigenvalues. There is little
evidence, however, that any one of these is better than the others, in terms of its effect
on the convergence rate of a Krylov subspace method, even though, theoretically,
this could be the case. Traditionally, right-preconditioning is favoured since then
GMRES, for example, minimizes the residual r𝑘 = b − Ax𝑘 for the original linear
system; left-preconditioning would lead to minimization of the preconditioned resid-
ual [Hr𝑘]. It is certainly not always clear which is preferable: a good preconditioner
fortunately seems to give fast convergence for all three forms in practice.”

Preconditioning and convergence in the right norm by A. J. Wathen [17]
(Page 5) “[W]e show how preconditioning affects this balance between approxi-
mation and iteration error. In particular for widely used iterative methods which
minimise the residual [...] we show that care is needed to avoid selection of precon-
ditioners which apparently give rapid convergence, but which in fact merely distort
the relevant norm so that poor solutions are achieved for all but extremely small
convergence tolerances.”

Preconditioning techniques for large linear systems: A survey by M. Benzi [2]
(page 420) “Which type of preconditioning to use depends on the choice of the
iterative method, problem characteristics, and so forth. For example, with residual

1 The selected quotes also appear in the first edition of the book published in 1996 with a different
page numbering. In both cases the quote can be found in Section 9.3.
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minimizing methods, like GMRES, right preconditioning is often used. In exact
arithmetic, the residuals for the right-preconditioned system are identical to the true
residuals r𝑘 = b − Ax𝑘 .
Notice that the matrices [HA, AH , and H𝐿AH𝑅] are all similar and therefore have
the same eigenvalues. If A and [H] are spd, the convergence of the CG method will
be the same (except possibly for round-off effects) in all cases. On the other hand,
in the nonnormal case, solvers like GMRES can behave very differently depending
on whether a given preconditioner is applied on the left or on the right (see the
discussion in [11, page 272]2; see also [8, page 66] for a striking example).”

Algorithms for sparse linear systems by J. Scott an M. Tůma [13] (page 167)
“The following result states that it is not possible to determine a priori which variant
is the best.
Theorem ([Mendelsohn [10]]: Let 𝛿 and Δ be positive numbers. Then, for any 𝑛 ≥ 3,
there exist non-singular 𝑛× 𝑛 matrices A and H such that all the entries of (HA− I)
have absolute value less than 𝛿 and all the entries of (AH − I) have absolute values
greater than Δ.
Nevertheless, the choice between left and right preconditioning is still important
and may be based on the properties of the coupling of the preconditioner with
the iterative method or on the distribution of the eigenvalues of A. The computed
quantities that are readily available during a preconditioned iterative method depend
on how the preconditioner is applied and this may influence the choice. These
quantities may be used, for example, to decide when to terminate the iterations. An
obvious advantage of right preconditioning is that in exact arithmetic, the residuals
for the right preconditioned system are identical to the true residuals, enabling
convergence to be monitored accurately. In some cases, the numerical properties of
an implementation and/or the computer architecture may also play a part.”

Any nonincreasing convergence curves are simultaneously possible for [...] left
and right preconditioned GMRES by P. Matalon and N. Spillane [9]

(page 3) “ Consider two prescribed convergence curves of matching length:

• r0 > r1 > r2 > . . . for right preconditioned GMRES,
• r̃0 > r̃1 > r̃2 > . . . for left preconditioned GMRES.

The first result is that there exists a system 𝐴𝑥 = 𝑏 and a preconditioner 𝐻 such
that both convergence curves are realized. Additionally, the eigenvalues of 𝐴𝐻 can
be prescribed. [...] Besides highlighting that GMRES convergence does not solely
depend on the eigenvalues, these results show that for some cases, the decision to
apply preconditioning on the left or on the right, or to apply weighted GMRES may
lead to significant differences in convergence speed. ”

From these quotes we draw the following conclusions:

1. The core difference between left and right preconditioning is the residual that gets
minimized. This can be seen in the characterization (3) (same H but different H𝐿).

2 One of the quotations above by Y. Saad with page number edited for correct edition of book
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2. As a consequence of the previous observation, with right preconditioning, the
residual norm can be monitored for free throughout the iterations. With left pre-
conditioning, monitoring the preconditioned residual norm can lead to premature
or delayed stopping of the algorithm in terms of the unpreconditioned residual
norm. This important question, central to [17], is also addressed, e.g. in [1, 12].

3. The left, right and split preconditioned matrices have the same spectrum so long
as H𝑅H𝐿 is unchanged.

4. It is expected that convergence be faster for the matrix that is close to normality,
or to symmetry. Ease of implementation could play a role too.

5. In practice, the behaviour is often not modified by switching the preconditioner
between left and right. In fact there are few illustrations of opposite behaviours.

6. There is no easy answer. Indeed, any two convergence curves can be simultane-
ously prescribed for left and right preconditioned GMRES. And it is possible to
find A and H such that the entries in AH − I are arbitrarily large and those of
HA − I are arbitrarily small.

3 Analysis

Our own findings are in agreement with the literature review. It is theoretically
possible for the behaviours of left and right preconditioned GMRES to be very
different but usually nothing much happens. Below we detail three points. Before
we go into those details we point out the relation between the eigenvectors in the
three cases considered. Let v be an eigenvector of HA, then both Av and H−1v are
eigenvectors of AH while both H𝐿Av and H−1

𝑅
v are eigenvectors of H𝐿AH𝑅 (all

corresponding eigenvalues being equal).

3.1 Left and right preconditioned GMRES can only differ if H is
ill-conditioned

If right preconditioned GMRES produces residuals r𝑘 and left preconditioned GM-
RES produces residuals r̃𝑘 , they satisfy

∥r𝑘 ∥ ≤ ∥̃r𝑘 ∥ ≤ 𝜅(H)∥r𝑘 ∥,

where 𝜅(H) = 𝜎𝑚𝑎𝑥 (H)/𝜎𝑚𝑖𝑛 (H) is the condition number of H. In other words, the
residuals produced by left and right preconditioned GMRES, when measured in the
Euclidean norm, cannot differ by a factor more than 𝜅(H). The proof is simply that

𝜎𝑚𝑖𝑛 (H)∥r𝑘 ∥≤𝜎𝑚𝑖𝑛 (H) ∥̃r𝑘 ∥≤∥Hr̃𝑘 ∥≤∥Hr𝑘 ∥≤𝜎𝑚𝑎𝑥 (H)∥r𝑘 ∥,
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where the first and third inequalities are the optimality condition (3) for right and
left preconditioned GMRES, while the second and fourth inequalities are spectral
estimates.

We can generalize this analysis to two split preconditioners (H𝐿 ,H𝑅) and
(H̃𝐿 , H̃𝑅) that satisfy H𝑅H𝐿 = H̃𝑅H̃𝐿 . The two minimization spaces are identi-
cal. Their corresponding residuals r𝑘 and r̃𝑘 satisfy

𝜎𝑚𝑖𝑛 (G)∥H𝐿r𝑘 ∥≤𝜎𝑚𝑖𝑛 (G)∥H𝐿 r̃𝑘 ∥≤∥H̃𝐿 r̃𝑘 ∥≤∥H̃𝐿r𝑘 ∥≤𝜎𝑚𝑎𝑥 (G)∥H𝐿r𝑘 ∥,

with G = H̃𝐿H−1
𝐿

. Again, the first and third inequalities are the optimality conditions,
while the second and fourth inequalities are spectral estimates. It follows that:

∥H𝐿r𝑘 ∥ ≤ ∥H𝐿 r̃𝑘 ∥ ≤ 𝜅(H̃𝐿H−1
𝐿 )∥H𝐿r𝑘 ∥.

Applied to right preconditioning by H (by setting (H𝐿 ,H𝑅) = (I,H)) versus split
preconditioning by (H̃𝐿 ,HH̃−1

𝐿
) we obtain

∥r𝑘 ∥ ≤ ∥̃r𝑘 ∥ ≤ 𝜅(H̃𝐿)∥r𝑘 ∥,

so that right and split preconditioning can differ in Euclidean residual norm only by
a factor 𝜅(H̃𝐿).

3.2 Different convergence bounds, same behaviour (1/2)

The striking example cited by M. Benzi in [2] is from the PhD dissertation of S. Lee
[8, page 66], and is adapted from the work of A. S. Householder [7, page 96]. It
consists in a matrix A and a preconditioner H such that H is a poor right inverse and
a good left inverse in two senses: entrywise and field of values.

The example is as follows. Let A be a real matrix with eigenvalues in a real positive
interval [𝜇, 𝜆] with 0 < 𝜇 < 𝜆. Let u (respectively v) be a unit right (respectively
left) eigenvector associated with 𝜆 (respectively 𝜇), i.e.,

Au = 𝜆u; v⊤A = 𝜇v⊤; ∥u∥ = ∥v∥ = 1; and 𝜇 ≠ 𝜆.

The proposed preconditioner is then a rank-one perturbation of A−1 defined by

H := A−1 + uv⊤.

It is easy to see that the preconditioned operators are HA = (A−1+uv⊤)A = I+𝜇uv⊤
and AH = A(A−1 + uv⊤) = I + 𝜆uv⊤. Moreover,

I − HA = −𝜇uv⊤ and I − AH = −𝜆uv⊤.

so the entries of I − HA and I − AH are in the ratio 𝜆/𝜇 which can be very large.
This illustrates [13, Theorem 9.2] (originally from [10]) cited in Section 2.
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Moreover, the field of values of HA is the circle centered at 1 of radius 𝜇/2 and the
field of values of AH is the circle centered at 1 of radius 𝜆/2 (see below for a proof).
A well-known convergence bound for GMRES, the Elman bound [4],[5, §5.3] relates
the rate of convergence of GMRES to the field of values of the operator. In particular,
in the case where the field of values is a small disk around 1, convergence is provably
fast. When 0 is included in the field of values, Elman’s bound does no longer apply.
For this reason, if 𝜆 > 1 ≫ 𝜇 it is tempting to conclude that H is a poor right-hand
side inverse and a good left-hand side inverse in terms of the field of values.

However, when it comes to convergence of GMRES, the reality is quite different
and this can be seen by observing that

(HA)2 = (I + 𝜇uv⊤)2 = I + 2𝜇uv⊤ + 𝜇2uv⊤uv⊤ = I + 2𝜇uv⊤ = 2HA − I,

where the third equality is the result of v ⊥ u since u and v are a pair of right and left
eigenvectors associated with two different eigenvalues. Consequently, the grade of
any vector with respect to HA is 2 and, both left and right preconditioned GMRES
converge in at most 2 iterations (for any right hand side and any starting vector).

Proof of field of value formulae. The field of values of AH is the set of all complex
numbers of the form

z∗AHz
z∗z

= 1 + 𝜆 z∗uv⊤z
z∗z

= 1 + 𝜆 z∗u · v⊤z
z∗z

; z ∈ C𝑛,

with z∗ the conjugate transpose of z. Applying again that v ⊥ u, any z ∈ C𝑛 can be
split into z = 𝜉1u + 𝜉2v + w with w ⊥ u, w ⊥ v, and 𝜉1, 𝜉2 ∈ C. It follows that

z∗AHz
z∗z

= 1 + 𝜆 𝜉1𝜉2

|𝜉1 |2 + |𝜉2 |2 + ∥w∥2 .

The inclusion of the circle in the field of values can be seen by setting w = 0,
𝜉1 = e−i𝜃 and 𝜉2 = ei𝜃 for all values of 𝜃 ∈ [0, 𝜋]:

z∗AHz
z∗z

= 1 + 𝜆

2
e2i𝜃 .

The inclusion of the field of values in the circle is the result of

2|𝜉1𝜉2 | ≤ |𝜉1 |2 + |𝜉2 |2 ≤ |𝜉1 |2 + |𝜉2 |2 + ∥w∥2 = ∥z∥2.

The proof for the field of values of HA is almost identical.

3.3 Different convergence bounds, same behaviour (2/2)

The convergence bound [11, Prop. 6.32] involving the eigenvalues and the condi-
tioning of the eigenvectors is a well-known convergence bound for GMRES. In this
section, we build a family of matrices and preconditioners such that this bound is
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small when the preconditioner is applied on the right, large when it is applied on the
left, and yet lead to the same convergence speed in practice.

Assume a non-singular, diagonalizable matrix A := PΛP−1, whereΛ is a diagonal
matrix holding the eigenvalues of A, and P is a matrix whose columns hold the
eigenvectors of A. The bound [11, Prop. 6.32] for the GMRES method applied to
the system Ax = b reads

∥r𝑘 ∥
∥r0∥ ≤ 𝜖 (𝑘 ) 𝜅(P), (4)

where
𝜖 (𝑘 ) := min

𝑞∈P𝑘 ,𝑞 (0)=1
max
𝜆∈𝜎 (A)

|𝑞(𝜆) |.

In 𝜖 (𝑘 ) , P𝑘 denotes the space of polynomial of degree at most 𝑘 . This term accounts
for the spectrum of A, while the second term of the bound, 𝜅(P), accounts for the
eigenvectors of A. Note that 𝜅(P) is often seen as a measure of A’s departure from
normality, in the sense that if A is normal, then P is unitary and 𝜅(P) = 1. On the
other hand, if 𝜅(P) is large, it means that some eigenvectors are close to being linearly
dependent, thus making P∗P far from identity, and therefore A∗A far from AA∗.

Let us build a test case where left- and right-preconditioning lead to significantly
different bounds. Let Λ be an invertible, well-conditioned, diagonal matrix. Let X
be an ill-conditioned invertible matrix. Let Y be a unitary matrix. Now, define the
matrix A := XΛY−1 and the preconditioner H := YX−1. We then have the left- and
right-preconditioned matrices HA = YΛY−1 and AH = XΛX−1.

Solving Ax = b with left-preconditioned GMRES applies GMRES to the system
HAx = Hb. Denoting by r̃𝑘 := H(b − Ax𝑘) the 𝑘 𝑡ℎ residual produced, (4) writes

∥̃r𝑘 ∥
∥̃r0∥ ≤ 𝜖 (𝑘 ) .

Indeed, since Y is unitary, 𝜅(Y) = 1. We expect fast convergence in this case due
to the sole dependency of the eigenvalues, which we have selected to be clustered.
Similarly, right-preconditioned GMRES yields the bound

∥r𝑘 ∥
∥r0∥ ≤ 𝜖 (𝑘 ) 𝜅(X).

Since X is ill-conditioned, this bound is large: we (naively) expect slow convergence.
However, we present below an example for which both cases converge almost at the
same speed, with only small discrepancies in the successive residual norms produced.

Experimental setup: Y is obtained as the orthogonal matrix produced by the
QR factorization of a randomly generated square matrix. X is, first, initialized the
same way. Then, denoting by x𝑖 the 𝑖𝑡ℎ column of X, we replace x1 by 1

𝐾
x1 + x𝑛,

where 𝐾 is a large real number. This way, x1 is close to collinear to x𝑛, while
preserving its strict linear independence from all other columns. The coefficient 𝐾
drives the condition number of X. A and H are defined accordingly, and b is randomly
generated. Figure 2 shows such an example with a system of order 100 and 𝐾 := 108
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(≈ 𝜅(X)). For right-preconditioning, we plot the residual norms ∥r𝑘 ∥/∥r0∥, and for
left-preconditioning, we plot the preconditioned residual norms ∥̃r𝑘 ∥/∥̃r0∥. Note
that the unpreconditioned residuals in this latter case sensibly produce the same
convergence curve as the preconditioned residuals.

0 10 20 30 40 50
10−13

10−6

101

Iterations

Re
sid

ua
l

left
right

Fig. 2 Example of left-right preconditioning leading to similar convergence behaviour while pre-
senting significantly different convergence bounds.

4 A social experiment at DD29

Do you precondition on the left or on the right ? And does it matter ?
I left

precondition

29
(41%)

I right
precondition

19
(27%)

I split
precondition

3
(4.2%)

I only
PCG

6
(8.5%)

It varies/
I don’t know

8
(11%)

I don’t
precondition

6
(8.5%)

Yes, it matters 34 (48%)

No, it doesn’t matter 13 (18%)

Did not reply 24 (34%)

Table 1 Results of the poll. There are 71 replies to the first question. All percentages are with
respect to these 71 participants. Figure 1 shows how the questions were displayed on the poster.

During the poster session at the DD29 conference on Domain Decomposition
methods, the authors presented a poster which included a poll. The participants at
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the conference were asked to vote in favour of their favourite way of preconditioning.
The possible answers and results of the poll are shown in Table 1. There were 299
attendees at the conference according to the organizers. Of these, 71 people replied
to the first question in the poll which is “Do you precondition on the left or on the
right”. The participation rate is 24%. Significantly fewer people (47) replied to the
second question which is “And does it matter ?”. In the presentation of the results in
Table 1 we included a “Did not reply” field to account for this.

Preconditioned conjugate gradients (PCG) is given as a separate possible response
to the first question since there is one overwhelmingly natural way of preconditioning
the conjugate gradient method that is neither left- nor right-preconditioning [11,
Section 9.2.1] but preserves the short recurrence property.

It turns out that 41% of respondents apply left preconditioning. One possible
explanation is that left preconditioning is the default choice in several libraries in-
cluding PETSc (with the exception of fgmres but including lsqr), MATLAB’s gmres
and bicg, Python’s scipy.sparse.linalg and Trilinos. Note that right preconditioning
is the default for MATLAB solvers bicgstab and lsqr, and the necessary choice for
all implementations of flexible GMRES. In second place, 27% of respondents apply
right preconditioning. The argument in favour of right preconditioning is to mini-
mize and monitor the residual in the Euclidean norm3. Finally, there are 2.6 times
more people who consider the choice between left and right preconditioning to be
important than those who don’t.

Both authors that were present at the conference responded that they left-
precondition and that yes, it does matter. Our reasoning is that if H is a good
preconditioner for A then the left preconditioned residual is a reasonable measure
of the error. Since we are aware that the preconditioned residual norm may be
much larger than the unpreconditioned residual norm, we do also compute the un-
preconditioned residual (but not at every iteration) so that the solver does not stop
prematurely.

5 Conclusion

The purpose of this work is to question whether there is a best way to position
a given preconditioner. We have done our best to reflect existing considerations
from the literature as well as to offer some enlightenments. Our examples show
that convergence bounds that predict possible opposite behaviours between left and
right preconditioned GMRES are not always correct predictions. If there is a norm
that is particularly useful or meaningful for a given problem then it should be the
norm that is minimized by GMRES. Otherwise, either choice is valid but GMRES
users should be aware of what they are doing and perhaps compute several different
residual norms for the output solution.

3 Even though the poll was not conducted in any other scientific meetings, the conversations that
the first author has had with many scientists led her to believe that right preconditioning would have
been the winner at a numerical linear algebra conference.
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(2023). DOI 10.1007/978-3-031-25820-6

14. Spillane, N.: Hermitian preconditioning for a class of non-Hermitian linear systems. SIAM J.
Sci. Comput. 46(3), a1903–a1922 (2024). DOI 10.1137/23M1559026

15. Spillane, N., Szyld, D.B.: New convergence analysis of GMRES with weighted norms, precon-
ditioning, and deflation, leading to a new deflation space. SIAM J. Matrix Anal. Appl. 45(4),
1721–1745 (2024). DOI 10.1137/23M1622398

16. Spillane, N., Szyld, D.B.: Improved Polynomial Bounds and Acceleration of GMRES by
Solving a min-max Problem on Rectangles, and by Deflating. Preprint, arXiv:2504.05723
[math.NA] (2025). URL https://arxiv.org/abs/2504.05723

17. Wathen, A.: Preconditioning and convergence in the right norm. Int. J. Com-
put. Math. 84(8), 1199–1209 (2007). DOI 10.1080/00207160701355961. URL
ora.ox.ac.uk/objects/uuid:355787b7-ef50-4765-8f9a-970989034ffa

18. Wathen, A.J.: Preconditioning. Acta Numer. 24, 329–376 (2015). DOI
10.1017/S0962492915000021


