	• •
Find solution to the ordinary differential equation $\chi'(t) = dx = f(t_1 x)$	· · ·
X(0) = Xo (initial condition)	• •
The ODE gives the rate of change of X(t) in time or sl of the tangent line at each point in time.	lope
The solution to an OBE B some function X(t). When we can write down a solution for all times that's the analytical solution.	••••
Usually it's challenging to determine an explicit formula for xlt) so we numerically approximate it at discrete points	· · ·
Numerical approximation of X Knowing the value of X at some starting point to ite;	χ _ο
Find an approximation of X at discrete times $t_1, t_2, t_3, \dots, t_n$ where $t_j - t_{j-1} = \Delta t$	••••
for all j=1,,n.	• •
(all the numerical approximation at time t_j : $X_j \approx X(t_j) = X(j \otimes t)$	• •
· · · · · · · · · · · · · · · · · · ·	• •

In general
$$x_j = x_{j-1} + \Delta t^* f(t_{j}, x_j)$$

What is the error made in one step of Euler motion?
Suppose $\chi(t_{j+1}) = x_{j-1}$
approx $\chi_j = x_{j-1} + \Delta t + f(x_{j-1})$.
true $\chi(t_j) = \chi(t_{j-1} + \Delta t)$
 $= \chi(t_{j-1}) + \Delta t^* \chi'(t_{j-1}) + \frac{1}{2} (\Delta t)^2 \chi^*(t_{j-1}) + O(\Delta t^3)$
 $e_j = \chi(t_j) - x_j = \frac{1}{2} (\Delta t)^2 \chi''(t_{j-1}) + O(\Delta t^3)$
higter order terms become insignificant as Δt becomes smaller
There are $n = \frac{t_4}{\Delta t}$ skeps $= O(\Delta t)$ steps
Per step accumulate error $O(\Delta t^2) = O(\Delta t)$
Gildbaal error $\rightarrow O(\Delta t) O(\Delta t^2) = O(\Delta t)$
Euler Method is a first order method
Reduce time skep size Δt by $2j$ error goes down
a factor of 2 i.e. a linear decrease in error.

We can do better a quadratic decrease in enor ù. or more Kunge-Kutta Methods Runge-Kutta methods are a class of numerical methods for that use information on the 'slope' cupproximating ODEs more than one point to extrapolate the solution to dt a future time step. eg Explicit Traperoidal Rule / Heun's Method. XLES exact ť, at left at right endpoint Use slope information time step interval ٥ť Sturting with interval $[t_0, t_1]$ at left f(to, Xo) slope of tangent Ξ We don't know the of X at Value t, yet Approximate with Euler's Method X# = Xo + St #f(to, Xo)

Now find slope of tungent at right point
=
$$f(t_1, x_{ot} & dt^* f(t_0, x_0)$$

Take an average of the two slopes and use this
average to find x_1
Average = $\frac{f(t_0, x_0) + f(t_1, x_0 + \Delta t^* f(t_0, x_0))}{2}$
 $x_1 = x_0 + \Delta t^* \text{Average}$
= $x_0 + \Delta t^* \left(\frac{f(t_0, x_0) + f(t_1, x_0 + \Delta t^* f(t_0, x_0))}{2}\right)$
In general to find x_j given x_{j-1}
 $x_j = x_{j-1} + \frac{\Delta t}{2} (k_1 + k_2)$
where $k_1 = f(t_{j-1}, x_{j-1})$
 $k_2 = f(t_j, x_{j-1} + \Delta t^* k_1)$
This is a second order method $O((dt)^2)$
so when the slep size is cut in half the
error goes down by a factor of 4.

Runge-Kutta 9 (RK4) Arguably the Most popular Runge-Kutta Method RK4 because it is fourth order $O(Bt^4)$ $\mathcal{A} \xrightarrow{\mathcal{A}} \mathcal{A} \xrightarrow{\mathcal{A}} \mathcal{A}$ error goes down by factor of 8 RK4 formula $X_{j+1} = X_j + \frac{\Delta t}{6} (k_1 + 2k_2 + 2k_3 + k_4)$ $k_1 = f(t_j, x_j)$ $k_{2} = f(t_{j} + \frac{4}{2}, x_{j} + \frac{4}{2}k_{1})$ $k_3 = f(t_j + \frac{4}{2}, x_j + \frac{4}{2}k_2)$ $k_4 = f(t_{j+1}, x_j + \Delta t^* k_3)$ where k_1 , k_2 , k_3 , k_4 are slopes at points between t_j and $t_{j+1} = t_j + \delta t$