

Euler's Method Euler's Method uses the slope of ^X at each time step to extrapolate the solution to the next time step approximate solution xlt)
exact $X(0)=R_0$ ^o f tat tats ^t ^t ^t ^t t_{n} t equalspacing At Slope to tungent line to the graph of $x(t)$ at t_0 is $f(t_0, x_0)$ t_o , is Now use this slope to estimate the slope between $x(t_1)$ $\frac{x(t_1) - x_o}{\Delta t}$ \approx $f(t_{o,0}x_o)$
 $x(t_1)$ \approx x_o + Δt + $f(t_o)$ x_0 + Δt + $\int (t_{0}^{\prime}, x_0^{\prime}) = x_1$ -approximates $x(t_1)$ $X_1 = X_0 + \Delta t$ * $f(t_{0}X_0)$ Now assume x_1 is the exact solution, the slope to
tangent like at x_1 is $f(t_1,x_1)$ then tangent line at x_1 is $f(t_1, x_1)$ $X_2 = X_1 + \Delta t^* f(t_1, x_1)$

In general
\n
$$
X_j = X_{j-1} + At^* f(t_{j}, x_j)
$$

\n[What is the error made in one step of Euler method?
\nSuppose $X(t_{j-1}) = x_{j-1}$
\nappers $X_j = X_{j-1} + \Delta t$: $f(x_{j+1})$.
\nthree $X(t_j) = X(t_{j-1} + \Delta t)$
\n $= X(t_{j-1}) + \Delta t * X'(t_{j-1}) + \frac{1}{2} (\Delta t)^2 X''(t_{j-1}) + O(\Delta t^2)$
\n $e_j = X(t_j) - x_j = \frac{1}{2} (\Delta t)^2 X''(t_{j-1}) + O(\Delta t^3)$
\n[From Δt SPP. j
\n[After Δt and Δt SPP. j
\n Δt SPP. kPP. accountate error. $O(\Delta t^2)$
\n[10load error \rightarrow $O(\Delta t)$ $O(\Delta t^2) = O(\Delta t)$
\nLuler Method is a first order method.
\nReduce. time step SQP. SQQ. At
\n Δt and Δt are a linear decrease in error.

We can do better is ^a quadratic decrease in error or more <u> Kunge-Kutta Methods</u> kunge-Kutta methods are a class of numerical methods for
cypproximating ODEs that use information on the 'slope' cupproximating ODEs that use information on the slope
dt more than one point to extrapolate the solution to more than one point to extrapolate the solution to a future time step. eg Explicit Trapezoidal Rule Heun's Method $X(f)$ $, \lambda^*$. exaction of the control of exact t_0 t_1 t_2 t_3 t_1 t_2 t_3 Use slope information
time step interval at laft at right endpoint of starting with interval $[t_{o_j}t_i]$ slope of tungent at left = $f(t_0, x_0)$ We don't know the value of X at t₁ yet Approximate with Euler's Method $x^* = x_0 + \Delta t * f(t_0, x_0)$

Now find slope of tangent at right point.
\n
$$
= f(t_1, x_0t \text{ at } t f(t_0,x_0)
$$
\n
$$
= f(t_1, x_0t \text{ at } t f(t_0,x_0))
$$
\n
$$
= f(t_1, x_0t) + f(t_1, x_0t \text{ at } t f(t_0,x_0))
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Average}
$$
\n
$$
= x_0 + \Delta t \cdot \text{Arg} \cdot \text{Green} \cdot \text{Green}
$$

Runge-Kutta 4 (RK4) Arguably the Most popular Runge-Kutta Method R K4 because it is fourth order $O(Bt^4)$ $if \quad \Delta t \rightarrow \frac{\Delta t}{2}$ error goes down by fuctor of 8 RK4 formula $X_{j+1} = X_j + \frac{\Delta t}{6} (k_1 + 2k_2 + 2k_3 + k_4)$ $k_1 = \int (t_j, x_j)$ $k_{2} = f(t_{j} + \frac{\Delta t}{2}, x_{j} + \frac{\Delta t}{2}k_{1})$ $k_3 = \int (t_j + \frac{\Delta t}{2}, x_j + \frac{\Delta t}{2} k_2)$ $k_4 = \int (t_{j+1}, x_j + \Delta t \cdot k_3)$ where k_1 , k_2 , k_3 , k_4 are slopes at points between tj and $t_{j+t} = t_j + \Delta t$